Abstract Interpretation with Higher-Dimensional Ellipsoids and Conic Extrapolation

Size: px
Start display at page:

Download "Abstract Interpretation with Higher-Dimensional Ellipsoids and Conic Extrapolation"

Transcription

1 Abstract Interpretation with Higher-Dimensional Ellipsoids and Conic Extrapolation or potatoes & ice cream cones Mendes Oulamara, Arnaud Venet Computer Aided Verification, 2015 July 22, 2015 ÉCOLE NORMALE SUPÉRIEURE This material is based upon work supported by the NSF, Grant No / 20

2 Loop Analysis with Ellipsoidal Cones Case Study Ellipsoids are Useful Ellipsoidal Cones Use of Semidefinite Programming Prototyping 2 / 20

3 Case Study Inputs Command Input Buffer 1 Program Push Buffer 2 Switch Output Buffer 3 3 / 20

4 Case Study Inputs Command Input Buffer 1 Program Push Buffer 2 Switch Output Buffer 3 Can be abstracted as 1: x 0 R n 2: (A i, b i) 1 i k 3: where b i R n, A i M n(r) 4: for y from 0 to do 5: i rand(1, n) 6: x A ix + b i 3 / 20

5 Case Study x 1 x x 1 x 1 1 Example with two counters, we have either : x 2 x x 2 x 2 4 / 20

6 Case Study x 1 x x 1 x 1 1 Example with two counters, we have either : x 2 x x 2 x 2 4 / 20

7 Case Study x 1 x x 1 x 1 1 Example with two counters, we have either : x 2 x x 2 x 2 4 / 20

8 Case Study x 1 x x 1 x 1 1 Example with two counters, we have either : x 2 x x 2 x 2 4 / 20

9 Case Study A 3D view of the iterations, with x1 and x2 as x and y coordinates and the z coordinate representing the loop counter / 20

10 Case Study We could use the polyhedra abstract domain to approximate this set / 20

11 Case Study We could use the polyhedra abstract domain to approximate this set. But their manipulation has an exponential complexity in the number of numerical variables / 20

12 Ellipsoids are Useful There is a widely used object in science to approximate clouds of points: Ellipsoids. 7 / 20

13 Ellipsoids are Useful There is a widely used object in science to approximate clouds of points: Ellipsoids. They have a polynomial (quadratic) representation and the operations we will apply to them are polynomial (union, test of inclusion... ). 7 / 20

14 Ellipsoids are Useful Recall the mathematical definition of an n-dimensional ellipsoid: 8 / 20

15 Ellipsoids are Useful Recall the mathematical definition of an n-dimensional ellipsoid: Let Q be a symmetric n n matrix ( which ) is definite positive (that is, all its 1 0 eigenvalues are positive). E.g / 20

16 Ellipsoids are Useful Recall the mathematical definition of an n-dimensional ellipsoid: Let Q be a symmetric n n matrix ( which ) is definite positive (that is, all its 1 0 eigenvalues are positive). E.g. 0 2 We ( define ) the quadratic form associated to Q by F : x x T Qx. E.g. x F : ( x y ) ( ) ( ) 1 0 x = x 2 + 2y 2 y 0 2 y 8 / 20

17 Ellipsoids are Useful Recall the mathematical definition of an n-dimensional ellipsoid: Let Q be a symmetric n n matrix ( which ) is definite positive (that is, all its 1 0 eigenvalues are positive). E.g. 0 2 We ( define ) the quadratic form associated to Q by F : x x T Qx. E.g. x F : ( x y ) ( ) ( ) 1 0 x = x 2 + 2y 2 y 0 2 y The associated ellipsoid is given by the set {x R n with F (x) 1}. 8 / 20

18 Ellipsoidal Cones The Ellipsoidal Cones Abstract Domain overapproximates the domain of the numerical variables (the x i s in the example) by an ellipsoid whose radius grows linearly in the loop counters / 20

19 Ellipsoidal Cones The formal definition of such a cone is: Con((q, c), (β i, δ i, λ i, b i) 1 i k ) = {(x, y) R n R k i 1, k, y i λ i i 1, k, (b i (y i = λ i)) k k q(x c (y i λ i)δ i) ( β i(y i λ i) + 1) 2 } i=1 i=1 10 / 20

20 Ellipsoidal Cones The formal definition of such a cone is: Con((q, c), (β i, δ i, λ i, b i) 1 i k ) = {(x, y) R n R k i 1, k, y i λ i i 1, k, (b i (y i = λ i)) k k q(x c (y i λ i)δ i) ( β i(y i λ i) + 1) 2 } i=1 i=1 On these cones we define: A test of inclusion Affine transformations Counter increments Addition and removal of counters A widening operator Variable packing 10 / 20

21 Loop Analysis with Ellipsoidal Cones Use of Semidefinite Programming What is SDP? A Standard Example: How to Join Ellipsoids Prototyping 11 / 20

22 What is SDP? Semidefinite Programming (SDP) is a bit like Linear Programming but with quadratic form. 12 / 20

23 What is SDP? Semidefinite Programming (SDP) is a bit like Linear Programming but with quadratic form. Definition (Linear Matrix Inequality (LMI)) A Linear Matrix Inequality (in this context) is an equation of the type: α 1A 1 + α 2A α pa p 0 where the α i s are reals, the A i s are symmetric matrices and A 0 means A is semidefinite positive. 12 / 20

24 What is SDP? Semidefinite Programming (SDP) is a bit like Linear Programming but with quadratic form. Definition (Linear Matrix Inequality (LMI)) A Linear Matrix Inequality (in this context) is an equation of the type: α 1A 1 + α 2A α pa p 0 where the α i s are reals, the A i s are symmetric matrices and A 0 means A is semidefinite positive. ( ) ( ) x , max y 0 x 0 2 y Definition (SDP Problem) An SDP problem is a system of LMI s to verify, and a variable to maximize. Their approximate resolution has a polynomial complexity. 12 / 20

