Numerische Mathematik

Size: px
Start display at page:

Download "Numerische Mathematik"

Transcription

1 Numer. Mth. 2015) 131: DOI /s Numersche Mthemtk Automtc ntegrton usng symptotclly optml dptve Smpson qudrture Leszek Plskot Receved: 11 September 2013 / Revsed: 30 September 2014 / Publshed onlne: 25 November 2014 The Authors) Ths rtcle s publshed wth open ccess t Sprngerlnk.com Abstrct We present novel theoretcl pproch to the nlyss of dptve qudrtures nd dptve Smpson qudrtures n prtculr whch leds to the constructon of new lgorthm for utomtc ntegrton. For gven functon f C 4 wth f 4) 0 nd possble endpont sngulrtes the lgorthm produces n pproxmton to b f x) dx wthn gven ε symptotclly s ε 0. Moreover, t s optml mong ll dptve Smpson qudrtures,.e., needs the mnml number n f,ε) of functon evlutons to obtn n ε-pproxmton nd runs n tme proportonl to n f,ε). Mthemtcs Subject Clssfcton 65Y20 65D05 41A10 41A25 1 Introducton Consder numercl pproxmton of the ntegrl I f ) = b f x) dx 1) for functon f :[, b] R. Idelly we would lke to hve n utomtc routne tht for gven f nd error tolernce ε produces n pproxmton Q f ) to I f ) such tht t uses s few functon evlutons s possble nd ts error I f ) Q f ) ε. L. Plskot B) Fculty of Mthemtcs, Informtcs, nd Mechncs, Unversty of Wrsw, Bnch 2, Wrsw, Polnd e-ml: leszekp@mmuw.edu.pl

2 174 L. Plskot Ths s usully relzed wth the help of dpton. Recll generl prncple. For gven ntervl two smple qudrture rules re ppled, one more ccurte thn the other. If the dfference between them s suffcently smll, the ntegrl n ths ntervl s pproxmted by the more ccurte qudrture. Otherwse the ntervl s dvded nto smller subntervls nd the bove rule s recursvely ppled for ech of the subntervls. The oldest nd probbly most known exmples of utomtc ntegrton re dptve Smpson qudrtures [8 11], see lso [4] for n ccount on dptve numercl ntegrton. An unquestonble dvntge of dptve qudrtures s tht they try to mntn the error on prescrbed level ε nd smultneously djust the length of the successve subntervls to the underlyng functon. Ths often results n much more effcent fnl subdvson of [, b] thn the nondptve unform subdvson. For those resons dptve qudrtures re now frequently used n computtonl prctce, nd those usng hgher order Guss-Kronrod rules [1,5,15] re stndrd components of numercl pckges nd lbrres such s MATLAB, NAG or QUADPACK [13]. Nevertheless, to the uthor s knowledge, there s no stsfctory nd rgorous nlyss tht would expln good behvor of dptve qudrtures n quntttve wy or dentfy clsses of functons for whch they re superor to nondptve qudrtures. Ths pper s n ttempt to prtlly fll n ths gp. At ths pont we hve to dmt tht there re theoretcl results showng tht dptve qudrtures re not better thn nondptve qudrtures. Ths holds n the worst cse settng over convex nd symmetrc clsses of functons. There re lso correspondng dpton-does-not-help results n other settngs, see, e.g., [12,14,17,18]. On the other hnd, f the clss s not convex nd/or dfferent from the worst cse error crteron s used to compre lgorthms then dpton cn sgnfcntly help, see [2] or[16]. In ths pper we present novel theoretcl pproch to the nlyss of dptve Smpson qudrtures. We wnt to stress tht the restrcton to the Smpson rule s bsc component of composte rules s only for smplcty nd we could eqully well use hgher order qudrtures. The Smpson rule s reltvely smple qudrture nd therefore better enbles cler development of our des. To be more specfc, we nlyze the dptve Smpson qudrtures from the pont of vew of computtonl complexty. Allowng ll possble subdvson strteges our gol s to fnd n optml strtegy for whch the correspondng lgorthm returns n ε-pproxmton to the ntegrl 1) usng the mnml number of ntegrnd evlutons or, equvlently, the mnml number of subntervls. The mn nlyss s symptotc nd done ssumng tht f s four tmes contnuously dfferentble nd ts 4th dervtve s postve. To rech our gol we frst derve formuls for the symptotc error of dptve Smpson qudrtures. Followng [7] we fnd tht the optml subdvson strtegy produces the prtton = x0 < < x m = b such tht x ) 1/5 f 4) x) dx = m b f 4) x)) 1/5 dx, = 0, 1,...,m. Ths prtton s prctclly relzed by mntnng the error on successve subntervls on the sme level. The optml error correspondng to the subdvson nto m subntervls s then proportonl to L opt f ) m 4 where

3 Optml dptve Smpson qudrture 175 b L opt f ) = f 4) x)) 1/5 dx ) 5. For comprson, the errors for the stndrd dptve locl) nd for nondptve usng unform subdvson) qudrtures re respectvely proportonl to L std f ) m 4 nd L non f ) m 4 where b L std f )= b ) ) ) 4 1/4 b f 4) x) dx, L non f )= b ) 4 ) f 4) x) dx. Obvously, L opt f ) L std f ) L non f ). Hence the optml Smpson qudrture s especlly effectve when L opt f ) L std f ). An exmple s 1 δ x 1/2 dx wth smll δ.ifδ = 10 8 then L opt f ), L std f ), L non f ) re correspondngly bout 10 5, 10 8, Even though the optml strtegy s globl t cn be effcently hrnessed to utomtc ntegrton nd mplemented n tme proportonl to m. The only serous problem of how to choose the cceptble error ε 1 for subntervls to obtn the fnl error ε s resolved by splttng the recursve subdvson process nto two phses. In the frst phse the process s run wth the cceptble error set to test level ε 2 = ε. Then the cceptble error s updted to ε 1 = ε m 5/4 2 where m 2 s the number of subntervls obtned from the frst phse. In the second phse, the recursve subdvson s contnued wth the trget error ε 1. As noted erler, the mn nlyss s provded ssumng tht f C 4 [, b]) nd f 4) > 0. It turns out tht usng ddtonl rguments the obtned results cn be extended to functons wth f 4) 0 nd/or possble endpont sngulrtes,.e., when f 4) x) goes to + s x, b. For such ntegrls the optml strtegy works perfectly well whle the other qudrtures my even lose the convergence rte m 4. The contents of the pper s s follows. In Sect. 2 we recll the stndrd locl) Smpson qudrture for utomtc ntegrton. In Sect. 3 we derve formul for the symptotc error of Smpson qudrtures nd fnd the optml subdvson strtegy. In Sect. 4 we show how the optml strtegy cn be used to construct n optml lgorthm for utomtc ntegrton. The fnl Sect. 5 s devoted to the extensons of the mn results. The pper s enrched wth numercl tests where the optml dptve qudrture s compred wth the stndrd dptve nd nondptve qudrtures. We use the followng symptotc notton. For two postve functons of m, we wrte ψ 1 m) ψ 2 m) ff ψ 1 m) lm sup m ψ 2 m) 1, ψ 1 m) ψ 2 m) ff ψ 1 m) lm m ψ 2 m) = 1, ψ 1 m) ψ 2 m) ff lm sup m ψ 1 m) ψ 2 m) <,

