Certified Roundoff Error Bounds using Semidefinite Programming

Size: px
Start display at page:

Download "Certified Roundoff Error Bounds using Semidefinite Programming"

Transcription

1 Certified Roundoff Error Bounds using Semidefinite Programming Victor Magron, CNRS VERIMAG joint work with G. Constantinides and A. Donaldson INRIA Mescal Team Seminar 19 November 2015 Victor Magron Certified Roundoff Error Bounds using Semidefinite Programming 1 / 27

2 Errors and Proofs Mathematicians and Computer Scientists want to eliminate all the uncertainties on their results. Why? Victor Magron Certified Roundoff Error Bounds using Semidefinite Programming 2 / 27

3 Errors and Proofs Mathematicians and Computer Scientists want to eliminate all the uncertainties on their results. Why? M. Lecat, Erreurs des Mathématiciens des origines à nos jours, ; 130 pages of errors! (Euler, Fermat, Sylvester,... ) Victor Magron Certified Roundoff Error Bounds using Semidefinite Programming 2 / 27

4 Errors and Proofs Mathematicians and Computer Scientists want to eliminate all the uncertainties on their results. Why? M. Lecat, Erreurs des Mathématiciens des origines à nos jours, ; 130 pages of errors! (Euler, Fermat, Sylvester,... ) Ariane 5 launch failure, Pentium FDIV bug Victor Magron Certified Roundoff Error Bounds using Semidefinite Programming 2 / 27

5 Errors and Proofs GUARANTEED OPTIMIZATION Input : Linear problem (LP), geometric, semidefinite (SDP) Output : solution + certificate numeric-symbolic formal Victor Magron Certified Roundoff Error Bounds using Semidefinite Programming 3 / 27

6 Errors and Proofs GUARANTEED OPTIMIZATION Input : Linear problem (LP), geometric, semidefinite (SDP) Output : solution + certificate numeric-symbolic formal VERIFICATION OF CRITICAL SYSTEMS Reliable software/hardware embedded codes Aerospace control molecular biology, robotics, code synthesis,... Victor Magron Certified Roundoff Error Bounds using Semidefinite Programming 3 / 27

7 Errors and Proofs GUARANTEED OPTIMIZATION Input : Linear problem (LP), geometric, semidefinite (SDP) Output : solution + certificate numeric-symbolic formal VERIFICATION OF CRITICAL SYSTEMS Reliable software/hardware embedded codes Aerospace control molecular biology, robotics, code synthesis,... Efficient Verification of Nonlinear Systems Automated precision tuning of systems/programs analysis/synthesis Efficiency sparsity correlation patterns Certified approximation algorithms Victor Magron Certified Roundoff Error Bounds using Semidefinite Programming 3 / 27

8 Rounding Error Bounds Real : p(x) := x 1 x 2 + x 3 Floating-point : ˆp(x, e) := [x 1 x 2 (1 + e 1 ) + x 3 ](1 + e 2 ) Input variable uncertainties x S Finite precision bounds over e e i 2 m m = 24 (single) or 53 (double) Guarantees on absolute round-off error ˆp p? Victor Magron Certified Roundoff Error Bounds using Semidefinite Programming 4 / 27

9 Nonlinear Programs Polynomials programs : +,, x 2 x 5 + x 3 x 6 + x 1 ( x 1 + x 2 + x 3 x 4 + x 5 + x 6 ) Victor Magron Certified Roundoff Error Bounds using Semidefinite Programming 5 / 27

10 Nonlinear Programs Polynomials programs : +,, x 2 x 5 + x 3 x 6 + x 1 ( x 1 + x 2 + x 3 x 4 + x 5 + x 6 ) Semialgebraic programs:,, /, sup, inf 4x 1 + x 1.11 Victor Magron Certified Roundoff Error Bounds using Semidefinite Programming 5 / 27

11 Nonlinear Programs Polynomials programs : +,, x 2 x 5 + x 3 x 6 + x 1 ( x 1 + x 2 + x 3 x 4 + x 5 + x 6 ) Semialgebraic programs:,, /, sup, inf 4x 1 + x 1.11 Transcendental programs: arctan, exp, log,... log(1 + exp(x)) Victor Magron Certified Roundoff Error Bounds using Semidefinite Programming 5 / 27

12 Existing Frameworks Classical methods: Abstract domains [Goubault-Putot 11] FLUCTUAT: intervals, octagons, zonotopes Interval arithmetic [Daumas-Melquiond 10] GAPPA: interface with COQ proof assistant Victor Magron Certified Roundoff Error Bounds using Semidefinite Programming 6 / 27

13 Existing Frameworks Recent progress: Affine arithmetic + SMT [Darulova 14] rosa: sound compiler for reals (in SCALA) Symbolic Taylor expansions [Solovyev 15] FPTaylor: certified optimization (in OCAML and HOL-LIGHT) Victor Magron Certified Roundoff Error Bounds using Semidefinite Programming 6 / 27

14 Contributions Maximal Rounding error of the program implementation of f : r := max ˆf (x, e) f (x) Decomposition: linear term l w.r.t. e + nonlinear term h r max l(x, e) + max h(x, e) Sparse SDP bounds for l Coarse bound of h with interval arithmetic Victor Magron Certified Roundoff Error Bounds using Semidefinite Programming 7 / 27

15 Contributions 1 Comparison with SMT and linear/affine arithmetic: More Efficient optimization + Tight upper bounds 2 Extensions to transcendental/conditional programs 3 Formal verification of SDP bounds 4 Open source tool Real2Float (in OCAML and COQ) Victor Magron Certified Roundoff Error Bounds using Semidefinite Programming 7 / 27

16 Introduction Semidefinite Programming for Polynomial Optimization Rounding Error Bounds with Sparse SDP Conclusion

17 What is Semidefinite Programming? Linear Programming (LP): min z c z s.t. A z d. Linear cost c Linear inequalities i A ij z j d i Polyhedron Victor Magron Certified Roundoff Error Bounds using Semidefinite Programming 8 / 27

18 What is Semidefinite Programming? Semidefinite Programming (SDP): min z s.t. c z F i z i F 0. i Linear cost c Symmetric matrices F 0, F i Linear matrix inequalities F 0 (F has nonnegative eigenvalues) Spectrahedron Victor Magron Certified Roundoff Error Bounds using Semidefinite Programming 9 / 27

19 What is Semidefinite Programming? Semidefinite Programming (SDP): min z s.t. c z F i z i F 0, A z = d. i Linear cost c Symmetric matrices F 0, F i Linear matrix inequalities F 0 (F has nonnegative eigenvalues) Spectrahedron Victor Magron Certified Roundoff Error Bounds using Semidefinite Programming 10 / 27

