Analytic Left Inversion of SISO Lotka-Volterra Models

Size: px
Start display at page:

Download "Analytic Left Inversion of SISO Lotka-Volterra Models"

Transcription

1 Analytic Left Inversion of SISO Lotka-Volterra Models Luis A. Duffaut Espinosa George Mason University Joint work with W. Steven Gray (ODU) and K. Ebrahimi-Fard (ICMAT) This research was supported by the BBVA Foundation Grant to Researchers, Innovators and Cultural Creators (Spain).

2 Overview 1. Introduction. Preliminaries on Fliess Operators and Their Inverses 3. Left System Inversion of Lotka-Volterra Input-Output Systems 4. Numerical Simulations 5. Conclusions

3 1. Introduction Given an operator F, describing the dynamics of a system, and a function y in its range, the left inversion problem (LIP) is to determine a unique input u such that y = F[u]. A sufficient condition (but not necessary) for solving this problem in a state space setting is to have well defined relative degree (Isidori, 1995). The solution of LIP does not require a state space realization. Fliess operators provide an explicit analytical solution. Introduced by M. Fliess in 1983, Fliess operators are analytic input-output systems described by coefficients and iterated integrals of the inputs. Fliess operators can be viewed as a functional generalization of a Taylor series. For example, any Volterra operator with analytic kernels has a Fliess operator representation. 3

4 . Preliminaries Population models: Here we apply the method to the population dynamical system: n ż i = β i z i + α ij z i z j, i = 1,,...,n, (Lotka-Volterra model) j=1 where z i to the i-th population, β i is the growth rate for the i-th population, and α ij weights the effect of the j-th species on the i-th species. Input-output models are obtained by introducing time dependence on the β i (t) s or α ij (t) s (inputs), and assuming y = h(z) (outputs). For n =, ż1 ż = β 1z 1 α 1 z 1 z β z +α 1 z 1 z (Predator-Prey model) The vector fields are complete within the first quadrant giving concentric periodic trajectories about z e = (β /α 1,β 1 /α 1 ). 4

5 Fliess Operators: Let X = {x,x 1,...,x m } be an alphabet and X the set of all words over X (including the empty word ). A formal power series is any mapping c : X R l. Typically, c is written as a formal sum c = η X (c,η)η, and the set of all such series is R l X. For a measurable function u : [a,b] R m with finite L 1 -norm, define E η : L m 1 [t,t +T] C[t,t +T] by E [u] = 1, and E xi η [u](t,t ) = t where x i X, η X and u 1. t u i (τ)e η [u](τ,t )dτ, Note that to each letter x i has been assigned a function u i. For each c R l X F c [u](t) = η X (c,η)e η [u](t,t ), which is called a Fliess operator (Fliess, 1983). 5

6 Fliess Operator Inverses: u F c y F c F d = F c d, where denotes the F d shuffle product. Fig..1: Product connection. u F d Fig..: Cascade connection. v F c y F c F d = F c d, where c d denotes the composition product of c R l X and d R m X (Gray et al., 14) u v F c y Given c,d R m X, y satisfies y = F c [v] = F c [u+f d [y]]. F d If there exists e so that y = F e [u], then Fig..3: Feedback connection. F e [u] = F c [u+f d e [u]]. (contraction!) 6

7 On the other hand, v = u+f d c [v] (I +F d c )[v] = u. Apply the compositional inverse to both sides of this equation: v = (I +F d c ) 1 [u] := ( I +F ( d c) 1) [u]. In which case, F c@d [u] = F c [v] = F c (δ d c) 1[u], (explicit formula!) or equivalently, c@d = c (δ d c) 1, where F δ := I. The set of operators F δ = {I +F c : c R X }, forms a group under composition, in particular, a Faà di Bruno Hopf algebra with antipode, α, satisfying (δ +c) 1 := δ +c 1 = δ + η X (αa η )(c)η, where c 1 denotes the composition inverse of c and a η : R X R : c (c,η). Remark: The antipode has an explicit series representation (Gray & Duffaut Espinosa, 11, 14). 7

8 Now observe that any c R X can be written as c = c N +c F, where c N := k (c,xk )x k and c F := c c N. Definition.1: Given c R X, let r 1 be the largest integer such that supp(c F ) x r 1 X. Then c has relative degree r if the linear word x r 1 x 1 supp(c), otherwise it is not well defined. Remark: This definition coincides with the usual definition of relative degree given in a state space setting. But this definition is independent of the state space setting. Definition.: Given ξ X, the corresponding left-shift operator is { ξ 1 : X η R X : η : η = ξη : otherwise. Remark: The operation F c /F d = F c/d is given by c/d := c d 1, where c 1 := (c, ) 1 (c ) k, and c = 1 c/(c, ) is proper. k= 8

9 y = F c [u] y (1) = F x 1 (c)[u]. y (r 1) = F (x r 1 [u] ) 1 (c) y (r) = F (x r ) 1 (c)[u] +u F (x r 1 x 1 ) 1 (c) [u]. u = v F (x r (c)[u] ) 1 F (x r 1 [u] (y (r) = v) x 1 ) 1 (c) = F (x r ) 1 (c c y )[u] F (x r 1 x 1 ) 1 (c) [u] = F d [u], d = (xr ) 1 (c c y ) (x r 1 x 1 ) 1 (c). Theorem.3: Suppose c R X has relative degree r. Let y be analytic at t = with generating series c y R LC [[X ]] satisfying (c y,x k ) = (c,x k ), k =,...,r 1. (Here X := {x }.) Then the input u(t) = (c u,x k ) tk k!, k= where c u = ((x r ) 1 (c c y )/(x r 1 x 1 ) 1 (c)) 1, is the unique solution to F c [u] = y on [,T] for some T >. Remark: The condition on c y ensures that y is in the range of F c. 9

