On the Asymptotic Behavior of Second Order Quasilinear Difference Equations

Size: px
Start display at page:

Download "On the Asymptotic Behavior of Second Order Quasilinear Difference Equations"

Transcription

1 Applied Mthemtic, 6, 7, 6-63 Publihed Olie Augut 6 i SciRe. O the Aymptotic Behvior of Secod Order Quilier Differece Equtio Vdivel Sdhivm, Po Sudr, Amli Sthi PG d Reerch Deprtmet of Mthemtic, Thiruvlluvr Govermet Art College, Ripurm, mkkl, Idi Om Murug College of Art d Sciece, Slem, Idi Received 5 Jue 6; ccepted 6 Augut 6; publihed 9 Augut 6 Copyright 6 by uthor d Scietific Reerch Publihig Ic. Thi work i liceed uder the Cretive Commo Attributio Itertiol Licee (CC BY. Abtrct I thi pper, we ivetigte the ymptotic behvior of the followig quilier differece equtio ( y y p y y where = {, +, +, }, =, (E. We clified the olutio ito ix type by me of their ymptotic behvior. We etblih the ecery d/or ufficiet coditio for uch equtio to poe olutio of ech of thee ix type. Keyword Aymptotic Behvior, Poitive Solutio, Homogeeou, Quilier Differece Equtio. Itroductio Recetly, the ymptotic propertie of the olutio of ecod order differetil equtio [] [] differece equtio of the type (E d/or relted equtio hve bee ivetigted by my uthor, for exmple ee, [3]-[9] d the referece cited there i. Followig thi tred, we ivetigte the exitece of thee ix type of olutio of the Equtio (E howig the ecery d/or ufficiet coditio c be obtied for the exitece of thoe olutio. For the geerl bckwrd o differece equtio, the reder i referred to the moogrph []-[4]. I 996, PJY Wg d R.P. Agrwl [5] coidered the quilier equtio ( ( y σ q f ( y + = ( How to cite thi pper: Sdhivm, V., Sudr, P. d Sthi, A. (6 O the Aymptotic Behvior of Secod Order Quilier Differece Equtio. Applied Mthemtic, 7,

2 d obtied ocilltio criteri for the Equtio (. I 996, E. Thdpi, M.M.S. Muel d R.P. Agrwl [6] hve tudied the qui-lier differece equtio ( x x q f ( x + = (. I, Po Sudrm d E. Thdpi [7] coidered the followig qui-lier fuctiol differece equtio ( y y f y( σ +, = (3 d they hve etblihed ecery d ufficiet coditio for the olutio of Equtio (3 to hve vriou type of oocilltory olutio. Further they hve etblihed ome ew ocilltio coditio for the ocilltio of olutio of Equtio (3. I 997, E. Thdpi d R. Arul [8] tudied, the followig qui-lier equtio ( pφ ( y f( y+ +, =. (4 They etblihed ecery d ufficiet coditio for the olutio of (4 to hve vriou type of oocilltory olutio. I 4, E. Thdpi et l. [9] tudied the equtio ( ( k ( + y py + q f y =,, d etblihed coditio for the exitece of o-ocilltory olutio. S.S. Cheg d W.T. Ptul [3] tudied the differece equtio ( y p p k y k k (5 + = (6 where p > d proved exitece theorem for Equtio (6. I, M. Mizukmi et l. [] dicued the ymptotic behvior of the followig equtio y y = p t y y. (7 Dicrete model re more uitble for udertdig the problem i Ecoomic, geetic, popultio dymic etc. I the qulittive theory of differece equtio ymptotic behvior of olutio ply vitl role. Motivted by thi, we coider the dicrete logue of (7 of the form ( y ( y ( p ( y ( y ( where = {, +, +, }, y = y( + y. = (8 d i the forwrd differece opertor defied by We ume the followig coditio o Equtio (8 d re poitive cott { p( } i rel equece uch tht p( > for ll >. For implicity, we ofte employ the ottio γ * γ iterm of which Equtio (8 c be expreed i γ x = x x = x g x, x R, γ >, * * ( y ( = p ( ( y (. By olutio of Equtio (8, we me rel equece y : R, together with y y exit d tifie Equtio (8 for ll. We here cll Equtio (8 uper-homogeeou or ub-homogeeou ccordig < or > If = Equtio (8 i ofte clled hlf-lier. Our ttetio i mily pid to the uper-homogeeou d ub-homo- 63

3 geeou ce, d the hlf-lier i lmot excluded from our coidertio.. The Clifictio of All Solutio of Equtio (8 To clify ll olutio of Equtio (8, we eed the followig lemm. Lemm. Let y( be locl olutio of Equtio (8 er = d [, w, mximl itervl of exitece. The we hve either y er w or y er w. Tht i w, be it right y doe ot chrge trictly it ig ifiitely my time w. The clifictio of ll (locl olutio of Equtio (8 re give o the bi of Lemm. Sice the proof i ey, we leve it to the reder. Propoitio. Ech locl olutio y / of Equtio (8 fll ito exctly oe of the followig ix type. Sigulr olutio of the firt kid: type ( S there exit uch tht d y / for, d y for. Decyig olutio: type (D, y( c be cotiued to, d tifie y y lim y =. < for ll lrge, 3 Aymptoticlly cott olutio: type (AC y( c be cotiued to, d tifie y y < for ll lrge d R { } lim y. 4 Aymptoticlly lier olutio: type (AL y( c be cotiued to d tifie y y ll lrge d y lim R { }. > for 5 Aymptoticlly uper-lier olutio: type (AS y( c be cotiued to d tifie y y > for ll lrge d 6 Sigulr olutio of ecod kid: type uch tht y lim = ±. S y h the fiite ecpe time; tht i, there exit > lim y = ±. 3. Mi Reult for the Super-Homogeeou Equtio Before we lit our mi reult for the ce <. Throughout thi ectio we ume tht <. Theorem. Equtio (8 h o olutio of type ( S. Theorem 3. Equtio (8 h olutio of type (D if d oly if Theorem 4. Equtio (8 h olutio of type (AC if d oly if Theorem 5. Equtio (8 h olutio of type (AL if d oly if p( =. (9 p( <. ( <. p ( 64

4 Theorem 6. Equtio (8 h olutio of type (AS if ( hold. Theorem 7. Equtio (8 doe ot hve olutio of type (AS if there re cott tifyig d ρ σ + σ ρ limif ( > Remrk. The et of ll pir (, (, (, ρ > d σ (, p ( σ + σ ρ σ σ ρ ρτ tifyig iequlitie (3 i ot empty. I fct, the pir + ( ρσ, =, belog to it Theorem 8. Equtio (8 h olutio of type ( S. Remrk. Theorem 7 h the me cocluio tht thee re ot olutio of type (AS. However, Theorem 7 i till vlid for the ce tht p i oegtive. For exmple, it i formed by thi exteded verio of Theorem 7 tht the equtio doe ot hve olutio of type (AS. Exmple Let ( y y = + t y y, <, coider the Equtio (8 with p = ( σ y y = y y, d σ R. (4 For thi equtio, we hve the followig reult: Equtio (4 h olutio of type (D if d oly if σ (Theorem 3. Equtio (4 h olutio of type (AC if d oly if σ < (Theorem 4. 3 Equtio (4 h olutio of type (AL if d oly if σ < (Theorem 5. 4 Equtio (4 h olutio of type (AS if d oly if σ < (Theorem Mi Reult for the Sub-Homogeeou Equtio Below we lit our mi reult for the ce >. Throughout thi ectio we ume tht >. Theorem 9. Equtio (8 h olutio of type ( S. Theorem. Equtio (8 h olutio of type (D if Theorem. Equtio (8 doe ot hve olutio of type (D if (3 p( <. (5 + lim if p. > (6 Theorem. Equtio (8 doe ot hve olutio of type (D if there re cott tifyig d σ σ ρ ρ > d σ (, ρ limif + p > (7 σ + σ + ρ σ σ + ρ. Remrk 3. The et of ll pir ( ρσ, (, (, tifyig iequlitie (8 i ot empty. I fct, the (8 65

5 pir +, =, ( ρσ belog to it. Theorem 3. Equtio (8 h olutio of type (AC if d oly if (5 hold. Theorem 4. Equtio (8 h olutio of type (AL if d oly if p <. Theorem 5. Equtio (8 h olutio of type (AS if d oly if Theorem 6. Equtio (8 h o olutio of type =. p (9 S. Exmple. Let > d coider the Equtio (4 gi. We hve the followig reult: Equtio (4 h olutio of type (D if d oly if σ < (Theorem d. Equtio (4 h olutio of type (AC if d oly if σ < (Theorem 4. 3 Equtio (4 h olutio of type (AL if d oly if σ < (Theorem 5. 4 Equtio (4 h olutio of type (AS if d oly if σ (Theorem Auxillry Lemm I thi ectio, we collect xillry lemm, which re mily cocered with locl olutio of Equtio (8. A comprio lemm of the followig type i ueful, d will be ued i my plce. Lemm. Suppoe tht { pp },{ pq( } re uch tht < p < p for b. Let yi (, i =, d b be olutio of the equtio ( i i i i i y y = p y y, i =, repectively. If y ( y ( d y ( y (, the y < y d y y b. Proof. We hve * * * ( i ( i i( i < for < y = y + p y, b, i =, ( * * = + ( + (,, =,. ( yi yi yi pi r yi r b i By the hypothee we hve y < y i ome right eighborhood of. If y y poit i < b, we c fid c uch tht < c b tifyig y < y for < < c d y ( c y ( c But, thi yield cotrdictio, becue = y c y c Hece we ee tht y y = + + c * * y( y( ( y( p( ( y( * * ( y( + p( ( y( <. < for b b. The proof i complete. for ome =. <. Returig to (, we fid tht y y < for 66

