From Convex Optimization to Linear Matrix Inequalities

Size: px
Start display at page:

Download "From Convex Optimization to Linear Matrix Inequalities"

Transcription

1 Dep. of Information Engineering University of Pisa (Italy) From Convex Optimization to Linear Matrix Inequalities eng. Sergio Grammatico Class of Identification of Uncertain Systems 2012/ 13 held by prof. Andrea Caiti S. Grammatico (DEI UNIPI) Introduction to LMIs Identification of Uncertain Systems 1 / 30

2 Outline 1 Introduction 2 Semi-Definite Programming From Convex Optimization to Semi-Definite Programming 3 Linear Matrix Inequalities Definition Brief Historical Perspective First simple problems 4 Software SeDuMi and CVX Examples 5 Conclusion S. Grammatico (DEI UNIPI) Introduction to LMIs Identification of Uncertain Systems 2 / 30

3 Outline 1 Introduction 2 Semi-Definite Programming From Convex Optimization to Semi-Definite Programming 3 Linear Matrix Inequalities Definition Brief Historical Perspective First simple problems 4 Software SeDuMi and CVX Examples 5 Conclusion S. Grammatico (DEI UNIPI) Introduction to LMIs Identification of Uncertain Systems 3 / 30

4 Convex Optimization and Linear Matrix Inequalities (LMIs) Thanks to Stephen Boyd, Carsten Scherer et al. This presentation is mainly based on S. Boyd and Lieven Vandenberghe, Convex Optimization, Cambridge University Press, S. Boyd, L. El Ghaoui, E. Feron and V. Balakrishnan, Linear Matrix Inequalities in System and Control Theory, Society for Industrial and Applied Mathematics (SIAM), S. Boyd, Lecture notes in Convex Optimization, Standford University. S. Grammatico (DEI UNIPI) Introduction to LMIs Identification of Uncertain Systems 4 / 30

5 Outline 1 Introduction 2 Semi-Definite Programming From Convex Optimization to Semi-Definite Programming 3 Linear Matrix Inequalities Definition Brief Historical Perspective First simple problems 4 Software SeDuMi and CVX Examples 5 Conclusion S. Grammatico (DEI UNIPI) Introduction to LMIs Identification of Uncertain Systems 5 / 30

6 Convex Optimization General problem Convex Optimization Problem min x R n sub. to f(x) g i (x) 0, i = 1, 2,..., m Ax = b (1) f, g 1,..., g m convex functions, A R p n, b R p. Global Optimality Any local optimal point of a convex problem is globally optimal S. Grammatico (DEI UNIPI) Introduction to LMIs Identification of Uncertain Systems 6 / 30

7 Special Case Linear Programming (LP) Linear Programming min x R n c x sub. to Gx h, Ax = b (2) S. Grammatico (DEI UNIPI) Introduction to LMIs Identification of Uncertain Systems 7 / 30

8 Special Case Quadratic Programming (QP) Quadratic Programming min x R n x P x + q x sub. to Gx h, Ax = b (3) P positive semi-definite P 0 (P = P, eig(p ) 0). S. Grammatico (DEI UNIPI) Introduction to LMIs Identification of Uncertain Systems 8 / 30

9 Another Special Case Semi-Definite Programming (SDP) Semi-Definite Programming min x R n c x sub. to F 0 + x 1 F 1 + x 2 F x n F n 0, Ax = b (4) F i = F i R n n S. Grammatico (DEI UNIPI) Introduction to LMIs Identification of Uncertain Systems 9 / 30

10 Outline 1 Introduction 2 Semi-Definite Programming From Convex Optimization to Semi-Definite Programming 3 Linear Matrix Inequalities Definition Brief Historical Perspective First simple problems 4 Software SeDuMi and CVX Examples 5 Conclusion S. Grammatico (DEI UNIPI) Introduction to LMIs Identification of Uncertain Systems 10 / 30

11 Linear Matrix Inequalities Definition Standard LMI F (x) := F 0 + n x i F i 0 (5) i=1 The inequality constraint of an SDP is an LMI. Multiple LMIs as a unique LMI: [ ] [ ] [ ˆF0 0 ˆF1 0 ˆFn 0 + x x n 0 F0 0 F1 0 Fn ] 0 (6) S. Grammatico (DEI UNIPI) Introduction to LMIs Identification of Uncertain Systems 11 / 30

12 Linear Matrix Inequalities Feasibility and Optimization Feasibility LMI Problem Find x R n such that F (x) 0 Strict Feasibility LMI Problem Find x R n and α R >0 such that F (x) αi n LMI Optimization Problem Find x R n such that F (x) 0 c x is minimized S. Grammatico (DEI UNIPI) Introduction to LMIs Identification of Uncertain Systems 12 / 30

13 Linear Matrix Inequalities A trick for NonLinear MIs Schur Complement Given Q(x) = Q(x), R(x) 0, S(x) affinely dependent on x, the NonLinear MI Q(x) S(x)R(x) 1 S(x) 0 (7) is equivalent to the LMI [ Q(x) S(x) S(x) R(x) ] 0. (8) S. Grammatico (DEI UNIPI) Introduction to LMIs Identification of Uncertain Systems 13 / 30

14 Brief Historical Perspective Back to Lyapunov 1 First LMI in Control Theory (A.M. Lyapunov) Lyapunov Inequality (1890) ẋ = Ax A.S. P 0 : A P + P A 0 (9) Lyapunov equality: A P + P A = Q, P, Q 0 Matrices as variables 2 Further contributions Lur e (Stability under Saturations via LMIs); Kalman, Yakubovich, Popov (Positive Real Lemma);... S. Grammatico (DEI UNIPI) Introduction to LMIs Identification of Uncertain Systems 14 / 30

15 Brief Historical Perspective Riccati revisited 3 On the LQ Optimal Control (J.C. Willems) Algebraic Riccati (LM)Inequality (1971) A P + P A + Q ( P B + C ) R 1 ( P B + C ) 0 (10) is equivalent (by Schur Complement) to [ A P + P A + Q P B + C ( P B + C ) R ] 0. (11) 4 Interior-point algorithms for LMIs (Y.E. Nesterov and A. Nemirovski) S. Grammatico (DEI UNIPI) Introduction to LMIs Identification of Uncertain Systems 15 / 30

16 Brief Historical Perspective Today LMIs are used for: 1 Stability analysis of uncertain systems 2 Robust control design for uncertain systems 3 Robust optimization 4 System identification 5... S. Grammatico (DEI UNIPI) Introduction to LMIs Identification of Uncertain Systems 16 / 30

