Some Recent Advances. in Non-convex Optimization. Purushottam Kar IIT KANPUR

Size: px
Start display at page:

Download "Some Recent Advances. in Non-convex Optimization. Purushottam Kar IIT KANPUR"

Transcription

1 Some Recent Advances in Non-convex Optimization Purushottam Kar IIT KANPUR

2 Outline of the Talk Recap of Convex Optimization Why Non-convex Optimization? Non-convex Optimization: A Brief Introduction Robust Regression: A Non-convex Approach Robust Regression: Application to Face Recognition Robust PCA: A Sketch and Application to Foreground Extraction in Images

3 Recap of Convex Optimization

4 Convex Optimization Convex function Convex set

5 Examples Linear Programming Quadratic Programming Semidefinite Programming

6 Applications Resource Allocation Regression Classification Clustering/Partitioning Signal Processing Dimensionality Reduction

7 Techniques Projected (Sub)gradient Methods Stochastic, mini-batch variants Primal, dual, primal-dual approaches Coordinate update techniques Interior Point Methods Barrier methods Annealing methods Other Methods Cutting plane methods Accelerated routines Proximal methods Distributed optimization Derivative-free optimization

8 Why Non-convex Optimization?

9 Gene Expression Analysis DNA micro-array gene expression data

10 Recommender Systems n k m =

11 Image Reconstruction and Robust Face Recognition = = =

12 Image Denoising and Robust Face Recognition = = n

13 Large Scale Surveillance Foreground-background separation = = + n m = +

14 Non Convex Optimization Sparse Recovery Matrix Completion Robust Regression Robust PCA

15 Non-convex Optimization: A Brief Introduction

16 Relaxation-based Techniques Convexify the feasible set

17 Alternating Minimization Matrix Completion Robust PCA also Robust Regression, coming up

18 Projected Gradient Descent Top s elements by magnitude Perform k-truncated SVD Sparse Recovery

19 Pursuit and Greedy Methods Set of atoms Sparse Recovery

20 Robust Regression: A Non-convex Approach

21 Linear Regression

22 Linear Regression

23 Linear Regression image.frompo.com

24 Linear Regression with Noise

25 Linear Regression with Noise Residual

26 Linear Regression with Noise

27 Linear Regression with Noise

28 Linear Regression with Noise

29 Linear Regression with Corruptions

30 Robust Regression Corruptions are adversarial, adaptive, but only on a few locations

31 Robust Regression Corruptions are adversarial, adaptive, but only on a few locations Attempt 1 3

32 Robust Regression Corruptions are adversarial, adaptive, but only on a few locations Attempt 1 10

33 Robust Regression Corruptions are adversarial, adaptive, but only on a few locations Attempt 1 10

34 Robust Regression Corruptions are adversarial, adaptive, but only on a few locations Attempt 2 [Wright and Ma 2010*, Nguyen et al, 2013*]

35 Lessons from History If among these errors are some which appear too large to be admissible, then those equations which produced these errors will be rejected, as coming from too faulty experiments, and the unknowns will be determined by means of the other equations, which will then give much smaller errors Adrien-Marie Legendre, On the Method of Least Squares, 1805

36 Linear Regression with Corruptions

37 Linear Regression with Corruptions

38 Linear Regression with Corruptions

39 Linear Regression with Corruptions TORRENT-FC Thresholding Operator-based Robust RegrEssioN method [Bhatia et al, 2015]

40 TORRENT in Action!

41 TORRENT in Action!

42 TORRENT in Action!

43 TORRENT in Action!

44 TORRENT in Action!

45 TORRENT in Action!

46 TORRENT in Action!

47 TORRENT in Action!

48 TORRENT in Action!

49 TORRENT in Action!

50 TORRENT in Action!

51 TORRENT in Action!

52 TORRENT in Action!

53 TORRENT in Action!

54 TORRENT in Action!

55 TORRENT in Action!

56 TORRENT in Action!

57 TORRENT in Action!

58 TORRENT in Action!

59 TORRENT in Action!

60 TORRENT in Action!

61 TORRENT in Action!

62 TORRENT in Action!

63 Alt-Min in Theory Recovery Guarantees Robust against adaptive adversaries has access to data, gold model, and noise Requirement: Data needs to satisfy some nice properties Enough data needs to be present Guarantees: TORRENT will recover the gold model if i.e.

64 Alt-Min in Theory Recovery Guarantees Robust against adaptive adversaries has access to data, gold model, and noise Requirement: Data needs to satisfy some nice properties Enough data needs to be present Guarantees: TORRENT will recover the gold model if i.e.