25 A Standard Example: How to Join Ellipsoids We will study the question of joining two ellipsoids: It is simpler than operations on ellipsoidal cones but it contains all the core ideas of how they work and ellipsoidal operations are the cornerstone of their definition. 13 / 20

26 A Standard Example: How to Join Ellipsoids The first step is to express the inclusion of two ellipsoid as an LMI: 14 / 20

27 A Standard Example: How to Join Ellipsoids The first step is to express the inclusion of two ellipsoid as an LMI: Theorem Ell(Q, c) Ell(Q, c ) min {β s.t. λ 0 and βe n+1 + λf (Q, c) F (Q, c )} 0 λ,β R ( ) Q Qc 0 0 Here, F (Q, c) = c T Q c T and E n+1 =. Qc / 20

28 A Standard Example: How to Join Ellipsoids Computing a candidate result: The SDP program looks like: System of LMI s to say Ell(Q 1, c 1) Ell(Q, c )... System of LMI s to say Ell(Q p, c p) Ell(Q, c ) System of LMI s to minimize the volume of Ell(Q, c ) Many equations (Linear Matrix Inequalities) SDP solver Candidate result 15 / 20

29 A Standard Example: How to Join Ellipsoids The SDP solver provides us with a floating-point candidate result Ell(Q, c ). There can be approximation errors. We know have to check that the result is sound, that is, the Ell(Q i, c i) s are actually subsets of Ell(Q, c ). 16 / 20

30 A Standard Example: How to Join Ellipsoids Checking the soundness: By the previous theorem, we have inclusion if and only if: min λ,β R {β s.t. λ 0 and βe n+1 + λf (Q, c) F (Q, c )} 0 17 / 20

31 A Standard Example: How to Join Ellipsoids Checking the soundness: By the previous theorem, we have inclusion if and only if: min λ,β R {β s.t. λ 0 and βe n+1 + λf (Q, c) F (Q, c )} 0 LMI with different matrices SDP solver Check that the LMI is really verified with interval arithmetic and Cholesky decomposition Check Inflate (unlike polyhedra), increase precision, etc. No Yes Yay! 17 / 20

32 Loop Analysis with Ellipsoidal Cones Use of Semidefinite Programming Prototyping 18 / 20

33 Prototyping A prototype with most operations has been coded in Python using Picos and CVXOPT for SDP programming Numpy for floating-point math computations mpmath for interval arithmetic and Cholesky decomposition Some benchmarks were run to compare with abstract interpretation with polyhedra (using the Apron library). 1: x 0 R n 1: x 0 R n 2: (A 2: for y from 0 to do i, b i) 1 i k 3: where b 3: pick i 1, n i R n, A i M n(r) 4: for y from 0 to do 4: pick ɛ { 1, 1} 5: i rand(1, n) 5: x i x i + ɛ 6: x A ix + b i n Ell. cones 3s 7s 19s 49s 1m56s 4m16s 8m 12m Polyhedra <0.1s <0.1s 0.3s 2.5s 54s 47m >1h >1h Benchmark Ell. Cones 1s 2s 2s 2s 1.8s 1.2s 1.3s Polyhedra 3.2s 16.6s 18s 24s >1h >1h 2m35s 19 / 20

34 Conclusion We proposed an Abstract Interpretation framework to analyze loops when the radius evolves (sub-)linearly in the loop counters, that uses semidefinite programming to both compute the result and check its soundness, but does not rely on the correctness of the solver to ensure that the floating-point result is a mathematically valid result, via overapproximations and interval arithmetic. Thank you! Questions? 20 / 20

SPECTRAHEDRA. Bernd Sturmfels UC Berkeley

SPECTRAHEDRA. Bernd Sturmfels UC Berkeley SPECTRAHEDRA Bernd Sturmfels UC Berkeley GAeL Lecture I on Convex Algebraic Geometry Coimbra, Portugal, Monday, June 7, 2010 Positive Semidefinite Matrices For a real symmetric n n-matrix A the following

More information

ON THE MINIMUM VOLUME COVERING ELLIPSOID OF ELLIPSOIDS

ON THE MINIMUM VOLUME COVERING ELLIPSOID OF ELLIPSOIDS ON THE MINIMUM VOLUME COVERING ELLIPSOID OF ELLIPSOIDS E. ALPER YILDIRIM Abstract. Let S denote the convex hull of m full-dimensional ellipsoids in R n. Given ɛ > 0 and δ > 0, we study the problems of

More information

CSCI 1951-G Optimization Methods in Finance Part 10: Conic Optimization

CSCI 1951-G Optimization Methods in Finance Part 10: Conic Optimization CSCI 1951-G Optimization Methods in Finance Part 10: Conic Optimization April 6, 2018 1 / 34 This material is covered in the textbook, Chapters 9 and 10. Some of the materials are taken from it. Some of

More information

COURSE ON LMI PART I.2 GEOMETRY OF LMI SETS. Didier HENRION henrion

COURSE ON LMI PART I.2 GEOMETRY OF LMI SETS. Didier HENRION   henrion COURSE ON LMI PART I.2 GEOMETRY OF LMI SETS Didier HENRION www.laas.fr/ henrion October 2006 Geometry of LMI sets Given symmetric matrices F i we want to characterize the shape in R n of the LMI set F

More information

LMI MODELLING 4. CONVEX LMI MODELLING. Didier HENRION. LAAS-CNRS Toulouse, FR Czech Tech Univ Prague, CZ. Universidad de Valladolid, SP March 2009

LMI MODELLING 4. CONVEX LMI MODELLING. Didier HENRION. LAAS-CNRS Toulouse, FR Czech Tech Univ Prague, CZ. Universidad de Valladolid, SP March 2009 LMI MODELLING 4. CONVEX LMI MODELLING Didier HENRION LAAS-CNRS Toulouse, FR Czech Tech Univ Prague, CZ Universidad de Valladolid, SP March 2009 Minors A minor of a matrix F is the determinant of a submatrix