17 Simple LMI problems Stability Analysis of Uncertain Linear Systems Linear Differential Inclusions (Time-varying Uncertain Linear Systems) ẋ conv {A i x i [1, s]} (12) Quadratic Stability (Sufficient Condition) P 0 : A i P + P A i 0 i = (12) A.S. (13) S. Grammatico (DEI UNIPI) Introduction to LMIs Identification of Uncertain Systems 17 / 30

18 Simple LMI problems Robust Linear State-Feedback Control design (1) Controlled Linear Differential Inclusions ẋ conv {A i x + B i u i [1, s]}, (14) 1 u(x) = Kx 2 ẋ conv {(A i + B i K)x} 3 NonLinear MI in P, K: (A i + B i K) P + P (A i + B i K) 0 i (15) S. Grammatico (DEI UNIPI) Introduction to LMIs Identification of Uncertain Systems 18 / 30

19 Simple LMI problems Robust Linear State-Feedback Control design (2) Change of Variables for the LMI design of K: S. Grammatico (DEI UNIPI) Introduction to LMIs Identification of Uncertain Systems 19 / 30

20 Simple LMI problems Robust Linear State-Feedback Control design (2) Change of Variables for the LMI design of K: 4 Multiply (15) both on the left and on the right by P 1 S. Grammatico (DEI UNIPI) Introduction to LMIs Identification of Uncertain Systems 19 / 30

21 Simple LMI problems Robust Linear State-Feedback Control design (2) Change of Variables for the LMI design of K: 4 Multiply (15) both on the left and on the right by P 1 5 Q := P 1 6 Y := KQ S. Grammatico (DEI UNIPI) Introduction to LMIs Identification of Uncertain Systems 19 / 30

22 Simple LMI problems Robust Linear State-Feedback Control design (2) Change of Variables for the LMI design of K: 4 Multiply (15) both on the left and on the right by P 1 5 Q := P 1 6 Y := KQ 7 LMI in Y, Q: A i Q + QA i + B i Y + Y B i 0 i (16) 8 P := Q 1, K := Y Q 1 S. Grammatico (DEI UNIPI) Introduction to LMIs Identification of Uncertain Systems 19 / 30

23 Outline 1 Introduction 2 Semi-Definite Programming From Convex Optimization to Semi-Definite Programming 3 Linear Matrix Inequalities Definition Brief Historical Perspective First simple problems 4 Software SeDuMi and CVX Examples 5 Conclusion S. Grammatico (DEI UNIPI) Introduction to LMIs Identification of Uncertain Systems 20 / 30

24 Solver and Matlab interface SeDuMi and CVX Solver: SeDuMi (by J.F. Sturm) Matlab interface: CVX (by S. Boyd) CVXOPT in Python CVXGEN for C-code generation S. Grammatico (DEI UNIPI) Introduction to LMIs Identification of Uncertain Systems 21 / 30

25 Example 1 Variable Mass-Spring System as Uncertain Linear System (1) mẍ = kx bẋ k [k, k] k kx bx m 0 ˆx ξ 1 := x, ξ 2 := ẋ, w := k S. Grammatico (DEI UNIPI) Introduction to LMIs Identification of Uncertain Systems 22 / 30

26 Example 1 Variable Mass-Spring System as Uncertain Linear System (2) Variable Mass-Spring System as Uncertain Linear System [ ] 0 1 ξ = ξ (17) w 1 w [0.1, 1] [ 0 1 A 1 = Robust LMI Analysis ] [, A 2 = A i P + P A i 0, i = 1, 2 ] S. Grammatico (DEI UNIPI) Introduction to LMIs Identification of Uncertain Systems 23 / 30

27 Example 1 Variable Mass-Spring System as Uncertain Linear System (3) Matlab code using CVX A{1} = [0 1; ]; A{2} = [0 1; -1-1]; n = 2; s = 2; cvx begin variable P(n,n) symmetric variable a maximize(a) P == semidefinite(n); a >= 0; for i=1:s A{i} *P + P*A{i} + a*eye(n) == -semidefinite(n); end cvx end S. Grammatico (DEI UNIPI) Introduction to LMIs Identification of Uncertain Systems 24 / 30

28 Example 2 Quadratic Stabilizability is only Sufficient for Uncertain Linear Systems Counterexample [ ẋ = ] [ w x + 1 ] u (18) w [w, w] [ w A 1 = A 2 = A, B 1 = 1 ] [ w, B 2 = 1 ] Conservatism of Quadratics (18) quadratic stabilizable (searching P, K) only if w [ 1, 1] S. Grammatico (DEI UNIPI) Introduction to LMIs Identification of Uncertain Systems 25 / 30

29 Example 2 Quadratic Stabilizability is only Sufficient for Uncertain Linear Systems Counterexample [ ẋ = ] [ w x + 1 ] u (18) w [w, w] [ w A 1 = A 2 = A, B 1 = 1 ] [ w, B 2 = 1 ] Conservatism of Quadratics (18) quadratic stabilizable (searching P, K) only if w [ 1, 1] (18) stabilizable w R S. Grammatico (DEI UNIPI) Introduction to LMIs Identification of Uncertain Systems 25 / 30

30 Example 3 Nonlinear Inverted Pendulum as Uncertain Linear System (1) I θ = mgl sin(θ) + τ 2, l I mg x 1 := θ, x 2 := θ, u = τ = ẋ 2 = mgl I sin(x 1 ) x x 1 I u S. Grammatico (DEI UNIPI) Introduction to LMIs Identification of Uncertain Systems 26 / 30

31 Example 3 Nonlinear Inverted Pendulum as Uncertain Linear System (2) Inverted Pendulum as Uncertain Linear System [ ] [ ẋ = x + aw(x) 0 b w(0) = 1 x 1 [ π, π] w(x 4 4 1) [0.9, 1] [ ] [ ] A 1 =, A 0.9 a 0 2 = 1 a 0 [ ] 0 B 1 = B 2 = b2 ] u (19) S. Grammatico (DEI UNIPI) Introduction to LMIs Identification of Uncertain Systems 27 / 30

32 Example 3 Nonlinear Inverted Pendulum as Uncertain Linear System (3) Robust LMI Control design from (16) A i Q + QA i + B i Y + Y B i 0, P = Q 1, K = Y Q 1 Matlab code using CVX cvx begin variable Q(n,n) symmetric variable Y(m,n) maximize(log det(q)) Q == semidefinite(n); for i=1:s A{i}*Q + Q*A{i} + B{i}*Y + Y *B{i} == -semidefinite(n); end cvx end P = Q^(-1); K = Y*P S. Grammatico (DEI UNIPI) Introduction to LMIs Identification of Uncertain Systems 28 / 30