6 , y d = provided tht y + y. The uiquee of the trivil olutio c be cocluded for the ce. Lemm 3. Let d. If y( i locl olutio of Equtio ( tifyig y( = y( = the y for <. Proof. Aume the cotrry. We my uppoe tht y / for <. The, we c fid, uch tht < tifyig y + y = d y + y > for <. Summig (8, we obti The uiquee of locl olutio with o-zero iitil dt c be eily proved. Tht i, for give ( y, Equtio (8 h uique locl olutio y( tifyig y( = y, y( y We therefore hve y = p( ( y( *, y = p( r ( y( r *,. y p( { y( + y( } ( { },. (3 y p r y r + y r Put w = mx y( ξ + y( ξ. We ee tht w( w ξ ig. From ( d (3, we c get y ( w p( =, > for < d w i odecre-, y ( w p( r,. Let τ. The from thi obervtio we ee tht where Coequetly, we hve If =, from (4, we hve G (4 we hve ( w G ( τ τ τ ( τ (, y + y w G w G v v G v p p r = + ( w w G,. (4,, <. Thi i cotrdictio becue. G =. If <, from <. Thi i lo cotrctio becue G( w( + = + =. The proof i complete. Lemm 4. Let. The ll locl olutio of Equtio (8 c be cotiued to d, tht i, ll olutio of Equtio (8 exit o the whole itervl [,. Proof. Let y( be locl olutio of Equtio (8 i eighborhood of. Suppoe the cotrry tht the right mximl itervl of exitece of y( i of the form [, w, w <. The, it i eily ee tht y w = ±. Summig (8 twice, we hve 67

7 where c = y( d c y( Put z = mx y( ξ ξ y c c p r y r * = ( * + + =. Accordigly, y c + c + p( r y( r, < w.. The, Put moreover u mx c, z y c + c + z( p( r, < w. { } =. The, i the proof of Lemm 3, we hve, ( where H = + p(. Sice ( c for w z Let ext let >. The (6 implie tht z c + H u < w (5 y w = ±, there i uch tht < < w uch tht <. Therefore it follow from (5 tht ( u c + H u, < w. (6 =. The, uig dicrete Growll iequlity, we ee tht u( w ( u c + u H, < w. <, we hve u( w <. Thi i cotrdictio too. Hece <, which i cotrdictio. Sice y c be cotiued to. The cotiubility to the left ed poit i verified i imilr wy. The proof i complete. The followig lemm etblihe more th i tted i Theorem 8. Accordigly the proof of Theorem 8 will be omitted. Lemm 5. Let < d d c > be give. The there exit M= M( c, > uch tht the right mximl itervl of exitece of ech olutio y( of Equtio ( tifyig y( c d y( M i fiite itervl,, = y <, d lim y =. Proof. Let > be fixed, d put mi p ( = m >. There i M > tifyig ( (( + + c M + m v c <. = doe ot z ex- We firt clim tht the olutio of Equtio (8 with the iitil coditio z = c, z M exit o [, ; tht i z( blow up t ome (, ]. To ee thi uppoe the cotrry tht it t let [,. By the defiitio of m, we hve Summig the iequlity form to yield d hece ( z p ( z m( z =,. ( ( (, z M m z + C 68

8 ( z M + m z C ( ( z M + m z C ( z M + m z C,. Filly, ummig the bove iequlity both ide from to, we obti z (( M + m w C, V. Sdhivm et l. o the commo itervl of exi- which i cotrdictio to the choice of M. Hece z( mut blow up t ome (, ], lim z If y( c d y( M, the Lemm implie tht y z tece of y d z d therefore. The proof i complete. y blow up t ome poit before 6. oegtive oicreig Solutio The mi objective of thi ectio i to prove the followig theorem. Theorem 7. For ech y >, the problem ( y y p y y y = y = h exctly oe olutio y uch tht y i defied for d tifie the Furthermore, if y i olutio for of Equtio ( tifyig y( =. y, y for. (7 y > y rep y < y, lim y = rep lim y =. = y d Remrk 4. I the ce, employig Lemm 3, we c tregthe (7 to the property tht y >, y < for. (8 I the ce, ll locl olutio of Equtio (8 c be cotiued to the whole itervl [, Hece i thi ce property (6. lwy hold for ll olutio y( with y( = y d y( > y( [rep y( < y( ]. The property of oegtive oicreig olutio y decribed i Theorem 7 will ply importt role through the pper. Thi ectio i etirely derided to provig Theorem 7. To thi ed we prepre everl lemm. Lemm 6. Let AB, R d t be bouded fuctio o [ b, ] R. The, the two poit boudry vlue problem h olutio. Proof. Let K > be cott uch tht ( (,, y y = f, y, b, y = A y b = B (9 69

9 ( ( [ ] f y, K, for y, b, R. We firt clim tht with ech y(, we c ocite uique cott c( y tifyig Further thi c( y tifie ( b c y + f r, y r = B A. (3 * * B A B A K( b + c( y K( b + b b To ee thi let y( be fixed, d coider the fuctio B A < + b If λ K( b * b ( I λ = λ + f r, y r, λ R. λ <. If λ K( b, the I B A B A > + b *. (3, the I( λ > B A. Sice I i trictly icreig cotiuou fuctio, there i uique cott c( y tifyig ( mely (3. The (3 i clerly tified. I c y = B A, By (3, we ee tht there i cott M= M( babk,,,, > tifyig c( y M for ll y(. Chooe L > o lrge tht A L d M + K b b L. Coider the Bch pce B of ll rel equece y = { y } with the uperum orm y up y ow we defie the et d y B d the mppig F : Y B by Y = y B : for y L b ( ( F y = A+ c y + f r, y r, b =. repectively. The the boudry vlue problem (9 i equivlet to fidig fixed elemet of. We how tht F h fixed elemet i Y (vi the Schvder fixed poit theorem Hece F mp Y ito itelf. F y A c y f r y r ( + + (, A + M + K A + M b b L+ L = L, b. ext, to ee the cotiuity of F, ume tht yk ( be equece covergig to y Y uiformly i [, ] We mut prove tht F( yk ( coverge to Fyk ( uiformly i [, ] lim c( yk = c( y. Aume tht thi i ot the ce. The becue of the boudede of { ( k } there i ubequece c y ( tifyig cy c c ( y for ome fiite vlue c. otig the reltio { ( k i } b ( k k k i * c y + f r, y r = B A. i i b. b. A firt tep, we how tht c y, 6

10 We hve ( k k ( b B A= lim c y f r, y r K i i i + b b = c + f r, y r. Thi cotrdict the uiquee of the umber c( y. Hece lim c( y c( y tht lim F( yk = F( y uiformly o [ b, ]. It will be eily ee tht the et re uiformly bouded o [, ] { } { } ( FY = Fy : y Y d Λ F y : y Y =. The we fid imilrly b. The FY i compct. From the bove obervtio we ee tht F h fixed elemet i Y. The thi fixed elemet i olutio of boudry vlue problem (9 i eily proved. The proof i ow complete. Lemm 7. Let > d >. The the two poit boudry vlue problem (, y y = p y y for y = y y = h olutio y( uch tht y d y Proof. Defie the bouded fuctio f o [, ] R by By Lemm 6, the boudry vlue problem h olutio y. for. p y for, y y f( y, = p y for, y y for, y. ( (, y y = f, y, y = y y = We how tht y tifie y for [ τ, τ] [, ] uch tht y( < o [ τ, τ ] d y( τ y( τ tifie the equtio ( y y = o τ τ. Hece y( i lier fuctio o [, ] Obviouly tht thi i cotrdictio. We ee therefore tht y o [, ]. Sice y( d y y o [, ], by the defiitio of t, we fid tht y o [, ]. Hece y y (3. If thi i ot the ce, we c fid itervl = =. The defiitio of f implie tht y τ τ., which implie tht y i deired olutio of problem (3. The proof i complete. Proof of Theorem 7. The uiquee of y tifyig the propertie metored here i eily etblihed i the proof Lemm. Therefore we prove oly the exitece of uch y. By Lemm 7, for ech k, we hve olutio y = y of the boudry vlue problem tifyig yk d yk ( y y p y y,, for = y = y y + k = + k for + k let u exted ech k y over the itervl [, 6

11 by defiig yk for k deired olutio of (8. A firt tep, we prove tht +. Below we how tht { k } k. y coti ubequece covergig to y y y (33 I fct, if thi i ot ce, the yi( > yi+ ( for ome i. Sice yi( = yi+ (. Lemm implie tht yi > yi+ for + i. Puttig = + i, we hve = yi( + i > yi+ ( + i cotrdictio. Accordigly (33 hold, d o lim yk ( = l (, ] exit, ice y k y o [, + k] for y k, { yk ( } i uiformly bouded o ech compct ubitervl of [,. otig tht yk i odecreig d opoitive o [, + k], we hve y( yk ( yk o [, + k], k. Hece { yk ( } i equicotiuou o ech compct ubitervl of [,. From thee coidertio we fid tht there i ubequece { yk } { y } i k d fuctio y tifyig lim ( yk i = y uiki formly o ech compct ubitervl of [,. Filly we hll how tht y i deired olutio of Equtio (8. Let [, k we hve lettig be fixed rbitrrily. For ll ufficietly lrge i ki, we obti * = + ( + yk y y i k p r y i k r i. * y = y + l + p r y r Tkig differece i thi bove equlity, we re tht y olve Equtio (8 o [ (7 i evidet. The proof of Theorem 7 i complete. 7. Proof of Mi Reult for the Super-Homogeeou Equtio. Tht y tifie Throughout thi ectio, we ume tht <. Proof of Theorem. The theorem i immedite coequece of the uiquee of the trivil olutio (Lemm 3. Proof of Theorem 4. eceity Prt: Let y( be poitive olutio of Equtio (8 for of type (AC. It i ey to ee tht y d y y( >. Hece ummig (8 twice, we hve from which we fid tht y( + y( = p( r y( r ( y p( r <. Thi i equivlet to (. Sufficiecy Prt: Let ( hold. Fix l > d chooe o tht p r We itroduce the Bch pce l of ll bouded, rel equece { y( } with orm y up y Defie the et Y = { y l : l y, l } d the mppig F : Y l by ( l., =. 6