65 Alt-Min in Theory Linear rate of convergence Suppose each alternation one step Convergence Rates After T = log 1 ε time steps Invariant: at time t, active set s.t

66 Alt-Min in Theory Linear rate of convergence Suppose each alternation one step Convergence Rates After T = log 1 ε time steps Invariant: at time t, active set s.t

67 Alt-Min in Theory Linear rate of convergence Suppose each alternation one step Convergence Rates After T = log 1 ε time steps Invariant: at time t, active set s.t

68 Alt-Min in Theory Linear rate of convergence Suppose each alternation one step Convergence Rates After T = log 1 ε time steps Invariant: at time t, active set s.t

69 Alt-Min in Theory Linear rate of convergence Suppose each alternation one step Convergence Rates After T = log 1 ε time steps Invariant: at time t, active set s.t

70 Alt-Min in Theory Linear rate of convergence Suppose each alternation one step Convergence Rates After T = log 1 ε time steps Invariant: at time t, active set s.t

71 Alt-Min in Theory Linear rate of convergence Suppose each alternation one step Convergence Rates After T = log 1 ε time steps Invariant: at time t, active set s.t

72 Alt-Min in Theory Linear rate of convergence Suppose each alternation one step Convergence Rates After T = log 1 ε time steps Invariant: at time t, active set s.t

73 Alt-Min in Practice Quality of Recovery [Bhatia et al 2015]

74 Alt-Min in Practice Speed of Recovery [Bhatia et al 2015]

75 Robust Regression: Application to Face Recognition Extended Yale B dataset, 38 people, 800 images

76 Face Recognition 10% noise 30% noise 50% noise 70% noise [Bhatia et al 2015]

77

78 Robust PCA: A Sketch and Application to Foreground Extraction in Images

79 The Alternating Projection Procedure [Netrapalli et al 2014]

80

81 Concluding Comments Non-convex optimization is an exciting area Widespread applications Much better modelling of problems Much more scalable algorithms Provable guarantees So Full of opportunities Full of challenges

82 Acknowledgements Portions of this talk were based on joint work with Kush Bhatia Microsoft Research Prateek Jain Microsoft Research Ambuj Tewari U. Michigan, Ann Arbor

83 The Data Sciences Medha Atre Arnab Bhattacharya Sumit Ganguly Purushottam Kar Harish Karnick Vinay Namboodiri Piyush Rai Indranil Saha Gaurav Sharma Sandeep Shukla

84 Machine Learning Vision, Image Processing Our Strengths Databases, Data Mining Online, Streaming Algorithms Cyber-physical Systems

85 Questions?

86 TORRENT as an Alt-Min Procedure TORRENT indeed performs Alt-Min Two variables in TORRENT active set and model encodes the complement of the corruption vector TORRENT alternates between Fixing model and choosing active set Fixing active set and choosing model Both steps reduce the residual as much as possible

87 Linear Regression with Corruptions TORRENT-GD Thresholding Operator-based Robust RegrEssioN method [Bhatia et al, 2015]

88 Linear Regression with Corruptions TORRENT-HYB Thresholding Operator-based Robust RegrEssioN method [Bhatia et al, 2015]

Consistent Robust Regression

Consistent Robust Regression Consistent Robust Regression Kush Bhatia University of California, Berkeley Prateek Jain Microsoft Research, India Parameswaran Kamalaruban EPFL, Switzerland Purushottam Kar Indian Institute of Technology,

More information

Provable Alternating Minimization Methods for Non-convex Optimization

Provable Alternating Minimization Methods for Non-convex Optimization Provable Alternating Minimization Methods for Non-convex Optimization Prateek Jain Microsoft Research, India Joint work with Praneeth Netrapalli, Sujay Sanghavi, Alekh Agarwal, Animashree Anandkumar, Rashish

More information

Algorithmic Foundations Of Data Sciences: Lectures explaining convex and non-convex optimization

Algorithmic Foundations Of Data Sciences: Lectures explaining convex and non-convex optimization Algorithmic Foundations Of Data Sciences: Lectures explaining convex and non-convex optimization INSTRUCTOR: CHANDRAJIT BAJAJ ( bajaj@cs.utexas.edu ) http://www.cs.utexas.edu/~bajaj Problems A. Sparse

More information

MLCC 2018 Variable Selection and Sparsity. Lorenzo Rosasco UNIGE-MIT-IIT

MLCC 2018 Variable Selection and Sparsity. Lorenzo Rosasco UNIGE-MIT-IIT MLCC 2018 Variable Selection and Sparsity Lorenzo Rosasco UNIGE-MIT-IIT Outline Variable Selection Subset Selection Greedy Methods: (Orthogonal) Matching Pursuit Convex Relaxation: LASSO & Elastic Net

More information

Non-convex Robust PCA: Provable Bounds

Non-convex Robust PCA: Provable Bounds Non-convex Robust PCA: Provable Bounds Anima Anandkumar U.C. Irvine Joint work with Praneeth Netrapalli, U.N. Niranjan, Prateek Jain and Sujay Sanghavi. Learning with Big Data High Dimensional Regime Missing

More information

CSCI 1951-G Optimization Methods in Finance Part 12: Variants of Gradient Descent

CSCI 1951-G Optimization Methods in Finance Part 12: Variants of Gradient Descent CSCI 1951-G Optimization Methods in Finance Part 12: Variants of Gradient Descent April 27, 2018 1 / 32 Outline 1) Moment and Nesterov s accelerated gradient descent 2) AdaGrad and RMSProp 4) Adam 5) Stochastic

More information

Recent Advances in Structured Sparse Models

Recent Advances in Structured Sparse Models Recent Advances in Structured Sparse Models Julien Mairal Willow group - INRIA - ENS - Paris 21 September 2010 LEAR seminar At Grenoble, September 21 st, 2010 Julien Mairal Recent Advances in Structured

More information

Solving Corrupted Quadratic Equations, Provably

Solving Corrupted Quadratic Equations, Provably Solving Corrupted Quadratic Equations, Provably Yuejie Chi London Workshop on Sparse Signal Processing September 206 Acknowledgement Joint work with Yuanxin Li (OSU), Huishuai Zhuang (Syracuse) and Yingbin