33 Outline 1 Introduction 2 Semi-Definite Programming From Convex Optimization to Semi-Definite Programming 3 Linear Matrix Inequalities Definition Brief Historical Perspective First simple problems 4 Software SeDuMi and CVX Examples 5 Conclusion S. Grammatico (DEI UNIPI) Introduction to LMIs Identification of Uncertain Systems 29 / 30

34 Conclusion LMIs in Systems and Control Theory 1 LMIs Robust Analysis and Control design 2 LMIs Uncertain Linear Systems S. Grammatico (DEI UNIPI) Introduction to LMIs Identification of Uncertain Systems 30 / 30

System Identification by Nuclear Norm Minimization

System Identification by Nuclear Norm Minimization Dept. of Information Engineering University of Pisa (Italy) System Identification by Nuclear Norm Minimization eng. Sergio Grammatico grammatico.sergio@gmail.com Class of Identification of Uncertain Systems

More information

Lecture Note 5: Semidefinite Programming for Stability Analysis

Lecture Note 5: Semidefinite Programming for Stability Analysis ECE7850: Hybrid Systems:Theory and Applications Lecture Note 5: Semidefinite Programming for Stability Analysis Wei Zhang Assistant Professor Department of Electrical and Computer Engineering Ohio State

More information

Appendix A Solving Linear Matrix Inequality (LMI) Problems

Appendix A Solving Linear Matrix Inequality (LMI) Problems Appendix A Solving Linear Matrix Inequality (LMI) Problems In this section, we present a brief introduction about linear matrix inequalities which have been used extensively to solve the FDI problems described

More information

Course Outline. FRTN10 Multivariable Control, Lecture 13. General idea for Lectures Lecture 13 Outline. Example 1 (Doyle Stein, 1979)

Course Outline. FRTN10 Multivariable Control, Lecture 13. General idea for Lectures Lecture 13 Outline. Example 1 (Doyle Stein, 1979) Course Outline FRTN Multivariable Control, Lecture Automatic Control LTH, 6 L-L Specifications, models and loop-shaping by hand L6-L8 Limitations on achievable performance L9-L Controller optimization:

More information

Fast Algorithms for SDPs derived from the Kalman-Yakubovich-Popov Lemma

Fast Algorithms for SDPs derived from the Kalman-Yakubovich-Popov Lemma Fast Algorithms for SDPs derived from the Kalman-Yakubovich-Popov Lemma Venkataramanan (Ragu) Balakrishnan School of ECE, Purdue University 8 September 2003 European Union RTN Summer School on Multi-Agent

More information

Marcus Pantoja da Silva 1 and Celso Pascoli Bottura 2. Abstract: Nonlinear systems with time-varying uncertainties

Marcus Pantoja da Silva 1 and Celso Pascoli Bottura 2. Abstract: Nonlinear systems with time-varying uncertainties A NEW PROPOSAL FOR H NORM CHARACTERIZATION AND THE OPTIMAL H CONTROL OF NONLINEAR SSTEMS WITH TIME-VARING UNCERTAINTIES WITH KNOWN NORM BOUND AND EXOGENOUS DISTURBANCES Marcus Pantoja da Silva 1 and Celso

More information

Robust and Optimal Control, Spring 2015

Robust and Optimal Control, Spring 2015 Robust and Optimal Control, Spring 2015 Instructor: Prof. Masayuki Fujita (S5-303B) D. Linear Matrix Inequality D.1 Convex Optimization D.2 Linear Matrix Inequality(LMI) D.3 Control Design and LMI Formulation

More information

15. Conic optimization

15. Conic optimization L. Vandenberghe EE236C (Spring 216) 15. Conic optimization conic linear program examples modeling duality 15-1 Generalized (conic) inequalities Conic inequality: a constraint x K where K is a convex cone

More information

June Engineering Department, Stanford University. System Analysis and Synthesis. Linear Matrix Inequalities. Stephen Boyd (E.

June Engineering Department, Stanford University. System Analysis and Synthesis. Linear Matrix Inequalities. Stephen Boyd (E. Stephen Boyd (E. Feron :::) System Analysis and Synthesis Control Linear Matrix Inequalities via Engineering Department, Stanford University Electrical June 1993 ACC, 1 linear matrix inequalities (LMIs)

More information

Semidefinite Programming Duality and Linear Time-invariant Systems

Semidefinite Programming Duality and Linear Time-invariant Systems Semidefinite Programming Duality and Linear Time-invariant Systems Venkataramanan (Ragu) Balakrishnan School of ECE, Purdue University 2 July 2004 Workshop on Linear Matrix Inequalities in Control LAAS-CNRS,

More information

Rank-one LMIs and Lyapunov's Inequality. Gjerrit Meinsma 4. Abstract. We describe a new proof of the well-known Lyapunov's matrix inequality about

Rank-one LMIs and Lyapunov's Inequality. Gjerrit Meinsma 4. Abstract. We describe a new proof of the well-known Lyapunov's matrix inequality about Rank-one LMIs and Lyapunov's Inequality Didier Henrion 1;; Gjerrit Meinsma Abstract We describe a new proof of the well-known Lyapunov's matrix inequality about the location of the eigenvalues of a matrix

More information

ROBUST ANALYSIS WITH LINEAR MATRIX INEQUALITIES AND POLYNOMIAL MATRICES. Didier HENRION henrion

ROBUST ANALYSIS WITH LINEAR MATRIX INEQUALITIES AND POLYNOMIAL MATRICES. Didier HENRION  henrion GRADUATE COURSE ON POLYNOMIAL METHODS FOR ROBUST CONTROL PART IV.1 ROBUST ANALYSIS WITH LINEAR MATRIX INEQUALITIES AND POLYNOMIAL MATRICES Didier HENRION www.laas.fr/ henrion henrion@laas.fr Airbus assembly

More information

The Q-parametrization (Youla) Lecture 13: Synthesis by Convex Optimization. Lecture 13: Synthesis by Convex Optimization. Example: Spring-mass System

The Q-parametrization (Youla) Lecture 13: Synthesis by Convex Optimization. Lecture 13: Synthesis by Convex Optimization. Example: Spring-mass System The Q-parametrization (Youla) Lecture 3: Synthesis by Convex Optimization controlled variables z Plant distubances w Example: Spring-mass system measurements y Controller control inputs u Idea for lecture

More information

d A 0 + m t k A k 0 whenever λ min (B k (x)) t k λ max (B k (x)) for k = 1, 2,..., m x n B n (k).

d A 0 + m t k A k 0 whenever λ min (B k (x)) t k λ max (B k (x)) for k = 1, 2,..., m x n B n (k). MATRIX CUBES PARAMETERIZED BY EIGENVALUES JIAWANG NIE AND BERND STURMFELS Abstract. An elimination problem in semidefinite programming is solved by means of tensor algebra. It concerns families of matrix