10 3. Left System Inversion of LV Input-Output Systems Four SISO predator-prey systems with output y = z 1 (prey): I/ map state space realization rel. degree [ ] α 1 z 1 z F c : β 1 y g (z) =, g 1 (z) = β z + α 1 z 1 z [ z1 ] 1 F c : α 1 y g (z) = [ β 1 z 1 β z + α 1 z 1 z ], g 1 (z) = [ z1 z ] 1 F c : β y g (z) = [ β1 z 1 α 1 z 1 z α 1 z 1 z ], g 1 (z) = [ z ] F c : α y g (z) = [ β1 z 1 α 1 z 1 z β z ], g 1 (z) = [ z 1 z ] 1

11 The population system under study: α ż1 = 1 z 1 z ż β z +α 1 z 1 z + z 1 u, y = z 1 with z 1 () = z 1, and z () = z,. Make α 1 = α 1 = β = Initial orbit 4 Final orbit 4 Vector field 3.5 Vector field Predator population 3.5 Predator population Equilibrium (1, 1.5) Equilibrium (1, 1) Prey population Prey population Fig. 3.1: u = 1. Fig. 3.: u = 1.5. c =z 1, α 1 z, z 1, x +z 1, x 1 + ( α 1 z, z 1, α 1 α 1 z, z 1, +α 1 β z, z 1, )x α 1 z, z 1, x x 1 α 1 z, z 1, x 1 x +z 1, x 1 +. Relative degree r = 1. 11

12 One must select an output function y(t) = (c y,x k ) tk k!, k= where c y is the generating series of y. It is sufficient to consider a polynomial of degree 3, so let (c y, ) = v, (c y,x i ) = v i for i = 1,,3. Thus, d := (xr ) 1 (c c y ) (x r 1 x 1 ) 1 (c) = α 1z, v 1 + z 1, α 1 α 1 z 1, z, v ) 1α 1 z, + ( v 1α 1 z, z 1, x + v 1 z 1, x 1 z 1, + v 1α 1 β z, z 1, v 1 α 1 α 1 z, ( α 1 β z, v z 1, v α 1 z, +α 1 α 1 z 1, z, +α 1 β α 1 z 1, z, z 1, v ) 3 α 1 β z, α 1 α 1 z 1, z, x + z 1, 1

13 In which case, c u = ( d 1) N = v 1 z 1, +α 1 z, + Design example: Given v 1 ( v 1 z 1, α 1 z, ) + v 1α 1 z, z 1, z 1, + v ) α 1 β z, +α 1 α 1 z 1, z, x + z 1, [t 1,t ] = [1.5,1.7] ( t =.), u(t 1 ) = 1, u(t ) = 1.5, initial orbit exit point [z 1 (1.5),z (1.5)] T = [3.8,.5] T, y(t ) =, find a smooth u(t) for t (t 1,t ) so that all constraints are satisfied. 13

14 Solution: Select the output as y(t) = (c y,x k ) tk k! = v 1t+v 3 t 3 /3!. k= From Theorem.3, c u = ( d 1) N is computed in terms of v 1 and v 3. Solving c y (v 1,v 3 ) c u (v 1,v 3 ) =. x k (.) k /k!,k> = 1.5 x k (.) k /k!,k> system of nonlinear algebraic equations gives the transfer input (up to order 6): u(t) = (t t 1 ) (t t 1 ) (t t 1 ) (t t 1 ) (t t 1 ) (t t 1 ) 6 14

15 4. Numerical Simulation Note that u(t ) = 1.5 and y(t ) =., and the error is y(t) ŷ(t) = 153.4(t t 1 ) (t t 1 ) (t t 1 ) 8 +. Time series for prey population Prey Initial prey cycle Transfer trajectory Final prey cycle t Time series for predator population Predator Initial predator cycle Transfer trajectory Final predator cycle t Fig. 4.1: Prey (top) and predator (bottom) populations. 15

16 Predator population Initial cycle Initial cycle directions Transition computed by proposers Final cycle Final cycle directions Prey population Fig. 4.: Orbit transfer. 16

17 5. Conclusions and Future Work The LIP for SISO Lotka-Volterra systems was solved using Fliess operators having well defined relative degree. The method provides an exact, explicit and analytic formula for the LIP. The MIMO version of the Lotka-Volterra trajectory design problem is under review for the CDC 15. Efficiency of the current software is currently being improved. 17

Analytic Left Inversion of Multivariable Lotka Volterra Models α

Analytic Left Inversion of Multivariable Lotka Volterra Models α Analytic Left Inversion of Multivariable Lotka Volterra Models α W. Steven Gray β Mathematical Perspectives in Biology Madrid, Spain February 5, 6 β Joint work with Luis A. Duffaut Espinosa (GMU) and Kurusch

More information

SISO Output Affine Feedback Transformation Group and Its Faá di Bruno Hopf Algebra

SISO Output Affine Feedback Transformation Group and Its Faá di Bruno Hopf Algebra Old ominion University OU igital Commons Electrical & Computer Engineering Faculty Publications Electrical & Computer Engineering 27 SISO Output Affine Feedback Transformation Group and Its Faá di Bruno

More information

Systems & Control Letters. A Faà di Bruno Hopf algebra for a group of Fliess operators with applications to feedback

Systems & Control Letters. A Faà di Bruno Hopf algebra for a group of Fliess operators with applications to feedback Systems & Control Letters 60 (0) 44 449 Contents lists available at ScienceDirect Systems & Control Letters journal homepage: www.elsevier.com/locate/sysconle A Faà di Bruno Hopf algebra for a group of

More information

Interconnected Systems of Fliess Operators

Interconnected Systems of Fliess Operators Interconnecte Systems of Fliess Operators W. Steven Gray Yaqin Li Department of Electrical an Computer Engineering Ol Dominion University Norfolk, Virginia 23529 USA Abstract Given two analytic nonlinear

More information

Observability. Dynamic Systems. Lecture 2 Observability. Observability, continuous time: Observability, discrete time: = h (2) (x, u, u)

