Opial inequality in q-calculus

Size: px
Start display at page:

Download "Opial inequality in q-calculus"

Transcription

1 Mirkovićetl.Jourl of Iequlitie d Applictio 8) 8:347 R E S E A R C H Ope Acce Opil iequlity i q-clculu Ttj Z. Mirković *, Slobod B. Tričković d Miomir S. Stković 3 * Correpodece: tmirkovic75@gmil.com College of Applied Profeiol Studie, Vrje, Serbi Full lit of uthor iformtio i vilble t the ed of the rticle Abtrct I thirticle wegive q-log of the Opil iequlity for q-decreig fuctio. Uig cloed form of the retricted q-itegrl ee Guchm i Comput. Mth. Appl. 47:8 3, 4), we etblih ew itegrl iequlity of the q-opil type. MSC: 8P68; 6D Keyword: q-derivtive; q-itegrl; Opil iequlity Itroductio I 96, Opil ] etblihed the followig importt itegrl iequlity. Theorem. Let f C, h], where f ) = f h)=d f t)>for t, h). The h f x)f x) dx h 4 h The cott h i the bet poible. 4 f x) ) dx. ) Itegrl iequlitie of the form ) hve iteret i itelf, d lo hve importt pplictio i the theory of ordiry differetil equtio d boudry vlue problem ee,, 4]). I the yer therefter, umerou geerliztio, exteio d vritio of the Opil iequlity hve ppered ee, 4]). The oe cotiig frctiol derivtive i ivetigted well ee 3, 5]). I the cotiuou ce, the Opil iequity, i it modified form, tte tht if f x) i bolutely cotiuou fuctio with f ) =,df L, b) where d b re fiite, the f x)f x) dx b ) f x) ) dx, with equlity ttied oly if f x)=cx ). I recet pper 4], Yg proved the followig geerliztio of the Opil iequlity. Theorem. If f x) i bolutely cotiuou o, b] with f ) =, d if p, q, the f x) p f x) q dx q b )p p + q f x) p+q dx. The Author) 8. Thi rticle i ditributed uder the term of the Cretive Commo Attributio 4. Itertiol Licee which permit uretricted ue, ditributio, d reproductio i y medium, provided you give pproprite credit to the origil uthor) d the ource, provide lik to the Cretive Commo licee, d idicte if chge were mde.

2 Mirkovićetl.Jourl of Iequlitie d Applictio 8) 8:347 Pge of 8 Prelimirie Here we preet ecery defiitio d fct from the q-clculu. We followthe termiology d ottio ued i the book 8, 9,, 3]. I wht follow, q i rel umber tifyig < q <,dq-turl umber i defied by ] q = q q = q + + q +,..., N. Defiitio. Let f befuctiodefiedoitervl, b) R,othtqx, b)for ll x, b). For <q <, wedefietheq-derivtive D q f )x)= f x) fqx), x ; D q f ) = lim D q f x). ) x qx x I the pper 7],Jcko defied q-itegrl, which i the q-clculuber hi me. Defiitio. The q-itegrl o, ] i f x) d q x = q) j= q j f q j). O thi bi, i the me pper, Jcko defied itegrl o, b]: f x) d q x = f x) d q x f x) d q x. 3) For poitive iteger d =, uig the left-hd ide itegrl of 3), i the pper 6], Guchmitroducedthe q-retricted itegrl f x) d q x = f x) d q x = b q) q j f q j b ). 4) j= Defiitio.3 The rel fuctio f defied o, b] i clled q-icreig q-decreig) o, b]iff qx) f x)fqx) f x)) for x, qx, b]. It i ey to ee tht if the fuctio f i icreig decreig), the it i q-icreig q-decreig) too. 3 Reult d dicuio Our mi reult re cotied i three theorem. Theorem 3. Let f C, ] be q-decreig fuctio with f bq )=.The, for y p, D q f x) f x) p d q x b ) p D q f x) p+ d q x. 5)

3 Mirkovićetl.Jourl of Iequlitie d Applictio 8) 8:347 Pge 3 of 8 Proof Uig Defiitio. d 4), we hve Dq f x) b f x) p dq x = f x) fqx) x qx f x) p dq x = b q) q j f bq j ) fbq j+ bq j bq j+ f bq j) p j= = f bq j) f bq j+) f bq j) p j= f bq ) p f bq j ) f bq j+). j= I view of f )= j= f bqj+ ) f bq j ) d Hölder iequlity, we obti f bq j+) f bq j) p f bq j) f bq j+) j= = j= f bq j ) f bq j+) j= ) p f bq j ) f bq j+) j= f bq j) f ) p+ bq j+) p f bq j) f bq j+) p+. j= j= By elemetry clcultio, we eily trform the right-hd ide of the lt iequlity ito p b p q) p q j ) p f bq j ) fbq j+ ) p+. bq j bq j+ p j= However, becue of < q <,wehve q j ) p f bq j ) fbq j+ ) p+ bq j bq j+ p j= j= f bq j ) f bq j+ ) p+ bq j bq j+ p, meig tht p b p q) p q j ) p f bq j ) fbq j+ ) p+ p b p q) p bq j bq j+ p j= q b Dq f x) p+ d q x. Sice ] q = q q,wehve p q) p q ) p, d we rrive t the iequlity Dq f x) f x) p dq x b p q ) p q b Dq f x) p+ d q x.

4 Mirkovićetl.Jourl of Iequlitie d Applictio 8) 8:347 Pge 4 of 8 After iterchgig the boudrie i the right-hd ide itegrl, d replcig with,wefid b p q ) p Dq f x) p+ dq x =b ) p Dq f x) p+ d q x, which prove the theorem. Remrk 3. I prticulr, by tkig p =,theiequlity9) i Theorem reduce to the followig Opil iequlity i q-clculu: D q f x) f x) d q x b ) D q f x) d q x. The followigtheoremrecoceredwith q-mootoic fuctio. Theorem 3.3 If f x) d gx) re bolutely cotiuou q-decreig fuctio o, b) d f bq )=d gbq )=,the f x)dq gx)+gqx)d q f x) ] d q x b Proof Replcig )ithe itegrl Dq f x) ) + Dq gx) ) ] dq x. 6) f x)dq gx)+gqx)d q f x) ] d q x, we obti f x) gx) gqx) ] f x) fqx) + gqx) d q x, x qx x qx whece, uig the Guchm q-retricted itegrl, we hve b q) q j f bq j) gbq j ) gbq j+ ) + q j g ) bq j+) f bq j ) fbq j+ ) bq j bq j+ bq j bq j+ j= = f bq j ) g bq j) g bq j+)) + g bq j+) f bq j) f bq j+))]. j= Deotig f bq j )=f bq j+ ) f bq j )d gbq j )=gbq j+ ) gbq j ), we c rewrite the lt um i the form of j= f bqj ) gbq j )+gbq j+ ) f bq j )], d we fid j= f x)dq gx)+gqx)d q f x) ] d q x = f ) g ). Uig the elemetry iequlity b + b ), d coiderig tht f ) = f bq j), g ) = g bq j), j= j=