More information

Didier HENRION henrion

Didier HENRION   henrion POLYNOMIAL METHODS FOR ROBUST CONTROL Didier HENRION www.laas.fr/ henrion henrion@laas.fr Laboratoire d Analyse et d Architecture des Systèmes Centre National de la Recherche Scientifique Université de

More information

FRTN10 Multivariable Control, Lecture 13. Course outline. The Q-parametrization (Youla) Example: Spring-mass System

FRTN10 Multivariable Control, Lecture 13. Course outline. The Q-parametrization (Youla) Example: Spring-mass System FRTN Multivariable Control, Lecture 3 Anders Robertsson Automatic Control LTH, Lund University Course outline The Q-parametrization (Youla) L-L5 Purpose, models and loop-shaping by hand L6-L8 Limitations

More information

Hybrid Systems - Lecture n. 3 Lyapunov stability

Hybrid Systems - Lecture n. 3 Lyapunov stability OUTLINE Focus: stability of equilibrium point Hybrid Systems - Lecture n. 3 Lyapunov stability Maria Prandini DEI - Politecnico di Milano E-mail: prandini@elet.polimi.it continuous systems decribed by

More information

Lecture 6: Conic Optimization September 8

Lecture 6: Conic Optimization September 8 IE 598: Big Data Optimization Fall 2016 Lecture 6: Conic Optimization September 8 Lecturer: Niao He Scriber: Juan Xu Overview In this lecture, we finish up our previous discussion on optimality conditions

More information

Static Output Feedback Stabilisation with H Performance for a Class of Plants

Static Output Feedback Stabilisation with H Performance for a Class of Plants Static Output Feedback Stabilisation with H Performance for a Class of Plants E. Prempain and I. Postlethwaite Control and Instrumentation Research, Department of Engineering, University of Leicester,

More information

Tutorial on Convex Optimization for Engineers Part II

Tutorial on Convex Optimization for Engineers Part II Tutorial on Convex Optimization for Engineers Part II M.Sc. Jens Steinwandt Communications Research Laboratory Ilmenau University of Technology PO Box 100565 D-98684 Ilmenau, Germany jens.steinwandt@tu-ilmenau.de

More information

Modern Optimal Control

Modern Optimal Control Modern Optimal Control Matthew M. Peet Arizona State University Lecture 19: Stabilization via LMIs Optimization Optimization can be posed in functional form: min x F objective function : inequality constraints

More information

EE363 homework 8 solutions

EE363 homework 8 solutions EE363 Prof. S. Boyd EE363 homework 8 solutions 1. Lyapunov condition for passivity. The system described by ẋ = f(x, u), y = g(x), x() =, with u(t), y(t) R m, is said to be passive if t u(τ) T y(τ) dτ

More information

Research Article An Equivalent LMI Representation of Bounded Real Lemma for Continuous-Time Systems

Research Article An Equivalent LMI Representation of Bounded Real Lemma for Continuous-Time Systems Hindawi Publishing Corporation Journal of Inequalities and Applications Volume 28, Article ID 67295, 8 pages doi:1.1155/28/67295 Research Article An Equivalent LMI Representation of Bounded Real Lemma

More information

Advances in Convex Optimization: Theory, Algorithms, and Applications

Advances in Convex Optimization: Theory, Algorithms, and Applications Advances in Convex Optimization: Theory, Algorithms, and Applications Stephen Boyd Electrical Engineering Department Stanford University (joint work with Lieven Vandenberghe, UCLA) ISIT 02 ISIT 02 Lausanne

More information

Interior Point Methods: Second-Order Cone Programming and Semidefinite Programming

Interior Point Methods: Second-Order Cone Programming and Semidefinite Programming School of Mathematics T H E U N I V E R S I T Y O H F E D I N B U R G Interior Point Methods: Second-Order Cone Programming and Semidefinite Programming Jacek Gondzio Email: J.Gondzio@ed.ac.uk URL: http://www.maths.ed.ac.uk/~gondzio

More information

Introduction to Linear Matrix Inequalities (LMIs)

Introduction to Linear Matrix Inequalities (LMIs) ECE 680 Fall 2017 Introduction to Linear Matrix Inequalities (LMIs) by Stanislaw H. Żak and Guisheng Zhai October 18, 2017 Henry Ford offered customers the Model T Ford in any color the customer wants,

More information

A semidefinite relaxation scheme for quadratically constrained quadratic problems with an additional linear constraint

A semidefinite relaxation scheme for quadratically constrained quadratic problems with an additional linear constraint Iranian Journal of Operations Research Vol. 2, No. 2, 20, pp. 29-34 A semidefinite relaxation scheme for quadratically constrained quadratic problems with an additional linear constraint M. Salahi Semidefinite

More information

Convex Optimization Overview (cnt d)

Convex Optimization Overview (cnt d) Conve Optimization Overview (cnt d) Chuong B. Do November 29, 2009 During last week s section, we began our study of conve optimization, the study of mathematical optimization problems of the form, minimize

More information

LMI based output-feedback controllers: γ-optimal versus linear quadratic.

LMI based output-feedback controllers: γ-optimal versus linear quadratic. Proceedings of the 17th World Congress he International Federation of Automatic Control Seoul Korea July 6-11 28 LMI based output-feedback controllers: γ-optimal versus linear quadratic. Dmitry V. Balandin

More information

1 Robust optimization

1 Robust optimization ORF 523 Lecture 16 Princeton University Instructor: A.A. Ahmadi Scribe: G. Hall Any typos should be emailed to a a a@princeton.edu. In this lecture, we give a brief introduction to robust optimization

More information

ECE 680 Linear Matrix Inequalities

ECE 680 Linear Matrix Inequalities ECE 680 Linear Matrix Inequalities Stan Żak School of Electrical and Computer Engineering Purdue University zak@purdue.edu October 11, 2017 Stan Żak (Purdue University) ECE 680 Linear Matrix Inequalities

More information

Analytical Validation Tools for Safety Critical Systems

Analytical Validation Tools for Safety Critical Systems Analytical Validation Tools for Safety Critical Systems Peter Seiler and Gary Balas Department of Aerospace Engineering & Mechanics, University of Minnesota, Minneapolis, MN, 55455, USA Andrew Packard

More information

Agenda. 1 Cone programming. 2 Convex cones. 3 Generalized inequalities. 4 Linear programming (LP) 5 Second-order cone programming (SOCP)

Agenda. 1 Cone programming. 2 Convex cones. 3 Generalized inequalities. 4 Linear programming (LP) 5 Second-order cone programming (SOCP) Agenda 1 Cone programming 2 Convex cones 3 Generalized inequalities 4 Linear programming (LP) 5 Second-order cone programming (SOCP) 6 Semidefinite programming (SDP) 7 Examples Optimization problem in