4 176 L. Plskot ψ 1 m) ψ 2 m) ff 0 < lm nf m ψ 1 m) ψ 1 m) lm sup ψ 2 m) m ψ 2 m) <. A correspondng notton pples for functons of ε s ε 0. 2 The stndrd dptve Smpson qudrture In ts bsc formulton the locl dptve Smpson qudrture for utomtc ntegrton, whch wll be clled stndrd, cn be wrtten recursvely s follows. Let Smpsonu,v, f ) be the procedure returnng the vlue of the smple three-pont Smpsonruleon[u,v] for the functon f, nd let ε>0 be the error demnd. 0 functon STD, b, f, ε); 1 begn S1 := Smpson, b, f ); 2 S2 := Smpson, +b 2, f ) + Smpson +b 2, b, f ) ; 3 f S1 S2 15 ε then return S2 else 4 return STD, +b 2, f, 2 ε 5 end; ) + STD +b 2, b, f, ε 2 A justfcton of STD tht cn be found n textbooks, e.g., [3,6], s s follows. Denote by S 1 u,v; f ) the three-pont Smpson rule, ) u v S 1 u,v; f ) = f u) + 4 f 6 u + v 2 ) ) ) + f v), nd by S 2 u,v; f ) the composte Smpson rule tht s bsed on subdvson of [u,v] nto two equl subntervls, S 2 u,v; f ) = S 1 u, u + v ) u + v ; f + S ) v u 3u + v = f u) + 4 f 12 4 ) ) u + 3v +4 f + f v). 4 We lso denote I u,v; f ) = v u f x) dx. Suppose tht f C 4 [, b]). ),v; f ) + 2 f ) u + v If the ntervl [u,v] [, b] s smll enough so tht f 4) s lmost constnt, f 4) C nd C = 0, then S 2 u,v; f ) S 1 u,v; f ) = I u,v; f ) S 1 u,v; f )) I u,v; f ) S 2 u,v; f )) ) ) v u)5 = f 4) v u)5 ξ 1 ) f 4) ξ 2 ) 2

5 Optml dptve Smpson qudrture 177 v u) C 15 I u,v; f ) S 2 u,v; f )). 2) Now let = x 0 < < x m = b be the fnl subdvson produced by STD nd S std f ; ε) be the result returned by STD. Then, provded the estmte 2) holds for ny [x 1, x ], we hve m I f ) S std f ; ε) I x 1, x ; f ) S 2 x 1, x ; f ) = m S 1 x 1, x ; f ) S 2 x 1, x ; f ) =1 m =1 15 ε x x 1 b = ε. Ths resonng hs serous defect; nmely, the pproxmte equlty 2) cn be ppled only when the ntervl [u,v] s suffcently smll. Hence STD cn termnte too erly nd return completely flse result. In n extreme cse of [, b] =[0, 4] nd f x) = 4 =0 x ) 2 we hve I f )>0 but STD returns zero ndependently of how smll ε s. Of course, concrete mplementtons of STD cn be equpped wth ddtonl mechnsms to vod or t lest to reduce the probblty of such unwnted occurrences. To rdclly cut the possblty of premture termntons we ssume, n ddton to f C 4 [, b]), tht the fourth dervtve s of constnt sgn, sy, f 4) x) >0 for ll x [, b]. 3) Equvlently, ths obvously mens tht f 4) x) c for some c > 0 tht depends on f. Assumpton 3) ssures tht the mxmum length of the subntervls produced by STD decreses to zero s ε 0 nd the symptotc equlty 2) holds. Indeed, denote by Du,v; f ) the dvded dfference of f correspondng to 5 equspced ponts z j = u + jh/4, 0 j 4, where h = v u,.e., Snce Du,v; f ) = f [z 0, z 1, z 2, z 3, z 4 ] = 32 3h 4 f z 0) 4 f z 1 ) + 6 f z 2 ) 4 f z 3 ) + f z 4 )). the termnton crteron S 2 u,v; f ) S 1 u,v; f ) = h5 Du,v; f ), 27 S 2 u,v; f ) S 1 u,v; f ) 15 ε ) v u b

6 178 L. Plskot tht s checked n lne 3 of STD for the current subntervl [u,v], s equvlent to v u) Du,v; f ) ε. 4) b Our concluson bout pplcblty of 2) follows from the nequlty Du,v; f ) c/4! Observe tht ech splttng of subntervl [u,v] results n the symptotc) decrese of the controlled vlue n 4) by the fctor of 2 4. Thus the lgorthm symptotclly returns the pproxmton of the ntegrl wthn ε, s desred. Specfclly, we hve ε 16 Sstd f ; ε) I f ) ε s ε 0. 5) Remrk 1 The nequlty 5) explns why numercl tests often show better performnce of STD thn expected. To vod ths t s suggested to run STD wth lrger nput prmeter, sy 2ε nsted of ε. 3 Optmzng the process of ntervl subdvson The error formul 5) for the stndrd dptve Smpson qudrture does not sy nythng bout how the number m of subntervls depends on ε, or wht s the ctul error fter producng m subntervls. We now study ths queston for dfferent subdvson strteges. In order to be consstent wth STD we ssume tht for gven subdvson = x 0 < x 1 < < x m = b we pply S 2 x 1, x ; f ) for ech of the subntervls [x 1, x ], so tht the fnl pproxmton S m f ) = m S 2 x 1, x ; f ) =1 uses n = 4m + 1 functon evlutons. The gol s to fnd optml strtegy,.e., the one tht for ny functon f C 4 [, b]) stsfyng 3) produces subdvson for whch the error of the correspondng Smpson qudrture S m f ) s symptotclly mnml s m ). We frst nlyze two prtculr strteges, nondptve nd stndrd dptve, nd then derve the optml strtegy. In wht follows, the constnt γ = = = In the nondptve strtegy, the ntervl [, b] s dvded nto m equl subntervls [x 1, x ] wth x = +h, h = b )/m. Let the correspondng Smpson qudrture be denoted by Sm non. Then ) Sm non f ) I f ) = γb 1 m )4 f 4) ξ ) m 4 ξ [x 1, x ]) m =1