20 Applications of SDP Combinatorial optimization Control theory Matrix completion Unique Games Conjecture (Khot 02) : A single concrete algorithm provides optimal guarantees among all efficient algorithms for a large class of computational problems. (Barak and Steurer survey at ICM 14) Solving polynomial optimization (Lasserre 01) Victor Magron Certified Roundoff Error Bounds using Semidefinite Programming 11 / 27

21 SDP for Polynomial Optimization Prove polynomial inequalities with SDP: Find z s.t. p(a, b) = p(a, b) := a 2 2ab + b 2 0. ( a ) ( ) z 1 z 2 b z 2 z 3 }{{} 0 ( ) a b Find z s.t. a 2 2ab + b 2 = z 1 a 2 + 2z 2 ab + z 3 b 2 (A z = d) ( ) ( ) ( ) ( ) ( ) z1 z = z z 2 z z z }{{}}{{}}{{}}{{} F 1 F 2 F 3 F 0. Victor Magron Certified Roundoff Error Bounds using Semidefinite Programming 12 / 27

22 SDP for Polynomial Optimization Choose a cost c e.g. (1, 0, 1) and solve: min z s.t. ( ) z1 z Solution 2 = z 2 z 3 c z F i z i F 0, A z = d. i ( ) (eigenvalues 0 and 1) 1 1 a 2 2ab + b 2 = ( a b ) ( ) ( ) 1 1 a = (a b) b }{{} 0 Solving SDP = Finding SUMS OF SQUARES certificates Victor Magron Certified Roundoff Error Bounds using Semidefinite Programming 13 / 27

23 SDP for Polynomial Optimization General case: Semialgebraic set S := {x R n : g 1 (x) 0,..., g m (x) 0} p := min p(x): NP hard x S Sums of squares (SOS) Σ[x] (e.g. (x 1 x 2 ) 2 ) Q(S) := { } σ 0 (x) + m j=1 σ j(x)g j (x), with σ j Σ[x] Fix the degree 2k of sums of squares Q k (S) := Q(S) R 2k [x] Victor Magron Certified Roundoff Error Bounds using Semidefinite Programming 14 / 27

24 SDP for Polynomial Optimization Hierarchy { of SDP relaxations: } λ k := sup λ : p λ Q k (S) λ Convergence guarantees λ k p [Lasserre 01] Can be computed with SDP solvers (CSDP, SDPA) No Free Lunch Rule: ( n+2k ) SDP variables n Extension to semialgebraic functions r(x) = p(x)/ q(x) [Lasserre-Putinar 10] Victor Magron Certified Roundoff Error Bounds using Semidefinite Programming 15 / 27

25 Sparse SDP Optimization [Waki, Lasserre 06] Correlative sparsity pattern (csp) of variables x 2 x 5 + x 3 x 6 x 2 x 3 x 5 x 6 + x 1 ( x 1 + x 2 + x 3 x 4 + x 5 + x 6 ) Maximal cliques C 1,..., C l 2 Average size κ ( κ+2k κ ) variables C 1 := {1, 4} C 2 := {1, 2, 3, 5} C 3 := {1, 3, 5, 6} Dense SDP: 210 variables Sparse SDP: 115 variables Victor Magron Certified Roundoff Error Bounds using Semidefinite Programming 16 / 27

26 Introduction Semidefinite Programming for Polynomial Optimization Rounding Error Bounds with Sparse SDP Conclusion

27 Polynomial Programs Input: exact f (x), floating-point ˆf (x, e), x S, e i 2 m Output: Bound for f ˆf 1: Error r(x, e) := f (x) ˆf (x, e) = r α (e)x α α 2: Decompose r(x, e) = l(x, e) + h(x, e), l linear in e 3: l(x, e) = n i=0 s i(x)e i 4: Maximal cliques correspond to {x, e 1 },..., {x, e n } 5: Bound l(x, e) with sparse SDP relaxations (and h with IA) Dense relaxation: ( n+n +2k n+n ) SDP variables Sparse relaxation: n ( n+1+2k n+1 ) SDP variables Victor Magron Certified Roundoff Error Bounds using Semidefinite Programming 17 / 27

28 Preliminary Comparisons f (x) := x 2 x 5 + x 3 x 6 x 2 x 3 x 5 x 6 + x 1 ( x 1 + x 2 + x 3 x 4 + x 5 + x 6 ) x [4.00, 6.36] 6, e [ ɛ, ɛ] 15, ɛ = 2 24 Dense SDP: ( ) = variables Out of memory Sparse SDP Real2Float tool: 15( ) = ɛ Interval arithmetic: 2023ɛ (17 less CPU) Symbolic Taylor FPTaylor tool: 936ɛ (16.3 more CPU) SMT-based rosa tool: 789ɛ (4.6 more CPU) Victor Magron Certified Roundoff Error Bounds using Semidefinite Programming 18 / 27

29 Preliminary Comparisons 1, ɛ ɛ 789ɛ Error Bound (ɛ) Real2Float rosa CPU Time FPTaylor Victor Magron Certified Roundoff Error Bounds using Semidefinite Programming 18 / 27

30 Extensions: Transcendental Programs Given K a compact set and f a transcendental function, bound f = inf x K f (x) and prove f 0 f is under-approximated by a semialgebraic function f sa Reduce the problem f sa := inf x K f sa (x) to a polynomial optimization problem (POP) Victor Magron Certified Roundoff Error Bounds using Semidefinite Programming 19 / 27

31 Extensions: Transcendental Programs Approximation theory: Chebyshev/Taylor models mandatory for non-polynomial problems hard to combine with Sum-of-Squares techniques (degree of approximation) Victor Magron Certified Roundoff Error Bounds using Semidefinite Programming 19 / 27

32 Maxplus Approximations Initially introduced to solve Optimal Control Problems [Fleming-McEneaney 00] Curse of dimensionality reduction [McEaneney Kluberg, Gaubert-McEneaney-Qu 11, Qu 13]. Allowed to solve instances of dim up to 15 (inaccessible by grid methods) In our context: approximate transcendental functions Victor Magron Certified Roundoff Error Bounds using Semidefinite Programming 20 / 27

33 Maxplus Approximations Definition Let γ 0. A function φ : R n R is said to be γ-semiconvex if the function x φ(x) + γ 2 x 2 2 is convex. y par + a 1 par + a 2 arctan par a 2 m a 1 a 2 M a par a 1 Victor Magron Certified Roundoff Error Bounds using Semidefinite Programming 20 / 27