Observability. Dynamic Systems. Lecture 2 Observability. Observability, continuous time: Observability, discrete time: = h (2) (x, u, u) Observability Dynamic Systems Lecture 2 Observability Continuous time model: Discrete time model: ẋ(t) = f (x(t), u(t)), y(t) = h(x(t), u(t)) x(t + 1) = f (x(t), u(t)), y(t) = h(x(t)) Reglerteknik, ISY,

More information

Algebraic Structure of Stochastic Expansions and Efficient Simulation

Algebraic Structure of Stochastic Expansions and Efficient Simulation Algebraic Structure of Stochastic Expansions and Efficient Simulation Anke Wiese Heriot Watt University, Edinburgh, UK SSSC2012: ICMAT, Madrid November 5-9, 2012 Supported by EMS, IMA, LMS Work in collaboration

More information

Lotka Volterra Predator-Prey Model with a Predating Scavenger

Lotka Volterra Predator-Prey Model with a Predating Scavenger Lotka Volterra Predator-Prey Model with a Predating Scavenger Monica Pescitelli Georgia College December 13, 2013 Abstract The classic Lotka Volterra equations are used to model the population dynamics

More information

Nonlinear Autonomous Dynamical systems of two dimensions. Part A

Nonlinear Autonomous Dynamical systems of two dimensions. Part A Nonlinear Autonomous Dynamical systems of two dimensions Part A Nonlinear Autonomous Dynamical systems of two dimensions x f ( x, y), x(0) x vector field y g( xy, ), y(0) y F ( f, g) 0 0 f, g are continuous

More information

Introduction to Geometric Control

Introduction to Geometric Control Introduction to Geometric Control Relative Degree Consider the square (no of inputs = no of outputs = p) affine control system ẋ = f(x) + g(x)u = f(x) + [ g (x),, g p (x) ] u () h (x) y = h(x) = (2) h

More information

KINGS COLLEGE OF ENGINEERING DEPARTMENT OF MATHEMATICS ACADEMIC YEAR / EVEN SEMESTER QUESTION BANK

KINGS COLLEGE OF ENGINEERING DEPARTMENT OF MATHEMATICS ACADEMIC YEAR / EVEN SEMESTER QUESTION BANK KINGS COLLEGE OF ENGINEERING MA5-NUMERICAL METHODS DEPARTMENT OF MATHEMATICS ACADEMIC YEAR 00-0 / EVEN SEMESTER QUESTION BANK SUBJECT NAME: NUMERICAL METHODS YEAR/SEM: II / IV UNIT - I SOLUTION OF EQUATIONS

More information

OBSERVABILITY AND OBSERVERS IN A FOOD WEB

OBSERVABILITY AND OBSERVERS IN A FOOD WEB OBSERVABILITY AND OBSERVERS IN A FOOD WEB I. LÓPEZ, M. GÁMEZ, AND S. MOLNÁR Abstract. The problem of the possibility to recover the time-dependent state of a whole population system out of the observation

More information

Minimum Polynomials of Linear Transformations

Minimum Polynomials of Linear Transformations Minimum Polynomials of Linear Transformations Spencer De Chenne University of Puget Sound 30 April 2014 Table of Contents Polynomial Basics Endomorphisms Minimum Polynomial Building Linear Transformations

More information

ON TWO DEFINITIONS OF OBSERVATION SPACES 1

ON TWO DEFINITIONS OF OBSERVATION SPACES 1 ON TWO DEFINITIONS OF OBSERVATION SPACES Yuan Wang Eduardo D. Sontag Department of Mathematics Rutgers University, New Brunswick, NJ 08903 E-mail: sycon@fermat.rutgers.edu ABSTRACT This paper establishes

More information

Chap. 3. Controlled Systems, Controllability

Chap. 3. Controlled Systems, Controllability Chap. 3. Controlled Systems, Controllability 1. Controllability of Linear Systems 1.1. Kalman s Criterion Consider the linear system ẋ = Ax + Bu where x R n : state vector and u R m : input vector. A :

More information

BIFURCATION PHENOMENA Lecture 1: Qualitative theory of planar ODEs

BIFURCATION PHENOMENA Lecture 1: Qualitative theory of planar ODEs BIFURCATION PHENOMENA Lecture 1: Qualitative theory of planar ODEs Yuri A. Kuznetsov August, 2010 Contents 1. Solutions and orbits. 2. Equilibria. 3. Periodic orbits and limit cycles. 4. Homoclinic orbits.

More information

Homework 6 Solutions

Homework 6 Solutions Homeork 6 Solutions Igor Yanovsky (Math 151B TA) Section 114, Problem 1: For the boundary-value problem y (y ) y + log x, 1 x, y(1) 0, y() log, (1) rite the nonlinear system and formulas for Neton s method

More information

International Journal of PharmTech Research CODEN (USA): IJPRIF, ISSN: Vol.8, No.7, pp , 2015

International Journal of PharmTech Research CODEN (USA): IJPRIF, ISSN: Vol.8, No.7, pp , 2015 International Journal of PharmTech Research CODEN (USA): IJPRIF, ISSN: 0974-4304 Vol.8, No.7, pp 99-, 05 Lotka-Volterra Two-Species Mutualistic Biology Models and Their Ecological Monitoring Sundarapandian

More information

Modeling and Analysis of Dynamic Systems

Modeling and Analysis of Dynamic Systems Modeling and Analysis of Dynamic Systems Dr. Guillaume Ducard Fall 2017 Institute for Dynamic Systems and Control ETH Zurich, Switzerland G. Ducard c 1 / 57 Outline 1 Lecture 13: Linear System - Stability

More information

Feedback Linearization

Feedback Linearization Feedback Linearization Peter Al Hokayem and Eduardo Gallestey May 14, 2015 1 Introduction Consider a class o single-input-single-output (SISO) nonlinear systems o the orm ẋ = (x) + g(x)u (1) y = h(x) (2)