7 Optml dptve Smpson qudrture 179 γb ) 4 b ) f 4) x) dx m 4 6) s m. Observe tht for the symptotc equlty 6) to hold we do not need to ssume 3). We now nlyze the stndrd dptve strtegy used by STD. To do ths, we frst need to rewrte STD n n equvlent wy, where the nput prmeter s m nsted of ε. We hve the followng greedy lgorthm. The lgorthm strts wth the ntl subdvson = x 1) 0 < x 1) 1 = b. Inthe k + 1)st step, from the current subdvson = x k) 0 < < x k) k = b subntervl ] s selected wth the hghest vlue [x k) 1, xk) ) x k) x k) 4 ) D 1 x k) 1, xk) ; f, 1 k, 7) nd the mdpont x k) 1 + xk) )/2 s dded to the subdvson. Denote by Sm std f ) the result returned by the correspondng Smpson qudrture when ppled to m subntervls. Then, n vew of 4), the vlues Sm std f ) nd Sstd f ; ε) re relted s follows. Let m = mε) be the mnml number of steps fter whch 4) s stsfed by ech of the subntervls [x m) ]. Then 1, xm) We re redy to show the error formul for S std m S std m f ) = Sstd f ; ε). 8) correspondng to 6). Theorem 1 Let f C 4 [, b]) nd f 4) x) >0 for ll x [, b]. Then S std m f ) I f ) γb ) b f 4) x)) 1/4 dx ) 4 m 4 s m. Proof We fx l nd dvde the ntervl [, b] nto 2 l equl subntervls [z 1, z ] of length b )/2 l. Cll ths prtton corse grd, n contrst to the fne grd produced by S std m.let C = mx f 4) x), c = mn z 1 x z z 1 x z f 4) x). Let m be suffcently lrge, so tht the fne grd contns ll the ponts of the corse grd. Denote by z 1 = x,0 < x,1 < < x,m = z the ponts of the fne grd contned n the th ntervl of the corse grd, nd h, j = x, j x, j 1. Then the error cn be bounded from below s

8 180 L. Plskot m 2l Sm std f ) I f ) = S2 x, j 1, x, j ; f ) I x, j 1 ; x, j ; f ) ) = γ γ =1 j=1 2 l m h, 5 j f 4) ξ, j ) ξ, j [x, j 1, x, j ]) =1 j=1 2 l m h, 5 j c. =1 j=1 Suppose for moment tht for ll, j we hve h, 4 j c = A for some A. Then b )/2 l = m j=1 h, j = m A/c ) 1/4.Usng 2 l =1 m = m we get ) b 4 2 l 4 A = m 4. 2 l Observe now tht ny splttng of subntervl decreses h 4, j c by the fctor of 16. Hence =1 c 1/4 mx, j h 4, j c mn, j h 4, j c 16 nd consequently h 4, j c A/16 for ll, j. Thus S std m f ) I f ) γ 2l m =1 j=1 = 1 16 γb ) b 2 l A h, j 16 = 1 γb ) A 16 ) 4 2 l =1 c 1/4 4 m 4. To obtn the upper bound, we proceed smlrly. Replcng c wth C nd usng the equton h, 4 j C 16A we get tht ) b 4 2 l 4 Sm std f ) I f ) 16γ b ) 2 l C 1/4 m 4. To complete the proof we notce tht both =1 2 l =1 c 1/4 b )2 l nd 2 l =1 C 1/4 b )2 l re Remnn sums tht converge to the ntegrl b f 4) x) ) 1/4 dx s l.

9 Optml dptve Smpson qudrture 181 Remrk 2 From the proof t follows tht the constnts n the notton n Theorem 1 re symptotclly between 1/16 nd 16. The gp between the upper nd lower constnts s certnly much overestmted, see lso Remrk 4. The two strteges, nondptve nd stndrd dptve, wll be used s reference ponts for comprson wth the optml strtegy tht we now derve. We frst llow ll possble subdvsons of [, b] regrdless of the possblty of ther prctcl relzton. Proposton 1 The subdvson determned by ponts where x stsfy = x 0 < x 2 < < x m = b x ) 1/5 f 4) x) dx = m b f 4) x)) 1/5 dx, = 0, 1, 2,...,m, s optml. For the correspondng qudrture Sm we hve S m f ) I f ) γ b f 4) x)) 1/5 dx ) 5 m 4 s m. Proof We frst show the lower bound. Let S m be the Smpson qudrture tht s bsed on n rbtrry subdvson. Proceedng s n the begnnng of the proof of Theorem 1 we get tht for suffcently lrge m the error of S m s lower bounded by 2 l m ) b 5 S m f ) I f ) γ h, 5 j c 2 l γ =1 j=1 2 l c m 4 =1 where m s the number of subntervls of the fne grd n the th subntervl of the corse grd. We ssume wthout loss of generlty tht the corse grd s contned n the fne grd.) Mnmzng ths wth respect to m such tht 2 l =1 m = m we obtn the optml vlues ) 1/5 c m = m, 1 2 l. 2 l =1 c1/5 After substtutng m wth m n the error formul we fnlly get, S m f ) I f ) γ γ ) b 5 2 l 2 l b =1 c 1/5 5 m 4 f 4) x)) 1/5 dx ) 5 m 4. 9)