34 Maxplus Approximations Exact parsimonious maxplus representations y a Victor Magron Certified Roundoff Error Bounds using Semidefinite Programming 21 / 27

35 Maxplus Approximations Exact parsimonious maxplus representations y a Victor Magron Certified Roundoff Error Bounds using Semidefinite Programming 21 / 27

36 Extensions: Programs with Conditionals if (p(x) 0) f (x); else g(x); DIVERGENCE PATH ERROR: r := max{ } max ˆf (x, e) g(x) p(x) 0,p(x,e) 0 max ĝ(x, e) f (x) p(x) 0,p(x,e) 0 max ˆf (x, e) f (x) p(x) 0,p(x,e) 0 max ĝ(x, e) g(x) p(x) 0,p(x,e) 0 Victor Magron Certified Roundoff Error Bounds using Semidefinite Programming 22 / 27

37 Benchmarks Doppler 5,000 4,477ɛ u [ 100, 100] v [20, 20000] T [ 30, 50] Error Bound (ɛ) 4,000 3,000 2,000 1,415ɛ 2,567ɛ let t 1 = T in t 1 v (t 1 + u) 2 1,000 0 FPTaylor Real2Float rosa CPU Time Victor Magron Certified Roundoff Error Bounds using Semidefinite Programming 23 / 27

38 Benchmarks Kepler ,509ɛ x [4, 6.36] 6 x 1 x 4 ( x 1 + x 2 + x 3 x 4 +x 5 + x 6 ) + x 2 x 5 (x 1 x 2 +x 3 + x 4 x 5 + x 6 ) +x 3 x 6 (x 1 + x 2 x 3 +x 4 + x 5 x 6 ) x 2 x 3 x 4 x 1 x 3 x 5 x 1 x 2 x 6 x 4 x 5 x 6 Error Bound (ɛ) ,114ɛ Real2Float FPTaylor CPU Time 19,456ɛ rosa Victor Magron Certified Roundoff Error Bounds using Semidefinite Programming 24 / 27

39 Benchmarks verhulst ɛ x [0.1, 0.3] 4x 1 + x 1.11 Error Bound (ɛ) ɛ 3.16ɛ 0 Real2Float FPTaylor rosa CPU Time Victor Magron Certified Roundoff Error Bounds using Semidefinite Programming 25 / 27

40 Benchmarks 20 logexp x [ 8, 8] log(1 + exp(x)) Error Bound (ɛ) ɛ 15.4ɛ 0 Real2Float FPTaylor CPU Time Victor Magron Certified Roundoff Error Bounds using Semidefinite Programming 26 / 27

41 Introduction Semidefinite Programming for Polynomial Optimization Rounding Error Bounds with Sparse SDP Conclusion

42 Conclusion Sparse SDP relaxations analyze NONLINEAR PROGRAMS: Polynomial and transcendental programs Handles conditionals, input uncertainties,... Certified Formal rounding error bounds Real2Float open source tool: Victor Magron Certified Roundoff Error Bounds using Semidefinite Programming 27 / 27

43 Conclusion Further research: Improve formal polynomial checker Alternative polynomial bounds using geometric programming (T. de Wolff, S. Iliman) Mixed linear/sdp certificates (trade-off CPU/precision) More program verification: while loops Automatic FPGA code generation Victor Magron Certified Roundoff Error Bounds using Semidefinite Programming 27 / 27

44 End Thank you for your attention! V. Magron, G. Constantinides, A. Donaldson. Certified Roundoff Error Bounds Using Semidefinite Programming, arxiv.org/abs/

Formal Proofs, Program Analysis and Moment-SOS Relaxations

Formal Proofs, Program Analysis and Moment-SOS Relaxations Formal Proofs, Program Analysis and Moment-SOS Relaxations Victor Magron, Postdoc LAAS-CNRS 15 July 2014 Imperial College Department of Electrical and Electronic Eng. y b sin( par + b) b 1 1 b1 b2 par

More information

New applications of moment-sos hierarchies

New applications of moment-sos hierarchies New applications of moment-sos hierarchies Victor Magron, Postdoc LAAS-CNRS 13 August 2014 専攻談話会 ( セミナー ) Tokyo Institute of Technology Dept. of Math. & Comput. Sci. y b sin( par + b) b 1 1 b1 b2 par +

More information

Semialgebraic Relaxations using Moment-SOS Hierarchies

Semialgebraic Relaxations using Moment-SOS Hierarchies Semialgebraic Relaxations using Moment-SOS Hierarchies Victor Magron, Postdoc LAAS-CNRS 17 September 2014 SIERRA Seminar Laboratoire d Informatique de l Ecole Normale Superieure y b sin( par + b) b 1 1

More information

arxiv: v2 [math.oc] 16 Oct 2014

arxiv: v2 [math.oc] 16 Oct 2014 Noname manuscript No. (will be inserted by the editor) Certification of Real Inequalities Templates and Sums of Squares Xavier Allamigeon Stéphane Gaubert Victor Magron Benjamin Werner arxiv:1403.5899v2

More information

How to generate weakly infeasible semidefinite programs via Lasserre s relaxations for polynomial optimization

How to generate weakly infeasible semidefinite programs via Lasserre s relaxations for polynomial optimization CS-11-01 How to generate weakly infeasible semidefinite programs via Lasserre s relaxations for polynomial optimization Hayato Waki Department of Computer Science, The University of Electro-Communications

More information

Lower bounds on the size of semidefinite relaxations. David Steurer Cornell

Lower bounds on the size of semidefinite relaxations. David Steurer Cornell Lower bounds on the size of semidefinite relaxations David Steurer Cornell James R. Lee Washington Prasad Raghavendra Berkeley Institute for Advanced Study, November 2015 overview of results unconditional

More information

6-1 The Positivstellensatz P. Parrilo and S. Lall, ECC

6-1 The Positivstellensatz P. Parrilo and S. Lall, ECC 6-1 The Positivstellensatz P. Parrilo and S. Lall, ECC 2003 2003.09.02.10 6. The Positivstellensatz Basic semialgebraic sets Semialgebraic sets Tarski-Seidenberg and quantifier elimination Feasibility

More information

4. Convex optimization problems

4. Convex optimization problems Convex Optimization Boyd & Vandenberghe 4. Convex optimization problems optimization problem in standard form convex optimization problems quasiconvex optimization linear optimization quadratic optimization

More information

approximation algorithms I

approximation algorithms I SUM-OF-SQUARES method and approximation algorithms I David Steurer Cornell Cargese Workshop, 201 meta-task encoded as low-degree polynomial in R x example: f(x) = i,j n w ij x i x j 2 given: functions