More information

Lecture Note 5: Semidefinite Programming for Stability Analysis

Lecture Note 5: Semidefinite Programming for Stability Analysis ECE7850: Hybrid Systems:Theory and Applications Lecture Note 5: Semidefinite Programming for Stability Analysis Wei Zhang Assistant Professor Department of Electrical and Computer Engineering Ohio State

More information

Semidefinite Programming Basics and Applications

Semidefinite Programming Basics and Applications Semidefinite Programming Basics and Applications Ray Pörn, principal lecturer Åbo Akademi University Novia University of Applied Sciences Content What is semidefinite programming (SDP)? How to represent

More information

Lecture 6: Conic Optimization September 8

Lecture 6: Conic Optimization September 8 IE 598: Big Data Optimization Fall 2016 Lecture 6: Conic Optimization September 8 Lecturer: Niao He Scriber: Juan Xu Overview In this lecture, we finish up our previous discussion on optimality conditions

More information

Generation of Basic Semi-algebraic Invariants Using Convex Polyhedra

Generation of Basic Semi-algebraic Invariants Using Convex Polyhedra Generation of Basic Semi-algebraic Invariants Using Convex Polyhedra Generation of Invariant Conjunctions of Polynomial Inequalities Using Convex Polyhedra R. Bagnara 1, E. Rodríguez-Carbonell 2, E. Zaffanella

More information

Certified Roundoff Error Bounds using Semidefinite Programming

Certified Roundoff Error Bounds using Semidefinite Programming Certified Roundoff Error Bounds using Semidefinite Programming Victor Magron, CNRS VERIMAG joint work with G. Constantinides and A. Donaldson INRIA Mescal Team Seminar 19 November 2015 Victor Magron Certified

More information

Proving Unsatisfiability in Non-linear Arithmetic by Duality

Proving Unsatisfiability in Non-linear Arithmetic by Duality Proving Unsatisfiability in Non-linear Arithmetic by Duality [work in progress] Daniel Larraz, Albert Oliveras, Enric Rodríguez-Carbonell and Albert Rubio Universitat Politècnica de Catalunya, Barcelona,

More information

ALGEBRA: From Linear to Non-Linear. Bernd Sturmfels University of California at Berkeley

ALGEBRA: From Linear to Non-Linear. Bernd Sturmfels University of California at Berkeley ALGEBRA: From Linear to Non-Linear Bernd Sturmfels University of California at Berkeley John von Neumann Lecture, SIAM Annual Meeting, Pittsburgh, July 13, 2010 Undergraduate Linear Algebra All undergraduate

More information

A Generic Ellipsoid Abstract Domain for Linear Time Invariant Systems

A Generic Ellipsoid Abstract Domain for Linear Time Invariant Systems A Generic Ellipsoid Abstract Domain for Linear Time Invariant Systems Pierre Roux 1 Romain Jobredeaux 2 Pierre-Loïc Garoche 1 Éric Féron 2 April 18, 2012 1 ONERA Toulouse, France 2 Georgia Tech Atlanta,

More information

Lecture: Cone programming. Approximating the Lorentz cone.

Lecture: Cone programming. Approximating the Lorentz cone. Strong relaxations for discrete optimization problems 10/05/16 Lecture: Cone programming. Approximating the Lorentz cone. Lecturer: Yuri Faenza Scribes: Igor Malinović 1 Introduction Cone programming is

More information

Integrated Math II Performance Level Descriptors

Integrated Math II Performance Level Descriptors Limited Integrated Math II Performance Level Descriptors A student performing at the Limited Level demonstrates a minimal command of Ohio s Learning Standards for Integrated Math II. A student at this

More information

Hybrid Systems - Lecture n. 3 Lyapunov stability

Hybrid Systems - Lecture n. 3 Lyapunov stability OUTLINE Focus: stability of equilibrium point Hybrid Systems - Lecture n. 3 Lyapunov stability Maria Prandini DEI - Politecnico di Milano E-mail: prandini@elet.polimi.it continuous systems decribed by

More information

Convex Optimization. (EE227A: UC Berkeley) Lecture 28. Suvrit Sra. (Algebra + Optimization) 02 May, 2013

Convex Optimization. (EE227A: UC Berkeley) Lecture 28. Suvrit Sra. (Algebra + Optimization) 02 May, 2013 Convex Optimization (EE227A: UC Berkeley) Lecture 28 (Algebra + Optimization) 02 May, 2013 Suvrit Sra Admin Poster presentation on 10th May mandatory HW, Midterm, Quiz to be reweighted Project final report

More information

Ellipsoidal Mixed-Integer Representability

Ellipsoidal Mixed-Integer Representability Ellipsoidal Mixed-Integer Representability Alberto Del Pia Jeff Poskin September 15, 2017 Abstract Representability results for mixed-integer linear systems play a fundamental role in optimization since

More information

SPECTRAHEDRA. Bernd Sturmfels UC Berkeley

SPECTRAHEDRA. Bernd Sturmfels UC Berkeley SPECTRAHEDRA Bernd Sturmfels UC Berkeley Mathematics Colloquium, North Carolina State University February 5, 2010 Positive Semidefinite Matrices For a real symmetric n n-matrix A the following are equivalent:

More information

Geometric problems. Chapter Projection on a set. The distance of a point x 0 R n to a closed set C R n, in the norm, is defined as

Geometric problems. Chapter Projection on a set. The distance of a point x 0 R n to a closed set C R n, in the norm, is defined as Chapter 8 Geometric problems 8.1 Projection on a set The distance of a point x 0 R n to a closed set C R n, in the norm, is defined as dist(x 0,C) = inf{ x 0 x x C}. The infimum here is always achieved.