10 182 L. Plskot Snce for the optml m we hve h, j c1/5 = b 2 l m ) 2 l =1 c 1/5, 10) the lower bound 9) s ttned by the subdvson determned by {x }. Now the queston s whether the optml subdvson nto m subntervls of Proposton1 cn be prctclly relzed,.e., usng 4m + 1 functon evlutons. The nswer s postve, t lest up to n bsolute constnt. The correspondng lgorthm Sm opt runs s Sm std wth the only dfference tht n ech step t hlves the subntervl wth the hghest vlue [nsted of 7)]. ) x k) x k) 5 ) D 1 x k) 1, xk) ; f, 1 k 11) Theorem 2 Let f C 4 [, b]) nd f 4) x) >0 for ll x [, b]. Then S opt m f ) I f ) K γ where K 32. b f 4) x)) 1/5 dx ) 5 m 4 s m Proof The proof goes s the proof of the upper bound of Theorem 1 wth obvous chnges relted to the fcts tht now the lgorthm tres to blnce 11) [nsted of 7)], nd tht mx, j h 5, j C mn, j h 5, j C 32. Remrk 3 The best constnt K of Theorem 2 s certnly much less thn 32, see lso Remrk 4. We summrze the results of ths secton. All the three qudrtures Sm non, Sstd m, Sopt m converge t rte m 4 but the symptotc constnts depend on the ntegrnd f through the multplers b ) L non f ) = b ) 4 f 4) x) dx, b L std f ) = b ) f 4) x)) 1/4 dx ) 4,

11 Optml dptve Smpson qudrture 183 Tble 1 Vlues of L non, L std, L opt for 1 1 δ 2 dx wth x dfferent δ δ L non L std L opt Fg. 1 Error e versus m for 1 1 δ 2 dx wth δ = 10 2 x b L opt f ) = f 4) x)) 1/5 dx ) 5. These multplers ndcte how dffcult functon s to ntegrte usng gven qudrture. Obvously, by Hölder s nequlty we hve L opt f ) L std f ) L non f ). Exmple 1 Consder the ntegrl I δ = 1 δ 1 2 dx x wth 0 <δ<1. In ths cse L non, L std, L opt rpdly ncrese s δ decreses, s shown n Tble 1. Numercl computtons confrm the theory very well. We tested ll the three qudrtures the dptve qudrtures beng mplemented n m log m runnng tme usng hep dt structure) nd rn them for dfferent vlues of δ. Specfc results re s follows.

12 184 L. Plskot Fg. 2 Error e versus m for 1 1 δ 2 dx wth δ = 10 8 x Fg. 3 Km non, K m std, K m opt versus m for 1 1 δ 2 dx wth δ = 10 2 x For δ = 0.5 the qudrtures Sm non, Sstd m, nd Sopt m gve lmost dentcl results ndependently of m. For nstnce, for m = 10 2 the errors re respectvely , , , nd for m = 10 3 we hve , , Note tht the smllest error for the nondptve qudrture s cused by the fct tht Sm non hs lttle better bsolute constnt n the error formul 6) thn the dptve qudrtures. However, the smller δ, the more dfferences between the results. A chrcterstc behvor of the errors for δ = 10 2 nd δ = 10 8 s llustrted by Fgs. 1 nd 2. Observe tht n cse δ = 10 8 the nondptve qudrture needs more thn 10 4 subntervls to rech the rght convergence rte m 4.

13 Optml dptve Smpson qudrture 185 Remrk 4 It s nterestng to see the behvor of K qd m f ) = ) Sm qd f ) I f ) γ L qd f ) m 4, qd {non, std, opt}. By 6) we hve tht lm m Km non f ) = 1. The correspondng lmts for the dptve qudrtures re unknown; however, we rn some numercl tests nd we never obtned more thn 1.5. Ths would men, n prtculr, tht Sm opt s t most 50 % worse thn Sm. Fgure 3 shows the behvor of Km qd f ) for the ntegrl I δ of Exmple 1 wth δ = Automtc ntegrton usng optml subdvson strtegy We wnt to hve n lgorthm tht utomtclly computes n ntegrl wthn gven error tolernce ε. An exmple of such lgorthm s the recursve STD. Recll tht the recursve nture of STD llows to mplement t n tme proportonl to the number m of subntervls usng stck dt structure. However, t does not use the optml subdvson strtegy. On the other hnd, the lgorthm Sm opt uses the optml strtegy, but one does not know n dvnce how lrge m should be to hve the error Sm opt f ) I f ) ε.in ddton, the best mplementton of Sm opt tht uses hep dt structure) runs n tme proportonl to m log m. Thus the queston now s whether there exsts n lgorthm tht runs n tme lner n m nd produces n pproxmton to the ntegrl wthn ε usng the optml subdvson strtegy. Snce the optml subdvson s such tht the errors on subntervls re roughly equl, the suggeston s tht one should run STD wth the only dfference tht t s recursvely clled wth prmeter ε nsted of ε/2. Denote such modfcton by OPT. 0 functon OPT, b, f, ε); 1 begn S1 := Smpson, b, f ); 2 S2 := Smpson, +b 2, f ) + Smpson +b 2, b, f ) ; 3 f S1 S2 15 ε then return S2 else 4 return OPT, +b 2, f,ε) + OPT +b 2, b, f,ε) 5 end; Let S opt f ; ε) be the result returned by OPT. Anlogously to 8) wehve S opt m f ) = S opt f ; ε) f m s the mnml number of steps fter whch 11) s stsfed by ll subntervls.