More information

Optimization over Nonnegative Polynomials: Algorithms and Applications. Amir Ali Ahmadi Princeton, ORFE

Optimization over Nonnegative Polynomials: Algorithms and Applications. Amir Ali Ahmadi Princeton, ORFE Optimization over Nonnegative Polynomials: Algorithms and Applications Amir Ali Ahmadi Princeton, ORFE INFORMS Optimization Society Conference (Tutorial Talk) Princeton University March 17, 2016 1 Optimization

More information

Research Reports on Mathematical and Computing Sciences

Research Reports on Mathematical and Computing Sciences ISSN 1342-2804 Research Reports on Mathematical and Computing Sciences Sums of Squares and Semidefinite Programming Relaxations for Polynomial Optimization Problems with Structured Sparsity Hayato Waki,

More information

arxiv: v1 [math.oc] 26 Jul 2013

arxiv: v1 [math.oc] 26 Jul 2013 Certification of inequalities involving transcendental functions: combining SDP and max-plus approximation Xavier ALLAMIGEON 1, Stéphane GAUBERT 2, Victor MAGRON 3 and Benjamin WERNER 4 arxiv:1307.7002v1

More information

Analysis and synthesis: a complexity perspective

Analysis and synthesis: a complexity perspective Analysis and synthesis: a complexity perspective Pablo A. Parrilo ETH ZürichZ control.ee.ethz.ch/~parrilo Outline System analysis/design Formal and informal methods SOS/SDP techniques and applications

More information

Optimization-based Modeling and Analysis Techniques for Safety-Critical Software Verification

Optimization-based Modeling and Analysis Techniques for Safety-Critical Software Verification Optimization-based Modeling and Analysis Techniques for Safety-Critical Software Verification Mardavij Roozbehani Eric Feron Laboratory for Information and Decision Systems Department of Aeronautics and

More information

Lecture: Convex Optimization Problems

Lecture: Convex Optimization Problems 1/36 Lecture: Convex Optimization Problems http://bicmr.pku.edu.cn/~wenzw/opt-2015-fall.html Acknowledgement: this slides is based on Prof. Lieven Vandenberghe s lecture notes Introduction 2/36 optimization

More information

The moment-lp and moment-sos approaches

The moment-lp and moment-sos approaches The moment-lp and moment-sos approaches LAAS-CNRS and Institute of Mathematics, Toulouse, France CIRM, November 2013 Semidefinite Programming Why polynomial optimization? LP- and SDP- CERTIFICATES of POSITIVITY

More information

SDP Relaxations for MAXCUT

SDP Relaxations for MAXCUT SDP Relaxations for MAXCUT from Random Hyperplanes to Sum-of-Squares Certificates CATS @ UMD March 3, 2017 Ahmed Abdelkader MAXCUT SDP SOS March 3, 2017 1 / 27 Overview 1 MAXCUT, Hardness and UGC 2 LP

More information

The moment-lp and moment-sos approaches in optimization

The moment-lp and moment-sos approaches in optimization The moment-lp and moment-sos approaches in optimization LAAS-CNRS and Institute of Mathematics, Toulouse, France Workshop Linear Matrix Inequalities, Semidefinite Programming and Quantum Information Theory

More information

Abstract Interpretation with Higher-Dimensional Ellipsoids and Conic Extrapolation

Abstract Interpretation with Higher-Dimensional Ellipsoids and Conic Extrapolation Abstract Interpretation with Higher-Dimensional Ellipsoids and Conic Extrapolation or potatoes & ice cream cones Mendes Oulamara, Arnaud Venet Computer Aided Verification, 2015 July 22, 2015 ÉCOLE NORMALE

More information

Advanced SDPs Lecture 6: March 16, 2017

Advanced SDPs Lecture 6: March 16, 2017 Advanced SDPs Lecture 6: March 16, 2017 Lecturers: Nikhil Bansal and Daniel Dadush Scribe: Daniel Dadush 6.1 Notation Let N = {0, 1,... } denote the set of non-negative integers. For α N n, define the

More information

Convex optimization problems. Optimization problem in standard form

Convex optimization problems. Optimization problem in standard form Convex optimization problems optimization problem in standard form convex optimization problems linear optimization quadratic optimization geometric programming quasiconvex optimization generalized inequality

More information

Semidefinite Programming Basics and Applications

Semidefinite Programming Basics and Applications Semidefinite Programming Basics and Applications Ray Pörn, principal lecturer Åbo Akademi University Novia University of Applied Sciences Content What is semidefinite programming (SDP)? How to represent

More information

Approximation & Complexity

Approximation & Complexity Summer school on semidefinite optimization Approximation & Complexity David Steurer Cornell University Part 1 September 6, 2012 Overview Part 1 Unique Games Conjecture & Basic SDP Part 2 SDP Hierarchies:

More information

Semidefinite Programming

Semidefinite Programming Semidefinite Programming Notes by Bernd Sturmfels for the lecture on June 26, 208, in the IMPRS Ringvorlesung Introduction to Nonlinear Algebra The transition from linear algebra to nonlinear algebra has

More information

Unique Games and Small Set Expansion

Unique Games and Small Set Expansion Proof, beliefs, and algorithms through the lens of sum-of-squares 1 Unique Games and Small Set Expansion The Unique Games Conjecture (UGC) (Khot [2002]) states that for every ɛ > 0 there is some finite

More information

Lecture Note 5: Semidefinite Programming for Stability Analysis

Lecture Note 5: Semidefinite Programming for Stability Analysis ECE7850: Hybrid Systems:Theory and Applications Lecture Note 5: Semidefinite Programming for Stability Analysis Wei Zhang Assistant Professor Department of Electrical and Computer Engineering Ohio State

More information

Representations of Positive Polynomials: Theory, Practice, and

Representations of Positive Polynomials: Theory, Practice, and Representations of Positive Polynomials: Theory, Practice, and Applications Dept. of Mathematics and Computer Science Emory University, Atlanta, GA Currently: National Science Foundation Temple University

More information

Module 04 Optimization Problems KKT Conditions & Solvers

Module 04 Optimization Problems KKT Conditions & Solvers Module 04 Optimization Problems KKT Conditions & Solvers Ahmad F. Taha EE 5243: Introduction to Cyber-Physical Systems Email: ahmad.taha@utsa.edu Webpage: http://engineering.utsa.edu/ taha/index.html September

More information

Convex Optimization. (EE227A: UC Berkeley) Lecture 28. Suvrit Sra. (Algebra + Optimization) 02 May, 2013