More information

4. Convex optimization problems

4. Convex optimization problems Convex Optimization Boyd & Vandenberghe 4. Convex optimization problems optimization problem in standard form convex optimization problems quasiconvex optimization linear optimization quadratic optimization

More information

Homework 4. Convex Optimization /36-725

Homework 4. Convex Optimization /36-725 Homework 4 Convex Optimization 10-725/36-725 Due Friday November 4 at 5:30pm submitted to Christoph Dann in Gates 8013 (Remember to a submit separate writeup for each problem, with your name at the top)

More information

Semidefinite Programming Basics and Applications

Semidefinite Programming Basics and Applications Semidefinite Programming Basics and Applications Ray Pörn, principal lecturer Åbo Akademi University Novia University of Applied Sciences Content What is semidefinite programming (SDP)? How to represent

More information

ANALYSIS OF DISCRETE-TIME H2 GUARANTEED COST PERFORMANCE

ANALYSIS OF DISCRETE-TIME H2 GUARANTEED COST PERFORMANCE ANALYSIS OF DISCREE-IME H2 GUARANEED COS PERFORMANCE Richard Conway Computer Mechanics Laboratory Department of Mechanical Engineering University of California at Berkeley Berkeley, California 94720-740

More information

Linear Matrix Inequalities in Robust Control. Venkataramanan (Ragu) Balakrishnan School of ECE, Purdue University MTNS 2002

Linear Matrix Inequalities in Robust Control. Venkataramanan (Ragu) Balakrishnan School of ECE, Purdue University MTNS 2002 Linear Matrix Inequalities in Robust Control Venkataramanan (Ragu) Balakrishnan School of ECE, Purdue University MTNS 2002 Objective A brief introduction to LMI techniques for Robust Control Emphasis on

More information

Multi-Model Adaptive Regulation for a Family of Systems Containing Different Zero Structures

Multi-Model Adaptive Regulation for a Family of Systems Containing Different Zero Structures Preprints of the 19th World Congress The International Federation of Automatic Control Multi-Model Adaptive Regulation for a Family of Systems Containing Different Zero Structures Eric Peterson Harry G.

More information

ROBUST STABILITY TEST FOR UNCERTAIN DISCRETE-TIME SYSTEMS: A DESCRIPTOR SYSTEM APPROACH

ROBUST STABILITY TEST FOR UNCERTAIN DISCRETE-TIME SYSTEMS: A DESCRIPTOR SYSTEM APPROACH Latin American Applied Research 41: 359-364(211) ROBUS SABILIY ES FOR UNCERAIN DISCREE-IME SYSEMS: A DESCRIPOR SYSEM APPROACH W. ZHANG,, H. SU, Y. LIANG, and Z. HAN Engineering raining Center, Shanghai

More information

Nu-Gap Metric A Sum-Of-Squares and Linear Matrix Inequality Approach

Nu-Gap Metric A Sum-Of-Squares and Linear Matrix Inequality Approach Nationaal Lucht- en Ruimtevaartlaboratorium National Aerospace Laboratory NLR NLR-P-014-319 Nu-Gap Metric A Sum-Of-Squares and Linear Matrix Inequality Approach S. aamallah Nationaal Lucht- en Ruimtevaartlaboratorium

More information

On Computing the Worst-case Performance of Lur'e Systems with Uncertain Time-invariant Delays

On Computing the Worst-case Performance of Lur'e Systems with Uncertain Time-invariant Delays Article On Computing the Worst-case Performance of Lur'e Systems with Uncertain Time-invariant Delays Thapana Nampradit and David Banjerdpongchai* Department of Electrical Engineering, Faculty of Engineering,

More information

Convex Optimization. (EE227A: UC Berkeley) Lecture 6. Suvrit Sra. (Conic optimization) 07 Feb, 2013

Convex Optimization. (EE227A: UC Berkeley) Lecture 6. Suvrit Sra. (Conic optimization) 07 Feb, 2013 Convex Optimization (EE227A: UC Berkeley) Lecture 6 (Conic optimization) 07 Feb, 2013 Suvrit Sra Organizational Info Quiz coming up on 19th Feb. Project teams by 19th Feb Good if you can mix your research

More information

Optimization in. Stephen Boyd. 3rd SIAM Conf. Control & Applications. and Control Theory. System. Convex

Optimization in. Stephen Boyd. 3rd SIAM Conf. Control & Applications. and Control Theory. System. Convex Optimization in Convex and Control Theory System Stephen Boyd Engineering Department Electrical University Stanford 3rd SIAM Conf. Control & Applications 1 Basic idea Many problems arising in system and

More information

Linear Matrix Inequality (LMI)

Linear Matrix Inequality (LMI) Linear Matrix Inequality (LMI) A linear matrix inequality is an expression of the form where F (x) F 0 + x 1 F 1 + + x m F m > 0 (1) x = (x 1,, x m ) R m, F 0,, F m are real symmetric matrices, and the

More information

On Dwell Time Minimization for Switched Delay Systems: Free-Weighting Matrices Method

On Dwell Time Minimization for Switched Delay Systems: Free-Weighting Matrices Method On Dwell Time Minimization for Switched Delay Systems: Free-Weighting Matrices Method Ahmet Taha Koru Akın Delibaşı and Hitay Özbay Abstract In this paper we present a quasi-convex minimization method

More information

THE NOTION of passivity plays an important role in

THE NOTION of passivity plays an important role in 2394 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 46, NO. 9, SEPTEMBER 1998 Passivity Analysis and Passification for Uncertain Signal Processing Systems Lihua Xie, Senior Member, IEEE, Minyue Fu, and Huaizhong

More information

Stabilization of constrained linear systems via smoothed truncated ellipsoids

Stabilization of constrained linear systems via smoothed truncated ellipsoids Preprints of the 8th IFAC World Congress Milano (Italy) August 28 - September 2, 2 Stabilization of constrained linear systems via smoothed truncated ellipsoids A. Balestrino, E. Crisostomi, S. Grammatico,

More information

The servo problem for piecewise linear systems

The servo problem for piecewise linear systems The servo problem for piecewise linear systems Stefan Solyom and Anders Rantzer Department of Automatic Control Lund Institute of Technology Box 8, S-22 Lund Sweden {stefan rantzer}@control.lth.se Abstract

More information

Rational Covariance Extension for Boundary Data and Positive Real Lemma with Positive Semidefinite Matrix Solution