More information

2D-Volterra-Lotka Modeling For 2 Species

2D-Volterra-Lotka Modeling For 2 Species Majalat Al-Ulum Al-Insaniya wat - Tatbiqiya 2D-Volterra-Lotka Modeling For 2 Species Alhashmi Darah 1 University of Almergeb Department of Mathematics Faculty of Science Zliten Libya. Abstract The purpose

More information

Stability and bifurcation in a two species predator-prey model with quintic interactions

Stability and bifurcation in a two species predator-prey model with quintic interactions Chaotic Modeling and Simulation (CMSIM) 4: 631 635, 2013 Stability and bifurcation in a two species predator-prey model with quintic interactions I. Kusbeyzi Aybar 1 and I. acinliyan 2 1 Department of

More information

DO NOT DO HOMEWORK UNTIL IT IS ASSIGNED. THE ASSIGNMENTS MAY CHANGE UNTIL ANNOUNCED.

DO NOT DO HOMEWORK UNTIL IT IS ASSIGNED. THE ASSIGNMENTS MAY CHANGE UNTIL ANNOUNCED. EE 533 Homeworks Spring 07 Updated: Saturday, April 08, 07 DO NOT DO HOMEWORK UNTIL IT IS ASSIGNED. THE ASSIGNMENTS MAY CHANGE UNTIL ANNOUNCED. Some homework assignments refer to the textbooks: Slotine

More information

Problem set 7 Math 207A, Fall 2011 Solutions

Problem set 7 Math 207A, Fall 2011 Solutions Problem set 7 Math 207A, Fall 2011 s 1. Classify the equilibrium (x, y) = (0, 0) of the system x t = x, y t = y + x 2. Is the equilibrium hyperbolic? Find an equation for the trajectories in (x, y)- phase

More information

The method of successive approximations for exact solutions of Laplace equation and of heat-like and wave-like equations with variable coefficients

The method of successive approximations for exact solutions of Laplace equation and of heat-like and wave-like equations with variable coefficients The method of successive approximations for exact solutions of Laplace equation and of heat-like and wave-like equations with variable coefficients T. Zhanlav and D. Khongorzul National University of Mongolia,

More information

Non-Linear Models. Non-Linear Models Cont d

Non-Linear Models. Non-Linear Models Cont d Focus on more sophistiated interaction models between systems. These lead to non-linear, rather than linear, DEs; often not soluble exactly in analytical form so use Phase-Plane Analysis. This is a method

More information

Balanced realization and model order reduction for nonlinear systems based on singular value analysis

Balanced realization and model order reduction for nonlinear systems based on singular value analysis Balanced realization and model order reduction for nonlinear systems based on singular value analysis Kenji Fujimoto a, and Jacquelien M. A. Scherpen b a Department of Mechanical Science and Engineering

More information

Nonlinear Control Systems

Nonlinear Control Systems Nonlinear Control Systems António Pedro Aguiar pedro@isr.ist.utl.pt 7. Feedback Linearization IST-DEEC PhD Course http://users.isr.ist.utl.pt/%7epedro/ncs1/ 1 1 Feedback Linearization Given a nonlinear

More information

Applied Math Qualifying Exam 11 October Instructions: Work 2 out of 3 problems in each of the 3 parts for a total of 6 problems.

Applied Math Qualifying Exam 11 October Instructions: Work 2 out of 3 problems in each of the 3 parts for a total of 6 problems. Printed Name: Signature: Applied Math Qualifying Exam 11 October 2014 Instructions: Work 2 out of 3 problems in each of the 3 parts for a total of 6 problems. 2 Part 1 (1) Let Ω be an open subset of R

More information

Half of Final Exam Name: Practice Problems October 28, 2014

Half of Final Exam Name: Practice Problems October 28, 2014 Math 54. Treibergs Half of Final Exam Name: Practice Problems October 28, 24 Half of the final will be over material since the last midterm exam, such as the practice problems given here. The other half

More information

A nemlineáris rendszer- és irányításelmélet alapjai Relative degree and Zero dynamics (Lie-derivatives)

A nemlineáris rendszer- és irányításelmélet alapjai Relative degree and Zero dynamics (Lie-derivatives) A nemlineáris rendszer- és irányításelmélet alapjai Relative degree and Zero dynamics (Lie-derivatives) Hangos Katalin BME Analízis Tanszék Rendszer- és Irányításelméleti Kutató Laboratórium MTA Számítástechnikai

More information

Formal solution Chen-Fliess series

Formal solution Chen-Fliess series Formal solution Chen-Fliess series Ṡ = S(t) u a (t) a, S() = 1 Z = m a Z on algebra Â(Z ) of formal power series in aset Z of noncommuting indeterminates (letters) has the unique solution CF(T, u) = w

More information

An Introduction to Numerical Methods for Differential Equations. Janet Peterson

An Introduction to Numerical Methods for Differential Equations. Janet Peterson An Introduction to Numerical Methods for Differential Equations Janet Peterson Fall 2015 2 Chapter 1 Introduction Differential equations arise in many disciplines such as engineering, mathematics, sciences

More information

An Introduction to Numerical Continuation Methods. with Application to some Problems from Physics. Eusebius Doedel. Cuzco, Peru, May 2013

An Introduction to Numerical Continuation Methods. with Application to some Problems from Physics. Eusebius Doedel. Cuzco, Peru, May 2013 An Introduction to Numerical Continuation Methods with Application to some Problems from Physics Eusebius Doedel Cuzco, Peru, May 2013 Persistence of Solutions Newton s method for solving a nonlinear equation

More information

The generalized KPZ equation

The generalized KPZ equation The generalized KPZ equation Lorenzo Zambotti (Univ. Paris 6) (joint project with Yvain Bruned and Martin Hairer) The generalized KPZ-equation......is the following generic equation in (t, x) R + R t u

