Stability and Stabilization of polynomial dynamical systems. Hadi Ravanbakhsh Sriram Sankaranarayanan University of Colorado, Boulder

Size: px
Start display at page:

Download "Stability and Stabilization of polynomial dynamical systems. Hadi Ravanbakhsh Sriram Sankaranarayanan University of Colorado, Boulder"

Transcription

1 Stability and Stabilization of polynomial dynamical systems Hadi Ravanbakhsh Sriram Sankaranarayanan University of Colorado, Boulder

2 Proving Asymptotic Stability: Lyapunov Functions Lyapunov Function: V (x) Positive Definite Function of the State: (8 x) (x 6= x ) ) V (x) > 0 V (x )=0 Negative Definite Derivative: (8 x) (x 6= x ) ) V 0 (x) < 0

3 Verifying Stability Find (Guess) a Lyapunov function: V(x) Check the conditions for the function: (8 x) (x 6= x ) ) V (x) > 0 V (x )=0 (8 x) (x 6= x ) ) V 0 (x) < 0

4 Finding a Lyapunov Function Guess a parametric form of the function: V (x 1,x 2 ): c 0 + c 1 x 1 + c 2 x 2 + c 3 x 1 x 2 + c 4 x c 5 x 2 2 Encode Lyapunov conditions: Derive constraints on the unknown coefficients. Solve constraints.

5 Encoding constraints for Lyapunov QE for reals: [Tarski; Collins; ] Nonlinear constraints over template parameters. Sum-of-Squares Relaxations: [Shor; Lasserre; Tibken; Parrillo; ] Polynomial positivity strengthened to sum of squares (SOS). Reduced to solving a semi-definite optimization problem. LP relaxations: Positive Semi-definiteness to diagonal dominance [Ali Ahmadi+Parrillo 2014] Use properties of Bernstein polynomials. [Ben Sassi + Girard 12, Ben Sassi+S+Chen+Abraham 2015]

6 Lyapunov Function Synthesis: State-of-the-art Linear Systems: Solve LMI constraints. Polynomial Systems: up to 10 variables, low degree. Beyond polynomials: limited progress. Systems involving switching (Hybrid Systems). Lyapunov conditions extended [Branicky et al. 96] Stability proofs that do not involve Lyapunov functions [Prabhakar et al. 13]

7 Synthesis for Stabilization

8 Problem Setup Plant Model x 0 = f(x, u),u2 U x u Controller u = g(x) Find a suitable g(x)

9 Problem Setup Plant Model x 0 = f(x, u),u2 U x u Controller u = g(x) Find g(x) s.t. closed loop x 0 = f(x, g(x)) is asymp. stable

10 Option #1 : Static Feedback Plant Model x 0 = f(x, u),u2 U x u Controller u = g(x) g(x) : P i ix i [Tan & Packard, El Ghaoui & Balakrishnan, Ben Sassi & S]

11 Option #2 : Switched Stabilization Plant Model x 0 = f(x, u),u2 U Choose Appropriate Control Control Mode #1 u = g 1 (x) Control Mode #2 u = g 2 (x) No single mode stabilizes Goal: Synthesize this logic. Control Mode #k u = g k (x)

12 CONTROL LYAPUNOV FUNCTIONS

13 Control Lyapunov Function Lyapunov function: V(x) [Artstein; Sontag; ] V(x) is positive definite. A control input chosen s.t. derivative is negative definite. (8 x 6= x )(9u 2 U) V 0 (x) =r x V (x) f(x, u) < 0

14 Control Lyapunov Function: Interpretation V(x) Lyapunov Function. x Control u 2 Control u 1

15 Switched Stabilization Problem Plant Model x 0 = f(x, u),u2 U Choose Appropriate Control Control Mode #1 u = g 1 (x) Control Mode #2 u = g 2 (x) No single mode stabilizes Goal: Synthesize this logic. Control Mode #k u = g k (x)

16 Choosing Control Modes Idea #1: Sample control values. u 1 Space of Control Inputs: U u 2 u m u m 1 Idea #2: Combine feedback laws that may stabilize for a subset of the states.

17 CLF V(x) Control Lyapunov Function 1. Positive Definite. 2. For all x x * x 0 = f(x, u),u2 U u = g 1 (x) u = g 2 (x) u = g k (x) Exists mode g i Choosing mode g i causes V to decrease. V 0 i :(r xv )f(x, g i (x)) is negative?

18 From CLF to controller x 0 = f(x, u),u2 U? u = g 1 (x) u = g 2 (x) From g 1,, g n choose a mode that causes V(x) to decrease u = g k (x)

19 Issue #1 : Zenoness x 0 = f(x, u),u2 U? u = g 1 (x) u = g 2 (x) From g 1,, g n choose a mode that causes V(x) to decrease u = g k (x) Potentially Switch Infinitely Often in a finite time interval

20 Minimum Dwell Time Switching x 0 = f(x, u),u2 U? u = g 1 (x) u = g 2 (x) u = g k (x) T min T min T min g 5 g 4 g 7 g 10

21 Contribution #1 Define restrictions on CLF V s.t. V(x) allows a switching strategy with a minimal dwell time. Provide a lower bound for the minimal dwell time. V (x) x 2 2 V 0 (x) apple ˆ x 2 2 Extra conditions on V 00 [Ravanbaksh+S 15]

22 CLF-based Synthesis If we can find a CLF V(x) with additional restrictions, From g 1,, g n choose a mode that causes? V(x) to decrease x 0 = f(x, u),u2 U u = g 1 (x) u = g 2 (x) u = g k (x) Minimum dwell time guaranteed.