More information

EE/ACM Applications of Convex Optimization in Signal Processing and Communications Lecture 17

EE/ACM Applications of Convex Optimization in Signal Processing and Communications Lecture 17 EE/ACM 150 - Applications of Convex Optimization in Signal Processing and Communications Lecture 17 Andre Tkacenko Signal Processing Research Group Jet Propulsion Laboratory May 29, 2012 Andre Tkacenko

More information

6.854J / J Advanced Algorithms Fall 2008

6.854J / J Advanced Algorithms Fall 2008 MIT OpenCourseWare http://ocw.mit.edu 6.85J / 8.5J Advanced Algorithms Fall 008 For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms. 8.5/6.85 Advanced Algorithms

More information

Outline Python, Numpy, and Matplotlib Making Models with Polynomials Making Models with Monte Carlo Error, Accuracy and Convergence Floating Point Mod

Outline Python, Numpy, and Matplotlib Making Models with Polynomials Making Models with Monte Carlo Error, Accuracy and Convergence Floating Point Mod Outline Python, Numpy, and Matplotlib Making Models with Polynomials Making Models with Monte Carlo Error, Accuracy and Convergence Floating Point Modeling the World with Arrays The World in a Vector What

More information

ORF 523 Lecture 9 Spring 2016, Princeton University Instructor: A.A. Ahmadi Scribe: G. Hall Thursday, March 10, 2016

ORF 523 Lecture 9 Spring 2016, Princeton University Instructor: A.A. Ahmadi Scribe: G. Hall Thursday, March 10, 2016 ORF 523 Lecture 9 Spring 2016, Princeton University Instructor: A.A. Ahmadi Scribe: G. Hall Thursday, March 10, 2016 When in doubt on the accuracy of these notes, please cross check with the instructor

More information

arxiv: v1 [math.oc] 14 Oct 2014

arxiv: v1 [math.oc] 14 Oct 2014 arxiv:110.3571v1 [math.oc] 1 Oct 01 An Improved Analysis of Semidefinite Approximation Bound for Nonconvex Nonhomogeneous Quadratic Optimization with Ellipsoid Constraints Yong Hsia a, Shu Wang a, Zi Xu

More information

MEMORIAL UNIVERSITY OF NEWFOUNDLAND

MEMORIAL UNIVERSITY OF NEWFOUNDLAND MEMORIAL UNIVERSITY OF NEWFOUNDLAND DEPARTMENT OF MATHEMATICS AND STATISTICS Section 5. Math 090 Fall 009 SOLUTIONS. a) Using long division of polynomials, we have x + x x x + ) x 4 4x + x + 0x x 4 6x

More information

Modern Optimal Control

Modern Optimal Control Modern Optimal Control Matthew M. Peet Arizona State University Lecture 19: Stabilization via LMIs Optimization Optimization can be posed in functional form: min x F objective function : inequality constraints

More information

May 9, 2014 MATH 408 MIDTERM EXAM OUTLINE. Sample Questions

May 9, 2014 MATH 408 MIDTERM EXAM OUTLINE. Sample Questions May 9, 24 MATH 48 MIDTERM EXAM OUTLINE This exam will consist of two parts and each part will have multipart questions. Each of the 6 questions is worth 5 points for a total of points. The two part of

More information

Lecture 4: January 26

Lecture 4: January 26 10-725/36-725: Conve Optimization Spring 2015 Lecturer: Javier Pena Lecture 4: January 26 Scribes: Vipul Singh, Shinjini Kundu, Chia-Yin Tsai Note: LaTeX template courtesy of UC Berkeley EECS dept. Disclaimer:

More information

Fast Algorithms for SDPs derived from the Kalman-Yakubovich-Popov Lemma

Fast Algorithms for SDPs derived from the Kalman-Yakubovich-Popov Lemma Fast Algorithms for SDPs derived from the Kalman-Yakubovich-Popov Lemma Venkataramanan (Ragu) Balakrishnan School of ECE, Purdue University 8 September 2003 European Union RTN Summer School on Multi-Agent

More information

Notes on the decomposition result of Karlin et al. [2] for the hierarchy of Lasserre by M. Laurent, December 13, 2012

Notes on the decomposition result of Karlin et al. [2] for the hierarchy of Lasserre by M. Laurent, December 13, 2012 Notes on the decomposition result of Karlin et al. [2] for the hierarchy of Lasserre by M. Laurent, December 13, 2012 We present the decomposition result of Karlin et al. [2] for the hierarchy of Lasserre

More information

The maximal stable set problem : Copositive programming and Semidefinite Relaxations

The maximal stable set problem : Copositive programming and Semidefinite Relaxations The maximal stable set problem : Copositive programming and Semidefinite Relaxations Kartik Krishnan Department of Mathematical Sciences Rensselaer Polytechnic Institute Troy, NY 12180 USA kartis@rpi.edu

More information

CONVEX ALGEBRAIC GEOMETRY. Bernd Sturmfels UC Berkeley

CONVEX ALGEBRAIC GEOMETRY. Bernd Sturmfels UC Berkeley CONVEX ALGEBRAIC GEOMETRY Bernd Sturmfels UC Berkeley Multifocal Ellipses Given m points (u 1, v 1 ),...,(u m, v m )intheplaner 2,and aradiusd > 0, their m-ellipse is the convex algebraic curve { (x, y)

More information

SEMIDEFINITE PROGRAM BASICS. Contents

SEMIDEFINITE PROGRAM BASICS. Contents SEMIDEFINITE PROGRAM BASICS BRIAN AXELROD Abstract. A introduction to the basics of Semidefinite programs. Contents 1. Definitions and Preliminaries 1 1.1. Linear Algebra 1 1.2. Convex Analysis (on R n

More information

Robust and Optimal Control, Spring 2015

Robust and Optimal Control, Spring 2015 Robust and Optimal Control, Spring 2015 Instructor: Prof. Masayuki Fujita (S5-303B) G. Sum of Squares (SOS) G.1 SOS Program: SOS/PSD and SDP G.2 Duality, valid ineqalities and Cone G.3 Feasibility/Optimization

More information

Work in Progress: Reachability Analysis for Time-triggered Hybrid Systems, The Platoon Benchmark