More information

Zeros and zero dynamics

Zeros and zero dynamics CHAPTER 4 Zeros and zero dynamics 41 Zero dynamics for SISO systems Consider a linear system defined by a strictly proper scalar transfer function that does not have any common zero and pole: g(s) =α p(s)

More information

Prof. Krstic Nonlinear Systems MAE281A Homework set 1 Linearization & phase portrait

Prof. Krstic Nonlinear Systems MAE281A Homework set 1 Linearization & phase portrait Prof. Krstic Nonlinear Systems MAE28A Homework set Linearization & phase portrait. For each of the following systems, find all equilibrium points and determine the type of each isolated equilibrium. Use

More information

Automatic Control Systems theory overview (discrete time systems)

Automatic Control Systems theory overview (discrete time systems) Automatic Control Systems theory overview (discrete time systems) Prof. Luca Bascetta (luca.bascetta@polimi.it) Politecnico di Milano Dipartimento di Elettronica, Informazione e Bioingegneria Motivations

More information

Mathematical Theory of Control Systems Design

Mathematical Theory of Control Systems Design Mathematical Theory of Control Systems Design by V. N. Afarias'ev, V. B. Kolmanovskii and V. R. Nosov Moscow University of Electronics and Mathematics, Moscow, Russia KLUWER ACADEMIC PUBLISHERS DORDRECHT

More information

On local normal forms of completely integrable systems

On local normal forms of completely integrable systems On local normal forms of completely integrable systems ENCUENTRO DE Răzvan M. Tudoran West University of Timişoara, România Supported by CNCS-UEFISCDI project PN-II-RU-TE-2011-3-0103 GEOMETRÍA DIFERENCIAL,

More information

Department of Applied Mathematics Preliminary Examination in Numerical Analysis August, 2013

Department of Applied Mathematics Preliminary Examination in Numerical Analysis August, 2013 Department of Applied Mathematics Preliminary Examination in Numerical Analysis August, 013 August 8, 013 Solutions: 1 Root Finding (a) Let the root be x = α We subtract α from both sides of x n+1 = x

More information

CLASSIFICATION AND PRINCIPLE OF SUPERPOSITION FOR SECOND ORDER LINEAR PDE

CLASSIFICATION AND PRINCIPLE OF SUPERPOSITION FOR SECOND ORDER LINEAR PDE CLASSIFICATION AND PRINCIPLE OF SUPERPOSITION FOR SECOND ORDER LINEAR PDE 1. Linear Partial Differential Equations A partial differential equation (PDE) is an equation, for an unknown function u, that

More information

Cubic Splines. Antony Jameson. Department of Aeronautics and Astronautics, Stanford University, Stanford, California, 94305

Cubic Splines. Antony Jameson. Department of Aeronautics and Astronautics, Stanford University, Stanford, California, 94305 Cubic Splines Antony Jameson Department of Aeronautics and Astronautics, Stanford University, Stanford, California, 94305 1 References on splines 1. J. H. Ahlberg, E. N. Nilson, J. H. Walsh. Theory of

More information

Nonlinear Control Systems

Nonlinear Control Systems Nonlinear Control Systems António Pedro Aguiar pedro@isr.ist.utl.pt 5. Input-Output Stability DEEC PhD Course http://users.isr.ist.utl.pt/%7epedro/ncs2012/ 2012 1 Input-Output Stability y = Hu H denotes

More information

Why Do Partitions Occur in Faà di Bruno s Chain Rule For Higher Derivatives?

Why Do Partitions Occur in Faà di Bruno s Chain Rule For Higher Derivatives? Why Do Partitions Occur in Faà di Bruno s Chain Rule For Higher Derivatives? arxiv:math/0602183v1 [math.gm] 9 Feb 2006 Eliahu Levy Department of Mathematics Technion Israel Institute of Technology, Haifa

More information

Getting Started With The Predator - Prey Model: Nullclines

Getting Started With The Predator - Prey Model: Nullclines Getting Started With The Predator - Prey Model: Nullclines James K. Peterson Department of Biological Sciences and Department of Mathematical Sciences Clemson University October 28, 2013 Outline The Predator

More information

Numerical Analysis Preliminary Exam 10 am to 1 pm, August 20, 2018

Numerical Analysis Preliminary Exam 10 am to 1 pm, August 20, 2018 Numerical Analysis Preliminary Exam 1 am to 1 pm, August 2, 218 Instructions. You have three hours to complete this exam. Submit solutions to four (and no more) of the following six problems. Please start

More information

Control Systems. Frequency domain analysis. L. Lanari

Control Systems. Frequency domain analysis. L. Lanari Control Systems m i l e r p r a in r e v y n is o Frequency domain analysis L. Lanari outline introduce the Laplace unilateral transform define its properties show its advantages in turning ODEs to algebraic

More information

The Hopf algebraic structure of stochastic expansions and efficient simulation

The Hopf algebraic structure of stochastic expansions and efficient simulation The Hopf algebraic structure of stochastic expansions and efficient simulation Kurusch Ebrahimi Fard, Alexander Lundervold, Simon J.A. Malham, Hans Munthe Kaas and Anke Wiese York: 15th October 2012 KEF,

More information

FIRST-ORDER SYSTEMS OF ORDINARY DIFFERENTIAL EQUATIONS III: Autonomous Planar Systems David Levermore Department of Mathematics University of Maryland

FIRST-ORDER SYSTEMS OF ORDINARY DIFFERENTIAL EQUATIONS III: Autonomous Planar Systems David Levermore Department of Mathematics University of Maryland FIRST-ORDER SYSTEMS OF ORDINARY DIFFERENTIAL EQUATIONS III: Autonomous Planar Systems David Levermore Department of Mathematics University of Maryland 4 May 2012 Because the presentation of this material