12 Fy = l + p( r y( r,. We below how vi the Schuder-Tychooff fixed poit theorem tht F h t let oe fixed elemet i Y. y Y. The Firtly, let Thu Fy Y, d hece FY Y coverig to y Y d l Fy l ( l + p ( r l + l =, l.. Secodly, to ee the cotiuity of F, let { k } uiformly o ech compct ubitervl of [ ice p( r yk ( r ( l p( r <. The Lebegue domited covergece theorem implie tht Fyk Fy ubitervl of [ ice for y ( Y,, { } ( Fy p( y( ( l p(,. The et ( Fy ( : y Y i uiformly bouded o [,, y be equece i Y p i bouded for uiformly o ech compct. Thi implie tht Y F i compct. From there obervtio we fid tht F h proved elemet y i Y uch tht Fy = y. Tht thi y i olutio of Equtio ( of type (AC i eily proved. The proof i complete. Proof of Theorem 3. Sufficiecy Prt: Let y( be olutio of Equtio (8 tifyig y( >, y < for. The exitece of uch olutio i eured by Theorem 7. Obviouly, y( i either of type (D or type (AC. Theorem 4 how tht uder umptio (9, Equtio (8 doe ot poe olutio of type (AC. Hece y( mut be of type (D. eceity Prt: Let y( be poitive olutio of Equtio (8 for of type (D. Clerly y( tifie y = p( r y( r,. To verify (9, uppoe the cotrry tht (9 fil to hold. The, othig tht we hve Accordigly, y y p( r,. y p( r,. y i decreig for, The left hd ide ted to becue of <, where the right hd ide ted to. Thi cotrdictio verifie (9. The proof i complete. Proof of Theorem 5. eceity Prt: Let y( be poitive olutio of Equtio (8 er of type (AL. There i cott c > d tifyig Summtio of Equtio (8 from to yield y c,. (34 * * ( y y = p y,. 63

13 Sice lim y y (, =, thi i equlity implie tht p y <. (35 Combiig (35 with (34, we fid tht ( hold. Sufficiecy Prt: We fix l > rbitrrily, d chooe lrge eough o tht p l. Let l be the Bch pce i the proof Theorem 4. Defie the et Y l follow The mppig F : Y l defied by { } Y = y l : l y l,. Fy = ( l p( r y( r,. A i the proof of the ufficiecy prt of Theorem 4, we c how tht F h fixed elemet y the Schvder-Tyehooff fixed poit Theorem y = ( l p( r y( r,. Tkig twice for thi formul we ee tht y lim = l. Thu L Hopitl rule how tht i complete. Y by y i poitive olutio of Equtio (8 for. y i olutio of Equtio (8 of type (AL. The proof Lemm 8. Let y ( >. If ( hold, the there i poitive olutio of Equtio (8 for (AL tifyig y( = y(. Proof. By Theorem 5, there i (AL-type poitive olutio z borhood of : < lim = lim z <. Let y( be poitive olutio of Equtio (8 for tifyig y( = y( d y( >, y < for. Tke > uch tht y z y < z for. By Lemm if λ > y( i ufficietly elver to y( y( of Equtio (8 with y( = y( d y( = λ exit t let o [, ] d tifie y < y < z, y < y < z. The Lemm gi implie tht y < y < z log exit. Sice y( d z(, thi me tht d tifie y y z exit for hve y exit for y y z < <,. otig tht y( i the uique olutio of (8 tifyig of type z of Equtio (8 defied i ome eigh- < d, the the olutio < <,. The we y lim = d pig through the poit (, y ( we hve y lim lim (,. Therefore Proof of Theorem 6. For λ >, we deote by yλ coditio y( = y d y( = λ. The mximl itervl of exitece of y, the uique olutio of Equtio (8 with i iitil my be fiite or ifiite. Defie the et S (, by y i of type (AL. The proof i complete. k 64

14 { λ : λ exit for d i of type } S = > y AL V. Sdhivm et l. We kow by Lemm 8 tht S Q d by Lemm 5 tht λ S for ll ufficietly lrge λ >. Hece up S = λ (, exit. For λ there re three poibilitie: λ S λ S d y ( i of type (AS 3 λ S d λ ( λ i of type ( S. To prove the theorem, we below how tht ce (b occur. For implicity, we write y for y λ below. lim y y l, y < l,. By coditio Suppoe tht the ce ( occur. The = ( = ( d ( we c fid > tifyig p y + l < l l Chooe λ λ y, yλ < l. The, for uch λ, yλ c be exteded to, d tifie yλ <, l. I fct, if thi i ot the ce, there i > tifyig yλ < l for < d yλ = l. It follow therefore tht yλ y ( + lt for. Summig the Equtio (8 (with y = y λ for yield > cloe eough to λ o tht λ exit t let o [ ] d ( l = ( yλ = ( yλ ( + p( yλ( Thi cotrdictio implie tht y ( ( l + p y + l l + p y + l < l. λ exit for d tifie yλ <, l. Thee obervtio how tht S λ > λ, which cotrdict the defiitio of λ. Hece ce ( doe ot occur. ext, uppoe tht ce (c occur. Let > be the poit uch tht y( = y( =. By Lemm 5, there i M > uch tht olutio y( of Equtio (8 tifyig y(, y( M mut = y, : y = y =. For ufficietly mll >, we hve blow up t ome fiite y( > y( > M. The if λ < λ i ufficietly cloe to λ, the y let to, d tifie yλ ( >, yλ ( > M yλ blow up t ome fiite poit by the defiitio of M. Thi fct how tht uch λ( λ λ c be cotiued t. The, eve through y λ c be cotiued to, < doe ot belog to S, cotrdictig the defiitio of λ, gi. Coequetly ce (b occur, d hece the proof of Theorem 6 i complete. Proof of Theorem 7. The proof i doe by cotrdictio. Let y( be olutio of Equtio ( of type (AS. We uppoe tht y( exit for d tifie Put z y ( y ( = >. The y C, y C, for ome C > (36 + ( ( + = y+ ( y + ( y p z = y y + y y = + ( y y+ p ( y ( y p y ( y + ( y ( y( + = + p y y y y z + y. y 65

15 ow, we employ the Youg iequlity of the form ( σ i the lt iequlity. It follow therefore tht where C C ( σ σ σ σ X+ Y σ σ X Y for XY, > d < σ < (37 ( + ( ( σ σ σ σ σ z C z y y p, =,, > i cott. We rewrite i iequlity ( ( ( ( σ σ ρ σ σ ρ σ + ρ z C y y p z,. otig (7.3 d coditio (3, we obti + ( σ ( σ ρ + ρ 3 z C p z,, where C3 = C3( σ,,, ρ, C, C > i cott. Dividig both ide by ( z, we hve ρ becue lim z =. Coequetly, we hve ρ σ + σ ρ ( z C p, 3 σ +ρ d ummig from to ρ ρ ρ + σ ρ σ ( y C 3 ( p(,. ρ y( Lettig, we get cotrdictio to umptio (. Thi complete the proof. A w metioed i Sectio 5, the proof of Theorem 8 i omitted. I fct, more geerl reult i proved i Lemm Proof of Mi Reult for the Sub-Homogeeou Equtio Throughout thi ectio, we ume tht >. Proof of Theorem 9. Let, be fixed o tht d put d + m= mi p > d ρ = >. The there re cott L > d c > tifyig Coider the Bch pce the ubet Y of B by L p( r L, C m ( ρ + c + ρ + ρ c L for. B of ll rel equece y { y } { [, ] : ( e for } Y = y C c y L = with up orm y = up y. Defie 66

16 d Fy = p r y r,, =, other wie. We how tht the hypothei of the Schvder fixed poit theorem i tified for Y d F. Let y Y. The, Fy L for. Moreover obviouly Fy m c r ( m ( ρ + + ρ + c ρ + ρ + ρ c, for. Hece FY Y FY : y Y c be eily etblihed. Accordigly there i y Y tifyig FY = y. By tkig differece twice, we fid tht y( i olutio of Equtio ( for d tht y( > for d y( = y( =. ow, we put. The cotiuity of F d the boudede of the et FY d { } It i ey to ee tht y y =. y i olutio of equtio (8 for S. The proof i complete. Theorem 4 d 5 c be proved eily i the proof of Theorem 4 d 5 repectively. We therefore omit the proof. Proof of Theorem. By our umptio we c fid poitive olutio yk, k of Equtio (8 t- ifyig y k ( =. Sice >, we ee by Lemm 4 tht ech yk ( exit for. We how tht the K equece { yk ( } h the limit fuctio y(, d it give rie to poitive olutio of Equtio (8 of type (D. We firt clim tht d i of type y > y > > yk > yk+ > >,. If thi i ot true, the yi = yi+ for ome i d oegtive oicreig olutio of Equtio (8 pig through the poit (, i Theorem 7. We therefore hve (38 d o y = y exit oberve tht y (38 lim k k yk = + p( r yi( r,. K Lettig k, we obti vi the domited covergece theorem y = p( r y( r,.. Thi me however tht there re two y. Thi cotrdictio to tifie We ee tht y( i oegtive olutio of Equtio (8 tifyig y ( = y( > for Fix > rbitrrily. The proof of Theorem implie tht there i olutio y ( > < d. We clim tht for y = for I fct, if thi fil to hold, the k. It remi to prove tht y > y for for ll k. (39 k 67

17 y = y for ome i d <. i By thi me, before, tht there re two oegtive oicreig olutio fo Equtio (8 pig through the poit (, y (. Thi cotrdictio how tht (39 hold. Hece by lettig i i (39 we hve y y > for <. Sice > i rbitrry, we ee tht y( > for. The proof i complete. Proof of Theorem. The proof i doe by cotrdictio. Let y( be poitive olutio of equtio (8 for of type (D. Uig (6. We obti from Equtio (8 ( ( y C y,. (4 where C i poitive cott. We fix rbitrry d coider iequlity (4 oly o the itervl, for momet. A ummtio of (4 from to, give [ ] From which, we hve ( y( + ( y C ( y( ( y C ( y( ( y y C ( y( ( y, y,. ( y( ( y y( y ( du ( ( u y We c fid cott C > tifyig Therefore (43 implie tht from which we hve C C, ( (4 y y( y v d v C,. x + v dv C x, x. ( y C( y( C, y ( ( C y y C,. Lettig, we hve cotrdictio. The proof i complete. Proof of Theorem. The proof i doe by cotrdictio. Let y( be olutio of Equtio (8 of type (D. We otice firt tht I fct, ice y >, we c compute follow lim y =. (4 68