23 Discovering CLFs Counter-Example Guided Inductive Synthesis.

24 CLF Conditions for the Switched Case x 0 = f(x, u),u2 U? u = g 1 (x) u = g 2 (x) u = g k (x) (8 x 6= x )V (x) x 2 2 (8 x 6= x )(9i 2 {1,...,k})(rV )f(x, g i (x)) apple x 2 2 V can be made to decrease by some choice of g i

25 Synthesizing CLFs Fix a template (ansatz) for the CLF with unknown coefficients. V (x 1,x 2 ): c 0 + c 1 x 1 + c 2 x 2 + c 3 x 1 x 2 + c 4 x c 5 x 2 2 Enforce CLF constraints on the unknown form. (9 ~c) (8 ~x) (9i 2 [1,k]) SOS relaxations cannot be used. More Complex Constraints.

26 Counterexample Guided Inductive Synthesis. Program Sketching [Solar-Lezama + Others] int search(int [] a,int n, int s){ //@pre: if (n <=??){ return 0; } for i = 0 to?? if (a[i] ==??){ return 1; } } //@post: end return??; Find appropriate program expressions.

27 CEGIS Approach Constraints to be solved: (9 c) (8 y)'(c, y) Template Parameters Program Behaviors Iterative Procedure: Finite set Y i : {y 1,, y k } Instatiate the Quantifier 8

28 Basic CEGIS Loop 1. Check SATisfiability of the formula: (9 c) (8 y)'(c, y) (c, y 1 ) ^ (c, y 2 ) ^ ^ (c, y k ) SAT, c k SAT, y k+1 2. Check UNSATisfiability of (c k,y) UNSAT, Failure UNSAT, Success

29 Applying CEGIS to synthesis CLFs (9c) (8 x 6= x ) apple V (x) x 2 2 W k i=1 (rv )f(x, g i(x)) apple x When x is instantiated: Linear Arithmetic over c. 2. When c is instantiated, non-linear arithmetic over x.

30 Integrating SMT solvers CEGIS-based CLF synthesis procedure. instantiate x SMT-solver Z3 Value for c New value for x Instantiate c Nonlinear solver dreal.

31 CEGIS: novelties CEGIS procedure is out-of-the-shelf. But Prove eventual termination of the CEGIS procedure for our problem. Provide heuristics to speedup termination by choosing the right instantiations.

32 Controller Synthesis Support synthesis of MATLAB function (time triggered). Plant Model (Predictive) Control Mode Control Logic Reside Time

33 RESULTS

34 Inverted Pendulum: Bang-Bang Control Synthesis =!,! = g l sin( ) h ml 2! + 1 ml cos( )u, g =9.8, h = 2, l = 2 and m =0.5 Control Mode #1: u = +30 Control Mode #2: u = - 30 V ([!] T ) = ! ! 2

35 Inverted Pendulum! time time! V time (a) Inverted Pendulum time

36 2-5 System Variables 2-6 control modes Overall Results Problem Results ID n q itr z3 T dreal T Tot. Time Status >1hr >1hr >1hr 6 17 out of 20 benchmarks up to 3 variables

37 IMPROVING NONLINEAR SOLVING

38 Use Relaxations Use LMI/SDP relaxations. Replace dreal with a mixed cone optimization problem. Polynomial time but numerical procedures. Tricky to formulate. Solve all but one benchmark. Results need post-verification due to possible numerical errors.

39 FUTURE WORK

40 More Work Safety + Stability Synthesis. Reach While Avoid Properties. Handling state spaces with obstacles. Handle more general temporal objectives Future: Stochastic system stabilization. Control super-martingales.

41 Thank You Supported in part by US NSF CAREER Award #

Counter-Example Guided Synthesis of Control Lyapunov Functions for Switched Systems.

Counter-Example Guided Synthesis of Control Lyapunov Functions for Switched Systems. Counter-Example Guided Synthesis of Control Lyapunov Functions for Switched Systems Hadi Ravanbakhsh and Sriram Sankaranarayanan Dept of Computer Science, University of Colorado, Boulder firstnamelastname@coloradoedu

More information

Nonlinear Control as Program Synthesis (A Starter)

Nonlinear Control as Program Synthesis (A Starter) Nonlinear Control as Program Synthesis (A Starter) Sicun Gao MIT December 15, 2014 Preliminaries Definition (L RF ) L RF is the first-order language over the reals that allows arbitrary numerically computable

More information

Learning Control Lyapunov Functions from Counterexamples and Demonstrations

Learning Control Lyapunov Functions from Counterexamples and Demonstrations Noname manuscript No. (will be inserted by the editor) Learning Control Lyapunov Functions from Counterexamples and Demonstrations Hadi Ravanbakhsh Sriram Sankaranarayanan Received: date / Accepted: date

More information

Algorithmic Verification of Stability of Hybrid Systems

Algorithmic Verification of Stability of Hybrid Systems Algorithmic Verification of Stability of Hybrid Systems Pavithra Prabhakar Kansas State University University of Kansas February 24, 2017 1 Cyber-Physical Systems (CPS) Systems in which software "cyber"

More information

Formally Analyzing Adaptive Flight Control

Formally Analyzing Adaptive Flight Control Formally Analyzing Adaptive Flight Control Ashish Tiwari SRI International 333 Ravenswood Ave Menlo Park, CA 94025 Supported in part by NASA IRAC NRA grant number: NNX08AB95A Ashish Tiwari Symbolic Verification

More information

Bounded Model Checking with SAT/SMT. Edmund M. Clarke School of Computer Science Carnegie Mellon University 1/39

Bounded Model Checking with SAT/SMT. Edmund M. Clarke School of Computer Science Carnegie Mellon University 1/39 Bounded Model Checking with SAT/SMT Edmund M. Clarke School of Computer Science Carnegie Mellon University 1/39 Recap: Symbolic Model Checking with BDDs Method used by most industrial strength model checkers:

More information

Synthesizing from Components: Building from Blocks

Synthesizing from Components: Building from Blocks Synthesizing from Components: Building from Blocks Ashish Tiwari SRI International 333 Ravenswood Ave Menlo Park, CA 94025 Joint work with Sumit Gulwani (MSR), Vijay Anand Korthikanti (UIUC), Susmit Jha

More information

Verification and Synthesis. Using Real Quantifier Elimination. Ashish Tiwari, SRI Intl. Verif. and Synth. Using Real QE: 1

Verification and Synthesis. Using Real Quantifier Elimination. Ashish Tiwari, SRI Intl. Verif. and Synth. Using Real QE: 1 Verification and Synthesis Using Real Quantifier Elimination Thomas Sturm Max-Planck-Institute for Informatik Saarbrucken, Germany sturm@mpi-inf.mpg.de Ashish Tiwari SRI International Menlo Park, USA tiwari@csl.sri.com

More information

Verifying Safety Properties of Hybrid Systems.