More information

PDEs in Image Processing, Tutorials

PDEs in Image Processing, Tutorials PDEs in Image Processing, Tutorials Markus Grasmair Vienna, Winter Term 2010 2011 Direct Methods Let X be a topological space and R: X R {+ } some functional. following definitions: The mapping R is lower

More information

B5.6 Nonlinear Systems

B5.6 Nonlinear Systems B5.6 Nonlinear Systems 4. Bifurcations Alain Goriely 2018 Mathematical Institute, University of Oxford Table of contents 1. Local bifurcations for vector fields 1.1 The problem 1.2 The extended centre

More information

LECTURE # 0 BASIC NOTATIONS AND CONCEPTS IN THE THEORY OF PARTIAL DIFFERENTIAL EQUATIONS (PDES)

LECTURE # 0 BASIC NOTATIONS AND CONCEPTS IN THE THEORY OF PARTIAL DIFFERENTIAL EQUATIONS (PDES) LECTURE # 0 BASIC NOTATIONS AND CONCEPTS IN THE THEORY OF PARTIAL DIFFERENTIAL EQUATIONS (PDES) RAYTCHO LAZAROV 1 Notations and Basic Functional Spaces Scalar function in R d, d 1 will be denoted by u,

More information

An introduction to Birkhoff normal form

An introduction to Birkhoff normal form An introduction to Birkhoff normal form Dario Bambusi Dipartimento di Matematica, Universitá di Milano via Saldini 50, 0133 Milano (Italy) 19.11.14 1 Introduction The aim of this note is to present an

More information

Fundamentals of Dynamical Systems / Discrete-Time Models. Dr. Dylan McNamara people.uncw.edu/ mcnamarad

Fundamentals of Dynamical Systems / Discrete-Time Models. Dr. Dylan McNamara people.uncw.edu/ mcnamarad Fundamentals of Dynamical Systems / Discrete-Time Models Dr. Dylan McNamara people.uncw.edu/ mcnamarad Dynamical systems theory Considers how systems autonomously change along time Ranges from Newtonian

More information

EEE582 Homework Problems

EEE582 Homework Problems EEE582 Homework Problems HW. Write a state-space realization of the linearized model for the cruise control system around speeds v = 4 (Section.3, http://tsakalis.faculty.asu.edu/notes/models.pdf). Use

More information

M.5 Modeling the Effect of Functional Responses

M.5 Modeling the Effect of Functional Responses M.5 Modeling the Effect of Functional Responses The functional response is referred to the predation rate as a function of the number of prey per predator. It is recognized that as the number of prey increases,

More information

EECS 700: Exam # 1 Tuesday, October 21, 2014

EECS 700: Exam # 1 Tuesday, October 21, 2014 EECS 700: Exam # 1 Tuesday, October 21, 2014 Print Name and Signature The rules for this exam are as follows: Write your name on the front page of the exam booklet. Initial each of the remaining pages

More information

Math 128A Spring 2003 Week 12 Solutions

Math 128A Spring 2003 Week 12 Solutions Math 128A Spring 2003 Week 12 Solutions Burden & Faires 5.9: 1b, 2b, 3, 5, 6, 7 Burden & Faires 5.10: 4, 5, 8 Burden & Faires 5.11: 1c, 2, 5, 6, 8 Burden & Faires 5.9. Higher-Order Equations and Systems

More information

Lecture 4: Numerical solution of ordinary differential equations

Lecture 4: Numerical solution of ordinary differential equations Lecture 4: Numerical solution of ordinary differential equations Department of Mathematics, ETH Zürich General explicit one-step method: Consistency; Stability; Convergence. High-order methods: Taylor

More information

Here, u(r,θ,t) was the displacement of the membrane from its equilibrium position u = 0. Substitution of a separation-of-variables type solution,

Here, u(r,θ,t) was the displacement of the membrane from its equilibrium position u = 0. Substitution of a separation-of-variables type solution, Lecture 11 Zeros of second-order linear ODEs (finale) Return to the vibrating drum problem In Lecture 4, we considered the problem of a vibrating circular membrane of radius R 0. Recall that our model

More information

The Model and Preliminaries Problems and Solutions

The Model and Preliminaries Problems and Solutions Chapter The Model and Preliminaries Problems and Solutions Facts that are recalled in the problems The wave equation u = c u + G(x,t), { u(x,) = u (x), u (x,) = v (x), u(x,t) = f (x,t) x Γ, u(x,t) = x

More information

Differential Equations and Modeling

Differential Equations and Modeling Differential Equations and Modeling Preliminary Lecture Notes Adolfo J. Rumbos c Draft date: March 22, 2018 March 22, 2018 2 Contents 1 Preface 5 2 Introduction to Modeling 7 2.1 Constructing Models.........................

More information

7 Planar systems of linear ODE

7 Planar systems of linear ODE 7 Planar systems of linear ODE Here I restrict my attention to a very special class of autonomous ODE: linear ODE with constant coefficients This is arguably the only class of ODE for which explicit solution

More information

Nonlinear tracking control of a dc motor via a boost-converter using linear dynamic output feedback

Nonlinear tracking control of a dc motor via a boost-converter using linear dynamic output feedback Proceedings of the 45th IEEE Conference on Decision & Control Manchester Grand Hyatt Hotel San Diego, CA, USA, December 3-5, 26 Nonlinear tracking control of a dc motor via a boost-converter using linear

More information

Stability and Hopf bifurcation analysis of the Mackey-Glass and Lasota equations

Stability and Hopf bifurcation analysis of the Mackey-Glass and Lasota equations Stability and Hopf bifurcation analysis of the Mackey-Glass and Lasota equations Sreelakshmi Manjunath Department of Electrical Engineering Indian Institute of Technology Madras (IITM), India JTG Summer

More information

Liouville theorems for superlinear parabolic problems

Liouville theorems for superlinear parabolic problems Liouville theorems for superlinear parabolic problems Pavol Quittner Comenius University, Bratislava Workshop in Nonlinear PDEs Brussels, September 7-11, 2015 Tintin & Prof. Calculus (Tournesol) c Hergé