5 Mirkovićetl.Jourl of Iequlitie d Applictio 8) 8:347 Pge 5 of 8 by virtue of the Schwrz iequlity, we fid f ) g ) = f bq j)) + j= j= g ] bq j)) j= f bq j)) + g ] bq j)) j= f bq j )) + g bq j )) ], j= whece,becue f d g re q-decreig fuctio, we obti the iequlity f x)dq gx)+gqx)d q f x) ] d q x f bq j )) + g bq j )) ] j= = b q) Dq f x) ) + Dq gx) ) ] dq x. However, ice ] q = q q, there follow q) q,owehve f x)dq gx)+gqx)d q f x) ] d q x b q ) Dq f x) +D q gx) ] d q x = b Dq f x) ) + Dq gx) ) ] dq x. Thereby 6)iproved. Theorem 3.4 If f x) d gx) re bolutely cotiuou q-decreig fuctio o, b) d tify f bq )=f )=,gbq )=g )=,the we hve the iequlity f x) gx) t dq x b )+t Dq f x) ) +t dq x + t Dq gx) ) ) +t dq x. 7) Proof For k N, we hve the followig idetitie: f bq k) k = f bq i), f bq k) = f bq i), 8) i= i=k g bq k) = g bq i), g bq k) = g bq i). 9) i= From 8)d9)we oberve tht f bq k ) i= i=k f bq i, g bq k ) g bq i ). ) i=

6 Mirkovićetl.Jourl of Iequlitie d Applictio 8) 8:347 Pge 6 of 8 From ) d uig the elemetry iequlity z +t + tw +t )z w t, where z, w d, t >rerelumber,wefid f bq k ) g bq k ) t )+t f bq i ) +t ) + t i= g bq i ) ) +t ]. ) Uig Hölder iequlity o the right ide of ) with idice, i= +t +t,wehve f bq k ) g bq k ) t )+t +t f bq i ) +t + t g bq i ) ). +t ) Summig the iequlity )from to,we obti i= f bq k ) g bq k ) t )+t f bq k ) +t + t g bq k ) ). +t 3) k= k= k= i= After multiplyig the left-hd ide of 3)byb q)q k, we trform it ito the form of b q)q k f bqk ) gbq k ) t, b q q k k= d fter multiplyig the right-hd ide of 3) byb q)q k ) +t, we trform it ito the form of ) +t b q) q k ) +t f bq k ) fbq k+ ) +t b +t q) +t q k ) +t )+t k= + t q k ) ) +t gbq k ) gbq k+ ) +t. b +t q) +t q k ) +t k= Thu we obti ew form of the iequlity 3). Multiplyig both ide by b q), we hve b q)q k f bq k ) g bq k ) t k= )+t ) +t b q) k= k= ) gbq k ) gbq k+ ) +t + t. b +t q) +t q k ) +t f bq k ) f bq k+ ) +t b +t q) +t q k ) +t

7 Mirkovićetl.Jourl of Iequlitie d Applictio 8) 8:347 Pge 7 of 8 Subtitutig the left-hd ide for the correpodig q-retricteditegrl,dtherighthd ide for the correpodig q-derivtive d q-retricted itegrl, we obti )+t ) b +t b q) Dq f x) ) +t dq x f x) gx) t d q x + t Dq gx) ) ) +t dq x. After iterchgig the boudrie i the right-hd ide itegrl d multiplyig both ide of the lt iequlity by b q), we obti )+t f x) gx) t d q x + t q Sice q) +t +t q ) +t,wefid b )+t b q) ) +t q Dq gx) ) ) +t dq x. b Dq f x) ) +t dq x f x) gx) t dq x b+t q ) +t Dq f x) ) +t dq x + t Dq gx) ) ) +t dq x, d we filly rrive t the iequlity f x) gx) t dq x b )+t Dq f x) ) +t dq x + t Dq gx) ) ] +t dq x, wherebywecompletetheproof. Remrk 3.5 We ote tht, i the pecil ce whe = t = r d f x) =gx) =hx), the iequlity etblihed i 7) reduce to the followig q-wirtiger iequlity: ) hx) r b r dq x Dq hx) ) r dq x. 4 Cocluio I thi pper we hve etblihed ew geerl Opil type itegrl iequlity i q-clculu. Further, we ivetigted the Opil iequlitie i q-clculu ivolvig two fuctio d their firt order derivtive. We lo dicued everl prticulr ce. The method we ued to etblih our reult i quite elemetry d bed o ome imple obervtio d pplictio of ome fudmetl iequlitie. Ackowledgemet The uthor re thkful to the editor d oymou referee for their helpful commet d uggetio. Fudig Thi reerch w doe without y upport.

8 Mirkovićetl.Jourl of Iequlitie d Applictio 8) 8:347 Pge 8 of 8 Competig iteret The uthor declre tht they hve o competig iteret. Author cotributio The uthor cotributed eqully to thi work. All uthor hve red d pproved the mucript. Author detil College of Applied Profeiol Studie, Vrje, Serbi. Deprtmet of Mthemtic, Fculty of Civil Egieerig, Uiverity of Niš, Niš, Serbi. 3 Mthemticl Ititute, Serbi Acdemy of Sciece d Art, Beogrd, Serbi. Publiher Note Spriger Nture remi eutrl with regrd to juridictiol clim i publihed mp d ititutiol ffilitio. Received: 8 Februry 8 Accepted: December 8 Referece. Agrwl, R., Lkhmikthm, V.: Uiquee d Nouiquee Criteri for Ordiry Differetil Equtio. World Sci, Sigpore 993). Agrwl, R., Pg, P.: Opil Iequlitie with Applictio i Differetil d Differece Equtio. Kluwer Acd. Publ., Dordrecht 995) 3. Atiou, G.: Blced Cvti type frctiol Opil iequlitie. J. Appl. Fuct. Al. 9/),3 38 4) 4. Biov, D., Simeoov, P.: Itegrl Iequlitie d Applictio. Kluwer Acd. Publ., Dordrecht 99) 5. Cputo, M., Fbrizio, M.: A ew defiitio of frctiol derivtive without igulr kerel. Prog. Frct. Differ. Appl., ) 6. Guchm, H.: Itegrl iequlitie i q-clculu. Comput. Mth. Appl. 47, 8 3 4) 7. Jcko, M.: O q-defiite itegrl. Qurt. J. Pure d Appl. Mth. 4, ) 8. Kc, V., Cheug, P.: Qutum Clculu. Spriger, New York ) 9. Mriković, S., Rjković, P., Stković, M.: The iequlitie for ome type of q-itegrl. Comput. Mth. Appl. 56, ). Opil, Z.: Sur ue ieglite. A. Pol. Mth. 8, ). Rjković, P., Mriković, S., Stković, M.: Diferecijlo-itegrli rču bzičih hipergeometrijkih fukcij. Mšiki fkultet Niš 8). Shum, D.: O cl of ew iequlitie. Tr. Am. Mth. Soc. 4, ) 3. Triboo, J., Ntouy, S.: Qutum itegrl iequlitie o fiite itervl. J. Iequl. Appl. 4, 4) 4. Yg, G.: O certi reult of Z. Opil. Proc. Jp. Acd. 4, )