Verifying Safety Properties of Hybrid Systems. Verifying Safety Properties of Hybrid Systems. Sriram Sankaranarayanan University of Colorado, Boulder, CO. October 22, 2010. Talk Outline 1. Formal Verification 2. Hybrid Systems 3. Invariant Synthesis

More information

Termination Analysis of Loops

Termination Analysis of Loops Termination Analysis of Loops Zohar Manna with Aaron R. Bradley Computer Science Department Stanford University 1 Example: GCD Algorithm gcd(y 1, y 2 ) = gcd(y 1 y 2, y 2 ) if y 1 > y 2 gcd(y 1, y 2 y

More information

Scalable and Accurate Verification of Data Flow Systems. Cesare Tinelli The University of Iowa

Scalable and Accurate Verification of Data Flow Systems. Cesare Tinelli The University of Iowa Scalable and Accurate Verification of Data Flow Systems Cesare Tinelli The University of Iowa Overview AFOSR Supported Research Collaborations NYU (project partner) Chalmers University (research collaborator)

More information

Linear Arithmetic Satisfiability via Strategy Improvement

Linear Arithmetic Satisfiability via Strategy Improvement Linear Arithmetic Satisfiability via Strategy Improvement Azadeh Farzan 1 Zachary Kincaid 1,2 1 University of Toronto 2 Princeton University July 13, 2016 The problem: satisfiability modulo the theory

More information

Constraint Solving for Program Verification: Theory and Practice by Example

Constraint Solving for Program Verification: Theory and Practice by Example Constraint Solving for Program Verification: Theory and Practice by Example Andrey Rybalchenko Technische Universität München Abstract. Program verification relies on the construction of auxiliary assertions

More information

Information Flow Analysis via Path Condition Refinement

Information Flow Analysis via Path Condition Refinement Information Flow Analysis via Path Condition Refinement Mana Taghdiri, Gregor Snelting, Carsten Sinz Karlsruhe Institute of Technology, Germany FAST September 16, 2010 KIT University of the State of Baden-Wuerttemberg

More information

Motion planning applications of Satisfiability Modulo Convex Optimization

Motion planning applications of Satisfiability Modulo Convex Optimization Motion planning applications of Satisfiability Modulo Convex Optimization Yasser Shoukry (1) and Paulo Tabuada (2) (1) Department of Electrical and Computer Engineering, UMD (2) Electrical and Computer

More information

Topics in Model-Based Reasoning

Topics in Model-Based Reasoning Towards Integration of Proving and Solving Dipartimento di Informatica Università degli Studi di Verona Verona, Italy March, 2014 Automated reasoning Artificial Intelligence Automated Reasoning Computational

More information

The Polyranking Principle

The Polyranking Principle The Polyranking Principle Aaron R. Bradley, Zohar Manna, and Henny B. Sipma Computer Science Department Stanford University Stanford, CA 94305-9045 {arbrad,zm,sipma}@theory.stanford.edu Abstract. Although

More information

Lyapunov Function Synthesis using Handelman Representations.

Lyapunov Function Synthesis using Handelman Representations. Lyapunov Function Synthesis using Handelman Representations. Sriram Sankaranarayanan Xin Chen Erika Ábrahám University of Colorado, Boulder, CO, USA ( e-mail: first.lastname@colorado.edu). RWTH Aachen

More information

Hybrid Systems Course Lyapunov stability

Hybrid Systems Course Lyapunov stability Hybrid Systems Course Lyapunov stability OUTLINE Focus: stability of an equilibrium point continuous systems decribed by ordinary differential equations (brief review) hybrid automata OUTLINE Focus: stability

More information

Hoare Logic I. Introduction to Deductive Program Verification. Simple Imperative Programming Language. Hoare Logic. Meaning of Hoare Triples

Hoare Logic I. Introduction to Deductive Program Verification. Simple Imperative Programming Language. Hoare Logic. Meaning of Hoare Triples Hoare Logic I Introduction to Deductive Program Verification Işıl Dillig Program Spec Deductive verifier FOL formula Theorem prover valid contingent Example specs: safety (no crashes), absence of arithmetic

More information

Quantifiers. Leonardo de Moura Microsoft Research

Quantifiers. Leonardo de Moura Microsoft Research Quantifiers Leonardo de Moura Microsoft Research Satisfiability a > b + 2, a = 2c + 10, c + b 1000 SAT a = 0, b = 3, c = 5 Model 0 > 3 + 2, 0 = 2 5 + 10, 5 + ( 3) 1000 Quantifiers x y x > 0 f x, y = 0

More information

Switched systems: stability

Switched systems: stability Switched systems: stability OUTLINE Switched Systems Stability of Switched Systems OUTLINE Switched Systems Stability of Switched Systems a family of systems SWITCHED SYSTEMS SWITCHED SYSTEMS a family

More information

Proving Unsatisfiability in Non-linear Arithmetic by Duality

Proving Unsatisfiability in Non-linear Arithmetic by Duality Proving Unsatisfiability in Non-linear Arithmetic by Duality [work in progress] Daniel Larraz, Albert Oliveras, Enric Rodríguez-Carbonell and Albert Rubio Universitat Politècnica de Catalunya, Barcelona,