Convex Optimization. (EE227A: UC Berkeley) Lecture 28. Suvrit Sra. (Algebra + Optimization) 02 May, 2013 Convex Optimization (EE227A: UC Berkeley) Lecture 28 (Algebra + Optimization) 02 May, 2013 Suvrit Sra Admin Poster presentation on 10th May mandatory HW, Midterm, Quiz to be reweighted Project final report

More information

Semidefinite Programming

Semidefinite Programming Semidefinite Programming Basics and SOS Fernando Mário de Oliveira Filho Campos do Jordão, 2 November 23 Available at: www.ime.usp.br/~fmario under talks Conic programming V is a real vector space h, i

More information

On Sound Relative Error Bounds for Floating-Point Arithmetic

On Sound Relative Error Bounds for Floating-Point Arithmetic On Sound Relative Error Bounds for Floating-Point Arithmetic Anastasiia Izycheva and Eva Darulova Max Planck Institute for Software Systems, Saarland Informatics Campus, Germany Email: izycheva@mpi-sws.org,

More information

arxiv: v1 [cs.sc] 10 Jul 2013

arxiv: v1 [cs.sc] 10 Jul 2013 Certification of Bounds of Non-linear Functions: the Templates Method Xavier Allamigeon 1, Stéphane Gaubert 2, Victor Magron 3, and Benjamin Werner 4 arxiv:1307.3231v1 [cs.sc] 10 Jul 2013 1 INRIA and CMAP,

More information

Semidefinite programming lifts and sparse sums-of-squares

Semidefinite programming lifts and sparse sums-of-squares 1/15 Semidefinite programming lifts and sparse sums-of-squares Hamza Fawzi (MIT, LIDS) Joint work with James Saunderson (UW) and Pablo Parrilo (MIT) Cornell ORIE, October 2015 Linear optimization 2/15

More information

Research Reports on Mathematical and Computing Sciences

Research Reports on Mathematical and Computing Sciences ISSN 1342-284 Research Reports on Mathematical and Computing Sciences Exploiting Sparsity in Linear and Nonlinear Matrix Inequalities via Positive Semidefinite Matrix Completion Sunyoung Kim, Masakazu

More information

Towards Solving Bilevel Optimization Problems in Quantum Information Theory

Towards Solving Bilevel Optimization Problems in Quantum Information Theory Towards Solving Bilevel Optimization Problems in Quantum Information Theory ICFO-The Institute of Photonic Sciences and University of Borås 22 January 2016 Workshop on Linear Matrix Inequalities, Semidefinite

More information

Formal Verification of Mathematical Algorithms

Formal Verification of Mathematical Algorithms Formal Verification of Mathematical Algorithms 1 Formal Verification of Mathematical Algorithms John Harrison Intel Corporation The cost of bugs Formal verification Levels of verification HOL Light Formalizing

More information

ORF 523 Lecture 9 Spring 2016, Princeton University Instructor: A.A. Ahmadi Scribe: G. Hall Thursday, March 10, 2016

ORF 523 Lecture 9 Spring 2016, Princeton University Instructor: A.A. Ahmadi Scribe: G. Hall Thursday, March 10, 2016 ORF 523 Lecture 9 Spring 2016, Princeton University Instructor: A.A. Ahmadi Scribe: G. Hall Thursday, March 10, 2016 When in doubt on the accuracy of these notes, please cross check with the instructor

More information

Nonlinear Control as Program Synthesis (A Starter)

Nonlinear Control as Program Synthesis (A Starter) Nonlinear Control as Program Synthesis (A Starter) Sicun Gao MIT December 15, 2014 Preliminaries Definition (L RF ) L RF is the first-order language over the reals that allows arbitrary numerically computable

More information

Hilbert s 17th Problem to Semidefinite Programming & Convex Algebraic Geometry

Hilbert s 17th Problem to Semidefinite Programming & Convex Algebraic Geometry Hilbert s 17th Problem to Semidefinite Programming & Convex Algebraic Geometry Rekha R. Thomas University of Washington, Seattle References Monique Laurent, Sums of squares, moment matrices and optimization

More information

Automatic determination of numerical properties of software and systems

Automatic determination of numerical properties of software and systems Automatic determination of numerical properties of software and systems Eric Goubault and Sylvie Putot Modelling and Analysis of Interacting Systems, CEA LIST MASCOT-NUM 2012 Meeting, March 21-23, 2012

More information

Sum of Squares Relaxations for Polynomial Semi-definite Programming

Sum of Squares Relaxations for Polynomial Semi-definite Programming Sum of Squares Relaxations for Polynomial Semi-definite Programming C.W.J. Hol, C.W. Scherer Delft University of Technology, Delft Center of Systems and Control (DCSC) Mekelweg 2, 2628CD Delft, The Netherlands

More information

Robust and Optimal Control, Spring 2015

Robust and Optimal Control, Spring 2015 Robust and Optimal Control, Spring 2015 Instructor: Prof. Masayuki Fujita (S5-303B) G. Sum of Squares (SOS) G.1 SOS Program: SOS/PSD and SDP G.2 Duality, valid ineqalities and Cone G.3 Feasibility/Optimization

More information

SPECTRA - a Maple library for solving linear matrix inequalities in exact arithmetic

SPECTRA - a Maple library for solving linear matrix inequalities in exact arithmetic SPECTRA - a Maple library for solving linear matrix inequalities in exact arithmetic Didier Henrion Simone Naldi Mohab Safey El Din Version 1.0 of November 5, 2016 Abstract This document briefly describes

More information

An explicit construction of distinguished representations of polynomials nonnegative over finite sets

An explicit construction of distinguished representations of polynomials nonnegative over finite sets An explicit construction of distinguished representations of polynomials nonnegative over finite sets Pablo A. Parrilo Automatic Control Laboratory Swiss Federal Institute of Technology Physikstrasse 3

More information

Formal verification for numerical methods

Formal verification for numerical methods Formal verification for numerical methods Ioana Paşca PhD thesis at INRIA Sophia Antipolis, Marelle Team Advisor: Yves Bertot 1 7 1 Robots 2 7 Robots efficiency 2 7 Robots efficiency safety 2 7 Inside

More information

Interactive Theorem Proving in Industry

Interactive Theorem Proving in Industry 1 Interactive Theorem Proving in Industry John Harrison Intel Corporation 16 April 2012 2 Milner on automation and interaction I wrote an automatic theorem prover in Swansea for myself and became shattered