Asymptotic Properties of Solutions of Two Dimensional Neutral Difference Systems

Asymptotic Properties of Solutions of Two Dimensional Neutral Difference Systems Avilble t http://pvmuedu/m Appl Appl Mth ISSN: 192-9466 Vol 8, Iue 2 (December 21), pp 585 595 Applictio d Applied Mthemtic: A Itertiol Jourl (AAM) Aymptotic Propertie of Solutio of Two Dimeiol Neutrl

More information

Convergence rates of approximate sums of Riemann integrals

Convergence rates of approximate sums of Riemann integrals Jourl of Approximtio Theory 6 (9 477 49 www.elsevier.com/locte/jt Covergece rtes of pproximte sums of Riem itegrls Hiroyuki Tski Grdute School of Pure d Applied Sciece, Uiversity of Tsukub, Tsukub Ibrki

More information

Observations on the Non-homogeneous Quintic Equation with Four Unknowns

Observations on the Non-homogeneous Quintic Equation with Four Unknowns Itertiol Jourl of Mthemtic Reerch. ISSN 976-84 Volume, Number 1 (13), pp. 17-133 Itertiol Reerch Publictio Houe http://www.irphoue.com Obervtio o the No-homogeeou Quitic Equtio with Four Ukow S. Vidhylkhmi

More information

Double Sums of Binomial Coefficients

Double Sums of Binomial Coefficients Itertiol Mthemticl Forum, 3, 008, o. 3, 50-5 Double Sums of Biomil Coefficiets Athoy Sofo School of Computer Sciece d Mthemtics Victori Uiversity, PO Box 448 Melboure, VIC 800, Austrli thoy.sofo@vu.edu.u

More information

Convergence rates of approximate sums of Riemann integrals

Convergence rates of approximate sums of Riemann integrals Covergece rtes of pproximte sums of Riem itegrls Hiroyuki Tski Grdute School of Pure d Applied Sciece, Uiversity of Tsuku Tsuku Irki 5-857 Jp tski@mth.tsuku.c.jp Keywords : covergece rte; Riem sum; Riem

More information

Week 13 Notes: 1) Riemann Sum. Aim: Compute Area Under a Graph. Suppose we want to find out the area of a graph, like the one on the right:

Week 13 Notes: 1) Riemann Sum. Aim: Compute Area Under a Graph. Suppose we want to find out the area of a graph, like the one on the right: Week 1 Notes: 1) Riem Sum Aim: Compute Are Uder Grph Suppose we wt to fid out the re of grph, like the oe o the right: We wt to kow the re of the red re. Here re some wys to pproximte the re: We cut the

More information

Certain sufficient conditions on N, p n, q n k summability of orthogonal series

Certain sufficient conditions on N, p n, q n k summability of orthogonal series Avilble olie t www.tjs.com J. Nolier Sci. Appl. 7 014, 7 77 Reserch Article Certi sufficiet coditios o N, p, k summbility of orthogol series Xhevt Z. Krsiqi Deprtmet of Mthemtics d Iformtics, Fculty of

More information

POWER SERIES R. E. SHOWALTER

POWER SERIES R. E. SHOWALTER POWER SERIES R. E. SHOWALTER. sequeces We deote by lim = tht the limit of the sequece { } is the umber. By this we me tht for y ε > 0 there is iteger N such tht < ε for ll itegers N. This mkes precise

More information

Chapter 5. The Riemann Integral. 5.1 The Riemann integral Partitions and lower and upper integrals. Note: 1.5 lectures

Chapter 5. The Riemann Integral. 5.1 The Riemann integral Partitions and lower and upper integrals. Note: 1.5 lectures Chpter 5 The Riem Itegrl 5.1 The Riem itegrl Note: 1.5 lectures We ow get to the fudmetl cocept of itegrtio. There is ofte cofusio mog studets of clculus betwee itegrl d tiderivtive. The itegrl is (iformlly)

More information

ELEC 372 LECTURE NOTES, WEEK 6 Dr. Amir G. Aghdam Concordia University

ELEC 372 LECTURE NOTES, WEEK 6 Dr. Amir G. Aghdam Concordia University ELEC 37 LECTURE NOTES, WEE 6 Dr mir G ghdm Cocordi Uiverity Prt of thee ote re dpted from the mteril i the followig referece: Moder Cotrol Sytem by Richrd C Dorf d Robert H Bihop, Pretice Hll Feedbck Cotrol

More information

We will begin by supplying the proof to (a).

We will begin by supplying the proof to (a). (The solutios of problem re mostly from Jeffrey Mudrock s HWs) Problem 1. There re three sttemet from Exmple 5.4 i the textbook for which we will supply proofs. The sttemets re the followig: () The spce

More information

FOURIER SERIES PART I: DEFINITIONS AND EXAMPLES. To a 2π-periodic function f(x) we will associate a trigonometric series. a n cos(nx) + b n sin(nx),

FOURIER SERIES PART I: DEFINITIONS AND EXAMPLES. To a 2π-periodic function f(x) we will associate a trigonometric series. a n cos(nx) + b n sin(nx), FOURIER SERIES PART I: DEFINITIONS AND EXAMPLES To -periodic fuctio f() we will ssocite trigoometric series + cos() + b si(), or i terms of the epoetil e i, series of the form c e i. Z For most of the

More information

AN INEQUALITY OF GRÜSS TYPE FOR RIEMANN-STIELTJES INTEGRAL AND APPLICATIONS FOR SPECIAL MEANS

AN INEQUALITY OF GRÜSS TYPE FOR RIEMANN-STIELTJES INTEGRAL AND APPLICATIONS FOR SPECIAL MEANS RGMIA Reserch Report Collectio, Vol., No., 998 http://sci.vut.edu.u/ rgmi/reports.html AN INEQUALITY OF GRÜSS TYPE FOR RIEMANN-STIELTJES INTEGRAL AND APPLICATIONS FOR SPECIAL MEANS S.S. DRAGOMIR AND I.

More information

SOME SHARP OSTROWSKI-GRÜSS TYPE INEQUALITIES

SOME SHARP OSTROWSKI-GRÜSS TYPE INEQUALITIES Uiv. Beogrd. Publ. Elektroteh. Fk. Ser. Mt. 8 006 4. Avilble electroiclly t http: //pefmth.etf.bg.c.yu SOME SHARP OSTROWSKI-GRÜSS TYPE INEQUALITIES Zheg Liu Usig vrit of Grüss iequlity to give ew proof

More information

Test Info. Test may change slightly.