More information

FMCAD 2013 Parameter Synthesis with IC3

FMCAD 2013 Parameter Synthesis with IC3 FMCAD 2013 Parameter Synthesis with IC3 A. Cimatti, A. Griggio, S. Mover, S. Tonetta FBK, Trento, Italy Motivations and Contributions Parametric descriptions of systems arise in many domains E.g. software,

More information

Automated Formal Synthesis of Digital Controllers for State-Space Physical Plants CAV 2017

Automated Formal Synthesis of Digital Controllers for State-Space Physical Plants CAV 2017 Automated Formal Synthesis of Digital Controllers for State-Space Physical Plants CAV 2017 Artifact * Alessandro Abate, Iury Bessa, Dario Cattaruzza, Lucas Cordeiro, Cristina David, Pascal Kesseli, Daniel

More information

IC3 and Beyond: Incremental, Inductive Verification

IC3 and Beyond: Incremental, Inductive Verification IC3 and Beyond: Incremental, Inductive Verification Aaron R. Bradley ECEE, CU Boulder & Summit Middle School IC3 and Beyond: Incremental, Inductive Verification 1/62 Induction Foundation of verification

More information

Estimating the Region of Attraction of Ordinary Differential Equations by Quantified Constraint Solving

Estimating the Region of Attraction of Ordinary Differential Equations by Quantified Constraint Solving Estimating the Region of Attraction of Ordinary Differential Equations by Quantified Constraint Solving Henning Burchardt and Stefan Ratschan October 31, 2007 Abstract We formulate the problem of estimating

More information

Controller Synthesis for Hybrid Systems using SMT Solving

Controller Synthesis for Hybrid Systems using SMT Solving Controller Synthesis for Hybrid Systems using SMT Solving Ulrich Loup AlgoSyn (GRK 1298) Hybrid Systems Group Prof. Dr. Erika Ábrahám GRK Workshop 2009, Schloss Dagstuhl Our model: hybrid system Discrete

More information

Simulation-guided Lyapunov Analysis for Hybrid Dynamical Systems

Simulation-guided Lyapunov Analysis for Hybrid Dynamical Systems Simulation-guided Lyapunov Analysis for Hybrid Dynamical Systems James Kapinski Toyota Technical Center Sriram Sankaranarayanan Univ. of Colorado Jyotirmoy V.Deshmukh Toyota Technical Center Nikos Aréchiga

More information

SAT-Based Verification with IC3: Foundations and Demands

SAT-Based Verification with IC3: Foundations and Demands SAT-Based Verification with IC3: Foundations and Demands Aaron R. Bradley ECEE, CU Boulder & Summit Middle School SAT-Based Verification with IC3:Foundations and Demands 1/55 Induction Foundation of verification

More information

Incremental Proof-Based Verification of Compiler Optimizations

Incremental Proof-Based Verification of Compiler Optimizations Incremental Proof-Based Verification of Compiler Optimizations Grigory Fedyukovich joint work with Arie Gurfinkel and Natasha Sharygina 5 of May, 2015, Attersee, Austria counter-example change impact Big

More information

Constraint Solving for Program Verification: Theory and Practice by Example

Constraint Solving for Program Verification: Theory and Practice by Example Constraint Solving for Program Verification: Theory and Practice by Example Andrey Rybalchenko Technische Universität München Abstract. Program verification relies on the construction of auxiliary assertions

More information

Integrating Induction, Deduction and Structure for Synthesis

Integrating Induction, Deduction and Structure for Synthesis Integrating Induction, Deduction and Structure for Synthesis Sanjit A. Seshia Associate Professor EECS Department UC Berkeley Students & Postdocs: S. Jha, W.Li, A. Donze, L. Dworkin, B. Brady, D. Holcomb,

More information

Integrating Induction and Deduction for Verification and Synthesis

Integrating Induction and Deduction for Verification and Synthesis Integrating Induction and Deduction for Verification and Synthesis Sanjit A. Seshia Associate Professor EECS Department UC Berkeley DATE 2013 Tutorial March 18, 2013 Bob s Vision: Exploit Synergies between

More information

HybridSAL Relational Abstracter

HybridSAL Relational Abstracter HybridSAL Relational Abstracter Ashish Tiwari SRI International, Menlo Park, CA. ashish.tiwari@sri.com Abstract. In this paper, we present the HybridSAL relational abstracter a tool for verifying continuous

More information

Non-linear Interpolant Generation and Its Application to Program Verification

Non-linear Interpolant Generation and Its Application to Program Verification Non-linear Interpolant Generation and Its Application to Program Verification Naijun Zhan State Key Laboratory of Computer Science, Institute of Software, CAS Joint work with Liyun Dai, Ting Gan, Bow-Yaw

More information

Finding Conflicting Instances of Quantified Formulas in SMT. Andrew Reynolds Cesare Tinelli Leonardo De Moura July 18, 2014

Finding Conflicting Instances of Quantified Formulas in SMT. Andrew Reynolds Cesare Tinelli Leonardo De Moura July 18, 2014 Finding Conflicting Instances of Quantified Formulas in SMT Andrew Reynolds Cesare Tinelli Leonardo De Moura July 18, 2014 Outline of Talk SMT solvers: Efficient methods for ground constraints Heuristic

More information

Optimization based robust control

Optimization based robust control Optimization based robust control Didier Henrion 1,2 Draft of March 27, 2014 Prepared for possible inclusion into The Encyclopedia of Systems and Control edited by John Baillieul and Tariq Samad and published

More information

Estimating the Region of Attraction of Ordinary Differential Equations by Quantified Constraint Solving

Estimating the Region of Attraction of Ordinary Differential Equations by Quantified Constraint Solving Proceedings of the 3rd WSEAS/IASME International Conference on Dynamical Systems and Control, Arcachon, France, October 13-15, 2007 241 Estimating the Region of Attraction of Ordinary Differential Equations

More information

Logical Abduction and its Applications in Program Verification. Isil Dillig MSR Cambridge