More information

Structured matrix factorizations. Example: Eigenfaces

Structured matrix factorizations. Example: Eigenfaces Structured matrix factorizations Example: Eigenfaces An extremely large variety of interesting and important problems in machine learning can be formulated as: Given a matrix, find a matrix and a matrix

More information

Sketching for Large-Scale Learning of Mixture Models

Sketching for Large-Scale Learning of Mixture Models Sketching for Large-Scale Learning of Mixture Models Nicolas Keriven Université Rennes 1, Inria Rennes Bretagne-atlantique Adv. Rémi Gribonval Outline Introduction Practical Approach Results Theoretical

More information

Master 2 MathBigData. 3 novembre CMAP - Ecole Polytechnique

Master 2 MathBigData. 3 novembre CMAP - Ecole Polytechnique Master 2 MathBigData S. Gaïffas 1 3 novembre 2014 1 CMAP - Ecole Polytechnique 1 Supervised learning recap Introduction Loss functions, linearity 2 Penalization Introduction Ridge Sparsity Lasso 3 Some

More information

Large-scale Stochastic Optimization

Large-scale Stochastic Optimization Large-scale Stochastic Optimization 11-741/641/441 (Spring 2016) Hanxiao Liu hanxiaol@cs.cmu.edu March 24, 2016 1 / 22 Outline 1. Gradient Descent (GD) 2. Stochastic Gradient Descent (SGD) Formulation

More information

Machine Learning for Signal Processing Sparse and Overcomplete Representations

Machine Learning for Signal Processing Sparse and Overcomplete Representations Machine Learning for Signal Processing Sparse and Overcomplete Representations Abelino Jimenez (slides from Bhiksha Raj and Sourish Chaudhuri) Oct 1, 217 1 So far Weights Data Basis Data Independent ICA

More information

On Iterative Hard Thresholding Methods for High-dimensional M-Estimation

On Iterative Hard Thresholding Methods for High-dimensional M-Estimation On Iterative Hard Thresholding Methods for High-dimensional M-Estimation Prateek Jain Ambuj Tewari Purushottam Kar Microsoft Research, INDIA University of Michigan, Ann Arbor, USA {prajain,t-purkar}@microsoft.com,

More information

Convex Optimization Lecture 16

Convex Optimization Lecture 16 Convex Optimization Lecture 16 Today: Projected Gradient Descent Conditional Gradient Descent Stochastic Gradient Descent Random Coordinate Descent Recall: Gradient Descent (Steepest Descent w.r.t Euclidean

More information

Data Science - Convex optimization and application

Data Science - Convex optimization and application 1 Data Science - Convex optimization and application Data Science - Convex optimization and application Summary We begin by some illustrations in challenging topics in modern data science. Then, this session

More information

ECS171: Machine Learning

ECS171: Machine Learning ECS171: Machine Learning Lecture 4: Optimization (LFD 3.3, SGD) Cho-Jui Hsieh UC Davis Jan 22, 2018 Gradient descent Optimization Goal: find the minimizer of a function min f (w) w For now we assume f

More information

MATH36061 Convex Optimization

MATH36061 Convex Optimization M\cr NA Manchester Numerical Analysis MATH36061 Convex Optimization Martin Lotz School of Mathematics The University of Manchester Manchester, September 26, 2017 Outline General information What is optimization?

More information

STA141C: Big Data & High Performance Statistical Computing

STA141C: Big Data & High Performance Statistical Computing STA141C: Big Data & High Performance Statistical Computing Lecture 8: Optimization Cho-Jui Hsieh UC Davis May 9, 2017 Optimization Numerical Optimization Numerical Optimization: min X f (X ) Can be applied

More information

Analysis of Greedy Algorithms

Analysis of Greedy Algorithms Analysis of Greedy Algorithms Jiahui Shen Florida State University Oct.26th Outline Introduction Regularity condition Analysis on orthogonal matching pursuit Analysis on forward-backward greedy algorithm

More information

Contents. 1 Introduction. 1.1 History of Optimization ALG-ML SEMINAR LISSA: LINEAR TIME SECOND-ORDER STOCHASTIC ALGORITHM FEBRUARY 23, 2016

Contents. 1 Introduction. 1.1 History of Optimization ALG-ML SEMINAR LISSA: LINEAR TIME SECOND-ORDER STOCHASTIC ALGORITHM FEBRUARY 23, 2016 ALG-ML SEMINAR LISSA: LINEAR TIME SECOND-ORDER STOCHASTIC ALGORITHM FEBRUARY 23, 2016 LECTURERS: NAMAN AGARWAL AND BRIAN BULLINS SCRIBE: KIRAN VODRAHALLI Contents 1 Introduction 1 1.1 History of Optimization.....................................