More information

Linear and non-linear programming

Linear and non-linear programming Linear and non-linear programming Benjamin Recht March 11, 2005 The Gameplan Constrained Optimization Convexity Duality Applications/Taxonomy 1 Constrained Optimization minimize f(x) subject to g j (x)

More information

Enabling Efficient Analog Synthesis by Coupling Sparse Regression and Polynomial Optimization

Enabling Efficient Analog Synthesis by Coupling Sparse Regression and Polynomial Optimization Enabling Efficient Analog Synthesis by Coupling Sparse Regression and Polynomial Optimization Ye Wang, Michael Orshansky, Constantine Caramanis ECE Dept., The University of Texas at Austin 1 Analog Synthesis

More information

Non-linear Interpolant Generation and Its Application to Program Verification

Non-linear Interpolant Generation and Its Application to Program Verification Non-linear Interpolant Generation and Its Application to Program Verification Naijun Zhan State Key Laboratory of Computer Science, Institute of Software, CAS Joint work with Liyun Dai, Ting Gan, Bow-Yaw

More information

Introduction to Semidefinite Programming I: Basic properties a

Introduction to Semidefinite Programming I: Basic properties a Introduction to Semidefinite Programming I: Basic properties and variations on the Goemans-Williamson approximation algorithm for max-cut MFO seminar on Semidefinite Programming May 30, 2010 Semidefinite

More information

Convex Optimization & Parsimony of L p-balls representation

Convex Optimization & Parsimony of L p-balls representation Convex Optimization & Parsimony of L p -balls representation LAAS-CNRS and Institute of Mathematics, Toulouse, France IMA, January 2016 Motivation Unit balls associated with nonnegative homogeneous polynomials

More information

Global polynomial optimization with Moments Matrices and Border Basis

Global polynomial optimization with Moments Matrices and Border Basis Global polynomial optimization with Moments Matrices and Border Basis Marta Abril Bucero, Bernard Mourrain, Philippe Trebuchet Inria Méditerranée, Galaad team Juillet 15-19, 2013 M. Abril-Bucero, B. Mourrain,

More information

III. Applications in convex optimization

III. Applications in convex optimization III. Applications in convex optimization nonsymmetric interior-point methods partial separability and decomposition partial separability first order methods interior-point methods Conic linear optimization

More information

CSCI 1951-G Optimization Methods in Finance Part 10: Conic Optimization

CSCI 1951-G Optimization Methods in Finance Part 10: Conic Optimization CSCI 1951-G Optimization Methods in Finance Part 10: Conic Optimization April 6, 2018 1 / 34 This material is covered in the textbook, Chapters 9 and 10. Some of the materials are taken from it. Some of

More information

4. Convex optimization problems

4. Convex optimization problems Convex Optimization Boyd & Vandenberghe 4. Convex optimization problems optimization problem in standard form convex optimization problems quasiconvex optimization linear optimization quadratic optimization

More information

Optimization over Polynomials with Sums of Squares and Moment Matrices

Optimization over Polynomials with Sums of Squares and Moment Matrices Optimization over Polynomials with Sums of Squares and Moment Matrices Monique Laurent Centrum Wiskunde & Informatica (CWI), Amsterdam and University of Tilburg Positivity, Valuations and Quadratic Forms

More information

Solving Global Optimization Problems with Sparse Polynomials and Unbounded Semialgebraic Feasible Sets

Solving Global Optimization Problems with Sparse Polynomials and Unbounded Semialgebraic Feasible Sets Solving Global Optimization Problems with Sparse Polynomials and Unbounded Semialgebraic Feasible Sets V. Jeyakumar, S. Kim, G. M. Lee and G. Li June 6, 2014 Abstract We propose a hierarchy of semidefinite

More information

Sum-of-Squares Method, Tensor Decomposition, Dictionary Learning

Sum-of-Squares Method, Tensor Decomposition, Dictionary Learning Sum-of-Squares Method, Tensor Decomposition, Dictionary Learning David Steurer Cornell Approximation Algorithms and Hardness, Banff, August 2014 for many problems (e.g., all UG-hard ones): better guarantees

More information

Notes on the decomposition result of Karlin et al. [2] for the hierarchy of Lasserre by M. Laurent, December 13, 2012

Notes on the decomposition result of Karlin et al. [2] for the hierarchy of Lasserre by M. Laurent, December 13, 2012 Notes on the decomposition result of Karlin et al. [2] for the hierarchy of Lasserre by M. Laurent, December 13, 2012 We present the decomposition result of Karlin et al. [2] for the hierarchy of Lasserre

More information

on Semialgebraic Sets for Nonnnegative Polynomials Finding Representations

on Semialgebraic Sets for Nonnnegative Polynomials Finding Representations Finding Representations for Nonnnegative Polynomials on Semialgebraic Sets Ruchira Datta Department of Mathematics University of California Berkeley, California April 2nd, 2002 1 Introducing Polynomial

More information

4. Algebra and Duality

4. Algebra and Duality 4-1 Algebra and Duality P. Parrilo and S. Lall, CDC 2003 2003.12.07.01 4. Algebra and Duality Example: non-convex polynomial optimization Weak duality and duality gap The dual is not intrinsic The cone

More information

Strong duality in Lasserre s hierarchy for polynomial optimization

Strong duality in Lasserre s hierarchy for polynomial optimization Strong duality in Lasserre s hierarchy for polynomial optimization arxiv:1405.7334v1 [math.oc] 28 May 2014 Cédric Josz 1,2, Didier Henrion 3,4,5 Draft of January 24, 2018 Abstract A polynomial optimization

More information

Exact SDP Relaxations for Classes of Nonlinear Semidefinite Programming Problems

Exact SDP Relaxations for Classes of Nonlinear Semidefinite Programming Problems Exact SDP Relaxations for Classes of Nonlinear Semidefinite Programming Problems V. Jeyakumar and G. Li Revised Version:August 31, 2012 Abstract An exact semidefinite linear programming (SDP) relaxation

More information

Intel s Successes with Formal Methods

Intel s Successes with Formal Methods 0 Intel s Successes with Formal Methods John Harrison Intel Corporation Software, Science & Society World Forestry Center, Portland OR December 5, 2003 1 Bugs in computer systems Most modern computer systems

More information

Research overview. Seminar September 4, Lehigh University Department of Industrial & Systems Engineering. Research overview.