Test Info. Test may change slightly. 9. 9.6 Test Ifo Test my chge slightly. Short swer (0 questios 6 poits ech) o Must choose your ow test o Tests my oly be used oce o Tests/types you re resposible for: Geometric (kow sum) Telescopig (kow

More information

Chapter 7 Infinite Series

Chapter 7 Infinite Series MA Ifiite Series Asst.Prof.Dr.Supree Liswdi Chpter 7 Ifiite Series Sectio 7. Sequece A sequece c be thought of s list of umbers writte i defiite order:,,...,,... 2 The umber is clled the first term, 2

More information

General properties of definite integrals

General properties of definite integrals Roerto s Notes o Itegrl Clculus Chpter 4: Defiite itegrls d the FTC Sectio Geerl properties of defiite itegrls Wht you eed to kow lredy: Wht defiite Riem itegrl is. Wht you c ler here: Some key properties

More information

Taylor Polynomials. The Tangent Line. (a, f (a)) and has the same slope as the curve y = f (x) at that point. It is the best

Taylor Polynomials. The Tangent Line. (a, f (a)) and has the same slope as the curve y = f (x) at that point. It is the best Tylor Polyomils Let f () = e d let p() = 1 + + 1 + 1 6 3 Without usig clcultor, evlute f (1) d p(1) Ok, I m still witig With little effort it is possible to evlute p(1) = 1 + 1 + 1 (144) + 6 1 (178) =

More information

THE NATIONAL UNIVERSITY OF IRELAND, CORK COLÁISTE NA hollscoile, CORCAIGH UNIVERSITY COLLEGE, CORK SUMMER EXAMINATION 2005 FIRST ENGINEERING

THE NATIONAL UNIVERSITY OF IRELAND, CORK COLÁISTE NA hollscoile, CORCAIGH UNIVERSITY COLLEGE, CORK SUMMER EXAMINATION 2005 FIRST ENGINEERING OLLSCOIL NA héireann, CORCAIGH THE NATIONAL UNIVERSITY OF IRELAND, CORK COLÁISTE NA hollscoile, CORCAIGH UNIVERSITY COLLEGE, CORK SUMMER EXAMINATION 2005 FIRST ENGINEERING MATHEMATICS MA008 Clculus d Lier

More information

Crushed Notes on MATH132: Calculus

Crushed Notes on MATH132: Calculus Mth 13, Fll 011 Siyg Yg s Outlie Crushed Notes o MATH13: Clculus The otes elow re crushed d my ot e ect This is oly my ow cocise overview of the clss mterils The otes I put elow should ot e used to justify

More information

UNIVERSITY OF BRISTOL. Examination for the Degrees of B.Sc. and M.Sci. (Level C/4) ANALYSIS 1B, SOLUTIONS MATH (Paper Code MATH-10006)

UNIVERSITY OF BRISTOL. Examination for the Degrees of B.Sc. and M.Sci. (Level C/4) ANALYSIS 1B, SOLUTIONS MATH (Paper Code MATH-10006) UNIVERSITY OF BRISTOL Exmitio for the Degrees of B.Sc. d M.Sci. (Level C/4) ANALYSIS B, SOLUTIONS MATH 6 (Pper Code MATH-6) My/Jue 25, hours 3 miutes This pper cotis two sectios, A d B. Plese use seprte

More information

Sequence and Series of Functions

Sequence and Series of Functions 6 Sequece d Series of Fuctios 6. Sequece of Fuctios 6.. Poitwise Covergece d Uiform Covergece Let J be itervl i R. Defiitio 6. For ech N, suppose fuctio f : J R is give. The we sy tht sequece (f ) of fuctios

More information

1.3 Continuous Functions and Riemann Sums

1.3 Continuous Functions and Riemann Sums mth riem sums, prt 0 Cotiuous Fuctios d Riem Sums I Exmple we sw tht lim Lower() = lim Upper() for the fuctio!! f (x) = + x o [0, ] This is o ccidet It is exmple of the followig theorem THEOREM Let f be

More information

1. (25 points) Use the limit definition of the definite integral and the sum formulas to compute. [1 x + x2

1. (25 points) Use the limit definition of the definite integral and the sum formulas to compute. [1 x + x2 Mth 3, Clculus II Fil Exm Solutios. (5 poits) Use the limit defiitio of the defiite itegrl d the sum formuls to compute 3 x + x. Check your swer by usig the Fudmetl Theorem of Clculus. Solutio: The limit

More information

On the Asymptotic Behavior of Second Order Quasilinear Difference Equations

On the Asymptotic Behavior of Second Order Quasilinear Difference Equations Applied Mthemtic, 6, 7, 6-63 Publihed Olie Augut 6 i SciRe. http://www.cirp.org/jourl/m http://dx.doi.org/.436/m.6.7439 O the Aymptotic Behvior of Secod Order Quilier Differece Equtio Vdivel Sdhivm, Po

More information

A New Estimator Using Auxiliary Information in Stratified Adaptive Cluster Sampling

A New Estimator Using Auxiliary Information in Stratified Adaptive Cluster Sampling Ope Jourl of ttitic, 03, 3, 78-8 ttp://d.doi.org/0.436/oj.03.3403 Publied Olie eptember 03 (ttp://www.cirp.org/jourl/oj) New Etimtor Uig uilir Iformtio i trtified dptive Cluter mplig Nippor Cutim *, Moc

More information

International Journal of Mathematical Archive-5(1), 2014, Available online through ISSN

International Journal of Mathematical Archive-5(1), 2014, Available online through   ISSN Itertiol Jourl of Mthemticl Archive-5( 4 93-99 Avilble olie through www.ijm.ifo ISSN 9 546 GENERALIZED FOURIER TRANSFORM FOR THE GENERATION OF COMPLE FRACTIONAL MOMENTS M. Gji F. Ghrri* Deprtmet of Sttistics

More information

MTH 146 Class 16 Notes

MTH 146 Class 16 Notes MTH 46 Clss 6 Notes 0.4- Cotiued Motivtio: We ow cosider the rc legth of polr curve. Suppose we wish to fid the legth of polr curve curve i terms of prmetric equtios s: r f where b. We c view the cos si

More information

Numerical Solutions of Fredholm Integral Equations Using Bernstein Polynomials

Numerical Solutions of Fredholm Integral Equations Using Bernstein Polynomials Numericl Solutios of Fredholm Itegrl Equtios Usig erstei Polyomils A. Shiri, M. S. Islm Istitute of Nturl Scieces, Uited Itertiol Uiversity, Dhk-, gldesh Deprtmet of Mthemtics, Uiversity of Dhk, Dhk-,

More information

Review of the Riemann Integral

Review of the Riemann Integral Chpter 1 Review of the Riem Itegrl This chpter provides quick review of the bsic properties of the Riem itegrl. 1.0 Itegrls d Riem Sums Defiitio 1.0.1. Let [, b] be fiite, closed itervl. A prtitio P of

More information

INFINITE SERIES. ,... having infinite number of terms is called infinite sequence and its indicated sum, i.e., a 1

INFINITE SERIES. ,... having infinite number of terms is called infinite sequence and its indicated sum, i.e., a 1 Appedix A.. Itroductio As discussed i the Chpter 9 o Sequeces d Series, sequece,,...,,... hvig ifiite umber of terms is clled ifiite sequece d its idicted sum, i.e., + + +... + +... is clled ifite series

More information

Power Series Solutions to Generalized Abel Integral Equations

Power Series Solutions to Generalized Abel Integral Equations Itertiol Jourl of Mthemtics d Computtiol Sciece Vol., No. 5, 5, pp. 5-54 http://www.isciece.org/jourl/ijmcs Power Series Solutios to Geerlized Abel Itegrl Equtios Rufi Abdulli * Deprtmet of Physics d Mthemtics,