18 ( ( y = y y Therefore (4 hold. We my uppoe tht for ome C > d But z y( y ( = >. The y p = y for lrge. < y C, < y C,. (43 ( ( + z = y y y y + ( y y+ p ( y ( y y( y p ( y y = + proceedig i the proof of Theorem 8, we obti y y = + ( y ( y y( y + p y ( y ( ( ( σ + σ ρ σ σ + ρσ ρ z C y y p z, where C i cott. We obti from (43 d umptio (8 where 3 tht i, + σ ( σ σ ρ ρ 3, z C p z C > i cott. Dividig both ide by ( z ρ ρ σ + σ ρ σ ( z C ( p(, ρ ρ 3 ρ σρ σρ σ + σ ρ ( ( d ummig from to, we hve y y C p,. 3 Lettig, we get cotrdictio to umptio (7 by (4. The proof i complete. Proof of Theorem 6. Sufficiecy Prt: By Theorem 7 d ( of Remrk 6., there i poitive olutio y =. Thi y( i either of type (AL or of type (AS. But by Theorem y mut be of type (AS. eceity Prt: Let y( be poitive olutio of Equtio (8 for of type (AS. To prove (9, we y of equtio (8 tifyig 5, we ee tht uppoe the cotrry tht p where c = y( d c = y( let z <. A i the proof of Lemm 5.3, we hve y = ρ + C + p( r y( r, ( ξ y = mx. It follow tht ξ ξ σ 69

19 where y c i cott. put w mx c, z Sice y( i of type (AS, C + c + z( r p( r, c + c + z r p r { } =. We the hve z c + w + r f ( r, m. y i ubouded for, tifyig w z for. Thu w c + ( w + r p( r d o i c + ( w + r p( r,. z. Accordigly, there i Sice <, thi implie the boudede of w, which i cotrctio. Hece, we mut hve (9. The proof i complete. Theorem 6 i cler becue of ll olutio of equtio (8 with < exit for [ee Lemm 5]. Referece [] Mizukmi, M., ito, M. d Umi, H. ( Aymtotic Behvior of Solutio of Cl of Secod Order Quilier Ordiry Differetil Equtio. Hirohim Mthemticl Jourl, 3, [] Tiryki, A. ( Some Criteri for the Aymptotic Behvior of Certi Secod Order olier Perturbed Differetil Equtio. Advce i Pure Mthemtic,, [3] Drozdowic, A. d Poped, J. (987 Aymptotic Behvior of the Solutio of the Secod Order Differece Equtio. Proceedig of the Americ Mthemticl Society, 99, [4] Drozdowic, A. d Poped, J. (993 Aymptotic Behvior of Solutio of Differece Equtio of Secod Order. Jourl of Computtiol d Applied Mthemtic, 47, [5] Elbert, A. d Kwo, T. (99 Ocilltio d oocilltio Theorem for Cl of Secod Order Quilier Differetil Equtio. Act Mthemtic Hugric, 56, [6] He, X.Z. (993 Ocilltory d Aymptotic Behvior of Secod Order olier Differece Equtio. Jourl of Mthemticl Alyi d Applictio, 75, [7] Kigurdze, I.T. d Chturi, T.A. (99 Aymptotic Propertie of Solutio of o Autoomou Ordiry Differetil Equtio. uk, Mocow. [8] Kubiczyk, I. d Sekr, S.H. ( Ocilltio Theorem for Secod Order Sublier Dely Differece Equtio. Mthemtic Slovc, 5, [9] Kuo, T., ito, K. d Ogt, A. (994 Strog Ocilltio d oocilltio of Quilier Differetil Equtio of Secod Order. Differetil Equtio d Dymicl Sytem,, -. [] Luo, J. ( Ocilltio Criteri for Secod Order Quilier eutrl Differece Equtio. Computer & Mthemtic with Applictio, 43, [] Migd, M. d Migd, J. (998 Aymptotic Behvior of the Solutio of the Secod Order Differece Equtio. Archivum Mthemticum, 34, [] Sdhivm, V., Sudr, P. d Sthi, A. (6 Ocilltio d Aymptotic Behvior of Solutio of Secod Order Homogeeou eutrl Differece Equtio with Poitive d egtive Coefficiet. IOSR Jourl of Mthemtic,,

20 [3] Thdpi, E. (99 Aymptotic d Ocilltory Behvior of Solutio of Secod Order olier eutrl Dely Differece Equtio. Rivit di Mtemtic dell Uiverità di Prm,, [4] Thdpi, E. d Arul, R. (997 Ocilltio Theory for Cl of Secod Order Quilier Differece Equtio. Tmkg Jourl of Mthemtic, 8, [5] Thdpi, E., Gref, J.R. d Spike, P.W. (996 O the Ocilltio of Solutio of Secod Order Quilier Differece Equtio. olier World, 3, [6] Wog, P.J.Y. d Agrwl, R.P. (996 Ocilltio Theorem for Certi Secod Order olier Differece Equtio. Jourl of Mthemticl Alyi d Applictio, 4, [7] Wog, P.J.W. d Agrwl, R.P. (996 Ocilltio d Mootoe Solutio of Secod Order Quilier Differece Equtio. Fukcilj Ekvcioj, 39, [8] Y, J. d Liu, B. (995 Aymptotic Behvior of olier Dely Differece Equtio. Applied Mthemtic Letter, 8, [9] Rth, R.., Sehdev, P. d Brik, B.L.S. (8 Ocilltory d Aymptotic Behviour of Homogeeou eutrl Dely Differece Equtio of Secod Order. Bulleti of the Ititute of Mthemtic Acdemi Siic (ew Serie, 3, [] Agrwl, R.P. (99 Differece Equtio d Iequlitie Theory, Method d Applictio. Mrcel Dekker, ew York. [] Elydi, S.. (996 A Itroductio to Differece Equtio. Spriger Verlg, ew York. [] Gyori, I. d Ld, G. (99 Ocilltio Theory of Dely Differetil Equtio with Applictio. Clredo Pre, Oxford. [3] Kelly, W.G. d Petero, A.C. (99 Differece Equtio: A Itroductio with Applictio. Acdemic Pre, ew York. [4] Lkhmikth, V. d Trigite, O. (988 Theory of Differece Equtio: umericl Method d Applictio. Acdemic Pre, ew York. [5] Wog, P.J.Y. d Agrwl, R.P. (996 O the Ocilltio d Aymptoticlly Mootoe Solutio of Secod Order Quilier Differece Equtio. Applied Mthemtic d Computtio, 79, [6] Thdpi, E., Muel, M.M.S. d Agrwl, R.P. (996 Ocilltio d o Ocilltio Theorem for Secod Order Quilier Differece Equtio. Fct Uiveritti, Serie: Mthemtic d Iformtic,, [7] Sudr, P. d Thdpi, E. ( Ocilltio d o-ocilltio Theorem for Secod Order Quilier Fuctiol Differece Equtio. Idi Jourl of Pure d Applied Mthemtic, 3, [8] Thdpi, E. d Arul, R. (997 Ocilltio d oocilltio Theorem for Cl of Secod Order Quilier Differece Equtio. Zeitchrift Für Alyi Ud Ihre Aweduge, 6, [9] Thdpi, E., Liu, Z., Arul, R. d Rj, P.S. (4 Ocilltio d Aymptotic Behvior of Secod Order Differece Equtio with olier eutrl Term. Applied Mthemtic E-ote, 4, [3] Cheg, S.S. d Ptul, W.T. (993 A Exitece Theorem for olier Differece Equtio. olier Alyi, Theory Method d Applictio,,

21 Submit or recommed ext mucript to SCIRP d we will provide bet ervice for you: Acceptig pre-ubmiio iquirie through Emil, Fcebook, LikedI, Twitter, etc. A wide electio of jourl (icluive of 9 ubject, more th jourl Providig 4-hour high-qulity ervice Uer-friedly olie ubmiio ytem Fir d wift peer-review ytem Efficiet typeettig d proofredig procedure Diply of the reult of dowlod d viit, well the umber of cited rticle Mximum diemitio of your reerch work Submit your mucript t:

Asymptotic Properties of Solutions of Two Dimensional Neutral Difference Systems

Asymptotic Properties of Solutions of Two Dimensional Neutral Difference Systems Avilble t http://pvmuedu/m Appl Appl Mth ISSN: 192-9466 Vol 8, Iue 2 (December 21), pp 585 595 Applictio d Applied Mthemtic: A Itertiol Jourl (AAM) Aymptotic Propertie of Solutio of Two Dimeiol Neutrl

More information

ELEC 372 LECTURE NOTES, WEEK 6 Dr. Amir G. Aghdam Concordia University

ELEC 372 LECTURE NOTES, WEEK 6 Dr. Amir G. Aghdam Concordia University ELEC 37 LECTURE NOTES, WEE 6 Dr mir G ghdm Cocordi Uiverity Prt of thee ote re dpted from the mteril i the followig referece: Moder Cotrol Sytem by Richrd C Dorf d Robert H Bihop, Pretice Hll Feedbck Cotrol

More information

We will begin by supplying the proof to (a).

We will begin by supplying the proof to (a). (The solutios of problem re mostly from Jeffrey Mudrock s HWs) Problem 1. There re three sttemet from Exmple 5.4 i the textbook for which we will supply proofs. The sttemets re the followig: () The spce

More information

Convergence rates of approximate sums of Riemann integrals

Convergence rates of approximate sums of Riemann integrals Jourl of Approximtio Theory 6 (9 477 49 www.elsevier.com/locte/jt Covergece rtes of pproximte sums of Riem itegrls Hiroyuki Tski Grdute School of Pure d Applied Sciece, Uiversity of Tsukub, Tsukub Ibrki

More information

Observations on the Non-homogeneous Quintic Equation with Four Unknowns

Observations on the Non-homogeneous Quintic Equation with Four Unknowns Itertiol Jourl of Mthemtic Reerch. ISSN 976-84 Volume, Number 1 (13), pp. 17-133 Itertiol Reerch Publictio Houe http://www.irphoue.com Obervtio o the No-homogeeou Quitic Equtio with Four Ukow S. Vidhylkhmi

More information

Review of the Riemann Integral

Review of the Riemann Integral Chpter 1 Review of the Riem Itegrl This chpter provides quick review of the bsic properties of the Riem itegrl. 1.0 Itegrls d Riem Sums Defiitio 1.0.1. Let [, b] be fiite, closed itervl. A prtitio P of

More information

Chapter #2 EEE Subsea Control and Communication Systems

Chapter #2 EEE Subsea Control and Communication Systems EEE 87 Chpter # EEE 87 Sube Cotrol d Commuictio Sytem Trfer fuctio Pole loctio d -ple Time domi chrcteritic Extr pole d zero Chpter /8 EEE 87 Trfer fuctio Lplce Trform Ued oly o LTI ytem Differetil expreio