Logical Abduction and its Applications in Program Verification. Isil Dillig MSR Cambridge Logical Abduction and its Applications in Program Verification? Isil Dillig MSR Cambridge What is Abduction? Abduction: Opposite of deduction 2 / 21 What is Abduction? Abduction: Opposite of deduction

More information

DSSynth: An Automated Digital Controller Synthesis Tool for Physical Plants ASE 2017

DSSynth: An Automated Digital Controller Synthesis Tool for Physical Plants ASE 2017 DSSynth: An Automated Digital Controller Synthesis Tool for Physical Plants ASE 2017 Alessandro Abate, Iury Bessa, Dario Cattaruzza, Lennon Chaves, Lucas Cordeiro, Cristina David, Pascal Kesseli, Daniel

More information

Hybrid Systems - Lecture n. 3 Lyapunov stability

Hybrid Systems - Lecture n. 3 Lyapunov stability OUTLINE Focus: stability of equilibrium point Hybrid Systems - Lecture n. 3 Lyapunov stability Maria Prandini DEI - Politecnico di Milano E-mail: prandini@elet.polimi.it continuous systems decribed by

More information

Rewriting for Satisfiability Modulo Theories

Rewriting for Satisfiability Modulo Theories 1 Dipartimento di Informatica Università degli Studi di Verona Verona, Italy July 10, 2010 1 Joint work with Chris Lynch (Department of Mathematics and Computer Science, Clarkson University, NY, USA) and

More information

Verification Constraint Problems with Strengthening

Verification Constraint Problems with Strengthening Verification Constraint Problems with Strengthening Aaron R. Bradley and Zohar Manna Computer Science Department Stanford University Stanford, CA 94305-9045 {arbrad,manna}@cs.stanford.edu Abstract. The

More information

Fixed point iteration Numerical Analysis Math 465/565

Fixed point iteration Numerical Analysis Math 465/565 Fixed point iteration Numerical Analysis Math 465/565 1 Fixed Point Iteration Suppose we wanted to solve : f(x) = cos(x) x =0 or cos(x) =x We might consider a iteration of this type : x k+1 = cos(x k )

More information

Quantum Computing Approach to V&V of Complex Systems Overview

Quantum Computing Approach to V&V of Complex Systems Overview Quantum Computing Approach to V&V of Complex Systems Overview Summary of Quantum Enabled V&V Technology June, 04 Todd Belote Chris Elliott Flight Controls / VMS Integration Discussion Layout I. Quantum

More information

Simulation-guided Contraction Analysis

Simulation-guided Contraction Analysis Simulation-guided Contraction Analysis Ayca Balkan 1 Jyotirmoy V. Deshmukh 2 James Kapinski 2 Paulo Tabuada 1 Abstract We present a simulation-guided approach to perform contraction analysis of nonlinear

More information

The Eager Approach to SMT. Eager Approach to SMT

The Eager Approach to SMT. Eager Approach to SMT The Eager Approach to SMT Sanjit A. Seshia UC Berkeley Slides based on ICCAD 09 Tutorial Eager Approach to SMT Input Formula Satisfiability-preserving Boolean Encoder Boolean Formula SAT Solver SAT Solver

More information

APPROXIMATE SIMULATION RELATIONS FOR HYBRID SYSTEMS 1. Antoine Girard A. Agung Julius George J. Pappas

APPROXIMATE SIMULATION RELATIONS FOR HYBRID SYSTEMS 1. Antoine Girard A. Agung Julius George J. Pappas APPROXIMATE SIMULATION RELATIONS FOR HYBRID SYSTEMS 1 Antoine Girard A. Agung Julius George J. Pappas Department of Electrical and Systems Engineering University of Pennsylvania Philadelphia, PA 1914 {agirard,agung,pappasg}@seas.upenn.edu

More information

SENSE: Abstraction-Based Synthesis of Networked Control Systems

SENSE: Abstraction-Based Synthesis of Networked Control Systems SENSE: Abstraction-Based Synthesis of Networked Control Systems Mahmoud Khaled, Matthias Rungger, and Majid Zamani Hybrid Control Systems Group Electrical and Computer Engineering Technical University

More information

Synthesizing Switching Logic using Constraint Solving

Synthesizing Switching Logic using Constraint Solving Synthesizing Switching Logic using Constraint Solving Ankur Taly 1, Sumit Gulwani 2, and Ashish Tiwari 3 1 Computer Science Dept., Stanford University ataly@stanford.edu 2 Microsoft Research, Redmond,

More information

From Convex Optimization to Linear Matrix Inequalities

From Convex Optimization to Linear Matrix Inequalities Dep. of Information Engineering University of Pisa (Italy) From Convex Optimization to Linear Matrix Inequalities eng. Sergio Grammatico grammatico.sergio@gmail.com Class of Identification of Uncertain

More information

LMI Methods in Optimal and Robust Control

LMI Methods in Optimal and Robust Control LMI Methods in Optimal and Robust Control Matthew M. Peet Arizona State University Lecture 20: LMI/SOS Tools for the Study of Hybrid Systems Stability Concepts There are several classes of problems for

More information

Static Output Feedback Stabilisation with H Performance for a Class of Plants

Static Output Feedback Stabilisation with H Performance for a Class of Plants Static Output Feedback Stabilisation with H Performance for a Class of Plants E. Prempain and I. Postlethwaite Control and Instrumentation Research, Department of Engineering, University of Leicester,

More information

Computable Analysis, Hybrid Automata, and Decision Procedures (Extended Thesis Abstract)

Computable Analysis, Hybrid Automata, and Decision Procedures (Extended Thesis Abstract) Computable Analysis, Hybrid Automata, and Decision Procedures (Extended Thesis Abstract) Sicun Gao 1 Introduction 1.1 Overview Cyber-Physical Systems (CPS) are systems that integrate digital computation

More information

Prashant Mhaskar, Nael H. El-Farra & Panagiotis D. Christofides. Department of Chemical Engineering University of California, Los Angeles