Work in Progress: Reachability Analysis for Time-triggered Hybrid Systems, The Platoon Benchmark Work in Progress: Reachability Analysis for Time-triggered Hybrid Systems, The Platoon Benchmark François Bidet LIX, École polytechnique, CNRS Université Paris-Saclay 91128 Palaiseau, France francois.bidet@polytechnique.edu

More information

Module 04 Optimization Problems KKT Conditions & Solvers

Module 04 Optimization Problems KKT Conditions & Solvers Module 04 Optimization Problems KKT Conditions & Solvers Ahmad F. Taha EE 5243: Introduction to Cyber-Physical Systems Email: ahmad.taha@utsa.edu Webpage: http://engineering.utsa.edu/ taha/index.html September

More information

Summer School: Semidefinite Optimization

Summer School: Semidefinite Optimization Summer School: Semidefinite Optimization Christine Bachoc Université Bordeaux I, IMB Research Training Group Experimental and Constructive Algebra Haus Karrenberg, Sept. 3 - Sept. 7, 2012 Duality Theory

More information

EE 227A: Convex Optimization and Applications October 14, 2008

EE 227A: Convex Optimization and Applications October 14, 2008 EE 227A: Convex Optimization and Applications October 14, 2008 Lecture 13: SDP Duality Lecturer: Laurent El Ghaoui Reading assignment: Chapter 5 of BV. 13.1 Direct approach 13.1.1 Primal problem Consider

More information

College Prep Algebra III Course #340. Course of Study. Findlay City School

College Prep Algebra III Course #340. Course of Study. Findlay City School College Prep Algebra III Course #340 Course of Study Findlay City School Algebra III Table of Contents 1. Findlay City Schools Mission Statement and Beliefs 2. Algebra III Curriculum Map 3. Algebra III

More information

Math/Phys/Engr 428, Math 529/Phys 528 Numerical Methods - Summer Homework 3 Due: Tuesday, July 3, 2018

Math/Phys/Engr 428, Math 529/Phys 528 Numerical Methods - Summer Homework 3 Due: Tuesday, July 3, 2018 Math/Phys/Engr 428, Math 529/Phys 528 Numerical Methods - Summer 28. (Vector and Matrix Norms) Homework 3 Due: Tuesday, July 3, 28 Show that the l vector norm satisfies the three properties (a) x for x

More information

Iterative solvers for linear equations

Iterative solvers for linear equations Spectral Graph Theory Lecture 23 Iterative solvers for linear equations Daniel A. Spielman November 26, 2018 23.1 Overview In this and the next lecture, I will discuss iterative algorithms for solving

More information

Quantum Annealing with continuous variables: Low-Rank Matrix Factorization. Daniele Ottaviani CINECA. Alfonso Amendola ENI

Quantum Annealing with continuous variables: Low-Rank Matrix Factorization. Daniele Ottaviani CINECA. Alfonso Amendola ENI Quantum Annealing with continuous variables: Low-Rank Matrix Factorization Daniele Ottaviani CINECA Alfonso Amendola ENI Qubits Europe 2019 Milan, 25-27/03/2019 QUBO Problems with real variables We define

More information

Global Optimization of Polynomials

Global Optimization of Polynomials Semidefinite Programming Lecture 9 OR 637 Spring 2008 April 9, 2008 Scribe: Dennis Leventhal Global Optimization of Polynomials Recall we were considering the problem min z R n p(z) where p(z) is a degree

More information

Fall River Joint Unified School District

Fall River Joint Unified School District 1 Fall River Joint Unified School District McDougal Littell Math Algebra 2 Pacing Guide Begin First Semester Use the state released STAR test questions as warm-ups 1.1, 1.2, 1.3 1.4, 1.5, 1.6 3 Chapter

More information

Relaxations and Randomized Methods for Nonconvex QCQPs

Relaxations and Randomized Methods for Nonconvex QCQPs Relaxations and Randomized Methods for Nonconvex QCQPs Alexandre d Aspremont, Stephen Boyd EE392o, Stanford University Autumn, 2003 Introduction While some special classes of nonconvex problems can be

More information

More General Functions Is this technique limited to the monomials {1, x, x 2, x 3,...}?

More General Functions Is this technique limited to the monomials {1, x, x 2, x 3,...}? More General Functions Is this technique limited to the monomials {1, x, x 2, x 3,...}? Interpolation with General Sets of Functions For a general set of functions {ϕ 1,..., ϕ n }, solve the linear system

More information

The Ellipsoid (Kachiyan) Method

The Ellipsoid (Kachiyan) Method Yinyu Ye, MS&E, Stanford MS&E310 Lecture Note: Ellipsoid Method 1 The Ellipsoid (Kachiyan) Method Yinyu Ye Department of Management Science and Engineering Stanford University Stanford, CA 94305, U.S.A.

More information

15. Conic optimization

15. Conic optimization L. Vandenberghe EE236C (Spring 216) 15. Conic optimization conic linear program examples modeling duality 15-1 Generalized (conic) inequalities Conic inequality: a constraint x K where K is a convex cone

More information

Introduction and Math Preliminaries

Introduction and Math Preliminaries Introduction and Math Preliminaries Yinyu Ye Department of Management Science and Engineering Stanford University Stanford, CA 94305, U.S.A. http://www.stanford.edu/ yyye Appendices A, B, and C, Chapter

More information

Identifying Redundant Linear Constraints in Systems of Linear Matrix. Inequality Constraints. Shafiu Jibrin

Identifying Redundant Linear Constraints in Systems of Linear Matrix. Inequality Constraints. Shafiu Jibrin Identifying Redundant Linear Constraints in Systems of Linear Matrix Inequality Constraints Shafiu Jibrin (shafiu.jibrin@nau.edu) Department of Mathematics and Statistics Northern Arizona University, Flagstaff