Research overview. Seminar September 4, Lehigh University Department of Industrial & Systems Engineering. Research overview. Research overview Lehigh University Department of Industrial & Systems Engineering COR@L Seminar September 4, 2008 1 Duality without regularity condition Duality in non-exact arithmetic 2 interior point

More information

Introduction to LP and SDP Hierarchies

Introduction to LP and SDP Hierarchies Introduction to LP and SDP Hierarchies Madhur Tulsiani Princeton University Local Constraints in Approximation Algorithms Linear Programming (LP) or Semidefinite Programming (SDP) based approximation algorithms

More information

A heuristic prover for real inequalities

A heuristic prover for real inequalities A heuristic prover for real inequalities Jeremy Avigad Department of Philosophy and Department of Mathematical Sciences Carnegie Mellon University joint work with Robert Y. Lewis and Cody Roux (many slides

More information

Rigorous Polynomial Approximations and Applications

Rigorous Polynomial Approximations and Applications Rigorous Polynomial Approximations and Applications Mioara Joldeș under the supervision of: Nicolas Brisebarre and Jean-Michel Muller École Normale Supérieure de Lyon, Arénaire Team, Laboratoire de l Informatique

More information

An Introduction to Differential Algebra

An Introduction to Differential Algebra An Introduction to Differential Algebra Alexander Wittig1, P. Di Lizia, R. Armellin, et al. 1 ESA Advanced Concepts Team (TEC-SF) SRL, Milan Dinamica Outline 1 Overview Five Views of Differential Algebra

More information

On Polynomial Optimization over Non-compact Semi-algebraic Sets

On Polynomial Optimization over Non-compact Semi-algebraic Sets On Polynomial Optimization over Non-compact Semi-algebraic Sets V. Jeyakumar, J.B. Lasserre and G. Li Revised Version: April 3, 2014 Communicated by Lionel Thibault Abstract The optimal value of a polynomial

More information

V&V MURI Overview Caltech, October 2008

V&V MURI Overview Caltech, October 2008 V&V MURI Overview Caltech, October 2008 Pablo A. Parrilo Laboratory for Information and Decision Systems Massachusetts Institute of Technology Goals!! Specification, design, and certification!! Coherent

More information

A PARALLEL INTERIOR POINT DECOMPOSITION ALGORITHM FOR BLOCK-ANGULAR SEMIDEFINITE PROGRAMS IN POLYNOMIAL OPTIMIZATION

A PARALLEL INTERIOR POINT DECOMPOSITION ALGORITHM FOR BLOCK-ANGULAR SEMIDEFINITE PROGRAMS IN POLYNOMIAL OPTIMIZATION A PARALLEL INTERIOR POINT DECOMPOSITION ALGORITHM FOR BLOCK-ANGULAR SEMIDEFINITE PROGRAMS IN POLYNOMIAL OPTIMIZATION Kartik K. Sivaramakrishnan Department of Mathematics North Carolina State University

More information

Fast ADMM for Sum of Squares Programs Using Partial Orthogonality

Fast ADMM for Sum of Squares Programs Using Partial Orthogonality Fast ADMM for Sum of Squares Programs Using Partial Orthogonality Antonis Papachristodoulou Department of Engineering Science University of Oxford www.eng.ox.ac.uk/control/sysos antonis@eng.ox.ac.uk with

More information

Lift-and-Project Techniques and SDP Hierarchies

Lift-and-Project Techniques and SDP Hierarchies MFO seminar on Semidefinite Programming May 30, 2010 Typical combinatorial optimization problem: max c T x s.t. Ax b, x {0, 1} n P := {x R n Ax b} P I := conv(k {0, 1} n ) LP relaxation Integral polytope

More information

Certifying the Global Optimality of Graph Cuts via Semidefinite Programming: A Theoretic Guarantee for Spectral Clustering

Certifying the Global Optimality of Graph Cuts via Semidefinite Programming: A Theoretic Guarantee for Spectral Clustering Certifying the Global Optimality of Graph Cuts via Semidefinite Programming: A Theoretic Guarantee for Spectral Clustering Shuyang Ling Courant Institute of Mathematical Sciences, NYU Aug 13, 2018 Joint

More information

arxiv: v1 [cs.lo] 24 Mar 2015

arxiv: v1 [cs.lo] 24 Mar 2015 Property-based Polynomial Invariant Generation using Sums-of-Squares Optimization Assalé Adjé 1,a and Pierre-Loïc Garoche 1,a and Victor Magron 2,b arxiv:1503.07025v1 [cs.lo] 24 Mar 2015 1 Onera, the French

More information

arxiv:math/ v3 [math.oc] 5 Oct 2007

arxiv:math/ v3 [math.oc] 5 Oct 2007 arxiv:math/0606476v3 [math.oc] 5 Oct 2007 Sparse SOS Relaxations for Minimizing Functions that are Summations of Small Polynomials Jiawang Nie and James Demmel March 27, 2018 Abstract This paper discusses

More information

9. Interpretations, Lifting, SOS and Moments

9. Interpretations, Lifting, SOS and Moments 9-1 Interpretations, Lifting, SOS and Moments P. Parrilo and S. Lall, CDC 2003 2003.12.07.04 9. Interpretations, Lifting, SOS and Moments Polynomial nonnegativity Sum of squares (SOS) decomposition Eample

More information

arxiv: v1 [math.oc] 31 Jan 2017

arxiv: v1 [math.oc] 31 Jan 2017 CONVEX CONSTRAINED SEMIALGEBRAIC VOLUME OPTIMIZATION: APPLICATION IN SYSTEMS AND CONTROL 1 Ashkan Jasour, Constantino Lagoa School of Electrical Engineering and Computer Science, Pennsylvania State University

More information

Convergence rates of moment-sum-of-squares hierarchies for volume approximation of semialgebraic sets

Convergence rates of moment-sum-of-squares hierarchies for volume approximation of semialgebraic sets Convergence rates of moment-sum-of-squares hierarchies for volume approximation of semialgebraic sets Milan Korda 1, Didier Henrion,3,4 Draft of December 1, 016 Abstract Moment-sum-of-squares hierarchies

More information

1. Introduction. We consider the general global optimization problem

1. Introduction. We consider the general global optimization problem CONSTRUCTION OF VALIDATED UNIQUENESS REGIONS FOR NONLINEAR PROGRAMS IN WHICH CONVEX SUBSPACES HAVE BEEN IDENTIFIED R. BAKER KEARFOTT Abstract. In deterministic global optimization algorithms for constrained

More information

HW1 solutions. 1. α Ef(x) β, where Ef(x) is the expected value of f(x), i.e., Ef(x) = n. i=1 p if(a i ). (The function f : R R is given.