More information

The Use of Sumudu Decomposition Method for Solving Predator-Prey Systems

The Use of Sumudu Decomposition Method for Solving Predator-Prey Systems Math. Sci. Lett. 5, No., 285-289 (2016) 285 Mathematical Sciences Letters An International Journal http://dx.doi.org/10.18576/msl/05010 The Use of Sumudu Decomposition Method for Solving Predator-Prey

More information

An homotopy method for exact tracking of nonlinear nonminimum phase systems: the example of the spherical inverted pendulum

An homotopy method for exact tracking of nonlinear nonminimum phase systems: the example of the spherical inverted pendulum 9 American Control Conference Hyatt Regency Riverfront, St. Louis, MO, USA June -, 9 FrA.5 An homotopy method for exact tracking of nonlinear nonminimum phase systems: the example of the spherical inverted

More information

Notes for Math 450 Stochastic Petri nets and reactions

Notes for Math 450 Stochastic Petri nets and reactions Notes for Math 450 Stochastic Petri nets and reactions Renato Feres Petri nets Petri nets are a special class of networks, introduced in 96 by Carl Adam Petri, that provide a convenient language and graphical

More information

Scattering for the NLS equation

Scattering for the NLS equation Scattering for the NLS equation joint work with Thierry Cazenave (UPMC) Ivan Naumkin Université Nice Sophia Antipolis February 2, 2017 Introduction. Consider the nonlinear Schrödinger equation with the

More information

Math 124A October 11, 2011

Math 124A October 11, 2011 Math 14A October 11, 11 Viktor Grigoryan 6 Wave equation: solution In this lecture we will solve the wave equation on the entire real line x R. This corresponds to a string of infinite length. Although

More information

Tutorial 2. Introduction to numerical schemes

Tutorial 2. Introduction to numerical schemes 236861 Numerical Geometry of Images Tutorial 2 Introduction to numerical schemes c 2012 Classifying PDEs Looking at the PDE Au xx + 2Bu xy + Cu yy + Du x + Eu y + Fu +.. = 0, and its discriminant, B 2

More information

Math 266: Phase Plane Portrait

Math 266: Phase Plane Portrait Math 266: Phase Plane Portrait Long Jin Purdue, Spring 2018 Review: Phase line for an autonomous equation For a single autonomous equation y = f (y) we used a phase line to illustrate the equilibrium solutions

More information

Feedback Linearization Lectures delivered at IIT-Kanpur, TEQIP program, September 2016.

Feedback Linearization Lectures delivered at IIT-Kanpur, TEQIP program, September 2016. Feedback Linearization Lectures delivered at IIT-Kanpur, TEQIP program, September 216 Ravi N Banavar banavar@iitbacin September 24, 216 These notes are based on my readings o the two books Nonlinear Control

More information

M469, Fall 2010, Practice Problems for the Final

M469, Fall 2010, Practice Problems for the Final M469 Fall 00 Practice Problems for the Final The final exam for M469 will be Friday December 0 3:00-5:00 pm in the usual classroom Blocker 60 The final will cover the following topics from nonlinear systems

More information

An introduction to Mathematical Theory of Control

An introduction to Mathematical Theory of Control An introduction to Mathematical Theory of Control Vasile Staicu University of Aveiro UNICA, May 2018 Vasile Staicu (University of Aveiro) An introduction to Mathematical Theory of Control UNICA, May 2018

More information

Robust Control 2 Controllability, Observability & Transfer Functions

Robust Control 2 Controllability, Observability & Transfer Functions Robust Control 2 Controllability, Observability & Transfer Functions Harry G. Kwatny Department of Mechanical Engineering & Mechanics Drexel University /26/24 Outline Reachable Controllability Distinguishable

More information

1 Controllability and Observability

1 Controllability and Observability 1 Controllability and Observability 1.1 Linear Time-Invariant (LTI) Systems State-space: Dimensions: Notation Transfer function: ẋ = Ax+Bu, x() = x, y = Cx+Du. x R n, u R m, y R p. Note that H(s) is always

More information

Krylov-Subspace Based Model Reduction of Nonlinear Circuit Models Using Bilinear and Quadratic-Linear Approximations

Krylov-Subspace Based Model Reduction of Nonlinear Circuit Models Using Bilinear and Quadratic-Linear Approximations Krylov-Subspace Based Model Reduction of Nonlinear Circuit Models Using Bilinear and Quadratic-Linear Approximations Peter Benner and Tobias Breiten Abstract We discuss Krylov-subspace based model reduction

More information

Ordinary Differential Equations: Initial Value problems (IVP)

Ordinary Differential Equations: Initial Value problems (IVP) Chapter Ordinary Differential Equations: Initial Value problems (IVP) Many engineering applications can be modeled as differential equations (DE) In this book, our emphasis is about how to use computer

More information

Preliminary Examination in Numerical Analysis

Preliminary Examination in Numerical Analysis Department of Applied Mathematics Preliminary Examination in Numerical Analysis August 7, 06, 0 am pm. Submit solutions to four (and no more) of the following six problems. Show all your work, and justify

More information

CPS 5310: Parameter Estimation. Natasha Sharma, Ph.D.