More information

B. Examples 1. Finite Sums finite sums are an example of Riemann Sums in which each subinterval has the same length and the same x i

B. Examples 1. Finite Sums finite sums are an example of Riemann Sums in which each subinterval has the same length and the same x i Mth 06 Clculus Sec. 5.: The Defiite Itegrl I. Riem Sums A. Def : Give y=f(x):. Let f e defied o closed itervl[,].. Prtitio [,] ito suitervls[x (i-),x i ] of legth Δx i = x i -x (i-). Let P deote the prtitio

More information

1 Tangent Line Problem

1 Tangent Line Problem October 9, 018 MAT18 Week Justi Ko 1 Tget Lie Problem Questio: Give the grph of fuctio f, wht is the slope of the curve t the poit, f? Our strteg is to pproimte the slope b limit of sect lies betwee poits,

More information

Integral Operator Defined by k th Hadamard Product

Integral Operator Defined by k th Hadamard Product ITB Sci Vol 4 A No 35-5 35 Itegrl Opertor Deied by th Hdmrd Product Msli Drus & Rbh W Ibrhim School o Mthemticl Scieces Fculty o sciece d Techology Uiversiti Kebgs Mlysi Bgi 436 Selgor Drul Ehs Mlysi Emil:

More information

Limit of a function:

Limit of a function: - Limit of fuctio: We sy tht f ( ) eists d is equl with (rel) umer L if f( ) gets s close s we wt to L if is close eough to (This defiitio c e geerlized for L y syig tht f( ) ecomes s lrge (or s lrge egtive

More information

A general theory of minimal increments for Hirsch-type indices and applications to the mathematical characterization of Kosmulski-indices

A general theory of minimal increments for Hirsch-type indices and applications to the mathematical characterization of Kosmulski-indices Mlysi Jourl of Librry & Iformtio Sciece, Vol. 9, o. 3, 04: 4-49 A geerl theory of miiml icremets for Hirsch-type idices d pplictios to the mthemticl chrcteriztio of Kosmulski-idices L. Egghe Uiversiteit

More information

Section 6.3: Geometric Sequences

Section 6.3: Geometric Sequences 40 Chpter 6 Sectio 6.: Geometric Sequeces My jobs offer ul cost-of-livig icrese to keep slries cosistet with ifltio. Suppose, for exmple, recet college grdute fids positio s sles mger erig ul slry of $6,000.

More information

Available at Appl. Appl. Math. ISSN: Vol. 4, Issue 1 (June 2009) pp (Previously, Vol. 4, No.

Available at   Appl. Appl. Math. ISSN: Vol. 4, Issue 1 (June 2009) pp (Previously, Vol. 4, No. Aville t http://pvmu.edu/m Appl. Appl. Mth. ISSN: 1932-9466 Vol. 4, Iue 1 (Jue 29) pp. 26 39 (Previouly, Vol. 4, No. 1) Applictio d Applied Mthemtic: A Itertiol Jourl (AAM) O Geerlized Hurwitz-Lerch Zet

More information

Calculus II Homework: The Integral Test and Estimation of Sums Page 1

Calculus II Homework: The Integral Test and Estimation of Sums Page 1 Clculus II Homework: The Itegrl Test d Estimtio of Sums Pge Questios Emple (The p series) Get upper d lower bouds o the sum for the p series i= /ip with p = 2 if the th prtil sum is used to estimte the

More information

10.5 Test Info. Test may change slightly.

10.5 Test Info. Test may change slightly. 0.5 Test Ifo Test my chge slightly. Short swer (0 questios 6 poits ech) o Must choose your ow test o Tests my oly be used oce o Tests/types you re resposible for: Geometric (kow sum) Telescopig (kow sum)

More information

The Definite Riemann Integral

The Definite Riemann Integral These otes closely follow the presettio of the mteril give i Jmes Stewrt s textook Clculus, Cocepts d Cotexts (d editio). These otes re iteded primrily for i-clss presettio d should ot e regrded s sustitute

More information

Linford 1. Kyle Linford. Math 211. Honors Project. Theorems to Analyze: Theorem 2.4 The Limit of a Function Involving a Radical (A4)

Linford 1. Kyle Linford. Math 211. Honors Project. Theorems to Analyze: Theorem 2.4 The Limit of a Function Involving a Radical (A4) Liford 1 Kyle Liford Mth 211 Hoors Project Theorems to Alyze: Theorem 2.4 The Limit of Fuctio Ivolvig Rdicl (A4) Theorem 2.8 The Squeeze Theorem (A5) Theorem 2.9 The Limit of Si(x)/x = 1 (p. 85) Theorem

More information

Review of Sections

Review of Sections Review of Sectios.-.6 Mrch 24, 204 Abstrct This is the set of otes tht reviews the mi ides from Chpter coverig sequeces d series. The specific sectios tht we covered re s follows:.: Sequces..2: Series,

More information

( a n ) converges or diverges.

( a n ) converges or diverges. Chpter Ifiite Series Pge of Sectio E Rtio Test Chpter : Ifiite Series By the ed of this sectio you will be ble to uderstd the proof of the rtio test test series for covergece by pplyig the rtio test pprecite

More information

On A Subclass of Harmonic Univalent Functions Defined By Generalized Derivative Operator

On A Subclass of Harmonic Univalent Functions Defined By Generalized Derivative Operator Itertiol Jourl of Moder Egieerig Reserch (IJMER) Vol., Issue.3, My-Jue 0-56-569 ISSN: 49-6645 N. D. Sgle Dertmet of Mthemtics, Asheb Dge College of Egieerig, Asht, Sgli, (M.S) Idi 4630. Y. P. Ydv Dertmet

More information

The Definite Integral

The Definite Integral The Defiite Itegrl A Riem sum R S (f) is pproximtio to the re uder fuctio f. The true re uder the fuctio is obtied by tkig the it of better d better pproximtios to the re uder f. Here is the forml defiitio,

More information

Infinite Series Sequences: terms nth term Listing Terms of a Sequence 2 n recursively defined n+1 Pattern Recognition for Sequences Ex:

Infinite Series Sequences: terms nth term Listing Terms of a Sequence 2 n recursively defined n+1 Pattern Recognition for Sequences Ex: Ifiite Series Sequeces: A sequece i defied s fuctio whose domi is the set of positive itegers. Usully it s esier to deote sequece i subscript form rther th fuctio ottio.,, 3, re the terms of the sequece

More information

UNIT #5 SEQUENCES AND SERIES COMMON CORE ALGEBRA II

UNIT #5 SEQUENCES AND SERIES COMMON CORE ALGEBRA II Awer Key Nme: Dte: UNIT # SEQUENCES AND SERIES COMMON CORE ALGEBRA II Prt I Quetio. For equece defied by f? () () 08 6 6 f d f f, which of the followig i the vlue of f f f f f f 0 6 6 08 (). I the viul

More information

Remarks: (a) The Dirac delta is the function zero on the domain R {0}.