More information

Opial inequality in q-calculus

Opial inequality in q-calculus Mirkovićetl.Jourl of Iequlitie d Applictio 8) 8:347 http://doi.org/.86/366-8-98-z R E S E A R C H Ope Acce Opil iequlity i q-clculu Ttj Z. Mirković *, Slobod B. Tričković d Miomir S. Stković 3 * Correpodece:

More information

Convergence rates of approximate sums of Riemann integrals

Convergence rates of approximate sums of Riemann integrals Covergece rtes of pproximte sums of Riem itegrls Hiroyuki Tski Grdute School of Pure d Applied Sciece, Uiversity of Tsuku Tsuku Irki 5-857 Jp tski@mth.tsuku.c.jp Keywords : covergece rte; Riem sum; Riem

More information

POWER SERIES R. E. SHOWALTER

POWER SERIES R. E. SHOWALTER POWER SERIES R. E. SHOWALTER. sequeces We deote by lim = tht the limit of the sequece { } is the umber. By this we me tht for y ε > 0 there is iteger N such tht < ε for ll itegers N. This mkes precise

More information

Sequence and Series of Functions

Sequence and Series of Functions 6 Sequece d Series of Fuctios 6. Sequece of Fuctios 6.. Poitwise Covergece d Uiform Covergece Let J be itervl i R. Defiitio 6. For ech N, suppose fuctio f : J R is give. The we sy tht sequece (f ) of fuctios

More information

Certain sufficient conditions on N, p n, q n k summability of orthogonal series

Certain sufficient conditions on N, p n, q n k summability of orthogonal series Avilble olie t www.tjs.com J. Nolier Sci. Appl. 7 014, 7 77 Reserch Article Certi sufficiet coditios o N, p, k summbility of orthogol series Xhevt Z. Krsiqi Deprtmet of Mthemtics d Iformtics, Fculty of

More information

Math 104: Final exam solutions

Math 104: Final exam solutions Mth 14: Fil exm solutios 1. Suppose tht (s ) is icresig sequece with coverget subsequece. Prove tht (s ) is coverget sequece. Aswer: Let the coverget subsequece be (s k ) tht coverges to limit s. The there

More information

Chapter 7 Infinite Series

Chapter 7 Infinite Series MA Ifiite Series Asst.Prof.Dr.Supree Liswdi Chpter 7 Ifiite Series Sectio 7. Sequece A sequece c be thought of s list of umbers writte i defiite order:,,...,,... 2 The umber is clled the first term, 2

More information

On the 2-Domination Number of Complete Grid Graphs

On the 2-Domination Number of Complete Grid Graphs Ope Joural of Dicrete Mathematic, 0,, -0 http://wwwcirporg/oural/odm ISSN Olie: - ISSN Prit: - O the -Domiatio Number of Complete Grid Graph Ramy Shahee, Suhail Mahfud, Khame Almaea Departmet of Mathematic,

More information

MATH 104 FINAL SOLUTIONS. 1. (2 points each) Mark each of the following as True or False. No justification is required. y n = x 1 + x x n n

MATH 104 FINAL SOLUTIONS. 1. (2 points each) Mark each of the following as True or False. No justification is required. y n = x 1 + x x n n MATH 04 FINAL SOLUTIONS. ( poits ech) Mrk ech of the followig s True or Flse. No justifictio is required. ) A ubouded sequece c hve o Cuchy subsequece. Flse b) A ifiite uio of Dedekid cuts is Dedekid cut.

More information

Green s Function Approach to Solve a Nonlinear Second Order Four Point Directional Boundary Value Problem

Green s Function Approach to Solve a Nonlinear Second Order Four Point Directional Boundary Value Problem IOSR Jourl of Mthemtics (IOSR-JM) e-issn: 78-578, p-issn: 39-765X. Volume 3, Issue 3 Ver. IV (My - Jue 7), PP -8 www.iosrjourls.org Gree s Fuctio Approch to Solve Nolier Secod Order Four Poit Directiol

More information

Chapter 5. The Riemann Integral. 5.1 The Riemann integral Partitions and lower and upper integrals. Note: 1.5 lectures

Chapter 5. The Riemann Integral. 5.1 The Riemann integral Partitions and lower and upper integrals. Note: 1.5 lectures Chpter 5 The Riem Itegrl 5.1 The Riem itegrl Note: 1.5 lectures We ow get to the fudmetl cocept of itegrtio. There is ofte cofusio mog studets of clculus betwee itegrl d tiderivtive. The itegrl is (iformlly)

More information

Chapter 2 Infinite Series Page 1 of 9

Chapter 2 Infinite Series Page 1 of 9 Chpter Ifiite eries Pge of 9 Chpter : Ifiite eries ectio A Itroductio to Ifiite eries By the ed of this sectio you will be ble to uderstd wht is met by covergece d divergece of ifiite series recogise geometric

More information

Applied Mathematical Sciences, Vol. 9, 2015, no. 3, HIKARI Ltd,

Applied Mathematical Sciences, Vol. 9, 2015, no. 3, HIKARI Ltd, Applied Mathematical Sciece Vol 9 5 o 3 7 - HIKARI Ltd wwwm-hiaricom http://dxdoiorg/988/am54884 O Poitive Defiite Solutio of the Noliear Matrix Equatio * A A I Saa'a A Zarea* Mathematical Sciece Departmet

More information

Reversing the Arithmetic mean Geometric mean inequality

Reversing the Arithmetic mean Geometric mean inequality Reversig the Arithmetic me Geometric me iequlity Tie Lm Nguye Abstrct I this pper we discuss some iequlities which re obtied by ddig o-egtive expressio to oe of the sides of the AM-GM iequlity I this wy

More information

1.3 Continuous Functions and Riemann Sums

1.3 Continuous Functions and Riemann Sums mth riem sums, prt 0 Cotiuous Fuctios d Riem Sums I Exmple we sw tht lim Lower() = lim Upper() for the fuctio!! f (x) = + x o [0, ] This is o ccidet It is exmple of the followig theorem THEOREM Let f be

More information

UNIT #5 SEQUENCES AND SERIES COMMON CORE ALGEBRA II

UNIT #5 SEQUENCES AND SERIES COMMON CORE ALGEBRA II Awer Key Nme: Dte: UNIT # SEQUENCES AND SERIES COMMON CORE ALGEBRA II Prt I Quetio. For equece defied by f? () () 08 6 6 f d f f, which of the followig i the vlue of f f f f f f 0 6 6 08 (). I the viul

More information

0 otherwise. sin( nx)sin( kx) 0 otherwise. cos( nx) sin( kx) dx 0 for all integers n, k.

0 otherwise. sin( nx)sin( kx) 0 otherwise. cos( nx) sin( kx) dx 0 for all integers n, k. . Computtio of Fourier Series I this sectio, we compute the Fourier coefficiets, f ( x) cos( x) b si( x) d b, i the Fourier series To do this, we eed the followig result o the orthogolity of the trigoometric

More information

Remarks: (a) The Dirac delta is the function zero on the domain R {0}.

Remarks: (a) The Dirac delta is the function zero on the domain R {0}. Sectio Objective(s): The Dirc s Delt. Mi Properties. Applictios. The Impulse Respose Fuctio. 4.4.. The Dirc Delt. 4.4. Geerlized Sources Defiitio 4.4.. The Dirc delt geerlized fuctio is the limit δ(t)

More information

Chapter #3 EEE Subsea Control and Communication Systems

Chapter #3 EEE Subsea Control and Communication Systems EEE 87 Chter #3 EEE 87 Sube Cotrol d Commuictio Sytem Cloed loo ytem Stedy tte error PID cotrol Other cotroller Chter 3 /3 EEE 87 Itroductio The geerl form for CL ytem: C R ', where ' c ' H or Oe Loo (OL)

More information

Chapter #5 EEE Control Systems

Chapter #5 EEE Control Systems Sprig EEE Chpter #5 EEE Cotrol Sytem Deig Bed o Root Locu Chpter / Sprig EEE Deig Bed Root Locu Led Cotrol (equivlet to PD cotrol) Ued whe the tedy tte propertie of the ytem re ok but there i poor performce,

More information

MASSACHUSETTS INSTITUTE OF TECHNOLOGY 6.265/15.070J Fall 2013 Lecture 16 11/04/2013. Ito integral. Properties

MASSACHUSETTS INSTITUTE OF TECHNOLOGY 6.265/15.070J Fall 2013 Lecture 16 11/04/2013. Ito integral. Properties MASSACHUSES INSIUE OF ECHNOLOGY 6.65/15.7J Fall 13 Lecture 16 11/4/13 Ito itegral. Propertie Cotet. 1. Defiitio of Ito itegral. Propertie of Ito itegral 1 Ito itegral. Exitece We cotiue with the cotructio

More information

Week 13 Notes: 1) Riemann Sum. Aim: Compute Area Under a Graph. Suppose we want to find out the area of a graph, like the one on the right:

Week 13 Notes: 1) Riemann Sum. Aim: Compute Area Under a Graph. Suppose we want to find out the area of a graph, like the one on the right: Week 1 Notes: 1) Riem Sum Aim: Compute Are Uder Grph Suppose we wt to fid out the re of grph, like the oe o the right: We wt to kow the re of the red re. Here re some wys to pproximte the re: We cut the

More information

u t u 0 ( 7) Intuitively, the maximum principles can be explained by the following observation. Recall

u t u 0 ( 7) Intuitively, the maximum principles can be explained by the following observation. Recall Oct. Heat Equatio M aximum priciple I thi lecture we will dicu the maximum priciple ad uiquee of olutio for the heat equatio.. Maximum priciple. The heat equatio alo ejoy maximum priciple a the Laplace

More information

Principles of Mathematical Analysis

Principles of Mathematical Analysis Ciro Uiversity Fculty of Scieces Deprtmet of Mthemtics Priciples of Mthemticl Alysis M 232 Mostf SABRI ii Cotets Locl Study of Fuctios. Remiders......................................2 Tylor-Youg Formul..............................