More information

Learning with stochastic proximal gradient

Learning with stochastic proximal gradient Learning with stochastic proximal gradient Lorenzo Rosasco DIBRIS, Università di Genova Via Dodecaneso, 35 16146 Genova, Italy lrosasco@mit.edu Silvia Villa, Băng Công Vũ Laboratory for Computational and

More information

ECS289: Scalable Machine Learning

ECS289: Scalable Machine Learning ECS289: Scalable Machine Learning Cho-Jui Hsieh UC Davis Sept 29, 2016 Outline Convex vs Nonconvex Functions Coordinate Descent Gradient Descent Newton s method Stochastic Gradient Descent Numerical Optimization

More information

Info-Greedy Sequential Adaptive Compressed Sensing

Info-Greedy Sequential Adaptive Compressed Sensing Info-Greedy Sequential Adaptive Compressed Sensing Yao Xie Joint work with Gabor Braun and Sebastian Pokutta Georgia Institute of Technology Presented at Allerton Conference 2014 Information sensing for

More information

Gauge optimization and duality

Gauge optimization and duality 1 / 54 Gauge optimization and duality Junfeng Yang Department of Mathematics Nanjing University Joint with Shiqian Ma, CUHK September, 2015 2 / 54 Outline Introduction Duality Lagrange duality Fenchel

More information

Scalable Subspace Clustering

Scalable Subspace Clustering Scalable Subspace Clustering René Vidal Center for Imaging Science, Laboratory for Computational Sensing and Robotics, Institute for Computational Medicine, Department of Biomedical Engineering, Johns

More information

Composite Objective Mirror Descent

Composite Objective Mirror Descent Composite Objective Mirror Descent John C. Duchi 1,3 Shai Shalev-Shwartz 2 Yoram Singer 3 Ambuj Tewari 4 1 University of California, Berkeley 2 Hebrew University of Jerusalem, Israel 3 Google Research

More information

Greedy Signal Recovery and Uniform Uncertainty Principles

Greedy Signal Recovery and Uniform Uncertainty Principles Greedy Signal Recovery and Uniform Uncertainty Principles SPIE - IE 2008 Deanna Needell Joint work with Roman Vershynin UC Davis, January 2008 Greedy Signal Recovery and Uniform Uncertainty Principles

More information

Machine Learning for Signal Processing Sparse and Overcomplete Representations. Bhiksha Raj (slides from Sourish Chaudhuri) Oct 22, 2013

Machine Learning for Signal Processing Sparse and Overcomplete Representations. Bhiksha Raj (slides from Sourish Chaudhuri) Oct 22, 2013 Machine Learning for Signal Processing Sparse and Overcomplete Representations Bhiksha Raj (slides from Sourish Chaudhuri) Oct 22, 2013 1 Key Topics in this Lecture Basics Component-based representations

More information

Lecture Notes 10: Matrix Factorization

Lecture Notes 10: Matrix Factorization Optimization-based data analysis Fall 207 Lecture Notes 0: Matrix Factorization Low-rank models. Rank- model Consider the problem of modeling a quantity y[i, j] that depends on two indices i and j. To

More information

Mirror Descent for Metric Learning. Gautam Kunapuli Jude W. Shavlik

Mirror Descent for Metric Learning. Gautam Kunapuli Jude W. Shavlik Mirror Descent for Metric Learning Gautam Kunapuli Jude W. Shavlik And what do we have here? We have a metric learning algorithm that uses composite mirror descent (COMID): Unifying framework for metric

More information

Stochastic Composition Optimization

Stochastic Composition Optimization Stochastic Composition Optimization Algorithms and Sample Complexities Mengdi Wang Joint works with Ethan X. Fang, Han Liu, and Ji Liu ORFE@Princeton ICCOPT, Tokyo, August 8-11, 2016 1 / 24 Collaborators

More information

Least Mean Squares Regression. Machine Learning Fall 2018

Least Mean Squares Regression. Machine Learning Fall 2018 Least Mean Squares Regression Machine Learning Fall 2018 1 Where are we? Least Squares Method for regression Examples The LMS objective Gradient descent Incremental/stochastic gradient descent Exercises

More information

Introduction to Compressed Sensing

Introduction to Compressed Sensing Introduction to Compressed Sensing Alejandro Parada, Gonzalo Arce University of Delaware August 25, 2016 Motivation: Classical Sampling 1 Motivation: Classical Sampling Issues Some applications Radar Spectral

More information

Least Mean Squares Regression

Least Mean Squares Regression Least Mean Squares Regression Machine Learning Spring 2018 The slides are mainly from Vivek Srikumar 1 Lecture Overview Linear classifiers What functions do linear classifiers express? Least Squares Method

More information

Generalized Orthogonal Matching Pursuit- A Review and Some

Generalized Orthogonal Matching Pursuit- A Review and Some Generalized Orthogonal Matching Pursuit- A Review and Some New Results Department of Electronics and Electrical Communication Engineering Indian Institute of Technology, Kharagpur, INDIA Table of Contents

More information

Linear Regression (continued)

Linear Regression (continued) Linear Regression (continued) Professor Ameet Talwalkar Professor Ameet Talwalkar CS260 Machine Learning Algorithms February 6, 2017 1 / 39 Outline 1 Administration 2 Review of last lecture 3 Linear regression

More information

Classification: Logistic Regression from Data

Classification: Logistic Regression from Data Classification: Logistic Regression from Data Machine Learning: Jordan Boyd-Graber University of Colorado Boulder LECTURE 3 Slides adapted from Emily Fox Machine Learning: Jordan Boyd-Graber Boulder Classification:

More information

Optimization methods

Optimization methods Optimization methods Optimization-Based Data Analysis http://www.cims.nyu.edu/~cfgranda/pages/obda_spring16 Carlos Fernandez-Granda /8/016 Introduction Aim: Overview of optimization methods that Tend to