Remarks: (a) The Dirac delta is the function zero on the domain R {0}. Sectio Objective(s): The Dirc s Delt. Mi Properties. Applictios. The Impulse Respose Fuctio. 4.4.. The Dirc Delt. 4.4. Geerlized Sources Defiitio 4.4.. The Dirc delt geerlized fuctio is the limit δ(t)

More information

EVALUATING DEFINITE INTEGRALS

EVALUATING DEFINITE INTEGRALS Chpter 4 EVALUATING DEFINITE INTEGRALS If the defiite itegrl represets re betwee curve d the x-xis, d if you c fid the re by recogizig the shpe of the regio, the you c evlute the defiite itegrl. Those

More information

Approximate Integration

Approximate Integration Study Sheet (7.7) Approimte Itegrtio I this sectio, we will ler: How to fid pproimte vlues of defiite itegrls. There re two situtios i which it is impossile to fid the ect vlue of defiite itegrl. Situtio:

More information

BRAIN TEASURES INDEFINITE INTEGRATION+DEFINITE INTEGRATION EXERCISE I

BRAIN TEASURES INDEFINITE INTEGRATION+DEFINITE INTEGRATION EXERCISE I EXERCISE I t Q. d Q. 6 6 cos si Q. Q.6 d d Q. d Q. Itegrte cos t d by the substitutio z = + e d e Q.7 cos. l cos si d d Q. cos si si si si b cos Q.9 d Q. si b cos Q. si( ) si( ) d ( ) Q. d cot d d Q. (si

More information

Basic Limit Theorems

Basic Limit Theorems Bsic Limit Theorems The very "cle" proof of L9 usig L8 ws provided to me by Joh Gci d it ws this result which ispired me to write up these otes. Absolute Vlue Properties: For rel umbers x, d y x x if x

More information

G x, x E x E x E x E x. a a a a. is some matrix element. For a general single photon state. ), applying the operators.

G x, x E x E x E x E x. a a a a. is some matrix element. For a general single photon state. ), applying the operators. Topic i Qutu Optic d Qutu Ifortio TA: Yuli Mxieko Uiverity of Illioi t Urb-hpig lt updted Februry 6 Proble Set # Quetio With G x, x E x E x E x E x G pqr p q r where G pqr i oe trix eleet For geerl igle

More information

Chapter #2 EEE Subsea Control and Communication Systems

Chapter #2 EEE Subsea Control and Communication Systems EEE 87 Chpter # EEE 87 Sube Cotrol d Commuictio Sytem Trfer fuctio Pole loctio d -ple Time domi chrcteritic Extr pole d zero Chpter /8 EEE 87 Trfer fuctio Lplce Trform Ued oly o LTI ytem Differetil expreio

More information

{ } { S n } is monotonically decreasing if Sn

{ } { S n } is monotonically decreasing if Sn Sequece A sequece is fuctio whose domi of defiitio is the set of turl umers. Or it c lso e defied s ordered set. Nottio: A ifiite sequece is deoted s { } S or { S : N } or { S, S, S,...} or simply s {

More information

( ) dx ; f ( x ) is height and Δx is

( ) dx ; f ( x ) is height and Δx is Mth : 6.3 Defiite Itegrls from Riem Sums We just sw tht the exct re ouded y cotiuous fuctio f d the x xis o the itervl x, ws give s A = lim A exct RAM, where is the umer of rectgles i the Rectgulr Approximtio

More information

Important Facts You Need To Know/Review:

Important Facts You Need To Know/Review: Importt Fcts You Need To Kow/Review: Clculus: If fuctio is cotiuous o itervl I, the its grph is coected o I If f is cotiuous, d lim g Emple: lim eists, the lim lim f g f g d lim cos cos lim 3 si lim, t

More information

FACULTY OF MATHEMATICAL STUDIES MATHEMATICS FOR PART I ENGINEERING. Lectures

FACULTY OF MATHEMATICAL STUDIES MATHEMATICS FOR PART I ENGINEERING. Lectures FACULTY OF MATHEMATICAL STUDIES MATHEMATICS FOR PART I ENGINEERING Lectures MODULE 0 FURTHER CALCULUS II. Sequeces d series. Rolle s theorem d me vlue theorems 3. Tlor s d Mcluri s theorems 4. L Hopitl

More information

Chapter 7. , and is unknown and n 30 then X ~ t n

Chapter 7. , and is unknown and n 30 then X ~ t n Chpter 7 Sectio 7. t-ditributio ( 3) Summry: C.L.T. : If the rdom mple of ize 3 come from ukow popultio with me d S.D. where i kow or ukow, the X ~ N,. Note: The hypothei tetig d cofidece itervl re built

More information

Chapter #3 EEE Subsea Control and Communication Systems

Chapter #3 EEE Subsea Control and Communication Systems EEE 87 Chter #3 EEE 87 Sube Cotrol d Commuictio Sytem Cloed loo ytem Stedy tte error PID cotrol Other cotroller Chter 3 /3 EEE 87 Itroductio The geerl form for CL ytem: C R ', where ' c ' H or Oe Loo (OL)

More information

0 otherwise. sin( nx)sin( kx) 0 otherwise. cos( nx) sin( kx) dx 0 for all integers n, k.

0 otherwise. sin( nx)sin( kx) 0 otherwise. cos( nx) sin( kx) dx 0 for all integers n, k. . Computtio of Fourier Series I this sectio, we compute the Fourier coefficiets, f ( x) cos( x) b si( x) d b, i the Fourier series To do this, we eed the followig result o the orthogolity of the trigoometric

More information

Applied Mathematical Sciences, Vol. 9, 2015, no. 3, HIKARI Ltd,

Applied Mathematical Sciences, Vol. 9, 2015, no. 3, HIKARI Ltd, Applied Mathematical Sciece Vol 9 5 o 3 7 - HIKARI Ltd wwwm-hiaricom http://dxdoiorg/988/am54884 O Poitive Defiite Solutio of the Noliear Matrix Equatio * A A I Saa'a A Zarea* Mathematical Sciece Departmet

More information

On Certain Sums Extended over Prime Factors

On Certain Sums Extended over Prime Factors Iteratioal Mathematical Forum, Vol. 9, 014, o. 17, 797-801 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/10.1988/imf.014.4478 O Certai Sum Exteded over Prime Factor Rafael Jakimczuk Diviió Matemática,

More information

Reversing the Arithmetic mean Geometric mean inequality

Reversing the Arithmetic mean Geometric mean inequality Reversig the Arithmetic me Geometric me iequlity Tie Lm Nguye Abstrct I this pper we discuss some iequlities which re obtied by ddig o-egtive expressio to oe of the sides of the AM-GM iequlity I this wy

More information

y udv uv y v du 7.1 INTEGRATION BY PARTS

y udv uv y v du 7.1 INTEGRATION BY PARTS 7. INTEGRATION BY PARTS Ever differetitio rule hs correspodig itegrtio rule. For istce, the Substitutio Rule for itegrtio correspods to the Chi Rule for differetitio. The rule tht correspods to the Product

More information

SUTCLIFFE S NOTES: CALCULUS 2 SWOKOWSKI S CHAPTER 11

SUTCLIFFE S NOTES: CALCULUS 2 SWOKOWSKI S CHAPTER 11 UTCLIFFE NOTE: CALCULU WOKOWKI CHAPTER Ifiite eries Coverget or Diverget eries Cosider the sequece If we form the ifiite sum 0, 00, 000, 0 00 000, we hve wht is clled ifiite series We wt to fid the sum