Rational Covariance Extension for Boundary Data and Positive Real Lemma with Positive Semidefinite Matrix Solution Preprints of the 18th FAC World Congress Milano (taly) August 28 - September 2, 2011 Rational Covariance Extension for Boundary Data and Positive Real Lemma with Positive Semidefinite Matrix Solution Y

More information

Introduction to linear matrix inequalities Wojciech Paszke

Introduction to linear matrix inequalities Wojciech Paszke Introduction to linear matrix inequalities Wojciech Paszke Institute of Control and Computation Engineering, University of Zielona Góra, Poland e-mail: W.Paszke@issi.uz.zgora.pl Outline Introduction to

More information

EE C128 / ME C134 Feedback Control Systems

EE C128 / ME C134 Feedback Control Systems EE C128 / ME C134 Feedback Control Systems Lecture Additional Material Introduction to Model Predictive Control Maximilian Balandat Department of Electrical Engineering & Computer Science University of

More information

STABILITY AND STABILIZATION OF A CLASS OF NONLINEAR SYSTEMS WITH SATURATING ACTUATORS. Eugênio B. Castelan,1 Sophie Tarbouriech Isabelle Queinnec

STABILITY AND STABILIZATION OF A CLASS OF NONLINEAR SYSTEMS WITH SATURATING ACTUATORS. Eugênio B. Castelan,1 Sophie Tarbouriech Isabelle Queinnec STABILITY AND STABILIZATION OF A CLASS OF NONLINEAR SYSTEMS WITH SATURATING ACTUATORS Eugênio B. Castelan,1 Sophie Tarbouriech Isabelle Queinnec DAS-CTC-UFSC P.O. Box 476, 88040-900 Florianópolis, SC,

More information

Review: control, feedback, etc. Today s topic: state-space models of systems; linearization

Review: control, feedback, etc. Today s topic: state-space models of systems; linearization Plan of the Lecture Review: control, feedback, etc Today s topic: state-space models of systems; linearization Goal: a general framework that encompasses all examples of interest Once we have mastered

More information

Hybrid Systems Course Lyapunov stability

Hybrid Systems Course Lyapunov stability Hybrid Systems Course Lyapunov stability OUTLINE Focus: stability of an equilibrium point continuous systems decribed by ordinary differential equations (brief review) hybrid automata OUTLINE Focus: stability

More information

Module 04 Optimization Problems KKT Conditions & Solvers

Module 04 Optimization Problems KKT Conditions & Solvers Module 04 Optimization Problems KKT Conditions & Solvers Ahmad F. Taha EE 5243: Introduction to Cyber-Physical Systems Email: ahmad.taha@utsa.edu Webpage: http://engineering.utsa.edu/ taha/index.html September

More information

LMI Methods in Optimal and Robust Control

LMI Methods in Optimal and Robust Control LMI Methods in Optimal and Robust Control Matthew M. Peet Arizona State University Lecture 4: LMIs for State-Space Internal Stability Solving the Equations Find the output given the input State-Space:

More information

Graph and Controller Design for Disturbance Attenuation in Consensus Networks

Graph and Controller Design for Disturbance Attenuation in Consensus Networks 203 3th International Conference on Control, Automation and Systems (ICCAS 203) Oct. 20-23, 203 in Kimdaejung Convention Center, Gwangju, Korea Graph and Controller Design for Disturbance Attenuation in

More information

Convex Optimization Problems. Prof. Daniel P. Palomar

Convex Optimization Problems. Prof. Daniel P. Palomar Conve Optimization Problems Prof. Daniel P. Palomar The Hong Kong University of Science and Technology (HKUST) MAFS6010R- Portfolio Optimization with R MSc in Financial Mathematics Fall 2018-19, HKUST,

More information

RESEARCH ARTICLE. Nonlinear and locally optimal controller design for input affine locally controllable systems

RESEARCH ARTICLE. Nonlinear and locally optimal controller design for input affine locally controllable systems International Journal of Control Vol., No., Month 2x, 1 17 RESEARCH ARTICLE Nonlinear and locally optimal controller design for input affine locally controllable systems Mariem Sahnoun, Vincent Andrieu,

More information

14. Duality. ˆ Upper and lower bounds. ˆ General duality. ˆ Constraint qualifications. ˆ Counterexample. ˆ Complementary slackness.

14. Duality. ˆ Upper and lower bounds. ˆ General duality. ˆ Constraint qualifications. ˆ Counterexample. ˆ Complementary slackness. CS/ECE/ISyE 524 Introduction to Optimization Spring 2016 17 14. Duality ˆ Upper and lower bounds ˆ General duality ˆ Constraint qualifications ˆ Counterexample ˆ Complementary slackness ˆ Examples ˆ Sensitivity

More information

LMI Methods in Optimal and Robust Control

LMI Methods in Optimal and Robust Control LMI Methods in Optimal and Robust Control Matthew M. Peet Arizona State University Lecture 02: Optimization (Convex and Otherwise) What is Optimization? An Optimization Problem has 3 parts. x F f(x) :

More information

Semidefinite Programming Duality and Linear Time-Invariant Systems

Semidefinite Programming Duality and Linear Time-Invariant Systems Semidefinite Programming Duality and Linear Time-Invariant Systems Venkataramanan Balakrishnan, Member, IEEE, and Lieven Vandenberghe, Member, IEEE Abstract Several important problems in control theory

More information

Distributionally Robust Convex Optimization

Distributionally Robust Convex Optimization Submitted to Operations Research manuscript OPRE-2013-02-060 Authors are encouraged to submit new papers to INFORMS journals by means of a style file template, which includes the journal title. However,

More information

On Absolute Stability of Lur e Control Systems. with Multiple Nonlinearities

On Absolute Stability of Lur e Control Systems. with Multiple Nonlinearities On Absolute Stability of Lur e Control Systems with Multiple Nonlinearities Min Wu a, Yong He a, Guo-Ping Liu b, Jin-Hua She c a School of Information Science and Engineering, Central South University,

More information

LOW ORDER H CONTROLLER DESIGN: AN LMI APPROACH

LOW ORDER H CONTROLLER DESIGN: AN LMI APPROACH LOW ORDER H CONROLLER DESIGN: AN LMI APPROACH Guisheng Zhai, Shinichi Murao, Naoki Koyama, Masaharu Yoshida Faculty of Systems Engineering, Wakayama University, Wakayama 640-8510, Japan Email: zhai@sys.wakayama-u.ac.jp

More information

Topic # /31 Feedback Control Systems. Analysis of Nonlinear Systems Lyapunov Stability Analysis

Topic # /31 Feedback Control Systems. Analysis of Nonlinear Systems Lyapunov Stability Analysis Topic # 16.30/31 Feedback Control Systems Analysis of Nonlinear Systems Lyapunov Stability Analysis Fall 010 16.30/31 Lyapunov Stability Analysis Very general method to prove (or disprove) stability of