More information

SUTCLIFFE S NOTES: CALCULUS 2 SWOKOWSKI S CHAPTER 11

SUTCLIFFE S NOTES: CALCULUS 2 SWOKOWSKI S CHAPTER 11 UTCLIFFE NOTE: CALCULU WOKOWKI CHAPTER Ifiite eries Coverget or Diverget eries Cosider the sequece If we form the ifiite sum 0, 00, 000, 0 00 000, we hve wht is clled ifiite series We wt to fid the sum

More information

The Weierstrass Approximation Theorem

The Weierstrass Approximation Theorem The Weierstrss Approximtio Theorem Jmes K. Peterso Deprtmet of Biologicl Scieces d Deprtmet of Mthemticl Scieces Clemso Uiversity Februry 26, 2018 Outlie The Wierstrss Approximtio Theorem MtLb Implemettio

More information

1. (25 points) Use the limit definition of the definite integral and the sum formulas to compute. [1 x + x2

1. (25 points) Use the limit definition of the definite integral and the sum formulas to compute. [1 x + x2 Mth 3, Clculus II Fil Exm Solutios. (5 poits) Use the limit defiitio of the defiite itegrl d the sum formuls to compute 3 x + x. Check your swer by usig the Fudmetl Theorem of Clculus. Solutio: The limit

More information

On Almost Increasing Sequences For Generalized Absolute Summability

On Almost Increasing Sequences For Generalized Absolute Summability Joul of Applied Mthetic & Bioifotic, ol., o., 0, 43-50 ISSN: 79-660 (pit), 79-6939 (olie) Itetiol Scietific Pe, 0 O Alot Iceig Sequece Fo Geelized Abolute Subility W.. Suli Abtct A geel eult coceig bolute

More information

ARCHIVUM MATHEMATICUM (BRNO) Tomus 47 (2011), Kristína Rostás

ARCHIVUM MATHEMATICUM (BRNO) Tomus 47 (2011), Kristína Rostás ARCHIVUM MAHEMAICUM (BRNO) omu 47 (20), 23 33 MINIMAL AND MAXIMAL SOLUIONS OF FOURH ORDER IERAED DIFFERENIAL EQUAIONS WIH SINGULAR NONLINEARIY Kritín Rotá Abtrct. In thi pper we re concerned with ufficient

More information

Numerical Solutions of Fredholm Integral Equations Using Bernstein Polynomials

Numerical Solutions of Fredholm Integral Equations Using Bernstein Polynomials Numericl Solutios of Fredholm Itegrl Equtios Usig erstei Polyomils A. Shiri, M. S. Islm Istitute of Nturl Scieces, Uited Itertiol Uiversity, Dhk-, gldesh Deprtmet of Mthemtics, Uiversity of Dhk, Dhk-,

More information

f(bx) dx = f dx = dx l dx f(0) log b x a + l log b a 2ɛ log b a.

f(bx) dx = f dx = dx l dx f(0) log b x a + l log b a 2ɛ log b a. Eercise 5 For y < A < B, we hve B A f fb B d = = A B A f d f d For y ɛ >, there re N > δ >, such tht d The for y < A < δ d B > N, we hve ba f d f A bb f d l By ba A A B A bb ba fb d f d = ba < m{, b}δ

More information

INFINITE SERIES. ,... having infinite number of terms is called infinite sequence and its indicated sum, i.e., a 1

INFINITE SERIES. ,... having infinite number of terms is called infinite sequence and its indicated sum, i.e., a 1 Appedix A.. Itroductio As discussed i the Chpter 9 o Sequeces d Series, sequece,,...,,... hvig ifiite umber of terms is clled ifiite sequece d its idicted sum, i.e., + + +... + +... is clled ifite series

More information

is infinite. The converse is proved similarly, and the last statement of the theorem is clear too.

is infinite. The converse is proved similarly, and the last statement of the theorem is clear too. 12. No-stdrd lysis October 2, 2011 I this sectio we give brief itroductio to o-stdrd lysis. This is firly well-developed field of mthemtics bsed o model theory. It dels ot just with the rels, fuctios o

More information

Double Sums of Binomial Coefficients

Double Sums of Binomial Coefficients Itertiol Mthemticl Forum, 3, 008, o. 3, 50-5 Double Sums of Biomil Coefficiets Athoy Sofo School of Computer Sciece d Mthemtics Victori Uiversity, PO Box 448 Melboure, VIC 800, Austrli thoy.sofo@vu.edu.u

More information

MA123, Chapter 9: Computing some integrals (pp )

MA123, Chapter 9: Computing some integrals (pp ) MA13, Chpter 9: Computig some itegrls (pp. 189-05) Dte: Chpter Gols: Uderstd how to use bsic summtio formuls to evlute more complex sums. Uderstd how to compute its of rtiol fuctios t ifiity. Uderstd how

More information

SOME SHARP OSTROWSKI-GRÜSS TYPE INEQUALITIES

SOME SHARP OSTROWSKI-GRÜSS TYPE INEQUALITIES Uiv. Beogrd. Publ. Elektroteh. Fk. Ser. Mt. 8 006 4. Avilble electroiclly t http: //pefmth.etf.bg.c.yu SOME SHARP OSTROWSKI-GRÜSS TYPE INEQUALITIES Zheg Liu Usig vrit of Grüss iequlity to give ew proof

More information

lecture 16: Introduction to Least Squares Approximation

lecture 16: Introduction to Least Squares Approximation 97 lecture 16: Itroductio to Lest Squres Approximtio.4 Lest squres pproximtio The miimx criterio is ituitive objective for pproximtig fuctio. However, i my cses it is more ppelig (for both computtio d

More information

Power Series Solutions to Generalized Abel Integral Equations

Power Series Solutions to Generalized Abel Integral Equations Itertiol Jourl of Mthemtics d Computtiol Sciece Vol., No. 5, 5, pp. 5-54 http://www.isciece.org/jourl/ijmcs Power Series Solutios to Geerlized Abel Itegrl Equtios Rufi Abdulli * Deprtmet of Physics d Mthemtics,

More information

( a n ) converges or diverges.

( a n ) converges or diverges. Chpter Ifiite Series Pge of Sectio E Rtio Test Chpter : Ifiite Series By the ed of this sectio you will be ble to uderstd the proof of the rtio test test series for covergece by pplyig the rtio test pprecite

More information

MTH 146 Class 16 Notes

MTH 146 Class 16 Notes MTH 46 Clss 6 Notes 0.4- Cotiued Motivtio: We ow cosider the rc legth of polr curve. Suppose we wish to fid the legth of polr curve curve i terms of prmetric equtios s: r f where b. We c view the cos si

More information

Review of Sections

Review of Sections Review of Sectios.-.6 Mrch 24, 204 Abstrct This is the set of otes tht reviews the mi ides from Chpter coverig sequeces d series. The specific sectios tht we covered re s follows:.: Sequces..2: Series,

More information

PROGRESSIONS AND SERIES

PROGRESSIONS AND SERIES PROGRESSIONS AND SERIES A sequece is lso clled progressio. We ow study three importt types of sequeces: () The Arithmetic Progressio, () The Geometric Progressio, () The Hrmoic Progressio. Arithmetic Progressio.

More information

Schrödinger Equation Via Laplace-Beltrami Operator

Schrödinger Equation Via Laplace-Beltrami Operator IOSR Jourl of Mthemtics (IOSR-JM) e-issn: 78-578, p-issn: 39-765X. Volume 3, Issue 6 Ver. III (Nov. - Dec. 7), PP 9-95 www.iosrjourls.org Schrödiger Equtio Vi Lplce-Beltrmi Opertor Esi İ Eskitşçioğlu,

More information

Chapter 7. , and is unknown and n 30 then X ~ t n

Chapter 7. , and is unknown and n 30 then X ~ t n Chpter 7 Sectio 7. t-ditributio ( 3) Summry: C.L.T. : If the rdom mple of ize 3 come from ukow popultio with me d S.D. where i kow or ukow, the X ~ N,. Note: The hypothei tetig d cofidece itervl re built

More information

G x, x E x E x E x E x. a a a a. is some matrix element. For a general single photon state. ), applying the operators.

G x, x E x E x E x E x. a a a a. is some matrix element. For a general single photon state. ), applying the operators. Topic i Qutu Optic d Qutu Ifortio TA: Yuli Mxieko Uiverity of Illioi t Urb-hpig lt updted Februry 6 Proble Set # Quetio With G x, x E x E x E x E x G pqr p q r where G pqr i oe trix eleet For geerl igle

More information

The Reimann Integral is a formal limit definition of a definite integral

The Reimann Integral is a formal limit definition of a definite integral MATH 136 The Reim Itegrl The Reim Itegrl is forml limit defiitio of defiite itegrl cotiuous fuctio f. The costructio is s follows: f ( x) dx for Reim Itegrl: Prtitio [, ] ito suitervls ech hvig the equl

More information

10.5 Power Series. In this section, we are going to start talking about power series. A power series is a series of the form

10.5 Power Series. In this section, we are going to start talking about power series. A power series is a series of the form 0.5 Power Series I the lst three sectios, we ve spet most of tht time tlkig bout how to determie if series is coverget or ot. Now it is time to strt lookig t some specific kids of series d we will evetully

More information

STRONG DEVIATION THEOREMS FOR THE SEQUENCE OF CONTINUOUS RANDOM VARIABLES AND THE APPROACH OF LAPLACE TRANSFORM

STRONG DEVIATION THEOREMS FOR THE SEQUENCE OF CONTINUOUS RANDOM VARIABLES AND THE APPROACH OF LAPLACE TRANSFORM Joural of Statitic: Advace i Theory ad Applicatio Volume, Number, 9, Page 35-47 STRONG DEVIATION THEORES FOR THE SEQUENCE OF CONTINUOUS RANDO VARIABLES AND THE APPROACH OF LAPLACE TRANSFOR School of athematic

More information

B. Examples 1. Finite Sums finite sums are an example of Riemann Sums in which each subinterval has the same length and the same x i

B. Examples 1. Finite Sums finite sums are an example of Riemann Sums in which each subinterval has the same length and the same x i Mth 06 Clculus Sec. 5.: The Defiite Itegrl I. Riem Sums A. Def : Give y=f(x):. Let f e defied o closed itervl[,].. Prtitio [,] ito suitervls[x (i-),x i ] of legth Δx i = x i -x (i-). Let P deote the prtitio