More information

The Geometry of Semidefinite Programming. Bernd Sturmfels UC Berkeley

The Geometry of Semidefinite Programming. Bernd Sturmfels UC Berkeley The Geometry of Semidefinite Programming Bernd Sturmfels UC Berkeley Positive Semidefinite Matrices For a real symmetric n n-matrix A the following are equivalent: All n eigenvalues of A are positive real

More information

The Trust Region Subproblem with Non-Intersecting Linear Constraints

The Trust Region Subproblem with Non-Intersecting Linear Constraints The Trust Region Subproblem with Non-Intersecting Linear Constraints Samuel Burer Boshi Yang February 21, 2013 Abstract This paper studies an extended trust region subproblem (etrs in which the trust region

More information

The Q-parametrization (Youla) Lecture 13: Synthesis by Convex Optimization. Lecture 13: Synthesis by Convex Optimization. Example: Spring-mass System

The Q-parametrization (Youla) Lecture 13: Synthesis by Convex Optimization. Lecture 13: Synthesis by Convex Optimization. Example: Spring-mass System The Q-parametrization (Youla) Lecture 3: Synthesis by Convex Optimization controlled variables z Plant distubances w Example: Spring-mass system measurements y Controller control inputs u Idea for lecture

More information

Lab Objective: Introduce some of the basic optimization functions available in the CVXOPT package

Lab Objective: Introduce some of the basic optimization functions available in the CVXOPT package Lab 14 CVXOPT Lab Objective: Introduce some of the basic optimization functions available in the CVXOPT package Notebox: CVXOPT is not part of the standard library, nor is it included in the Anaconda distribution.

More information

An Algorithm for Solving the Convex Feasibility Problem With Linear Matrix Inequality Constraints and an Implementation for Second-Order Cones

An Algorithm for Solving the Convex Feasibility Problem With Linear Matrix Inequality Constraints and an Implementation for Second-Order Cones An Algorithm for Solving the Convex Feasibility Problem With Linear Matrix Inequality Constraints and an Implementation for Second-Order Cones Bryan Karlovitz July 19, 2012 West Chester University of Pennsylvania

More information

Vector Barrier Certificates and Comparison Systems

Vector Barrier Certificates and Comparison Systems Vector Barrier Certificates and Comparison Systems Andrew Sogokon 1 Khalil Ghorbal 2 Yong Kiam Tan 1 André Platzer 1 1 - Carnegie Mellon University, Pittsburgh, USA 2 - Inria, Rennes, France 16 July 2018,

More information

Math 205, Summer I, Week 3a (continued): Chapter 4, Sections 5 and 6. Week 3b. Chapter 4, [Sections 7], 8 and 9

Math 205, Summer I, Week 3a (continued): Chapter 4, Sections 5 and 6. Week 3b. Chapter 4, [Sections 7], 8 and 9 Math 205, Summer I, 2016 Week 3a (continued): Chapter 4, Sections 5 and 6. Week 3b Chapter 4, [Sections 7], 8 and 9 4.5 Linear Dependence, Linear Independence 4.6 Bases and Dimension 4.7 Change of Basis,

More information

Strong Formulations for Convex Functions over Non-Convex Domains

Strong Formulations for Convex Functions over Non-Convex Domains Strong Formulations for Convex Functions over Non-Convex Domains Daniel Bienstock and Alexander Michalka University JMM 2013 Introduction Generic Problem: min Q(x), s.t. x F, Introduction Generic Problem:

More information

LMI Methods in Optimal and Robust Control

LMI Methods in Optimal and Robust Control LMI Methods in Optimal and Robust Control Matthew M. Peet Arizona State University Lecture 02: Optimization (Convex and Otherwise) What is Optimization? An Optimization Problem has 3 parts. x F f(x) :

More information

Lecture 6 - Convex Sets

Lecture 6 - Convex Sets Lecture 6 - Convex Sets Definition A set C R n is called convex if for any x, y C and λ [0, 1], the point λx + (1 λ)y belongs to C. The above definition is equivalent to saying that for any x, y C, the

More information

8. Geometric problems

8. Geometric problems 8. Geometric problems Convex Optimization Boyd & Vandenberghe extremal volume ellipsoids centering classification placement and facility location 8 Minimum volume ellipsoid around a set Löwner-John ellipsoid

More information

Research Reports on Mathematical and Computing Sciences

Research Reports on Mathematical and Computing Sciences ISSN 1342-284 Research Reports on Mathematical and Computing Sciences Exploiting Sparsity in Linear and Nonlinear Matrix Inequalities via Positive Semidefinite Matrix Completion Sunyoung Kim, Masakazu

More information

Hybrid Systems Course Lyapunov stability

Hybrid Systems Course Lyapunov stability Hybrid Systems Course Lyapunov stability OUTLINE Focus: stability of an equilibrium point continuous systems decribed by ordinary differential equations (brief review) hybrid automata OUTLINE Focus: stability

More information

6-1 The Positivstellensatz P. Parrilo and S. Lall, ECC

6-1 The Positivstellensatz P. Parrilo and S. Lall, ECC 6-1 The Positivstellensatz P. Parrilo and S. Lall, ECC 2003 2003.09.02.10 6. The Positivstellensatz Basic semialgebraic sets Semialgebraic sets Tarski-Seidenberg and quantifier elimination Feasibility

More information

Semidefinite and Second Order Cone Programming Seminar Fall 2001 Lecture 5

Semidefinite and Second Order Cone Programming Seminar Fall 2001 Lecture 5 Semidefinite and Second Order Cone Programming Seminar Fall 2001 Lecture 5 Instructor: Farid Alizadeh Scribe: Anton Riabov 10/08/2001 1 Overview We continue studying the maximum eigenvalue SDP, and generalize

More information

Equivariant semidefinite lifts and sum of squares hierarchies

Equivariant semidefinite lifts and sum of squares hierarchies Equivariant semidefinite lifts and sum of squares hierarchies Pablo A. Parrilo Laboratory for Information and Decision Systems Electrical Engineering and Computer Science Massachusetts Institute of Technology

More information

m i=1 c ix i i=1 F ix i F 0, X O.