More information

Optimization based robust control

Optimization based robust control Optimization based robust control Didier Henrion 1,2 Draft of March 27, 2014 Prepared for possible inclusion into The Encyclopedia of Systems and Control edited by John Baillieul and Tariq Samad and published

More information

Control Systems. LMIs in. Guang-Ren Duan. Analysis, Design and Applications. Hai-Hua Yu. CRC Press. Taylor & Francis Croup

Control Systems. LMIs in. Guang-Ren Duan. Analysis, Design and Applications. Hai-Hua Yu. CRC Press. Taylor & Francis Croup LMIs in Control Systems Analysis, Design and Applications Guang-Ren Duan Hai-Hua Yu CRC Press Taylor & Francis Croup Boca Raton London New York CRC Press is an imprint of the Taylor & Francis Croup, an

More information

8 A First Glimpse on Design with LMIs

8 A First Glimpse on Design with LMIs 8 A First Glimpse on Design with LMIs 8.1 Conceptual Design Problem Given a linear time invariant system design a linear time invariant controller or filter so as to guarantee some closed loop indices

More information

Denis ARZELIER arzelier

Denis ARZELIER   arzelier COURSE ON LMI OPTIMIZATION WITH APPLICATIONS IN CONTROL PART II.2 LMIs IN SYSTEMS CONTROL STATE-SPACE METHODS PERFORMANCE ANALYSIS and SYNTHESIS Denis ARZELIER www.laas.fr/ arzelier arzelier@laas.fr 15

More information

SYNTHESIS OF ROBUST DISCRETE-TIME SYSTEMS BASED ON COMPARISON WITH STOCHASTIC MODEL 1. P. V. Pakshin, S. G. Soloviev

SYNTHESIS OF ROBUST DISCRETE-TIME SYSTEMS BASED ON COMPARISON WITH STOCHASTIC MODEL 1. P. V. Pakshin, S. G. Soloviev SYNTHESIS OF ROBUST DISCRETE-TIME SYSTEMS BASED ON COMPARISON WITH STOCHASTIC MODEL 1 P. V. Pakshin, S. G. Soloviev Nizhny Novgorod State Technical University at Arzamas, 19, Kalinina ul., Arzamas, 607227,

More information

Nonlinear Optimization for Optimal Control

Nonlinear Optimization for Optimal Control Nonlinear Optimization for Optimal Control Pieter Abbeel UC Berkeley EECS Many slides and figures adapted from Stephen Boyd [optional] Boyd and Vandenberghe, Convex Optimization, Chapters 9 11 [optional]

More information

18. Primal-dual interior-point methods

18. Primal-dual interior-point methods L. Vandenberghe EE236C (Spring 213-14) 18. Primal-dual interior-point methods primal-dual central path equations infeasible primal-dual method primal-dual method for self-dual embedding 18-1 Symmetric

More information

Lecture 1: Introduction

Lecture 1: Introduction EE 227A: Convex Optimization and Applications January 17 Lecture 1: Introduction Lecturer: Anh Pham Reading assignment: Chapter 1 of BV 1. Course outline and organization Course web page: http://www.eecs.berkeley.edu/~elghaoui/teaching/ee227a/

More information

Stability of linear time-varying systems through quadratically parameter-dependent Lyapunov functions

Stability of linear time-varying systems through quadratically parameter-dependent Lyapunov functions Stability of linear time-varying systems through quadratically parameter-dependent Lyapunov functions Vinícius F. Montagner Department of Telematics Pedro L. D. Peres School of Electrical and Computer

More information

7.1 Linear Systems Stability Consider the Continuous-Time (CT) Linear Time-Invariant (LTI) system

7.1 Linear Systems Stability Consider the Continuous-Time (CT) Linear Time-Invariant (LTI) system 7 Stability 7.1 Linear Systems Stability Consider the Continuous-Time (CT) Linear Time-Invariant (LTI) system ẋ(t) = A x(t), x(0) = x 0, A R n n, x 0 R n. (14) The origin x = 0 is a globally asymptotically

More information

Gradient Descent. Ryan Tibshirani Convex Optimization /36-725

Gradient Descent. Ryan Tibshirani Convex Optimization /36-725 Gradient Descent Ryan Tibshirani Convex Optimization 10-725/36-725 Last time: canonical convex programs Linear program (LP): takes the form min x subject to c T x Gx h Ax = b Quadratic program (QP): like

More information

6-1 The Positivstellensatz P. Parrilo and S. Lall, ECC

6-1 The Positivstellensatz P. Parrilo and S. Lall, ECC 6-1 The Positivstellensatz P. Parrilo and S. Lall, ECC 2003 2003.09.02.10 6. The Positivstellensatz Basic semialgebraic sets Semialgebraic sets Tarski-Seidenberg and quantifier elimination Feasibility

More information

Lecture: Examples of LP, SOCP and SDP

Lecture: Examples of LP, SOCP and SDP 1/34 Lecture: Examples of LP, SOCP and SDP Zaiwen Wen Beijing International Center For Mathematical Research Peking University http://bicmr.pku.edu.cn/~wenzw/bigdata2018.html wenzw@pku.edu.cn Acknowledgement:

More information

Module 02 CPS Background: Linear Systems Preliminaries

Module 02 CPS Background: Linear Systems Preliminaries Module 02 CPS Background: Linear Systems Preliminaries Ahmad F. Taha EE 5243: Introduction to Cyber-Physical Systems Email: ahmad.taha@utsa.edu Webpage: http://engineering.utsa.edu/ taha/index.html August

More information

Exact SDP Relaxations for Classes of Nonlinear Semidefinite Programming Problems

Exact SDP Relaxations for Classes of Nonlinear Semidefinite Programming Problems Exact SDP Relaxations for Classes of Nonlinear Semidefinite Programming Problems V. Jeyakumar and G. Li Revised Version:August 31, 2012 Abstract An exact semidefinite linear programming (SDP) relaxation

More information

March Algebra 2 Question 1. March Algebra 2 Question 1

March Algebra 2 Question 1. March Algebra 2 Question 1 March Algebra 2 Question 1 If the statement is always true for the domain, assign that part a 3. If it is sometimes true, assign it a 2. If it is never true, assign it a 1. Your answer for this question

More information

Research overview. Seminar September 4, Lehigh University Department of Industrial & Systems Engineering. Research overview.