HW1 solutions. 1. α Ef(x) β, where Ef(x) is the expected value of f(x), i.e., Ef(x) = n. i=1 p if(a i ). (The function f : R R is given. HW1 solutions Exercise 1 (Some sets of probability distributions.) Let x be a real-valued random variable with Prob(x = a i ) = p i, i = 1,..., n, where a 1 < a 2 < < a n. Of course p R n lies in the standard

More information

Symmetric Sums of Squares

Symmetric Sums of Squares Symmetric Sums of Squares Annie Raymond University of Washington MSRI University of Massachusetts Joint with James Saunderson (Monash University), Mohit Singh (Georgia Tech), and Rekha Thomas (UW) November

More information

Rational Sums of Squares and Applications

Rational Sums of Squares and Applications f ΣR[X] 2 " f ΣQ[X] 2 Rational Sums of Squares and Applications Christopher Hillar (MSRI & Berkeley) A 2008 study found that adding a picture of a brain scan to a scientific argument about human nature

More information

arxiv: v1 [math.oc] 9 Sep 2015

arxiv: v1 [math.oc] 9 Sep 2015 CONTAINMENT PROBLEMS FOR PROJECTIONS OF POLYHEDRA AND SPECTRAHEDRA arxiv:1509.02735v1 [math.oc] 9 Sep 2015 KAI KELLNER Abstract. Spectrahedra are affine sections of the cone of positive semidefinite matrices

More information

Detecting global optimality and extracting solutions in GloptiPoly

Detecting global optimality and extracting solutions in GloptiPoly Detecting global optimality and extracting solutions in GloptiPoly Didier HENRION 1,2 Jean-Bernard LASSERRE 1 1 LAAS-CNRS Toulouse 2 ÚTIA-AVČR Prague Part 1 Description of GloptiPoly Brief description

More information

The maximal stable set problem : Copositive programming and Semidefinite Relaxations

The maximal stable set problem : Copositive programming and Semidefinite Relaxations The maximal stable set problem : Copositive programming and Semidefinite Relaxations Kartik Krishnan Department of Mathematical Sciences Rensselaer Polytechnic Institute Troy, NY 12180 USA kartis@rpi.edu

More information

Dimension reduction for semidefinite programming

Dimension reduction for semidefinite programming 1 / 22 Dimension reduction for semidefinite programming Pablo A. Parrilo Laboratory for Information and Decision Systems Electrical Engineering and Computer Science Massachusetts Institute of Technology

More information

The Trust Region Subproblem with Non-Intersecting Linear Constraints

The Trust Region Subproblem with Non-Intersecting Linear Constraints The Trust Region Subproblem with Non-Intersecting Linear Constraints Samuel Burer Boshi Yang February 21, 2013 Abstract This paper studies an extended trust region subproblem (etrs in which the trust region

More information

LOWER BOUNDS FOR A POLYNOMIAL IN TERMS OF ITS COEFFICIENTS

LOWER BOUNDS FOR A POLYNOMIAL IN TERMS OF ITS COEFFICIENTS LOWER BOUNDS FOR A POLYNOMIAL IN TERMS OF ITS COEFFICIENTS MEHDI GHASEMI AND MURRAY MARSHALL Abstract. Recently Lasserre [6] gave a sufficient condition in terms of the coefficients for a polynomial f

More information

Semidefinite Relaxations Approach to Polynomial Optimization and One Application. Li Wang

Semidefinite Relaxations Approach to Polynomial Optimization and One Application. Li Wang Semidefinite Relaxations Approach to Polynomial Optimization and One Application Li Wang University of California, San Diego Institute for Computational and Experimental Research in Mathematics September

More information

A new look at nonnegativity on closed sets

A new look at nonnegativity on closed sets A new look at nonnegativity on closed sets LAAS-CNRS and Institute of Mathematics, Toulouse, France IPAM, UCLA September 2010 Positivstellensatze for semi-algebraic sets K R n from the knowledge of defining

More information

Strange Behaviors of Interior-point Methods. for Solving Semidefinite Programming Problems. in Polynomial Optimization

Strange Behaviors of Interior-point Methods. for Solving Semidefinite Programming Problems. in Polynomial Optimization CS-08-02 Strange Behaviors of Interior-point Methods for Solving Semidefinite Programming Problems in Polynomial Optimization Hayato Waki, Maho Nakata, and Masakazu Muramatsu Department of Computer Science,

More information

DSOS/SDOS Programming: New Tools for Optimization over Nonnegative Polynomials

DSOS/SDOS Programming: New Tools for Optimization over Nonnegative Polynomials DSOS/SDOS Programming: New Tools for Optimization over Nonnegative Polynomials Amir Ali Ahmadi Princeton University Dept. of Operations Research and Financial Engineering (ORFE) Joint work with: Anirudha

More information

What can be expressed via Conic Quadratic and Semidefinite Programming?

What can be expressed via Conic Quadratic and Semidefinite Programming? What can be expressed via Conic Quadratic and Semidefinite Programming? A. Nemirovski Faculty of Industrial Engineering and Management Technion Israel Institute of Technology Abstract Tremendous recent

More information

Power and limitations of convex formulations via linear and semidefinite programming lifts. Hamza Fawzi

Power and limitations of convex formulations via linear and semidefinite programming lifts. Hamza Fawzi Power and limitations of convex formulations via linear and semidefinite programming lifts by Hamza Fawzi Submitted to the Department of Electrical Engineering and Computer Science in partial fulfillment

More information

Semidefinite programming and convex algebraic geometry

Semidefinite programming and convex algebraic geometry FoCM 2008 - SDP and convex AG p. 1/40 Semidefinite programming and convex algebraic geometry Pablo A. Parrilo www.mit.edu/~parrilo Laboratory for Information and Decision Systems Electrical Engineering

More information

Lecture 10. Semidefinite Programs and the Max-Cut Problem Max Cut

Lecture 10. Semidefinite Programs and the Max-Cut Problem Max Cut Lecture 10 Semidefinite Programs and the Max-Cut Problem In this class we will finally introduce the content from the second half of the course title, Semidefinite Programs We will first motivate the discussion

More information

Limitations in Approximating RIP

Limitations in Approximating RIP Alok Puranik Mentor: Adrian Vladu Fifth Annual PRIMES Conference, 2015 Outline 1 Background The Problem Motivation Construction Certification 2 Planted model Planting eigenvalues Analysis Distinguishing

More information

Optimization of a Convex Program with a Polynomial Perturbation

Optimization of a Convex Program with a Polynomial Perturbation Optimization of a Convex Program with a Polynomial Perturbation Ravi Kannan Microsoft Research Bangalore Luis Rademacher College of Computing Georgia Institute of Technology Abstract We consider the problem

More information