14 186 L. Plskot It s cler tht OPT does not return n ε-pproxmton when ε s the nput prmeter. However we re ble to estmte posteror error. Indeed, let m 1 be the number of subntervls produced by OPT for n ε 1. Then m 1 ε 1 32 S opt f ; ε 1 ) I f ) m 1 ε 1 s ε ) We need to fnd ε 1 such tht m 1 ε 1 ε. Snce m 1 depends not only on ε 1 but lso on L opt f ), t seems hopeless to predct ε 1 n dvnce. Surprsngly ths s not true. The de of the lgorthm s s follows. We frst run OPT wth some ε 2 ε obtnng subdvson consstng of m 2 subntervls. Next, usng 12) nd Theorem 2 we estmte L opt f ), nd usng gn Theorem 2 we fnd the rght ε 1. Fnlly OPT s resumed wth the nput ε 1 nd wth subdvson obtned n the prelmnry run of OPT. As we shll see lter, ths de cn be mplemented n tme proportonl to m 1. Concrete clcultons re s follows. From the equlty α 2 m 2 ε 2 = S opt m 2 f ) I f ) = K 2 γ L opt f ) m 4 2 where α 2 nd K 2 depend on ε 2,wehve L opt f ) = α 2 K 2 γ ε 2 m ) We need ε 1 such tht for the correspondng m 1 the error of S opt m 1 f ) s t most ε,.e., α 1 m 1 ε 1 = S opt m 1 f ) I f ) = K 1 γ L opt f ) m 4 1 ε where α 1 nd K 1 depend on ε 1. Substtutng L opt f ) wth the rght hnd sde of 13) we obtn ) K1 α 2 ε 1/5 2 m 1 = m 2, 14) K 2 α 1 ε 1 nd solvng the nequlty α 1 m 1 ε 1 ε wth m 1 gven by 14) we get ε 1 β ε 5 ε 2 m 5 2 ) 1/4 where β = K 2 K 1 α 4 1 α 2 ) 1/4. Recll tht, symptotclly, α 1 nd α 2 re n [1/32, 1] whch mens tht β cn be symptotclly bounded from below by 1. Hence, tkng we hve ε 2 = ε nd ε 1 = ε m 5/4 2 15) S opt f ; ε 1 ) I f ) ε s ε 0.

15 Optml dptve Smpson qudrture 187 The choce of ε 1 gven by 15) s rther conservtve. In prctce, we observe tht the error of S opt f ; ε 1 ) s on verge even 6 or more tmes smller thn ε. Hence we encounter the sme phenomenon s for the stndrd Smpson qudrture, see Remrk 1. Yet, n the ltter cse, the error s usully not so much smller thn ε. As consequence, for ntegrnds f wth L opt f ) = L std f ) the pproxmton S std f ; ε) my use less subntervls thn S opt f ; ε 1 ). To vod n excessve work, we propose to run the optml lgorthm wth the nput B ε 1 nsted of ε 1 where, sy, B = 4 5/4 = 4 2 = Ths corresponds to α 1,α 2 = 1/4.) We stress tht such choce of B s bsed on some heurstcs nd s not justfed by ny rgorous rguments. Exmple 2 We present test results for the ntegrl I δ = 1 δ x 1/2 /2dx of Exmple 1 wth δ = 10 2 nd δ = 10 8, for the stndrd nd optml Smpson qudrtures. In Tbles 2 nd 3 the results re gven correspondngly for S std f ; ε) nd S opt f ; ε 1 ), whle n Tbles 4 nd 5 for S std f ; 2ε) nd S opt f ; 4 2ε 1 ). We end ths secton by presentng rther detled descrpton of the optml lgorthm for utomtc ntegrton tht runs n tme proportonl to m 1. It uses two stcks, Stck1 nd Stck2, correspondng to the two phses of the lgorthm. The elements of the stcks, elt, elt1, elt2, represent subntervls. Ech such element conssts of 6 felds contnng nformton bout: the endponts of the subntervl, functon vlues t the endponts nd t the mdpont, nd the vlue of the three-pont Smpson qudrture for ths subntervl. Such structure enbles evluton of f only once t ech smple pont. Push nd Pop re usul stck commnds for nsertng nd removng elements. Tble 2 Stndrd nd optml qudrtures for 1 1 δ 2 dx wth x δ = 10 2 ε Stndrd B = 1) Optml B = 1) Error m Error m 1.0E E E E E E E E E E E E E E E E E E E E E E E E E E E E E 13 1, E 13 1,757

16 188 L. Plskot Tble 3 Stndrd nd optml qudrtures for 1 1 δ 2 dx wth x δ = 10 8 ε Stndrd B = 1) Optml B = 1) Error m Error m 1.0E E E E E E E E E E E E E E 08 1, E E E 09 1, E E E 10 3, E E E 11 6, E 11 1, E E 12 10, E 12 2, E E 13 19, E 13 4, 945 Tble 4 Stndrd nd optml qudrtures for 1 1 δ 2 dx wth x δ = 10 2 ε Stndrd B = 2) Optml B = 4 2) Error m Error m 1.0E E E E E E E E E E E E E E E E E E E E E E E E E E E E E 13 1, E 13 1,143 Tble 5 Stndrd nd optml qudrtures for 1 1 δ 2 dx wth x δ = 10 8 ε Stndrd B = 2) Optml B = 4 2) Error m Error m 1.0E E E E E E E E E E E E E E E E E 09 1, E E E 10 2, E E E 11 5, E 11 1, E E 12 9, E 12 1, E E 13 16, E 13 3,223

17 Optml dptve Smpson qudrture functon OPTIMAL, b, f, ε); 01 begn elt.left := ; elt.rght := b; c := + b)/2; 02 fleft := f ); fcntr := f c); frght := f b); 03 elt.fl := fleft; elt.fc := fcntr; elt.fr := frght; 04 elt.smps := fleft + 4 fcntr + frght) b )/6; 05 PushStck1, elt); 06 m := 0; 07 repet elt := PopStck1); 08 l := elt.left; r := elt.rght; c := l + r)/2; 09 fleft := elt.fl; fcntr := elt.fc; frght := elt.fr; 10 cl := l + c)/2; cr := c + r)/2; 11 fcl := f cl); fcr := f cr); 12 Sleft := fleft + 4 fcl + fcntr) c l)/6; 13 Srght := fcntr + 4 fcr + frght) r c)/6; 14 S1 := elt.smps; S2 := Sleft + Srght; 15 elt1.left := l; elt1.rght := c; elt1.smps := Sleft; 16 elt1.fl := fleft; elt1.fc := fcl; elt1.fr := fcntr; 17 elt2.left := c; elt2.rght := r; elt2.smps := Srght; 18 elt2.fl := fcl; elt2.fc := fcr; elt2.fr := frght; 19 f S2 S1 <= 15 ε then 20 begn m := m + 1; 21 PushStck2, elt1, elt2) 22 end else 23 PushStck1, elt1, elt2) 24 untl StckEmptyStck1); 25 ε1 := B ε m 5/4 ; Result := 0.0; 26 repet elt := PopStck2); 27 l := elt.left; r := elt.rght; c := l + r)/2; 28 fleft := elt.fl; fcntr := elt.fc; frght := elt.fr; 29 cl := l + c)/2; cr := c + r)/2; 30 fcl := f cl); fcr := f cr); 31 Sleft := fleft + 4 fcl + fcntr) c l)/6; 32 Srght := fcntr + 4 fcr + frght) r c)/6; 33 S1 := elt.smps; S2 := Sleft + Srght; 34 f S2 S1 <= 15 ε1 then Result := Result + S2 else 35 begn elt1.left := l; elt1.rght := c; elt1.smps := Sleft; 36 elt1.fl := fleft; elt1.fc := fcl; elt1.fr := fcntr; 37 elt2.left := c; elt2.rght := r; elt2.smps := Srght; 38 elt2.fl := fcl; elt2.fc := fcr; elt2.fr := frght; 39 PushStck2, elt1, elt2) 40 end 41 untl StckEmptyStck2); 42 return Result 43 end;