Prashant Mhaskar, Nael H. El-Farra & Panagiotis D. Christofides. Department of Chemical Engineering University of California, Los Angeles HYBRID PREDICTIVE OUTPUT FEEDBACK STABILIZATION OF CONSTRAINED LINEAR SYSTEMS Prashant Mhaskar, Nael H. El-Farra & Panagiotis D. Christofides Department of Chemical Engineering University of California,

More information

Lecture Note 7: Switching Stabilization via Control-Lyapunov Function

Lecture Note 7: Switching Stabilization via Control-Lyapunov Function ECE7850: Hybrid Systems:Theory and Applications Lecture Note 7: Switching Stabilization via Control-Lyapunov Function Wei Zhang Assistant Professor Department of Electrical and Computer Engineering Ohio

More information

Lecture 9 Nonlinear Control Design

Lecture 9 Nonlinear Control Design Lecture 9 Nonlinear Control Design Exact-linearization Lyapunov-based design Lab 2 Adaptive control Sliding modes control Literature: [Khalil, ch.s 13, 14.1,14.2] and [Glad-Ljung,ch.17] Course Outline

More information

Quantifier Instantiation Techniques for Finite Model Finding in SMT

Quantifier Instantiation Techniques for Finite Model Finding in SMT Quantifier Instantiation Techniques for Finite Model Finding in SMT Andrew Reynolds, Cesare Tinelli Amit Goel, Sava Krstic Morgan Deters, Clark Barrett Satisfiability Modulo Theories (SMT) SMT solvers

More information

Lecture 6 Verification of Hybrid Systems

Lecture 6 Verification of Hybrid Systems Lecture 6 Verification of Hybrid Systems Ufuk Topcu Nok Wongpiromsarn Richard M. Murray AFRL, 25 April 2012 Outline: A hybrid system model Finite-state abstractions and use of model checking Deductive

More information

Lecture 2: Symbolic Model Checking With SAT

Lecture 2: Symbolic Model Checking With SAT Lecture 2: Symbolic Model Checking With SAT Edmund M. Clarke, Jr. School of Computer Science Carnegie Mellon University Pittsburgh, PA 15213 (Joint work over several years with: A. Biere, A. Cimatti, Y.

More information

1 Lyapunov theory of stability

1 Lyapunov theory of stability M.Kawski, APM 581 Diff Equns Intro to Lyapunov theory. November 15, 29 1 1 Lyapunov theory of stability Introduction. Lyapunov s second (or direct) method provides tools for studying (asymptotic) stability

More information

SMT BASICS WS 2017/2018 ( ) LOGIC SATISFIABILITY MODULO THEORIES. Institute for Formal Models and Verification Johannes Kepler Universität Linz

SMT BASICS WS 2017/2018 ( ) LOGIC SATISFIABILITY MODULO THEORIES. Institute for Formal Models and Verification Johannes Kepler Universität Linz LOGIC SATISFIABILITY MODULO THEORIES SMT BASICS WS 2017/2018 (342.208) Armin Biere Martina Seidl biere@jku.at martina.seidl@jku.at Institute for Formal Models and Verification Johannes Kepler Universität

More information

CSE507. Satisfiability Modulo Theories. Computer-Aided Reasoning for Software. Emina Torlak

CSE507. Satisfiability Modulo Theories. Computer-Aided Reasoning for Software. Emina Torlak Computer-Aided Reasoning for Software CSE507 Satisfiability Modulo Theories courses.cs.washington.edu/courses/cse507/18sp/ Emina Torlak emina@cs.washington.edu Today Last lecture Practical applications

More information

Synthesizing Switching Logic using Constraint Solving

Synthesizing Switching Logic using Constraint Solving Synthesizing Switching Logic using Constraint Solving Ankur Taly 1, Sumit Gulwani 2, and Ashish Tiwari 3 1 Computer Science Dept., Stanford University ataly@stanford.edu 2 Microsoft Research, Redmond,

More information

Leonardo de Moura Microsoft Research

Leonardo de Moura Microsoft Research Leonardo de Moura Microsoft Research Logic is The Calculus of Computer Science (Z. Manna). High computational complexity Naïve solutions will not scale Is formula F satisfiable modulo theory T? SMT solvers

More information

An Incremental Approach to Model Checking Progress Properties

An Incremental Approach to Model Checking Progress Properties An Incremental Approach to Model Checking Progress Properties Aaron Bradley Fabio Somenzi Zyad Hassan Yan Zhang Department of Electrical, Computer, and Energy Engineering University of Colorado at Boulder

More information

Solving Quantified Linear Arithmetic by Counterexample- Guided Instantiation

Solving Quantified Linear Arithmetic by Counterexample- Guided Instantiation Noname manuscript No. (will be inserted by the editor) Solving Quantified Linear Arithmetic by Counterexample- Guided Instantiation Andrew Reynolds Tim King Viktor Kuncak Received: date / Accepted: date

More information

INTRODUCTION TO TOPOLOGY, MATH 141, PRACTICE PROBLEMS

INTRODUCTION TO TOPOLOGY, MATH 141, PRACTICE PROBLEMS INTRODUCTION TO TOPOLOGY, MATH 141, PRACTICE PROBLEMS Problem 1. Give an example of a non-metrizable topological space. Explain. Problem 2. Introduce a topology on N by declaring that open sets are, N,

More information

Feedback Control CONTROL THEORY FUNDAMENTALS. Feedback Control: A History. Feedback Control: A History (contd.) Anuradha Annaswamy

Feedback Control CONTROL THEORY FUNDAMENTALS. Feedback Control: A History. Feedback Control: A History (contd.) Anuradha Annaswamy Feedback Control CONTROL THEORY FUNDAMENTALS Actuator Sensor + Anuradha Annaswamy Active adaptive Control Laboratory Massachusetts Institute of Technology must follow with» Speed» Accuracy Feeback: Measure