More information

Surds, Indices, and Logarithms Radical

Surds, Indices, and Logarithms Radical MAT 6 Surds, Idices, d Logrithms Rdicl Defiitio of the Rdicl For ll rel, y > 0, d ll itegers > 0, y if d oly if y where is the ide is the rdicl is the rdicd. Surds A umber which c be epressed s frctio

More information

1.1 The FTC and Riemann Sums. An Application of Definite Integrals: Net Distance Travelled

1.1 The FTC and Riemann Sums. An Application of Definite Integrals: Net Distance Travelled mth 3 more o the fudmetl theorem of clculus The FTC d Riem Sums A Applictio of Defiite Itegrls: Net Distce Trvelled I the ext few sectios (d the ext few chpters) we will see severl importt pplictios of

More information

Variational Iteration Method for Solving Volterra and Fredholm Integral Equations of the Second Kind

Variational Iteration Method for Solving Volterra and Fredholm Integral Equations of the Second Kind Ge. Mth. Notes, Vol. 2, No. 1, Jury 211, pp. 143-148 ISSN 2219-7184; Copyright ICSRS Publictio, 211 www.i-csrs.org Avilble free olie t http://www.gem.i Vritiol Itertio Method for Solvig Volterr d Fredholm

More information

n 2 + 3n + 1 4n = n2 + 3n + 1 n n 2 = n + 1

n 2 + 3n + 1 4n = n2 + 3n + 1 n n 2 = n + 1 Ifiite Series Some Tests for Divergece d Covergece Divergece Test: If lim u or if the limit does ot exist, the series diverget. + 3 + 4 + 3 EXAMPLE: Show tht the series diverges. = u = + 3 + 4 + 3 + 3

More information

Intermediate Applications of Vectors and Matrices Ed Stanek

Intermediate Applications of Vectors and Matrices Ed Stanek Iteredite Applictio of Vector d Mtrice Ed Stek Itroductio We decribe iteredite opertio d pplictio of vector d trice for ue i ttitic The itroductio i iteded for thoe who re filir with bic trix lgebr Followig

More information

Riemann Integration. Chapter 1

Riemann Integration. Chapter 1 Mesure, Itegrtio & Rel Alysis. Prelimiry editio. 8 July 2018. 2018 Sheldo Axler 1 Chpter 1 Riem Itegrtio This chpter reviews Riem itegrtio. Riem itegrtio uses rectgles to pproximte res uder grphs. This

More information

The Basic Properties of the Integral

The Basic Properties of the Integral The Bsic Properties of the Itegrl Whe we compute the derivtive of complicted fuctio, like x + six, we usully use differetitio rules, like d [f(x)+g(x)] d f(x)+ d g(x), to reduce the computtio dx dx dx

More information

 n. A Very Interesting Example + + = d. + x3. + 5x4. math 131 power series, part ii 7. One of the first power series we examined was. 2!

 n. A Very Interesting Example + + = d. + x3. + 5x4. math 131 power series, part ii 7. One of the first power series we examined was. 2! mth power series, prt ii 7 A Very Iterestig Emple Oe of the first power series we emied ws! + +! + + +!! + I Emple 58 we used the rtio test to show tht the itervl of covergece ws (, ) Sice the series coverges

More information

ALGEBRA. Set of Equations. have no solution 1 b1. Dependent system has infinitely many solutions

ALGEBRA. Set of Equations. have no solution 1 b1. Dependent system has infinitely many solutions Qudrtic Equtios ALGEBRA Remider theorem: If f() is divided b( ), the remider is f(). Fctor theorem: If ( ) is fctor of f(), the f() = 0. Ivolutio d Evlutio ( + b) = + b + b ( b) = + b b ( + b) 3 = 3 +

More information

Section IV.6: The Master Method and Applications

Section IV.6: The Master Method and Applications Sectio IV.6: The Mster Method d Applictios Defiitio IV.6.1: A fuctio f is symptoticlly positive if d oly if there exists rel umer such tht f(x) > for ll x >. A cosequece of this defiitio is tht fuctio

More information

The Reimann Integral is a formal limit definition of a definite integral

The Reimann Integral is a formal limit definition of a definite integral MATH 136 The Reim Itegrl The Reim Itegrl is forml limit defiitio of defiite itegrl cotiuous fuctio f. The costructio is s follows: f ( x) dx for Reim Itegrl: Prtitio [, ] ito suitervls ech hvig the equl

More information

Chapter 2 Infinite Series Page 1 of 9

Chapter 2 Infinite Series Page 1 of 9 Chpter Ifiite eries Pge of 9 Chpter : Ifiite eries ectio A Itroductio to Ifiite eries By the ed of this sectio you will be ble to uderstd wht is met by covergece d divergece of ifiite series recogise geometric

More information

SOME IDENTITIES BETWEEN BASIC HYPERGEOMETRIC SERIES DERIVING FROM A NEW BAILEY-TYPE TRANSFORMATION

SOME IDENTITIES BETWEEN BASIC HYPERGEOMETRIC SERIES DERIVING FROM A NEW BAILEY-TYPE TRANSFORMATION SOME IDENTITIES BETWEEN BASIC HYPERGEOMETRIC SERIES DERIVING FROM A NEW BAILEY-TYPE TRANSFORMATION JAMES MC LAUGHLIN AND PETER ZIMMER Abstrct We prove ew Biley-type trsformtio reltig WP- Biley pirs We

More information

Chap8 - Freq 1. Frequency Response

Chap8 - Freq 1. Frequency Response Chp8 - Freq Frequecy Repoe Chp8 - Freq Aged Prelimirie Firt order ytem Frequecy repoe Low-p filter Secod order ytem Clicl olutio Frequecy repoe Higher order ytem Chp8 - Freq 3 Frequecy repoe Stedy-tte

More information

THE SOLUTION OF THE FRACTIONAL DIFFERENTIAL EQUATION WITH THE GENERALIZED TAYLOR COLLOCATIN METHOD

THE SOLUTION OF THE FRACTIONAL DIFFERENTIAL EQUATION WITH THE GENERALIZED TAYLOR COLLOCATIN METHOD IJRRAS August THE SOLUTIO OF THE FRACTIOAL DIFFERETIAL EQUATIO WITH THE GEERALIZED TAYLOR COLLOCATI METHOD Slih Ylçıbş Ali Kourlp D. Dömez Demir 3* H. Hilmi Soru 4 34 Cell Byr Uiversity Fculty of Art &

More information

Note 7 Root-Locus Techniques

Note 7 Root-Locus Techniques Lecture Note of Cotrol Syte I - ME 43/Alyi d Sythei of Lier Cotrol Syte - ME862 Note 7 Root-Locu Techique Deprtet of Mechicl Egieerig, Uiverity Of Sktchew, 57 Cpu Drive, Sktoo, S S7N 5A9, Cd Lecture Note