More information

New ways of dimension reduction? Cutting data sets into small pieces

New ways of dimension reduction? Cutting data sets into small pieces New ways of dimension reduction? Cutting data sets into small pieces Roman Vershynin University of Michigan, Department of Mathematics Statistical Machine Learning Ann Arbor, June 5, 2012 Joint work with

More information

A Quantum Interior Point Method for LPs and SDPs

A Quantum Interior Point Method for LPs and SDPs A Quantum Interior Point Method for LPs and SDPs Iordanis Kerenidis 1 Anupam Prakash 1 1 CNRS, IRIF, Université Paris Diderot, Paris, France. September 26, 2018 Semi Definite Programs A Semidefinite Program

More information

Review: Learning Bimodal Structures in Audio-Visual Data

Review: Learning Bimodal Structures in Audio-Visual Data Review: Learning Bimodal Structures in Audio-Visual Data CSE 704 : Readings in Joint Visual, Lingual and Physical Models and Inference Algorithms Suren Kumar Vision and Perceptual Machines Lab 106 Davis

More information

Support Vector Machines: Training with Stochastic Gradient Descent. Machine Learning Fall 2017

Support Vector Machines: Training with Stochastic Gradient Descent. Machine Learning Fall 2017 Support Vector Machines: Training with Stochastic Gradient Descent Machine Learning Fall 2017 1 Support vector machines Training by maximizing margin The SVM objective Solving the SVM optimization problem

More information

Low Rank Matrix Completion Formulation and Algorithm

Low Rank Matrix Completion Formulation and Algorithm 1 2 Low Rank Matrix Completion and Algorithm Jian Zhang Department of Computer Science, ETH Zurich zhangjianthu@gmail.com March 25, 2014 Movie Rating 1 2 Critic A 5 5 Critic B 6 5 Jian 9 8 Kind Guy B 9

More information

Efficient Bandit Algorithms for Online Multiclass Prediction

Efficient Bandit Algorithms for Online Multiclass Prediction Efficient Bandit Algorithms for Online Multiclass Prediction Sham Kakade, Shai Shalev-Shwartz and Ambuj Tewari Presented By: Nakul Verma Motivation In many learning applications, true class labels are

More information

ECS289: Scalable Machine Learning

ECS289: Scalable Machine Learning ECS289: Scalable Machine Learning Cho-Jui Hsieh UC Davis Oct 11, 2016 Paper presentations and final project proposal Send me the names of your group member (2 or 3 students) before October 15 (this Friday)

More information

EE 381V: Large Scale Optimization Fall Lecture 24 April 11

EE 381V: Large Scale Optimization Fall Lecture 24 April 11 EE 381V: Large Scale Optimization Fall 2012 Lecture 24 April 11 Lecturer: Caramanis & Sanghavi Scribe: Tao Huang 24.1 Review In past classes, we studied the problem of sparsity. Sparsity problem is that

More information

Stochastic and online algorithms

Stochastic and online algorithms Stochastic and online algorithms stochastic gradient method online optimization and dual averaging method minimizing finite average Stochastic and online optimization 6 1 Stochastic optimization problem

More information

Linear dimensionality reduction for data analysis

Linear dimensionality reduction for data analysis Linear dimensionality reduction for data analysis Nicolas Gillis Joint work with Robert Luce, François Glineur, Stephen Vavasis, Robert Plemmons, Gabriella Casalino The setup Dimensionality reduction for

More information

Linear Convergence under the Polyak-Łojasiewicz Inequality

Linear Convergence under the Polyak-Łojasiewicz Inequality Linear Convergence under the Polyak-Łojasiewicz Inequality Hamed Karimi, Julie Nutini and Mark Schmidt The University of British Columbia LCI Forum February 28 th, 2017 1 / 17 Linear Convergence of Gradient-Based

More information

Coordinate descent. Geoff Gordon & Ryan Tibshirani Optimization /

Coordinate descent. Geoff Gordon & Ryan Tibshirani Optimization / Coordinate descent Geoff Gordon & Ryan Tibshirani Optimization 10-725 / 36-725 1 Adding to the toolbox, with stats and ML in mind We ve seen several general and useful minimization tools First-order methods

More information

Sketchy Decisions: Convex Low-Rank Matrix Optimization with Optimal Storage

Sketchy Decisions: Convex Low-Rank Matrix Optimization with Optimal Storage Sketchy Decisions: Convex Low-Rank Matrix Optimization with Optimal Storage Madeleine Udell Operations Research and Information Engineering Cornell University Based on joint work with Alp Yurtsever (EPFL),

More information

Linear Models for Regression CS534

Linear Models for Regression CS534 Linear Models for Regression CS534 Example Regression Problems Predict housing price based on House size, lot size, Location, # of rooms Predict stock price based on Price history of the past month Predict

More information

Adaptive Primal Dual Optimization for Image Processing and Learning

Adaptive Primal Dual Optimization for Image Processing and Learning Adaptive Primal Dual Optimization for Image Processing and Learning Tom Goldstein Rice University tag7@rice.edu Ernie Esser University of British Columbia eesser@eos.ubc.ca Richard Baraniuk Rice University

More information

The Projected Power Method: An Efficient Algorithm for Joint Alignment from Pairwise Differences

The Projected Power Method: An Efficient Algorithm for Joint Alignment from Pairwise Differences The Projected Power Method: An Efficient Algorithm for Joint Alignment from Pairwise Differences Yuxin Chen Emmanuel Candès Department of Statistics, Stanford University, Sep. 2016 Nonconvex optimization