More information

LOGIC PROPOSITIONAL REASONING

LOGIC PROPOSITIONAL REASONING LOGIC PROPOSITIONAL REASONING WS 2017/2018 (342.208) Armin Biere Martina Seidl biere@jku.at martina.seidl@jku.at Institute for Formal Models and Verification Johannes Kepler Universität Linz Version 2018.1

More information

Solving Quantified Verification Conditions using Satisfiability Modulo Theories

Solving Quantified Verification Conditions using Satisfiability Modulo Theories Solving Quantified Verification Conditions using Satisfiability Modulo Theories Yeting Ge, Clark Barrett, Cesare Tinelli Solving Quantified Verification Conditions using Satisfiability Modulo Theories

More information

Propositional Logic: Evaluating the Formulas

Propositional Logic: Evaluating the Formulas Institute for Formal Models and Verification Johannes Kepler University Linz VL Logik (LVA-Nr. 342208) Winter Semester 2015/2016 Propositional Logic: Evaluating the Formulas Version 2015.2 Armin Biere

More information

Understanding IC3. Aaron R. Bradley. ECEE, CU Boulder & Summit Middle School. Understanding IC3 1/55

Understanding IC3. Aaron R. Bradley. ECEE, CU Boulder & Summit Middle School. Understanding IC3 1/55 Understanding IC3 Aaron R. Bradley ECEE, CU Boulder & Summit Middle School Understanding IC3 1/55 Further Reading This presentation is based on Bradley, A. R. Understanding IC3. In SAT, June 2012. http://theory.stanford.edu/~arbrad

More information

Stability lectures. Stability of Linear Systems. Stability of Linear Systems. Stability of Continuous Systems. EECE 571M/491M, Spring 2008 Lecture 5

Stability lectures. Stability of Linear Systems. Stability of Linear Systems. Stability of Continuous Systems. EECE 571M/491M, Spring 2008 Lecture 5 EECE 571M/491M, Spring 2008 Lecture 5 Stability of Continuous Systems http://courses.ece.ubc.ca/491m moishi@ece.ubc.ca Dr. Meeko Oishi Electrical and Computer Engineering University of British Columbia,

More information

Analytical Validation Tools for Safety Critical Systems

Analytical Validation Tools for Safety Critical Systems Analytical Validation Tools for Safety Critical Systems Peter Seiler and Gary Balas Department of Aerospace Engineering & Mechanics, University of Minnesota, Minneapolis, MN, 55455, USA Andrew Packard

More information

Abstract Interpretation with Higher-Dimensional Ellipsoids and Conic Extrapolation

Abstract Interpretation with Higher-Dimensional Ellipsoids and Conic Extrapolation Abstract Interpretation with Higher-Dimensional Ellipsoids and Conic Extrapolation or potatoes & ice cream cones Mendes Oulamara, Arnaud Venet Computer Aided Verification, 2015 July 22, 2015 ÉCOLE NORMALE

More information

ANALYZING REAL TIME LINEAR CONTROL SYSTEMS USING SOFTWARE VERIFICATION. Parasara Sridhar Duggirala UConn Mahesh Viswanathan UIUC

ANALYZING REAL TIME LINEAR CONTROL SYSTEMS USING SOFTWARE VERIFICATION. Parasara Sridhar Duggirala UConn Mahesh Viswanathan UIUC ANALYZING REAL TIME LINEAR CONTROL SYSTEMS USING SOFTWARE VERIFICATION Parasara Sridhar Duggirala UConn Mahesh Viswanathan UIUC Real-Time Systems Linear Control Systems Verification Verification Control

More information

ProbReach: Probabilistic Bounded Reachability for Uncertain Hybrid Systems

ProbReach: Probabilistic Bounded Reachability for Uncertain Hybrid Systems ProbReach: Probabilistic Bounded Reachability for Uncertain Hybrid Systems Fedor Shmarov, Paolo Zuliani School of Computing Science, Newcastle University, UK 1 / 41 Introduction ProbReach tool for probabilistic

More information

Specification Mining of Industrial-scale Control Systems

Specification Mining of Industrial-scale Control Systems 100 120 Specification Mining of Industrial-scale Control Systems Alexandre Donzé Joint work with Xiaoqing Jin, Jyotirmoy V. Deshmuck, Sanjit A. Seshia University of California, Berkeley May 14, 2013 Alexandre

More information

Formal Inductive Synthesis -- Theory and Applications

Formal Inductive Synthesis -- Theory and Applications Formal Inductive Synthesis -- Theory and Applications Sanjit A. Seshia EECS Department UC Berkeley Acknowledgments to several Ph.D. students, postdoctoral researchers, and collaborators, and to the students

More information

Parameterized Linear Matrix Inequality Techniques in Fuzzy Control System Design

Parameterized Linear Matrix Inequality Techniques in Fuzzy Control System Design 324 IEEE TRANSACTIONS ON FUZZY SYSTEMS, VOL. 9, NO. 2, APRIL 2001 Parameterized Linear Matrix Inequality Techniques in Fuzzy Control System Design H. D. Tuan, P. Apkarian, T. Narikiyo, and Y. Yamamoto

More information

Teaching vs. Learning, and Course Wrap-Up

Teaching vs. Learning, and Course Wrap-Up Teaching vs. Learning, and Course Wrap-Up Sanjit A. Seshia EECS 219C EECS Department UC Berkeley Teaching vs. Learning Learning: Examples Concept Teaching: Concept Examples Given a concept, give a good

More information

Ivy: Safety Verification by Interactive Generalization

Ivy: Safety Verification by Interactive Generalization Ivy: Safety Verification by Interactive Generalization Oded Padon Verification Day 1-June-2016 [PLDI 16] Oded Padon, Kenneth McMillan, Aurojit Panda, Mooly Sagiv, Sharon Shoham. Ivy: Safety Verification

More information

Synthesis via Sampling-Based Abstractions

Synthesis via Sampling-Based Abstractions Synthesis via Sampling-Based Abstractions Some Problems and Initial Ideas Matthias Rungger 2 Morteza Lahijanian 1 Lydia E Kavraki 1 Paulo Tabuada 2 Moshe Y Vardi 1 1 Department of Computer Science, Rice