Research overview. Seminar September 4, Lehigh University Department of Industrial & Systems Engineering. Research overview. Research overview Lehigh University Department of Industrial & Systems Engineering COR@L Seminar September 4, 2008 1 Duality without regularity condition Duality in non-exact arithmetic 2 interior point

More information

CONSTRAINED OPTIMIZATION LARS IMSLAND

CONSTRAINED OPTIMIZATION LARS IMSLAND Introduction to course TTK16 Mixed integer optimization in energy and oil and gas systems CONSTRAINED OPTIMIZATION LARS IMSLAND TTK16 overview This introduction lecture One week intensive course Starting

More information

Delay-Dependent Exponential Stability of Linear Systems with Fast Time-Varying Delay

Delay-Dependent Exponential Stability of Linear Systems with Fast Time-Varying Delay International Mathematical Forum, 4, 2009, no. 39, 1939-1947 Delay-Dependent Exponential Stability of Linear Systems with Fast Time-Varying Delay Le Van Hien Department of Mathematics Hanoi National University

More information

Determinant maximization with linear. S. Boyd, L. Vandenberghe, S.-P. Wu. Information Systems Laboratory. Stanford University

Determinant maximization with linear. S. Boyd, L. Vandenberghe, S.-P. Wu. Information Systems Laboratory. Stanford University Determinant maximization with linear matrix inequality constraints S. Boyd, L. Vandenberghe, S.-P. Wu Information Systems Laboratory Stanford University SCCM Seminar 5 February 1996 1 MAXDET problem denition

More information

Robust Anti-Windup Compensation for PID Controllers

Robust Anti-Windup Compensation for PID Controllers Robust Anti-Windup Compensation for PID Controllers ADDISON RIOS-BOLIVAR Universidad de Los Andes Av. Tulio Febres, Mérida 511 VENEZUELA FRANCKLIN RIVAS-ECHEVERRIA Universidad de Los Andes Av. Tulio Febres,

More information

Convex Optimization. (EE227A: UC Berkeley) Lecture 28. Suvrit Sra. (Algebra + Optimization) 02 May, 2013

Convex Optimization. (EE227A: UC Berkeley) Lecture 28. Suvrit Sra. (Algebra + Optimization) 02 May, 2013 Convex Optimization (EE227A: UC Berkeley) Lecture 28 (Algebra + Optimization) 02 May, 2013 Suvrit Sra Admin Poster presentation on 10th May mandatory HW, Midterm, Quiz to be reweighted Project final report

More information

Poluqenie rezulьtatov v vide. line inyx matreqnyh neravenstv dl robastnosti. Tradicionna Xkola Upravlenie, Informaci i Optimizaci

Poluqenie rezulьtatov v vide. line inyx matreqnyh neravenstv dl robastnosti. Tradicionna Xkola Upravlenie, Informaci i Optimizaci Poluqenie rezulьtatov v vide line inyx matreqnyh neravenstv dl robastnosti Dmitri i Жanoviq Konovalov Dimitri i Poselь Dmitry Peaucelle Dimitri Peaucelle Tradicionna Xkola Upravlenie, Informaci i Optimizaci

More information

Introduction to Convex Optimization

Introduction to Convex Optimization Introduction to Convex Optimization Daniel P. Palomar Hong Kong University of Science and Technology (HKUST) ELEC5470 - Convex Optimization Fall 2018-19, HKUST, Hong Kong Outline of Lecture Optimization

More information

Constrained Optimization and Lagrangian Duality

Constrained Optimization and Lagrangian Duality CIS 520: Machine Learning Oct 02, 2017 Constrained Optimization and Lagrangian Duality Lecturer: Shivani Agarwal Disclaimer: These notes are designed to be a supplement to the lecture. They may or may

More information

Handout 8: Dealing with Data Uncertainty

Handout 8: Dealing with Data Uncertainty MFE 5100: Optimization 2015 16 First Term Handout 8: Dealing with Data Uncertainty Instructor: Anthony Man Cho So December 1, 2015 1 Introduction Conic linear programming CLP, and in particular, semidefinite

More information

Duality. Geoff Gordon & Ryan Tibshirani Optimization /

Duality. Geoff Gordon & Ryan Tibshirani Optimization / Duality Geoff Gordon & Ryan Tibshirani Optimization 10-725 / 36-725 1 Duality in linear programs Suppose we want to find lower bound on the optimal value in our convex problem, B min x C f(x) E.g., consider

More information

9 The LQR Problem Revisited

9 The LQR Problem Revisited 9 he LQR Problem Revisited Problem: Compute a state feedback controller u(t) = Kx(t) that stabilizes the closed loop system and minimizes J := lim E [ z(t) z(t) ] t for the LI system Assumptions: a) D

More information

Parameterized Linear Matrix Inequality Techniques in Fuzzy Control System Design

Parameterized Linear Matrix Inequality Techniques in Fuzzy Control System Design 324 IEEE TRANSACTIONS ON FUZZY SYSTEMS, VOL. 9, NO. 2, APRIL 2001 Parameterized Linear Matrix Inequality Techniques in Fuzzy Control System Design H. D. Tuan, P. Apkarian, T. Narikiyo, and Y. Yamamoto

More information

Conjugate convex Lyapunov functions for dual linear differential inclusions

Conjugate convex Lyapunov functions for dual linear differential inclusions Conjugate convex Lyapunov functions for dual linear differential inclusions Rafal Goebel, Andrew R. Teel 2, Tingshu Hu 3, Zongli Lin 4 Abstract Tools from convex analysis are used to show how stability

More information

Robust Model Predictive Control through Adjustable Variables: an application to Path Planning

Robust Model Predictive Control through Adjustable Variables: an application to Path Planning 43rd IEEE Conference on Decision and Control December 4-7, 24 Atlantis, Paradise Island, Bahamas WeC62 Robust Model Predictive Control through Adjustable Variables: an application to Path Planning Alessandro

More information

Lecture: Convex Optimization Problems

Lecture: Convex Optimization Problems 1/36 Lecture: Convex Optimization Problems http://bicmr.pku.edu.cn/~wenzw/opt-2015-fall.html Acknowledgement: this slides is based on Prof. Lieven Vandenberghe s lecture notes Introduction 2/36 optimization

More information

ROBUST STATE FEEDBACK CONTROL OF UNCERTAIN POLYNOMIAL DISCRETE-TIME SYSTEMS: AN INTEGRAL ACTION APPROACH

ROBUST STATE FEEDBACK CONTROL OF UNCERTAIN POLYNOMIAL DISCRETE-TIME SYSTEMS: AN INTEGRAL ACTION APPROACH International Journal of Innovative Computing, Information and Control ICIC International c 2013 ISSN 1349-4198 Volume 9, Number 3, March 2013 pp. 1233 1244 ROBUST STATE FEEDBACK CONTROL OF UNCERTAIN POLYNOMIAL

More information