More information

Oslo Class 6 Sparsity based regularization

Oslo Class 6 Sparsity based regularization RegML2017@SIMULA Oslo Class 6 Sparsity based regularization Lorenzo Rosasco UNIGE-MIT-IIT May 4, 2017 Learning from data Possible only under assumptions regularization min Ê(w) + λr(w) w Smoothness Sparsity

More information

Introduction to Machine Learning. PCA and Spectral Clustering. Introduction to Machine Learning, Slides: Eran Halperin

Introduction to Machine Learning. PCA and Spectral Clustering. Introduction to Machine Learning, Slides: Eran Halperin 1 Introduction to Machine Learning PCA and Spectral Clustering Introduction to Machine Learning, 2013-14 Slides: Eran Halperin Singular Value Decomposition (SVD) The singular value decomposition (SVD)

More information

Lecture 14 : Online Learning, Stochastic Gradient Descent, Perceptron

Lecture 14 : Online Learning, Stochastic Gradient Descent, Perceptron CS446: Machine Learning, Fall 2017 Lecture 14 : Online Learning, Stochastic Gradient Descent, Perceptron Lecturer: Sanmi Koyejo Scribe: Ke Wang, Oct. 24th, 2017 Agenda Recap: SVM and Hinge loss, Representer

More information

Adaptive Subgradient Methods for Online Learning and Stochastic Optimization John Duchi, Elad Hanzan, Yoram Singer

Adaptive Subgradient Methods for Online Learning and Stochastic Optimization John Duchi, Elad Hanzan, Yoram Singer Adaptive Subgradient Methods for Online Learning and Stochastic Optimization John Duchi, Elad Hanzan, Yoram Singer Vicente L. Malave February 23, 2011 Outline Notation minimize a number of functions φ

More information

DATA MINING AND MACHINE LEARNING

DATA MINING AND MACHINE LEARNING DATA MINING AND MACHINE LEARNING Lecture 5: Regularization and loss functions Lecturer: Simone Scardapane Academic Year 2016/2017 Table of contents Loss functions Loss functions for regression problems

More information

Sparse and Robust Optimization and Applications

Sparse and Robust Optimization and Applications Sparse and and Statistical Learning Workshop Les Houches, 2013 Robust Laurent El Ghaoui with Mert Pilanci, Anh Pham EECS Dept., UC Berkeley January 7, 2013 1 / 36 Outline Sparse Sparse Sparse Probability

More information

Linear Regression. S. Sumitra

Linear Regression. S. Sumitra Linear Regression S Sumitra Notations: x i : ith data point; x T : transpose of x; x ij : ith data point s jth attribute Let {(x 1, y 1 ), (x, y )(x N, y N )} be the given data, x i D and y i Y Here D

More information

Lecture 23: November 21

Lecture 23: November 21 10-725/36-725: Convex Optimization Fall 2016 Lecturer: Ryan Tibshirani Lecture 23: November 21 Scribes: Yifan Sun, Ananya Kumar, Xin Lu Note: LaTeX template courtesy of UC Berkeley EECS dept. Disclaimer:

More information

Optimization. Benjamin Recht University of California, Berkeley Stephen Wright University of Wisconsin-Madison

Optimization. Benjamin Recht University of California, Berkeley Stephen Wright University of Wisconsin-Madison Optimization Benjamin Recht University of California, Berkeley Stephen Wright University of Wisconsin-Madison optimization () cost constraints might be too much to cover in 3 hours optimization (for big

More information

Robust Principal Component Analysis

Robust Principal Component Analysis ELE 538B: Mathematics of High-Dimensional Data Robust Principal Component Analysis Yuxin Chen Princeton University, Fall 2018 Disentangling sparse and low-rank matrices Suppose we are given a matrix M

More information

Asynchronous Non-Convex Optimization For Separable Problem

Asynchronous Non-Convex Optimization For Separable Problem Asynchronous Non-Convex Optimization For Separable Problem Sandeep Kumar and Ketan Rajawat Dept. of Electrical Engineering, IIT Kanpur Uttar Pradesh, India Distributed Optimization A general multi-agent

More information

Coordinate Descent and Ascent Methods

Coordinate Descent and Ascent Methods Coordinate Descent and Ascent Methods Julie Nutini Machine Learning Reading Group November 3 rd, 2015 1 / 22 Projected-Gradient Methods Motivation Rewrite non-smooth problem as smooth constrained problem:

More information

Randomized Coordinate Descent with Arbitrary Sampling: Algorithms and Complexity

Randomized Coordinate Descent with Arbitrary Sampling: Algorithms and Complexity Randomized Coordinate Descent with Arbitrary Sampling: Algorithms and Complexity Zheng Qu University of Hong Kong CAM, 23-26 Aug 2016 Hong Kong based on joint work with Peter Richtarik and Dominique Cisba(University

More information

Stochastic Gradient Descent. CS 584: Big Data Analytics

Stochastic Gradient Descent. CS 584: Big Data Analytics Stochastic Gradient Descent CS 584: Big Data Analytics Gradient Descent Recap Simplest and extremely popular Main Idea: take a step proportional to the negative of the gradient Easy to implement Each iteration