CPS 5310: Parameter Estimation. Natasha Sharma, Ph.D. Example Suppose our task is to determine the net income for year 2019 based on the net incomes given below Year Net Income 2016 48.3 million 2017 90.4 million 2018 249.9 million Last lecture we tried to

More information

LECTURE NOTES ELEMENTARY NUMERICAL METHODS. Eusebius Doedel

LECTURE NOTES ELEMENTARY NUMERICAL METHODS. Eusebius Doedel LECTURE NOTES on ELEMENTARY NUMERICAL METHODS Eusebius Doedel TABLE OF CONTENTS Vector and Matrix Norms 1 Banach Lemma 20 The Numerical Solution of Linear Systems 25 Gauss Elimination 25 Operation Count

More information

Control Systems. Laplace domain analysis

Control Systems. Laplace domain analysis Control Systems Laplace domain analysis L. Lanari outline introduce the Laplace unilateral transform define its properties show its advantages in turning ODEs to algebraic equations define an Input/Output

More information

Series Expansions for Analytic Systems Linear in Control 1

Series Expansions for Analytic Systems Linear in Control 1 Series Expansions for Analytic Systems Linear in Control 1 Francesco Bullo a a Coordinated Science Laboratory and General Engineering Department University of Illinois at Urbana-Champaign, 138 W Main St,

More information

Contents. 1 State-Space Linear Systems 5. 2 Linearization Causality, Time Invariance, and Linearity 31

Contents. 1 State-Space Linear Systems 5. 2 Linearization Causality, Time Invariance, and Linearity 31 Contents Preamble xiii Linear Systems I Basic Concepts 1 I System Representation 3 1 State-Space Linear Systems 5 1.1 State-Space Linear Systems 5 1.2 Block Diagrams 7 1.3 Exercises 11 2 Linearization

More information

SYSTEMS OF ODES. mg sin ( (x)) dx 2 =

SYSTEMS OF ODES. mg sin ( (x)) dx 2 = SYSTEMS OF ODES Consider the pendulum shown below. Assume the rod is of neglible mass, that the pendulum is of mass m, and that the rod is of length `. Assume the pendulum moves in the plane shown, and

More information

CS520: numerical ODEs (Ch.2)

CS520: numerical ODEs (Ch.2) .. CS520: numerical ODEs (Ch.2) Uri Ascher Department of Computer Science University of British Columbia ascher@cs.ubc.ca people.cs.ubc.ca/ ascher/520.html Uri Ascher (UBC) CPSC 520: ODEs (Ch. 2) Fall

More information

Matrix compositions. Emanuele Munarini. Dipartimento di Matematica Politecnico di Milano

Matrix compositions. Emanuele Munarini. Dipartimento di Matematica Politecnico di Milano Matrix compositions Emanuele Munarini Dipartimento di Matematica Politecnico di Milano emanuelemunarini@polimiit Joint work with Maddalena Poneti and Simone Rinaldi FPSAC 26 San Diego Motivation: L-convex

More information

Chapter 6 Inner product spaces

Chapter 6 Inner product spaces Chapter 6 Inner product spaces 6.1 Inner products and norms Definition 1 Let V be a vector space over F. An inner product on V is a function, : V V F such that the following conditions hold. x+z,y = x,y

More information

A Class of Multi-Scales Nonlinear Difference Equations

A Class of Multi-Scales Nonlinear Difference Equations Applied Mathematical Sciences, Vol. 12, 2018, no. 19, 911-919 HIKARI Ltd, www.m-hiari.com https://doi.org/10.12988/ams.2018.8799 A Class of Multi-Scales Nonlinear Difference Equations Tahia Zerizer Mathematics

More information

Introduction to numerical schemes

Introduction to numerical schemes 236861 Numerical Geometry of Images Tutorial 2 Introduction to numerical schemes Heat equation The simple parabolic PDE with the initial values u t = K 2 u 2 x u(0, x) = u 0 (x) and some boundary conditions

More information

Differential Equations Spring 2007 Assignments

Differential Equations Spring 2007 Assignments Differential Equations Spring 2007 Assignments Homework 1, due 1/10/7 Read the first two chapters of the book up to the end of section 2.4. Prepare for the first quiz on Friday 10th January (material up

More information

Logistic Map, Euler & Runge-Kutta Method and Lotka-Volterra Equations

Logistic Map, Euler & Runge-Kutta Method and Lotka-Volterra Equations Logistic Map, Euler & Runge-Kutta Method and Lotka-Volterra Equations S. Y. Ha and J. Park Department of Mathematical Sciences Seoul National University Sep 23, 2013 Contents 1 Logistic Map 2 Euler and

More information

An Algebraic Approach to Hybrid Systems

An Algebraic Approach to Hybrid Systems An Algebraic Approach to Hybrid Systems R. L. Grossman and R. G. Larson Department of Mathematics, Statistics, & Computer Science (M/C 249) University of Illinois at Chicago Chicago, IL 60680 October,

More information

MCE693/793: Analysis and Control of Nonlinear Systems

MCE693/793: Analysis and Control of Nonlinear Systems MCE693/793: Analysis and Control of Nonlinear Systems Systems of Differential Equations Phase Plane Analysis Hanz Richter Mechanical Engineering Department Cleveland State University Systems of Nonlinear

More information

Lecture 4: Hidden Markov Models: An Introduction to Dynamic Decision Making. November 11, 2010

Lecture 4: Hidden Markov Models: An Introduction to Dynamic Decision Making. November 11, 2010 Hidden Lecture 4: Hidden : An Introduction to Dynamic Decision Making November 11, 2010 Special Meeting 1/26 Markov Model Hidden When a dynamical system is probabilistic it may be determined by the transition

More information

1 Relative degree and local normal forms

1 Relative degree and local normal forms THE ZERO DYNAMICS OF A NONLINEAR SYSTEM 1 Relative degree and local normal orms The purpose o this Section is to show how single-input single-output nonlinear systems can be locally given, by means o a

More information

Stability of Dynamical systems

Stability of Dynamical systems Stability of Dynamical systems Stability Isolated equilibria Classification of Isolated Equilibria Attractor and Repeller Almost linear systems Jacobian Matrix Stability Consider an autonomous system u

More information

Hilbert Uniqueness Method and regularity

Hilbert Uniqueness Method and regularity Hilbert Uniqueness Method and regularity Sylvain Ervedoza 1 Joint work with Enrique Zuazua 2 1 Institut de Mathématiques de Toulouse & CNRS 2 Basque Center for Applied Mathematics Institut Henri Poincaré

More information