18 190 L. Plskot 5 Extensons: f 4) 0 nd endpont sngulrtes We hve nlyzed dptve Smpson qudrtures ssumng tht f C 4 [, b]) nd f 4) > 0. It turns out tht the obtned results hold nd utomtc ntegrton cn be successfully ppled lso for functons wth f 4) 0 nd functons wth endpont sngulrtes. An observed good behvor of dptve qudrtures for such functons cnnot be explned usng drectly prevous tools. Wht we need s non-symptotc error bound for S 2 u,v; f ). Such bound, together wth the correspondng result for S 1 u,v; f ), s provded by the followng lemm. Lemm 1 Suppose tht f C[u,v]) nd f C 4 [u 1,v 1 ]) for ll u < u 1 <v 1 < v. If, n ddton, f 4) x) 0 for ll x u,v), then nd wth conventon tht 0/0 = 1). 1 S 1u,v; f ) I u,v; f ) S 1 u,v; f ) S 2 u,v; f ) 2 0 S 2u,v; f ) I u,v; f ) S 1 u,v; f ) S 2 u,v; f ) 1 Proof Gven c u,v), we hve tht for ny x [u,v] x x t) 3 f x) = T c x) + f 4) t) dt, 16) c 3! where T c s Tylor polynoml for f of degree 3 t c. The formul s obvous for x, b) nd by contnuty of f t extends to x = u,v.) Furthermore, ntegrtng 16) wth respect to x we get tht v v c u t) 4 v f x) dx = T c x) dx + f 4) v t) 4 t) dt + f 4) t) dt. u u u 4! c 4! 17) Usng 16) forz j = u + jh/4, 0 j 4, h = v u, we then obtn S 1 u,v; f ) S 2 u,v; f ) = h5 2 7 Du,v; f ) = v wth the Peno kernel ψ 0 u,v; t) = h 4 0 t u)/h) where t 3 /72, 0 t 1/4, 0 t) = t 3 4t 1/4) 3 )/72, 1/4 < t 1/2, 0 1 t), 1/2 < t 1. u ψ 0 u,v; t) f 4) t) dt 18)

19 Optml dptve Smpson qudrture 191 For the error of S 1 we smlrly fnd tht S 1u,v; f ) I u,v; f )) = where ψ 1 u,v; t) = h 4 1 t u)/h), Snce 1 t) = v u ψ 1 u,v; t) f 4) t) dt, { 5t 3 1/3 t/2)/64, 0 t 1/2, 1 1 t), 1/2 < t t) 0 t) 15, t 0, 1) 8 nd both bounds re shrp), we get the desred bounds. For the error of S 2 u,v; f ) we nlogously fnd tht 15 S 2 u,v; f ) I u,v; f )) = v where the kernel ψ 2 u,v; t) = h 4 2 t u)/h), u ψ 2 u,v; t) f 4) t) dt, 5t 3 1/3 t)/8, 0 t 1/4, 2 t) = 2 1/2 t), 1/4 < t 1/2, 2 t 1/2), 1/2 < t 1. The remnng bound follows from the nequlty 2 t) 15, t 0, 1). 0 t) The Peno kernels 0, 1, nd 2 re presented n Fg. 4. In wht follows we concentrte on generlzng Theorem 2 bout Sm opt snce the other results Theorem 1 nd Proposton 1) cn be treted n smlr fshon. Frst we prove tht the ssumpton f 4) > 0 n Theorem 2 cn be replced by f 4) x) 0 x [, b]. 19) Proof Suppose wthout loss of generlty tht f 4) s not everywhere zero n [, b]. We frst produce course grd {z } =1 2l of length b )/2l nd remove from t ll the ponts z 1 2 l 1) such tht f 4) x) = 0 x [z 1, z +1 ].

20 192 L. Plskot Fg. 4 The Peno kernels 0 one hump, thck lne), 1 one hump, thn lne), nd 2 two humps). The curves ntersect t 1/3nd2/3 Denote the successve ponts of the modfed grd by {ẑ } k =1, k 2l.Let C = mx f 4) x), c = mn f 4) x), ẑ 1 x ẑ ẑ 1 x ẑ J 0 ={ : c = 0}, J 1 ={ : c > 0}, nd P t = J t [ẑ 1, ẑ ], t = 0, 1. From 18) t follows tht subntervl s further subdvded f nd only f f 4) 0 n ths subntervl. Hence for suffcently lrge m the corse grd s contned n the fne grd produced by Sm opt nd the subntervls [ẑ 1, ẑ ] wth C > 0 hve been subdvded t lest once. Let ẑ 1 = x,0 < < x,k = ẑ be the ponts of the fne grd contned n [ẑ 1, ẑ ], nd h, j = x, j x, j 1. Defne β = mx, j S 1 x, j 1, x, j ; f ) S 2 x, j 1, x, j ; f ). 20) We now mke n mportnt observton tht for ny J 0 wth C > 0 nd ny 1 j k β 15 γ2h, j ) 5 C. 21) Indeed, f ths were not stsfed by subntervl [x, j 1, x, j ] then ts predecessor, whose length s 2h, j nd belongs to the th subntervl of the corse grd, would not be subdvded.