m i=1 c ix i i=1 F ix i F 0, X O. What is SDP? for a beginner of SDP Copyright C 2005 SDPA Project 1 Introduction This note is a short course for SemiDefinite Programming s SDP beginners. SDP has various applications in, for example, control

More information

CS 542G: Robustifying Newton, Constraints, Nonlinear Least Squares

CS 542G: Robustifying Newton, Constraints, Nonlinear Least Squares CS 542G: Robustifying Newton, Constraints, Nonlinear Least Squares Robert Bridson October 29, 2008 1 Hessian Problems in Newton Last time we fixed one of plain Newton s problems by introducing line search

More information

On self-concordant barriers for generalized power cones

On self-concordant barriers for generalized power cones On self-concordant barriers for generalized power cones Scott Roy Lin Xiao January 30, 2018 Abstract In the study of interior-point methods for nonsymmetric conic optimization and their applications, Nesterov

More information

Integer Programming ISE 418. Lecture 12. Dr. Ted Ralphs

Integer Programming ISE 418. Lecture 12. Dr. Ted Ralphs Integer Programming ISE 418 Lecture 12 Dr. Ted Ralphs ISE 418 Lecture 12 1 Reading for This Lecture Nemhauser and Wolsey Sections II.2.1 Wolsey Chapter 9 ISE 418 Lecture 12 2 Generating Stronger Valid

More information

Real solving polynomial equations with semidefinite programming

Real solving polynomial equations with semidefinite programming .5cm. Real solving polynomial equations with semidefinite programming Jean Bernard Lasserre - Monique Laurent - Philipp Rostalski LAAS, Toulouse - CWI, Amsterdam - ETH, Zürich LAW 2008 Real solving polynomial

More information

Program verification

Program verification Program verification Data-flow analyses, numerical domains Laure Gonnord and David Monniaux University of Lyon / LIP September 29, 2015 1 / 75 Context Program Verification / Code generation: Variables

More information

CS264: Beyond Worst-Case Analysis Lecture #11: LP Decoding

CS264: Beyond Worst-Case Analysis Lecture #11: LP Decoding CS264: Beyond Worst-Case Analysis Lecture #11: LP Decoding Tim Roughgarden October 29, 2014 1 Preamble This lecture covers our final subtopic within the exact and approximate recovery part of the course.

More information

Lecture 1. 1 Conic programming. MA 796S: Convex Optimization and Interior Point Methods October 8, Consider the conic program. min.

Lecture 1. 1 Conic programming. MA 796S: Convex Optimization and Interior Point Methods October 8, Consider the conic program. min. MA 796S: Convex Optimization and Interior Point Methods October 8, 2007 Lecture 1 Lecturer: Kartik Sivaramakrishnan Scribe: Kartik Sivaramakrishnan 1 Conic programming Consider the conic program min s.t.

More information

SDP Relaxations for MAXCUT

SDP Relaxations for MAXCUT SDP Relaxations for MAXCUT from Random Hyperplanes to Sum-of-Squares Certificates CATS @ UMD March 3, 2017 Ahmed Abdelkader MAXCUT SDP SOS March 3, 2017 1 / 27 Overview 1 MAXCUT, Hardness and UGC 2 LP

More information

MIT Algebraic techniques and semidefinite optimization February 14, Lecture 3

MIT Algebraic techniques and semidefinite optimization February 14, Lecture 3 MI 6.97 Algebraic techniques and semidefinite optimization February 4, 6 Lecture 3 Lecturer: Pablo A. Parrilo Scribe: Pablo A. Parrilo In this lecture, we will discuss one of the most important applications

More information

4. Convex optimization problems

4. Convex optimization problems Convex Optimization Boyd & Vandenberghe 4. Convex optimization problems optimization problem in standard form convex optimization problems quasiconvex optimization linear optimization quadratic optimization

More information

SPECTRA - a Maple library for solving linear matrix inequalities in exact arithmetic

SPECTRA - a Maple library for solving linear matrix inequalities in exact arithmetic SPECTRA - a Maple library for solving linear matrix inequalities in exact arithmetic Didier Henrion Simone Naldi Mohab Safey El Din Version 1.0 of November 5, 2016 Abstract This document briefly describes

More information

Problem 1 Convexity Property

Problem 1 Convexity Property THE UNIVERSITY OF TEXAS AT SAN ANTONIO EE 5243 INTRODUCTION TO CYBER-PHYSICAL SYSTEMS H O M E W O R K # 4 Hafez Bazrafshan October 1, 2015 To facilitate checking, questions are color-coded blue and pertinent

More information

Math 203A - Solution Set 1

Math 203A - Solution Set 1 Math 203A - Solution Set 1 Problem 1. Show that the Zariski topology on A 2 is not the product of the Zariski topologies on A 1 A 1. Answer: Clearly, the diagonal Z = {(x, y) : x y = 0} A 2 is closed in

More information

FRTN10 Multivariable Control, Lecture 13. Course outline. The Q-parametrization (Youla) Example: Spring-mass System

FRTN10 Multivariable Control, Lecture 13. Course outline. The Q-parametrization (Youla) Example: Spring-mass System FRTN Multivariable Control, Lecture 3 Anders Robertsson Automatic Control LTH, Lund University Course outline The Q-parametrization (Youla) L-L5 Purpose, models and loop-shaping by hand L6-L8 Limitations

More information

Continuous Optimisation, Chpt 7: Proper Cones

Continuous Optimisation, Chpt 7: Proper Cones Continuous Optimisation, Chpt 7: Proper Cones Peter J.C. Dickinson DMMP, University of Twente p.j.c.dickinson@utwente.nl http://dickinson.website/teaching/2017co.html version: 10/11/17 Monday 13th November

More information

Minimum Ellipsoid Bounds for Solutions of Polynomial Systems via Sum of Squares

Minimum Ellipsoid Bounds for Solutions of Polynomial Systems via Sum of Squares Journal of Global Optimization (2005) 33: 511 525 Springer 2005 DOI 10.1007/s10898-005-2099-2 Minimum Ellipsoid Bounds for Solutions of Polynomial Systems via Sum of Squares JIAWANG NIE 1 and JAMES W.