More information

IPAM Summer School Optimization methods for machine learning. Jorge Nocedal

IPAM Summer School Optimization methods for machine learning. Jorge Nocedal IPAM Summer School 2012 Tutorial on Optimization methods for machine learning Jorge Nocedal Northwestern University Overview 1. We discuss some characteristics of optimization problems arising in deep

More information

A tutorial on sparse modeling. Outline:

A tutorial on sparse modeling. Outline: A tutorial on sparse modeling. Outline: 1. Why? 2. What? 3. How. 4. no really, why? Sparse modeling is a component in many state of the art signal processing and machine learning tasks. image processing

More information

On the convergence of higher-order orthogonality iteration and its extension

On the convergence of higher-order orthogonality iteration and its extension On the convergence of higher-order orthogonality iteration and its extension Yangyang Xu IMA, University of Minnesota SIAM Conference LA15, Atlanta October 27, 2015 Best low-multilinear-rank approximation

More information

Selected Topics in Optimization. Some slides borrowed from

Selected Topics in Optimization. Some slides borrowed from Selected Topics in Optimization Some slides borrowed from http://www.stat.cmu.edu/~ryantibs/convexopt/ Overview Optimization problems are almost everywhere in statistics and machine learning. Input Model

More information

CS6375: Machine Learning Gautam Kunapuli. Support Vector Machines

CS6375: Machine Learning Gautam Kunapuli. Support Vector Machines Gautam Kunapuli Example: Text Categorization Example: Develop a model to classify news stories into various categories based on their content. sports politics Use the bag-of-words representation for this

More information

OWL to the rescue of LASSO

OWL to the rescue of LASSO OWL to the rescue of LASSO IISc IBM day 2018 Joint Work R. Sankaran and Francis Bach AISTATS 17 Chiranjib Bhattacharyya Professor, Department of Computer Science and Automation Indian Institute of Science,

More information

Optimal Regularized Dual Averaging Methods for Stochastic Optimization

Optimal Regularized Dual Averaging Methods for Stochastic Optimization Optimal Regularized Dual Averaging Methods for Stochastic Optimization Xi Chen Machine Learning Department Carnegie Mellon University xichen@cs.cmu.edu Qihang Lin Javier Peña Tepper School of Business

More information

Neural Networks Lecturer: J. Matas Authors: J. Matas, B. Flach, O. Drbohlav

Neural Networks Lecturer: J. Matas Authors: J. Matas, B. Flach, O. Drbohlav Neural Networks 30.11.2015 Lecturer: J. Matas Authors: J. Matas, B. Flach, O. Drbohlav 1 Talk Outline Perceptron Combining neurons to a network Neural network, processing input to an output Learning Cost

More information

Proximal Minimization by Incremental Surrogate Optimization (MISO)

Proximal Minimization by Incremental Surrogate Optimization (MISO) Proximal Minimization by Incremental Surrogate Optimization (MISO) (and a few variants) Julien Mairal Inria, Grenoble ICCOPT, Tokyo, 2016 Julien Mairal, Inria MISO 1/26 Motivation: large-scale machine

More information

Classification Logistic Regression

Classification Logistic Regression Announcements: Classification Logistic Regression Machine Learning CSE546 Sham Kakade University of Washington HW due on Friday. Today: Review: sub-gradients,lasso Logistic Regression October 3, 26 Sham

More information

Introduction to Machine Learning Prof. Sudeshna Sarkar Department of Computer Science and Engineering Indian Institute of Technology, Kharagpur

Introduction to Machine Learning Prof. Sudeshna Sarkar Department of Computer Science and Engineering Indian Institute of Technology, Kharagpur Introduction to Machine Learning Prof. Sudeshna Sarkar Department of Computer Science and Engineering Indian Institute of Technology, Kharagpur Module - 5 Lecture - 22 SVM: The Dual Formulation Good morning.

More information

Linear Regression. CSL603 - Fall 2017 Narayanan C Krishnan

Linear Regression. CSL603 - Fall 2017 Narayanan C Krishnan Linear Regression CSL603 - Fall 2017 Narayanan C Krishnan ckn@iitrpr.ac.in Outline Univariate regression Multivariate regression Probabilistic view of regression Loss functions Bias-Variance analysis Regularization

More information

Warm up. Regrade requests submitted directly in Gradescope, do not instructors.

Warm up. Regrade requests submitted directly in Gradescope, do not  instructors. Warm up Regrade requests submitted directly in Gradescope, do not email instructors. 1 float in NumPy = 8 bytes 10 6 2 20 bytes = 1 MB 10 9 2 30 bytes = 1 GB For each block compute the memory required

More information

Linear Regression. CSL465/603 - Fall 2016 Narayanan C Krishnan

Linear Regression. CSL465/603 - Fall 2016 Narayanan C Krishnan Linear Regression CSL465/603 - Fall 2016 Narayanan C Krishnan ckn@iitrpr.ac.in Outline Univariate regression Multivariate regression Probabilistic view of regression Loss functions Bias-Variance analysis

More information

Linear Models for Regression CS534

Linear Models for Regression CS534 Linear Models for Regression CS534 Example Regression Problems Predict housing price based on House size, lot size, Location, # of rooms Predict stock price based on Price history of the past month Predict

More information

Lecture 9: September 28

Lecture 9: September 28 0-725/36-725: Convex Optimization Fall 206 Lecturer: Ryan Tibshirani Lecture 9: September 28 Scribes: Yiming Wu, Ye Yuan, Zhihao Li Note: LaTeX template courtesy of UC Berkeley EECS dept. Disclaimer: These