21 Optml dptve Smpson qudrture 193 Hence, denotng by m 0 the number of subntervls of the fne grd n P 0,wehve m 0 β = m 0 β 1/5) 5 m γ M 5 0 m 4 0 wth M 0 = k J 0 j=1 h, j C 1/5. 22) Ths mples m γ) 1/5 M 0 β 1/5. Denotng by m 1 the number of subntervls of the fne grd n P 1,wehve m 1 β = m 1 β 1/5 ) 5 m γ M 5 1 m 4 1 wth M 1 = k J 1 j=1 h, j c 1/5, 23) whch mples m 1 15γ) 1/5 M 1 β 1/5. Hence m 0 /m 1 2M 0 /M 1 nd ths bound s ndependent of m. However t depends on l. Tkng l lrge enough we cn mke m 0 /m 1 rbtrrly smll. From Lemm 1 t follows tht the ntegrton error n P 0 s upper bounded by m 0 β. Snce f 4) s postve n P 1, the error n P 1 s symptotclly s m )lower bounded by m 1 β/15 32). Hence for l lrge enough the error n P 0 s rbtrrly smll compred to tht n P 1. In ddton, the error n P 1 follows the upper bound of Theorem 2. The proof s complete. We now pss to functons wth endpont sngulrtes. To fx the settng, we ssume tht f s contnuous n the closed ntervl [, b] nd f C 4 [ 1, b]) for ll < 1 < b. Moreover, lm f 4) x) =+, x nd ths dvergence s symptotclly monotonc,.e., there s δ>0 such tht f 4) x 1 ) f 4) x 2 )>0 for ll < x 1 x 2 + δ. As before, we prove tht for such functons the upper error bound for Sm opt 2 s stll vld. n Theorem Proof Frst, we observe tht the dfference S 1, +h; f ) S 2, +h; f ) converges to zero fster thn h. Indeed, n vew of 18) wehve S 1, + h; f ) S 2, + h; f ) = h h +h +h h 3 0 t )/h) f 4) t) dt 0 t ) f 4) t) dt. 24) Ths ssures tht the prtton s denser nd denser n the whole [, b] nd the ntegrton error goes to zero.

22 194 L. Plskot Second, we hve tht L opt f )<. Indeed, by Hölder s nequlty b f 4) x)) 1/5 dx = b ) 1/5 x ) 3/5 x ) 3 f 4) x) b ) 4/5 b 1/5 x ) 3/4 dx x ) 3 f 4) x) dx), whch s fnte due to 16). Now, let l be such tht b )2 l δ, nd let {z } k = wth k = 2l 1bethe nfnte) corse grd defned s { + b )2 z = l+, 1, + b )2 l + 1), 0 k. Denote, s before, C = mx z 1 x z f 4) x). We obvously hve C = f 4) z 1 )> 0 for ll 0. For smplcty, we lso ssume C > 0for1 k. Let m be suffcently lrge so tht the fne grd produced by Sm opt contns ll the ponts z for 0. Moreover, we cn ssume tht ech subntervl [z 1, z ] wth 1 hs been subdvded t lest once. Let [, z s ] be the frst subntervl of the fne grd. Let us further denote P 0 =[, z 0 ] nd P 1 =[z 0, b]. Then P 0 = P 0,0 P 0,1 where P 0,0 conssts of [0, z s ] nd ll subntervls of the course grd tht hve not been subdvded by Sm opt.letm 0,0, m 0,1, m 1 be the numbers of subntervls of the fne grd n P 0,0, P 0,1, P 1, respectvely. Defne β s n 20). In vew of 24), the dstnce z s ) decreses slower thn β s m, nd therefore m 0,0 s t most proportonl to log 2 1/β). Snce 21) holds for the subntervls n P 0,1, the number m 0,1 cn be estmted s m 0 n 22) wth M 0 0 = s+1 z z 1 )C 1/5 2 z 1 0 f 4) x)) 1/5 dx, where the lst nequlty follows from monotoncty of f 4). Snce m 1 cn be estmted s n 23) we obtn, nlogously to the prevous proof, tht the number of subntervls n P 1 nd the error n P 1 domnte the scene. The proof s complete. We stress tht for contnuous functons wth endpont sngulrtes we lwys hve L opt f )<, whch s not true for L std f ). An exmple s provded by f x) = 1 x t x) 3 f 4) t) dt, 0 t 1, 3! wth f 4) x) = t ln t) 4. Indeed, snce f 0) = 1 0 3! t ln4 t) 1 dt <, the functon s well defned nd L opt f )<, but

23 Optml dptve Smpson qudrture 195 Fg. 5 Error e versus m for x dx L std f ) = dt =. t ln t For such functons, the subdvson process of Sm std wll not collpse [whch follows from 24)] nd the error wll converge to zero; however, the convergence rte m 4 wll be lost. On the other hnd, f L std f )< then the error bounds of Theorem 1 hold true. Exmple 3 Consder the ntegrl 1 0 p + 1) x p dx. The ntegrnd s contnuous t 0 only f p 0. Then both, L opt f ) nd L std f ), re fnte. However, L non f )< only f p s non-negtve nteger or p > 3. Fgures 5 nd 6, where the results for p = 1/2 nd p = 1/20 re presented, show tht, ndeed, the dptve qudrtures Sm std nd Sopt m converge s m 4, nd Sm non converges t very poor rte. We end ths pper by showng the mportnce of contnuty of f. Exmple 4 Consder the ntegrl b f x) dx wth = 1/2, b = 1, { 0, 1/2 x 0, f x) = x 1/2 /2, 0 < x 1. In ths cse L opt f )< but L std f ) =. Fgure 7 shows tht Sm opt enjoys the rght convergence m 4 but Sm std completely fls. Ths s becuse the crtcl vlue

24 196 L. Plskot Fg. 6 Error e versus m for x dx Fg. 7 Error e versus m for functon f of Exmple 4 mx S 1 x m) 1, xm) ) ; f S 2 x m) 1, xm) ) ; f does not converge fster thn h; the lgorthm keeps dvdng the subntervl contnng 0. As result, the stndrd dptve lgorthm s symptotclly even worse thn the nondptve lgorthm. Eqully strkng s the dfference between OPTIMAL nd STD. Whle OPTIMAL works perfectly well, see Tble 6, STD wll never rech the stoppng crteron for ε 10 3, nd wll loop forever. s consequence of our lck of bd luck rther thn rule. Indeed, t s enough to chnge the vlue of f n [ 1/2, 0] from 0 to 7/3 to see tht then S 1, +b)/2; f ) Unfortuntely, ths exmple s msledng. The very good behvor of S opt m