More information

Chapter #5 EEE Control Systems

Chapter #5 EEE Control Systems Sprig EEE Chpter #5 EEE Cotrol Sytem Deig Bed o Root Locu Chpter / Sprig EEE Deig Bed Root Locu Led Cotrol (equivlet to PD cotrol) Ued whe the tedy tte propertie of the ytem re ok but there i poor performce,

More information

is an ordered list of numbers. Each number in a sequence is a term of a sequence. n-1 term

is an ordered list of numbers. Each number in a sequence is a term of a sequence. n-1 term Mthemticl Ptters. Arithmetic Sequeces. Arithmetic Series. To idetify mthemticl ptters foud sequece. To use formul to fid the th term of sequece. To defie, idetify, d pply rithmetic sequeces. To defie rithmetic

More information

Numerical Solution of Fuzzy Fredholm Integral Equations of the Second Kind using Bernstein Polynomials

Numerical Solution of Fuzzy Fredholm Integral Equations of the Second Kind using Bernstein Polynomials Jourl of Al-Nhri Uiversity Vol.5 (), Mrch,, pp.-9 Sciece Numericl Solutio of Fuzzy Fredholm Itegrl Equtios of the Secod Kid usig Berstei Polyomils Srmd A. Altie Deprtmet of Computer Egieerig d Iformtio

More information

lecture 16: Introduction to Least Squares Approximation

lecture 16: Introduction to Least Squares Approximation 97 lecture 16: Itroductio to Lest Squres Approximtio.4 Lest squres pproximtio The miimx criterio is ituitive objective for pproximtig fuctio. However, i my cses it is more ppelig (for both computtio d

More information

Green s Function Approach to Solve a Nonlinear Second Order Four Point Directional Boundary Value Problem

Green s Function Approach to Solve a Nonlinear Second Order Four Point Directional Boundary Value Problem IOSR Jourl of Mthemtics (IOSR-JM) e-issn: 78-578, p-issn: 39-765X. Volume 3, Issue 3 Ver. IV (My - Jue 7), PP -8 www.iosrjourls.org Gree s Fuctio Approch to Solve Nolier Secod Order Four Poit Directiol

More information

COMPOSITE TRAPEZOID RULE FOR THE RIEMANN-STIELTJES INTEGRAL AND ITS RICHARDSON EXTRAPOLATION FORMULA

COMPOSITE TRAPEZOID RULE FOR THE RIEMANN-STIELTJES INTEGRAL AND ITS RICHARDSON EXTRAPOLATION FORMULA itli jourl of pure d pplied mthemtics. 5 015 (11 18) 11 COMPOSITE TRAPEZOID RULE FOR THE RIEMANN-STIELTJES INTEGRAL AND ITS RICHARDSON EXTRAPOLATION FORMULA Weijig Zho 1 College of Air Trffic Mgemet Civil

More information

Math 104: Final exam solutions

Math 104: Final exam solutions Mth 14: Fil exm solutios 1. Suppose tht (s ) is icresig sequece with coverget subsequece. Prove tht (s ) is coverget sequece. Aswer: Let the coverget subsequece be (s k ) tht coverges to limit s. The there

More information

Options: Calculus. O C.1 PG #2, 3b, 4, 5ace O C.2 PG.24 #1 O D PG.28 #2, 3, 4, 5, 7 O E PG #1, 3, 4, 5 O F PG.

Options: Calculus. O C.1 PG #2, 3b, 4, 5ace O C.2 PG.24 #1 O D PG.28 #2, 3, 4, 5, 7 O E PG #1, 3, 4, 5 O F PG. O C. PG.-3 #, 3b, 4, 5ce O C. PG.4 # Optios: Clculus O D PG.8 #, 3, 4, 5, 7 O E PG.3-33 #, 3, 4, 5 O F PG.36-37 #, 3 O G. PG.4 #c, 3c O G. PG.43 #, O H PG.49 #, 4, 5, 6, 7, 8, 9, 0 O I. PG.53-54 #5, 8

More information

On the Signed Domination Number of the Cartesian Product of Two Directed Cycles

On the Signed Domination Number of the Cartesian Product of Two Directed Cycles Ope Joural of Dicrete Mathematic, 205, 5, 54-64 Publihed Olie July 205 i SciRe http://wwwcirporg/oural/odm http://dxdoiorg/0426/odm2055005 O the Siged Domiatio Number of the Carteia Product of Two Directed

More information

Schrödinger Equation Via Laplace-Beltrami Operator

Schrödinger Equation Via Laplace-Beltrami Operator IOSR Jourl of Mthemtics (IOSR-JM) e-issn: 78-578, p-issn: 39-765X. Volume 3, Issue 6 Ver. III (Nov. - Dec. 7), PP 9-95 www.iosrjourls.org Schrödiger Equtio Vi Lplce-Beltrmi Opertor Esi İ Eskitşçioğlu,

More information

Research & Reviews: Journal of Statistics and Mathematical Sciences

Research & Reviews: Journal of Statistics and Mathematical Sciences Reerch & Review: Jourl of Sttitic d Mthemticl Sciece Error Etimtio of Homotopy Perturbtio Method for lier Itegrl d Itegro-Differetil Equtio of the Third id Ehuvtov Z.K.,3 *, Zulri F.S., Ni Log N.M.A.,3

More information

Approximations of Definite Integrals

Approximations of Definite Integrals Approximtios of Defiite Itegrls So fr we hve relied o tiderivtives to evlute res uder curves, work doe by vrible force, volumes of revolutio, etc. More precisely, wheever we hve hd to evlute defiite itegrl

More information

A GENERAL METHOD FOR SOLVING ORDINARY DIFFERENTIAL EQUATIONS: THE FROBENIUS (OR SERIES) METHOD

A GENERAL METHOD FOR SOLVING ORDINARY DIFFERENTIAL EQUATIONS: THE FROBENIUS (OR SERIES) METHOD Diol Bgoo () A GENERAL METHOD FOR SOLVING ORDINARY DIFFERENTIAL EQUATIONS: THE FROBENIUS (OR SERIES) METHOD I. Itroductio The first seprtio of vribles (see pplictios to Newto s equtios) is ver useful method

More information

A GENERALIZATION OF HERMITE-HADAMARD S INEQUALITY

A GENERALIZATION OF HERMITE-HADAMARD S INEQUALITY Krgujevc Jourl o Mthemtics Volume 4() (7), Pges 33 38. A GENERALIZATION OF HERMITE-HADAMARD S INEQUALITY MOHAMMAD W. ALOMARI Abstrct. I literture the Hermite-Hdmrd iequlity ws eligible or my resos, oe

More information

Area, Volume, Rotations, Newton s Method

Area, Volume, Rotations, Newton s Method Are, Volume, Rottio, Newto Method Are etwee curve d the i A ( ) d Are etwee curve d the y i A ( y) yd yc Are etwee curve A ( ) g( ) d where ( ) i the "top" d g( ) i the "ottom" yd Are etwee curve A ( y)

More information

Unit 1. Extending the Number System. 2 Jordan School District

Unit 1. Extending the Number System. 2 Jordan School District Uit Etedig the Number System Jord School District Uit Cluster (N.RN. & N.RN.): Etedig Properties of Epoets Cluster : Etedig properties of epoets.. Defie rtiol epoets d eted the properties of iteger epoets

More information