More information

Leonardo de Moura Microsoft Research

Leonardo de Moura Microsoft Research Leonardo de Moura Microsoft Research Is formula F satisfiable modulo theory T? SMT solvers have specialized algorithms for T b + 2 = c and f(read(write(a,b,3), c-2)) f(c-b+1) b + 2 = c and f(read(write(a,b,3),

More information

Global Analysis of Piecewise Linear Systems Using Impact Maps and Surface Lyapunov Functions

Global Analysis of Piecewise Linear Systems Using Impact Maps and Surface Lyapunov Functions IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL 48, NO 12, DECEMBER 2003 2089 Global Analysis of Piecewise Linear Systems Using Impact Maps and Surface Lyapunov Functions Jorge M Gonçalves, Alexandre Megretski,

More information

Tutorial 1: Modern SMT Solvers and Verification

Tutorial 1: Modern SMT Solvers and Verification University of Illinois at Urbana-Champaign Tutorial 1: Modern SMT Solvers and Verification Sayan Mitra Electrical & Computer Engineering Coordinated Science Laboratory University of Illinois at Urbana

More information

Approximate Bisimulations for Constrained Linear Systems

Approximate Bisimulations for Constrained Linear Systems Approximate Bisimulations for Constrained Linear Systems Antoine Girard and George J Pappas Abstract In this paper, inspired by exact notions of bisimulation equivalence for discrete-event and continuous-time

More information

The Potential and Challenges of CAD with Equational Constraints for SC-Square

The Potential and Challenges of CAD with Equational Constraints for SC-Square The Potential and Challenges of with Equational Constraints for SC-Square Matthew England (Coventry University) Joint work with: James H. Davenport (University of Bath) 7th International Conference on

More information

Internals of SMT Solvers. Leonardo de Moura Microsoft Research

Internals of SMT Solvers. Leonardo de Moura Microsoft Research Internals of SMT Solvers Leonardo de Moura Microsoft Research Acknowledgements Dejan Jovanovic (SRI International, NYU) Grant Passmore (Univ. Edinburgh) Herbrand Award 2013 Greg Nelson What is a SMT Solver?

More information

arxiv:submit/ [cs.lo] 11 May 2018

arxiv:submit/ [cs.lo] 11 May 2018 Solving Quantified Bit-Vectors using Invertibility Conditions Aina Niemetz 1, Mathias Preiner 1, Andrew Reynolds 2, Clark Barrett 1, and Cesare Tinelli 2 arxiv:submit/2258887 [cs.lo] 11 May 2018 1 Stanford

More information

a > 3, (a = b a = b + 1), f(a) = 0, f(b) = 1

a > 3, (a = b a = b + 1), f(a) = 0, f(b) = 1 Yeting Ge New York University Leonardo de Moura Microsoft Research a > 3, (a = b a = b + 1), f(a) = 0, f(b) = 1 Dynamic symbolic execution (DART) Extended static checking Test-case generation Bounded model

More information

Linear Matrix Inequalities in Robust Control. Venkataramanan (Ragu) Balakrishnan School of ECE, Purdue University MTNS 2002

Linear Matrix Inequalities in Robust Control. Venkataramanan (Ragu) Balakrishnan School of ECE, Purdue University MTNS 2002 Linear Matrix Inequalities in Robust Control Venkataramanan (Ragu) Balakrishnan School of ECE, Purdue University MTNS 2002 Objective A brief introduction to LMI techniques for Robust Control Emphasis on

More information

Satisfiability Checking

Satisfiability Checking Satisfiability Checking Interval Constraint Propagation Prof. Dr. Erika Ábrahám RWTH Aachen University Informatik 2 LuFG Theory of Hybrid Systems WS 14/15 Satisfiability Checking Prof. Dr. Erika Ábrahám

More information

Deductive Verification of Continuous Dynamical Systems

Deductive Verification of Continuous Dynamical Systems Deductive Verification of Continuous Dynamical Systems Dept. of Computer Science, Stanford University (Joint work with Ashish Tiwari, SRI International.) 1 Introduction What are Continuous Dynamical Systems?

More information

FINITE HORIZON ROBUST MODEL PREDICTIVE CONTROL USING LINEAR MATRIX INEQUALITIES. Danlei Chu, Tongwen Chen, Horacio J. Marquez

FINITE HORIZON ROBUST MODEL PREDICTIVE CONTROL USING LINEAR MATRIX INEQUALITIES. Danlei Chu, Tongwen Chen, Horacio J. Marquez FINITE HORIZON ROBUST MODEL PREDICTIVE CONTROL USING LINEAR MATRIX INEQUALITIES Danlei Chu Tongwen Chen Horacio J Marquez Department of Electrical and Computer Engineering University of Alberta Edmonton

More information

Topic # /31 Feedback Control Systems. Analysis of Nonlinear Systems Lyapunov Stability Analysis

Topic # /31 Feedback Control Systems. Analysis of Nonlinear Systems Lyapunov Stability Analysis Topic # 16.30/31 Feedback Control Systems Analysis of Nonlinear Systems Lyapunov Stability Analysis Fall 010 16.30/31 Lyapunov Stability Analysis Very general method to prove (or disprove) stability of

More information

Constraint-Based Static Analysis of Programs

Constraint-Based Static Analysis of Programs Constraint-Based Static Analysis of Programs Joint work with Michael Colon, Sriram Sankaranarayanan, Aaron Bradley and Zohar Manna Henny Sipma Stanford University Master Class Seminar at Washington University

More information

Analysis and synthesis: a complexity perspective

Analysis and synthesis: a complexity perspective Analysis and synthesis: a complexity perspective Pablo A. Parrilo ETH ZürichZ control.ee.ethz.ch/~parrilo Outline System analysis/design Formal and informal methods SOS/SDP techniques and applications

More information