More information

On the Signed Domination Number of the Cartesian Product of Two Directed Cycles

On the Signed Domination Number of the Cartesian Product of Two Directed Cycles Ope Joural of Dicrete Mathematic, 205, 5, 54-64 Publihed Olie July 205 i SciRe http://wwwcirporg/oural/odm http://dxdoiorg/0426/odm2055005 O the Siged Domiatio Number of the Carteia Product of Two Directed

More information

Chap8 - Freq 1. Frequency Response

Chap8 - Freq 1. Frequency Response Chp8 - Freq Frequecy Repoe Chp8 - Freq Aged Prelimirie Firt order ytem Frequecy repoe Low-p filter Secod order ytem Clicl olutio Frequecy repoe Higher order ytem Chp8 - Freq 3 Frequecy repoe Stedy-tte

More information

Chapter System of Equations

Chapter System of Equations hpter 4.5 System of Equtios After redig th chpter, you should be ble to:. setup simulteous lier equtios i mtrix form d vice-vers,. uderstd the cocept of the iverse of mtrix, 3. kow the differece betwee

More information

A GENERAL METHOD FOR SOLVING ORDINARY DIFFERENTIAL EQUATIONS: THE FROBENIUS (OR SERIES) METHOD

A GENERAL METHOD FOR SOLVING ORDINARY DIFFERENTIAL EQUATIONS: THE FROBENIUS (OR SERIES) METHOD Diol Bgoo () A GENERAL METHOD FOR SOLVING ORDINARY DIFFERENTIAL EQUATIONS: THE FROBENIUS (OR SERIES) METHOD I. Itroductio The first seprtio of vribles (see pplictios to Newto s equtios) is ver useful method

More information

FOURIER SERIES PART I: DEFINITIONS AND EXAMPLES. To a 2π-periodic function f(x) we will associate a trigonometric series. a n cos(nx) + b n sin(nx),

FOURIER SERIES PART I: DEFINITIONS AND EXAMPLES. To a 2π-periodic function f(x) we will associate a trigonometric series. a n cos(nx) + b n sin(nx), FOURIER SERIES PART I: DEFINITIONS AND EXAMPLES To -periodic fuctio f() we will ssocite trigoometric series + cos() + b si(), or i terms of the epoetil e i, series of the form c e i. Z For most of the

More information

Simplification and Strengthening of Weyl s Definition of Asymptotic Equal Distribution of Two Families of Finite Sets

Simplification and Strengthening of Weyl s Definition of Asymptotic Equal Distribution of Two Families of Finite Sets Simplifictio d Stregtheig of Weyl s Defiitio of Asymptotic Equl Distributio of Two Fmilies of Fiite Sets Willim F. Trech Triity Uiversity, S Atoio, Texs, USA; wtrech@triity.edu Milig ddress: 95 Pie Le,

More information

Riemann Integration. Chapter 1

Riemann Integration. Chapter 1 Mesure, Itegrtio & Rel Alysis. Prelimiry editio. 8 July 2018. 2018 Sheldo Axler 1 Chpter 1 Riem Itegrtio This chpter reviews Riem itegrtio. Riem itegrtio uses rectgles to pproximte res uder grphs. This

More information

Area, Volume, Rotations, Newton s Method

Area, Volume, Rotations, Newton s Method Are, Volume, Rottio, Newto Method Are etwee curve d the i A ( ) d Are etwee curve d the y i A ( y) yd yc Are etwee curve A ( ) g( ) d where ( ) i the "top" d g( ) i the "ottom" yd Are etwee curve A ( y)

More information

Integral Operator Defined by k th Hadamard Product

Integral Operator Defined by k th Hadamard Product ITB Sci Vol 4 A No 35-5 35 Itegrl Opertor Deied by th Hdmrd Product Msli Drus & Rbh W Ibrhim School o Mthemticl Scieces Fculty o sciece d Techology Uiversiti Kebgs Mlysi Bgi 436 Selgor Drul Ehs Mlysi Emil:

More information

SLOW INCREASING FUNCTIONS AND THEIR APPLICATIONS TO SOME PROBLEMS IN NUMBER THEORY

SLOW INCREASING FUNCTIONS AND THEIR APPLICATIONS TO SOME PROBLEMS IN NUMBER THEORY VOL. 8, NO. 7, JULY 03 ISSN 89-6608 ARPN Jourl of Egieerig d Applied Sciece 006-03 Ai Reerch Publihig Nework (ARPN). All righ reerved. www.rpjourl.com SLOW INCREASING FUNCTIONS AND THEIR APPLICATIONS TO

More information

ROBUST STABILITY OF CONVEX COMBINATION OF TWO FRACTIONAL DEGREE CHARACTERISTIC POLYNOMIALS

ROBUST STABILITY OF CONVEX COMBINATION OF TWO FRACTIONAL DEGREE CHARACTERISTIC POLYNOMIALS ct mechic et utomtic, vol.2 o.2 (28) ROBUST STABILITY OF CONVEX COMBINATION OF TWO FRACTIONAL DEGREE CHARACTERISTIC POLYNOMIALS Mikołj BUSŁOWICZ * * Chir of Automtic d Electroic, Fculty of Electricl Egieerig

More information

M3P14 EXAMPLE SHEET 1 SOLUTIONS

M3P14 EXAMPLE SHEET 1 SOLUTIONS M3P14 EXAMPLE SHEET 1 SOLUTIONS 1. Show tht for, b, d itegers, we hve (d, db) = d(, b). Sice (, b) divides both d b, d(, b) divides both d d db, d hece divides (d, db). O the other hd, there exist m d

More information

Some New Iterative Methods Based on Composite Trapezoidal Rule for Solving Nonlinear Equations

Some New Iterative Methods Based on Composite Trapezoidal Rule for Solving Nonlinear Equations Itertiol Jourl of Mthemtics d Sttistics Ivetio (IJMSI) E-ISSN: 31 767 P-ISSN: 31-759 Volume Issue 8 August. 01 PP-01-06 Some New Itertive Methods Bsed o Composite Trpezoidl Rule for Solvig Nolier Equtios

More information

{ } { S n } is monotonically decreasing if Sn

{ } { S n } is monotonically decreasing if Sn Sequece A sequece is fuctio whose domi of defiitio is the set of turl umers. Or it c lso e defied s ordered set. Nottio: A ifiite sequece is deoted s { } S or { S : N } or { S, S, S,...} or simply s {

More information

A New Estimator Using Auxiliary Information in Stratified Adaptive Cluster Sampling

A New Estimator Using Auxiliary Information in Stratified Adaptive Cluster Sampling Ope Jourl of ttitic, 03, 3, 78-8 ttp://d.doi.org/0.436/oj.03.3403 Publied Olie eptember 03 (ttp://www.cirp.org/jourl/oj) New Etimtor Uig uilir Iformtio i trtified dptive Cluter mplig Nippor Cutim *, Moc

More information

Math 2414 Activity 17 (Due with Final Exam) Determine convergence or divergence of the following alternating series: a 3 5 2n 1 2n 1

Math 2414 Activity 17 (Due with Final Exam) Determine convergence or divergence of the following alternating series: a 3 5 2n 1 2n 1 Mth 44 Activity 7 (Due with Fil Exm) Determie covergece or divergece of the followig ltertig series: l 4 5 6 4 7 8 4 {Hit: Loo t 4 } {Hit: } 5 {Hit: AST or just chec out the prtil sums} {Hit: AST or just

More information

Solution of the exam in TMA4212 Monday 23rd May 2013 Time: 9:00 13:00

Solution of the exam in TMA4212 Monday 23rd May 2013 Time: 9:00 13:00 Norwegi Uiversity of Sciece d Techology Deprtmet of Mthemticl Scieces Cotct durig the exm: Ele Celledoi, tlf. 735 93541 Pge 1 of 7 of the exm i TMA4212 Mody 23rd My 2013 Time: 9:00 13:00 Allowed ids: Approved

More information

Heat Equation: Maximum Principles

Heat Equation: Maximum Principles Heat Equatio: Maximum Priciple Nov. 9, 0 I thi lecture we will dicu the maximum priciple ad uiquee of olutio for the heat equatio.. Maximum priciple. The heat equatio alo ejoy maximum priciple a the Laplace

More information

MAS221 Analysis, Semester 2 Exercises

MAS221 Analysis, Semester 2 Exercises MAS22 Alysis, Semester 2 Exercises Srh Whitehouse (Exercises lbelled * my be more demdig.) Chpter Problems: Revisio Questio () Stte the defiitio of covergece of sequece of rel umbers, ( ), to limit. (b)

More information

PRIMARY DECOMPOSITION, ASSOCIATED PRIME IDEALS AND GABRIEL TOPOLOGY

PRIMARY DECOMPOSITION, ASSOCIATED PRIME IDEALS AND GABRIEL TOPOLOGY Orietal J. ath., Volue 1, Nuber, 009, Page 101-108 009 Orietal Acadeic Publiher PRIARY DECOPOSITION, ASSOCIATED PRIE IDEALS AND GABRIEL TOPOLOGY. EL HAJOUI, A. IRI ad A. ZOGLAT Uiverité ohaed V aculté

More information

Math 140B - Notes. Neil Donaldson. September 2, 2009

Math 140B - Notes. Neil Donaldson. September 2, 2009 Mth 40B - Notes Neil Doldso September 2, 2009 Itroductio This clss cotiues from 40A. The mi purpose of the clss is to mke bsic clculus rigorous.. Nottio We will observe the followig ottio throughout this

More information

Probability and Stochastic Processes: A Friendly Introduction for Electrical and Computer Engineers Roy D. Yates and David J.

Probability and Stochastic Processes: A Friendly Introduction for Electrical and Computer Engineers Roy D. Yates and David J. Probbility d Stochstic Processes: A Friedly Itroductio for Electricl d Computer Egieers Roy D. Ytes d Dvid J. Goodm Problem Solutios : Ytes d Goodm,4..4 4..4 4..7 4.4. 4.4. 4..6 4.6.8 4.6.9 4.7.4 4.7.

More information

AN INEQUALITY OF GRÜSS TYPE FOR RIEMANN-STIELTJES INTEGRAL AND APPLICATIONS FOR SPECIAL MEANS

AN INEQUALITY OF GRÜSS TYPE FOR RIEMANN-STIELTJES INTEGRAL AND APPLICATIONS FOR SPECIAL MEANS RGMIA Reserch Report Collectio, Vol., No., 998 http://sci.vut.edu.u/ rgmi/reports.html AN INEQUALITY OF GRÜSS TYPE FOR RIEMANN-STIELTJES INTEGRAL AND APPLICATIONS FOR SPECIAL MEANS S.S. DRAGOMIR AND I.