More information

arxiv: v1 [cs.it] 21 Feb 2013

arxiv: v1 [cs.it] 21 Feb 2013 q-ary Compressive Sensing arxiv:30.568v [cs.it] Feb 03 Youssef Mroueh,, Lorenzo Rosasco, CBCL, CSAIL, Massachusetts Institute of Technology LCSL, Istituto Italiano di Tecnologia and IIT@MIT lab, Istituto

More information

Stochastic Optimization Algorithms Beyond SG

Stochastic Optimization Algorithms Beyond SG Stochastic Optimization Algorithms Beyond SG Frank E. Curtis 1, Lehigh University involving joint work with Léon Bottou, Facebook AI Research Jorge Nocedal, Northwestern University Optimization Methods

More information

Convex Optimization and l 1 -minimization

Convex Optimization and l 1 -minimization Convex Optimization and l 1 -minimization Sangwoon Yun Computational Sciences Korea Institute for Advanced Study December 11, 2009 2009 NIMS Thematic Winter School Outline I. Convex Optimization II. l

More information

CSC2515 Winter 2015 Introduction to Machine Learning. Lecture 2: Linear regression

CSC2515 Winter 2015 Introduction to Machine Learning. Lecture 2: Linear regression CSC2515 Winter 2015 Introduction to Machine Learning Lecture 2: Linear regression All lecture slides will be available as.pdf on the course website: http://www.cs.toronto.edu/~urtasun/courses/csc2515/csc2515_winter15.html

More information

Linear Methods for Regression. Lijun Zhang

Linear Methods for Regression. Lijun Zhang Linear Methods for Regression Lijun Zhang zlj@nju.edu.cn http://cs.nju.edu.cn/zlj Outline Introduction Linear Regression Models and Least Squares Subset Selection Shrinkage Methods Methods Using Derived

More information

Sparse representation classification and positive L1 minimization

Sparse representation classification and positive L1 minimization Sparse representation classification and positive L1 minimization Cencheng Shen Joint Work with Li Chen, Carey E. Priebe Applied Mathematics and Statistics Johns Hopkins University, August 5, 2014 Cencheng

More information

ECE521 lecture 4: 19 January Optimization, MLE, regularization

ECE521 lecture 4: 19 January Optimization, MLE, regularization ECE521 lecture 4: 19 January 2017 Optimization, MLE, regularization First four lectures Lectures 1 and 2: Intro to ML Probability review Types of loss functions and algorithms Lecture 3: KNN Convexity

More information

Ad Placement Strategies

Ad Placement Strategies Case Study 1: Estimating Click Probabilities Tackling an Unknown Number of Features with Sketching Machine Learning for Big Data CSE547/STAT548, University of Washington Emily Fox 2014 Emily Fox January

More information

CS598 Machine Learning in Computational Biology (Lecture 5: Matrix - part 2) Professor Jian Peng Teaching Assistant: Rongda Zhu

CS598 Machine Learning in Computational Biology (Lecture 5: Matrix - part 2) Professor Jian Peng Teaching Assistant: Rongda Zhu CS598 Machine Learning in Computational Biology (Lecture 5: Matrix - part 2) Professor Jian Peng Teaching Assistant: Rongda Zhu Feature engineering is hard 1. Extract informative features from domain knowledge

More information

Sparse Linear Programming via Primal and Dual Augmented Coordinate Descent

Sparse Linear Programming via Primal and Dual Augmented Coordinate Descent Sparse Linear Programg via Primal and Dual Augmented Coordinate Descent Presenter: Joint work with Kai Zhong, Cho-Jui Hsieh, Pradeep Ravikumar and Inderjit Dhillon. Sparse Linear Program Given vectors

More information

Optimization and Gradient Descent

Optimization and Gradient Descent Optimization and Gradient Descent INFO-4604, Applied Machine Learning University of Colorado Boulder September 12, 2017 Prof. Michael Paul Prediction Functions Remember: a prediction function is the function

More information

An interior-point stochastic approximation method and an L1-regularized delta rule

An interior-point stochastic approximation method and an L1-regularized delta rule Photograph from National Geographic, Sept 2008 An interior-point stochastic approximation method and an L1-regularized delta rule Peter Carbonetto, Mark Schmidt and Nando de Freitas University of British

More information

Compressed Sensing and Neural Networks

Compressed Sensing and Neural Networks and Jan Vybíral (Charles University & Czech Technical University Prague, Czech Republic) NOMAD Summer Berlin, September 25-29, 2017 1 / 31 Outline Lasso & Introduction Notation Training the network Applications

More information

Distributed Inexact Newton-type Pursuit for Non-convex Sparse Learning

Distributed Inexact Newton-type Pursuit for Non-convex Sparse Learning Distributed Inexact Newton-type Pursuit for Non-convex Sparse Learning Bo Liu Department of Computer Science, Rutgers Univeristy Xiao-Tong Yuan BDAT Lab, Nanjing University of Information Science and Technology

More information

Lasso Regression: Regularization for feature selection

Lasso Regression: Regularization for feature selection Lasso Regression: Regularization for feature selection Emily Fox University of Washington January 18, 2017 1 Feature selection task 2 1 Why might you want to perform feature selection? Efficiency: - If

More information