More information

MCE/EEC 647/747: Robot Dynamics and Control. Lecture 8: Basic Lyapunov Stability Theory

MCE/EEC 647/747: Robot Dynamics and Control. Lecture 8: Basic Lyapunov Stability Theory MCE/EEC 647/747: Robot Dynamics and Control Lecture 8: Basic Lyapunov Stability Theory Reading: SHV Appendix Mechanical Engineering Hanz Richter, PhD MCE503 p.1/17 Stability in the sense of Lyapunov A

More information

Algebra II. A2.1.1 Recognize and graph various types of functions, including polynomial, rational, and algebraic functions.

Algebra II. A2.1.1 Recognize and graph various types of functions, including polynomial, rational, and algebraic functions. Standard 1: Relations and Functions Students graph relations and functions and find zeros. They use function notation and combine functions by composition. They interpret functions in given situations.

More information

Numerical optimization

Numerical optimization Numerical optimization Lecture 4 Alexander & Michael Bronstein tosca.cs.technion.ac.il/book Numerical geometry of non-rigid shapes Stanford University, Winter 2009 2 Longest Slowest Shortest Minimal Maximal

More information

Constrained Optimization and Lagrangian Duality

Constrained Optimization and Lagrangian Duality CIS 520: Machine Learning Oct 02, 2017 Constrained Optimization and Lagrangian Duality Lecturer: Shivani Agarwal Disclaimer: These notes are designed to be a supplement to the lecture. They may or may

More information

Lecture 5. 1 Goermans-Williamson Algorithm for the maxcut problem

Lecture 5. 1 Goermans-Williamson Algorithm for the maxcut problem Math 280 Geometric and Algebraic Ideas in Optimization April 26, 2010 Lecture 5 Lecturer: Jesús A De Loera Scribe: Huy-Dung Han, Fabio Lapiccirella 1 Goermans-Williamson Algorithm for the maxcut problem

More information

Miller Objectives Alignment Math

Miller Objectives Alignment Math Miller Objectives Alignment Math 1050 1 College Algebra Course Objectives Spring Semester 2016 1. Use algebraic methods to solve a variety of problems involving exponential, logarithmic, polynomial, and

More information

Lecture 8 : Eigenvalues and Eigenvectors

Lecture 8 : Eigenvalues and Eigenvectors CPS290: Algorithmic Foundations of Data Science February 24, 2017 Lecture 8 : Eigenvalues and Eigenvectors Lecturer: Kamesh Munagala Scribe: Kamesh Munagala Hermitian Matrices It is simpler to begin with

More information

Lecture: Convex Optimization Problems

Lecture: Convex Optimization Problems 1/36 Lecture: Convex Optimization Problems http://bicmr.pku.edu.cn/~wenzw/opt-2015-fall.html Acknowledgement: this slides is based on Prof. Lieven Vandenberghe s lecture notes Introduction 2/36 optimization

More information

Mathematics Syllabus UNIT I ALGEBRA : 1. SETS, RELATIONS AND FUNCTIONS

Mathematics Syllabus UNIT I ALGEBRA : 1. SETS, RELATIONS AND FUNCTIONS Mathematics Syllabus UNIT I ALGEBRA : 1. SETS, RELATIONS AND FUNCTIONS (i) Sets and their Representations: Finite and Infinite sets; Empty set; Equal sets; Subsets; Power set; Universal set; Venn Diagrams;

More information

A strongly polynomial algorithm for linear systems having a binary solution

A strongly polynomial algorithm for linear systems having a binary solution A strongly polynomial algorithm for linear systems having a binary solution Sergei Chubanov Institute of Information Systems at the University of Siegen, Germany e-mail: sergei.chubanov@uni-siegen.de 7th

More information

Approximation of the joint spectral radius of a set of matrices using sum of squares

Approximation of the joint spectral radius of a set of matrices using sum of squares Approximation of the joint spectral radius of a set of matrices using sum of squares Pablo A. Parrilo and Ali Jadbabaie 2 Laboratory for Information and Decision Systems Massachusetts Institute of Technology,

More information

Example: feasibility. Interpretation as formal proof. Example: linear inequalities and Farkas lemma

Example: feasibility. Interpretation as formal proof. Example: linear inequalities and Farkas lemma 4-1 Algebra and Duality P. Parrilo and S. Lall 2006.06.07.01 4. Algebra and Duality Example: non-convex polynomial optimization Weak duality and duality gap The dual is not intrinsic The cone of valid

More information

4. Algebra and Duality

4. Algebra and Duality 4-1 Algebra and Duality P. Parrilo and S. Lall, CDC 2003 2003.12.07.01 4. Algebra and Duality Example: non-convex polynomial optimization Weak duality and duality gap The dual is not intrinsic The cone

More information

Solving Systems of Polynomial Equations

Solving Systems of Polynomial Equations Solving Systems of Polynomial Equations David Eberly, Geometric Tools, Redmond WA 98052 https://www.geometrictools.com/ This work is licensed under the Creative Commons Attribution 4.0 International License.

More information

The Q Method for Symmetric Cone Programmin

The Q Method for Symmetric Cone Programmin The Q Method for Symmetric Cone Programming The Q Method for Symmetric Cone Programmin Farid Alizadeh and Yu Xia alizadeh@rutcor.rutgers.edu, xiay@optlab.mcma Large Scale Nonlinear and Semidefinite Progra

More information

Least Squares Fitting of Data by Linear or Quadratic Structures

Least Squares Fitting of Data by Linear or Quadratic Structures Least Squares Fitting of Data by Linear or Quadratic Structures David Eberly, Geometric Tools, Redmond WA 98052 https://www.geometrictools.com/ This work is licensed under the Creative Commons Attribution

More information