More information

3.7 The Lebesgue integral

3.7 The Lebesgue integral 3 Mesure d Itegrtio The f is simple fuctio d positive wheever f is positive (the ltter follows from the fct tht i this cse f 1 [B,k ] = for ll k, ). Moreover, f (x) f (x). Ideed, if x, the there exists

More information

Taylor Polynomials. The Tangent Line. (a, f (a)) and has the same slope as the curve y = f (x) at that point. It is the best

Taylor Polynomials. The Tangent Line. (a, f (a)) and has the same slope as the curve y = f (x) at that point. It is the best Tylor Polyomils Let f () = e d let p() = 1 + + 1 + 1 6 3 Without usig clcultor, evlute f (1) d p(1) Ok, I m still witig With little effort it is possible to evlute p(1) = 1 + 1 + 1 (144) + 6 1 (178) =

More information

Probability for mathematicians INDEPENDENCE TAU

Probability for mathematicians INDEPENDENCE TAU Probbility for mthemticis INDEPENDENCE TAU 2013 21 Cotets 2 Cetrl limit theorem 21 2 Itroductio............................ 21 2b Covolutio............................ 22 2c The iitil distributio does

More information

Notes 17 Sturm-Liouville Theory

Notes 17 Sturm-Liouville Theory ECE 638 Fll 017 Dvid R. Jckso Notes 17 Sturm-Liouville Theory Notes re from D. R. Wilto, Dept. of ECE 1 Secod-Order Lier Differetil Equtios (SOLDE) A SOLDE hs the form d y dy 0 1 p ( x) + p ( x) + p (

More information

Variational Iteration Method for Solving Volterra and Fredholm Integral Equations of the Second Kind

Variational Iteration Method for Solving Volterra and Fredholm Integral Equations of the Second Kind Ge. Mth. Notes, Vol. 2, No. 1, Jury 211, pp. 143-148 ISSN 2219-7184; Copyright ICSRS Publictio, 211 www.i-csrs.org Avilble free olie t http://www.gem.i Vritiol Itertio Method for Solvig Volterr d Fredholm

More information

THE NATIONAL UNIVERSITY OF IRELAND, CORK COLÁISTE NA hollscoile, CORCAIGH UNIVERSITY COLLEGE, CORK SUMMER EXAMINATION 2005 FIRST ENGINEERING

THE NATIONAL UNIVERSITY OF IRELAND, CORK COLÁISTE NA hollscoile, CORCAIGH UNIVERSITY COLLEGE, CORK SUMMER EXAMINATION 2005 FIRST ENGINEERING OLLSCOIL NA héireann, CORCAIGH THE NATIONAL UNIVERSITY OF IRELAND, CORK COLÁISTE NA hollscoile, CORCAIGH UNIVERSITY COLLEGE, CORK SUMMER EXAMINATION 2005 FIRST ENGINEERING MATHEMATICS MA008 Clculus d Lier

More information

Research & Reviews: Journal of Statistics and Mathematical Sciences

Research & Reviews: Journal of Statistics and Mathematical Sciences Reerch & Review: Jourl of Sttitic d Mthemticl Sciece Error Etimtio of Homotopy Perturbtio Method for lier Itegrl d Itegro-Differetil Equtio of the Third id Ehuvtov Z.K.,3 *, Zulri F.S., Ni Log N.M.A.,3

More information

SOLUTION OF DIFFERENTIAL EQUATION FOR THE EULER-BERNOULLI BEAM

SOLUTION OF DIFFERENTIAL EQUATION FOR THE EULER-BERNOULLI BEAM Jourl of Applied Mthemtics d Computtiol Mechics () 57-6 SOUION O DIERENIA EQUAION OR HE EUER-ERNOUI EAM Izbel Zmorsk Istitute of Mthemtics Czestochow Uiversit of echolog Częstochow Pold izbel.zmorsk@im.pcz.pl

More information

Section IV.6: The Master Method and Applications

Section IV.6: The Master Method and Applications Sectio IV.6: The Mster Method d Applictios Defiitio IV.6.1: A fuctio f is symptoticlly positive if d oly if there exists rel umer such tht f(x) > for ll x >. A cosequece of this defiitio is tht fuctio

More information

We will look for series solutions to (1) around (at most) regular singular points, which without

We will look for series solutions to (1) around (at most) regular singular points, which without ENM 511 J. L. Baai April, 1 Frobeiu Solutio to a d order ODE ear a regular igular poit Coider the ODE y 16 + P16 y 16 + Q1616 y (1) We will look for erie olutio to (1) aroud (at mot) regular igular poit,

More information

HOMEWORK 1 1. P 229. # Then ; then we have. goes to 1 uniformly as n goes to infinity. Therefore. e x2 /n dx = = sin x.

HOMEWORK 1 1. P 229. # Then ; then we have. goes to 1 uniformly as n goes to infinity. Therefore. e x2 /n dx = = sin x. HOMEWORK 1 SHUANGLIN SHAO 1. P 229. # 7.1.2. Proof. (). Let f (x) x99 + 5. The x 66 + x3 f x 33 s goes to ifiity. We estimte the differece, f (x) x 33 5 x 66 + 3 5 x 66 5, for ll x [1, 3], which goes to

More information

is an ordered list of numbers. Each number in a sequence is a term of a sequence. n-1 term

is an ordered list of numbers. Each number in a sequence is a term of a sequence. n-1 term Mthemticl Ptters. Arithmetic Sequeces. Arithmetic Series. To idetify mthemticl ptters foud sequece. To use formul to fid the th term of sequece. To defie, idetify, d pply rithmetic sequeces. To defie rithmetic

More information

Definite Integral. The Left and Right Sums

Definite Integral. The Left and Right Sums Clculus Li Vs Defiite Itegrl. The Left d Right Sums The defiite itegrl rises from the questio of fidig the re betwee give curve d x-xis o itervl. The re uder curve c be esily clculted if the curve is give

More information

Second Mean Value Theorem for Integrals By Ng Tze Beng. The Second Mean Value Theorem for Integrals (SMVT) Statement of the Theorem

Second Mean Value Theorem for Integrals By Ng Tze Beng. The Second Mean Value Theorem for Integrals (SMVT) Statement of the Theorem Secod Me Vlue Theorem for Itegrls By Ng Tze Beg This rticle is out the Secod Me Vlue Theorem for Itegrls. This theorem, first proved y Hoso i its most geerlity d with extesio y ixo, is very useful d lmost

More information

OBSERVATIONS ON THE NON- HOMOGENEOUS SEXTIC EQUATION WITH FOUR UNKNOWNS

OBSERVATIONS ON THE NON- HOMOGENEOUS SEXTIC EQUATION WITH FOUR UNKNOWNS ISSN: 1-87 Itertiol Jourl of Iovtive Reerch i Sciece, Egieerig d Techology Vol., Iue, My 01 OSERVTIONS ON THE NON- HOMOGENEOUS SEXTIC EQUTION WITH FOUR UNKNOWNS y ( k z S.Vidhylkhmi 1,M..Gopl,.Kvith Profeor,

More information

The Elementary Arithmetic Operators of Continued Fraction

The Elementary Arithmetic Operators of Continued Fraction Americ-Eursi Jourl of Scietific Reserch 0 (5: 5-63, 05 ISSN 88-6785 IDOSI Pulictios, 05 DOI: 0.589/idosi.ejsr.05.0.5.697 The Elemetry Arithmetic Opertors of Cotiued Frctio S. Mugssi d F. Mistiri Deprtmet

More information

UNIVERSITY OF BRISTOL. Examination for the Degrees of B.Sc. and M.Sci. (Level C/4) ANALYSIS 1B, SOLUTIONS MATH (Paper Code MATH-10006)

UNIVERSITY OF BRISTOL. Examination for the Degrees of B.Sc. and M.Sci. (Level C/4) ANALYSIS 1B, SOLUTIONS MATH (Paper Code MATH-10006) UNIVERSITY OF BRISTOL Exmitio for the Degrees of B.Sc. d M.Sci. (Level C/4) ANALYSIS B, SOLUTIONS MATH 6 (Pper Code MATH-6) My/Jue 25, hours 3 miutes This pper cotis two sectios, A d B. Plese use seprte

More information

A Tail Bound For Sums Of Independent Random Variables And Application To The Pareto Distribution

A Tail Bound For Sums Of Independent Random Variables And Application To The Pareto Distribution Applied Mathematic E-Note, 9009, 300-306 c ISSN 1607-510 Available free at mirror ite of http://wwwmaththuedutw/ ame/ A Tail Boud For Sum Of Idepedet Radom Variable Ad Applicatio To The Pareto Ditributio

More information

f(t)dt 2δ f(x) f(t)dt 0 and b f(t)dt = 0 gives F (b) = 0. Since F is increasing, this means that

f(t)dt 2δ f(x) f(t)dt 0 and b f(t)dt = 0 gives F (b) = 0. Since F is increasing, this means that Uiversity of Illiois t Ur-Chmpig Fll 6 Mth 444 Group E3 Itegrtio : correctio of the exercises.. ( Assume tht f : [, ] R is cotiuous fuctio such tht f(x for ll x (,, d f(tdt =. Show tht f(x = for ll x [,

More information

A general theory of minimal increments for Hirsch-type indices and applications to the mathematical characterization of Kosmulski-indices

A general theory of minimal increments for Hirsch-type indices and applications to the mathematical characterization of Kosmulski-indices Mlysi Jourl of Librry & Iformtio Sciece, Vol. 9, o. 3, 04: 4-49 A geerl theory of miiml icremets for Hirsch-type idices d pplictios to the mthemticl chrcteriztio of Kosmulski-idices L. Egghe Uiversiteit

More information

Positive solutions of singular (k,n-k) conjugate boundary value problem

Positive solutions of singular (k,n-k) conjugate boundary value problem Joural of Applied Mathematic & Bioiformatic vol5 o 25-2 ISSN: 792-662 prit 792-699 olie Sciepre Ltd 25 Poitive olutio of igular - cojugate boudar value problem Ligbi Kog ad Tao Lu 2 Abtract Poitive olutio

More information