25 Optml dptve Smpson qudrture 197 Tble 6 Optml qudrture for functon f of Exmple 4 ε Optml B = 4 2) Error m 1.0E E E E E E E E E E E E E E E E 11 1, E E 12 2, E E 13 4,131 S 2, + b)/2; f ) = 0 lthough +b)/2 f x) dx = 19/12 > 0. As consequence, lm m Sm opt f ) = 13/6 whle the ntegrl equls 25/12. Acknowledgments The uthor would lke to thnk Grzegorz Wslkowsk nd Henryk Woźnkowsk for dscussons on the results of ths pper, nd n nonymous referee for constructve comments. Ths reserch ws prtlly supported by the Ntonl Scence Centre, Polnd, bsed on the decson DEC- 2013/09/B/ST1/ Open Access Ths rtcle s dstrbuted under the terms of the Cretve Commons Attrbuton Lcense whch permts ny use, dstrbuton, nd reproducton n ny medum, provded the orgnl uthors) nd the source re credted. References 1. Clvett, D., Golub, G.H., Grgg, W.B., Rechel, L.: Computton of Guss-Kronrod qudrture rules. Mth. Comput. 69, ) 2. Clncy, N., Dng, Y., Hmlton, C., Hckernell, F.J., Zhng, Y.: The cost of determnstc, dptve, utomtc lgorthms: cones, not blls. J. Complex. 30, ) 3. Conte, S.D., de Boor, C.: Elementry numercl nlyss n lgorthmc pproch, 3rd edn. McGrw- Hll, New York 1980) 4. Dvs, P.J., Rbnowtz, P.: Methods of numercl ntegrton, 2nd edn. Acdemc Press, Orlndo 1984) 5. Gnder, W., Gutsch, W.: Adptve qudrture revsted. BIT 40, ) 6. Kncd, D., Cheney, W.: Numercl nlyss: mthemtcs of scentfc computng, 3rd edn. AMS, Provdence, RI 2002) 7. Kruk, A.: Is the dptve Smpson qudrture optml? Fculty of Mthemtcs, Informtcs nd Mechncs, Unversty of Wrsw, Mster Thess n Polsh) 2012) 8. Lyness, J.N.: Notes on the dptve Smpson qudrture routne. J. Assoc. Comput. Mch. 16, ) 9. Lyness, J.N.: When not to use n utomtc qudrture routne? SIAM Rev. 25, ) 10. McKeemn, W.M.: Algorthm 145: dptve numercl ntegrton by Smpson s rule. Commun. ACM 5, ) 11. Mlcolm, M.A., Smpson, R.B.: Locl versus globl strteges for dptve qudrture. ACM Trns. Mth. Softw. 1, )

26 198 L. Plskot 12. Novk, E.: On the power of dpton. J. Complex. 12, ) 13. Pessens, R., de Doncker-Kpeng, E., Uberhuber, C.W., Khner, D.K.: QUADPACK. A subroutne pckge for utomtc ntegrton. Sprnger, Berln 1983) 14. Plskot, L.: Nosy Informton nd computtonl complexty. Cmbrdge Unversty Press, Cmbrdge 1996) 15. Press, W.H., Teukolsky, S.A., Vetterlng, W.T., Flnnery, B.P.: Numercl recpes: the rt of scentfc computng, 3rd edn. Cmbrdge Unversty Press, New York 2007) 16. Plskot, L., Wslkowsk, G.W.: Adpton llows effcent ntegrton of functons wth unknown sngulrtes. Numersche Mthemtk 102, ) 17. Trub, J.F., Wslkowsk, G.W., Woźnkowsk, H.: Informton-bsed complexty. Acdemc Press, New York 1988) 18. Wslkowsk, G.W.: Informton of vryng crdnlty. J. Complex. 1, )

Chapter Newton-Raphson Method of Solving a Nonlinear Equation

Chapter Newton-Raphson Method of Solving a Nonlinear Equation Chpter.4 Newton-Rphson Method of Solvng Nonlner Equton After redng ths chpter, you should be ble to:. derve the Newton-Rphson method formul,. develop the lgorthm of the Newton-Rphson method,. use the Newton-Rphson

More information

Introduction to Numerical Integration Part II

Introduction to Numerical Integration Part II Introducton to umercl Integrton Prt II CS 75/Mth 75 Brn T. Smth, UM, CS Dept. Sprng, 998 4/9/998 qud_ Intro to Gussn Qudrture s eore, the generl tretment chnges the ntegrton prolem to ndng the ntegrl w

More information

International Journal of Pure and Applied Sciences and Technology

International Journal of Pure and Applied Sciences and Technology Int. J. Pure Appl. Sc. Technol., () (), pp. 44-49 Interntonl Journl of Pure nd Appled Scences nd Technolog ISSN 9-67 Avlle onlne t www.jopst.n Reserch Pper Numercl Soluton for Non-Lner Fredholm Integrl

More information

Applied Statistics Qualifier Examination

Applied Statistics Qualifier Examination Appled Sttstcs Qulfer Exmnton Qul_june_8 Fll 8 Instructons: () The exmnton contns 4 Questons. You re to nswer 3 out of 4 of them. () You my use ny books nd clss notes tht you mght fnd helpful n solvng

More information

4. Eccentric axial loading, cross-section core

4. Eccentric axial loading, cross-section core . Eccentrc xl lodng, cross-secton core Introducton We re strtng to consder more generl cse when the xl force nd bxl bendng ct smultneousl n the cross-secton of the br. B vrtue of Snt-Vennt s prncple we

More information

UNIVERSITY OF IOANNINA DEPARTMENT OF ECONOMICS. M.Sc. in Economics MICROECONOMIC THEORY I. Problem Set II

UNIVERSITY OF IOANNINA DEPARTMENT OF ECONOMICS. M.Sc. in Economics MICROECONOMIC THEORY I. Problem Set II Mcroeconomc Theory I UNIVERSITY OF IOANNINA DEPARTMENT OF ECONOMICS MSc n Economcs MICROECONOMIC THEORY I Techng: A Lptns (Note: The number of ndctes exercse s dffculty level) ()True or flse? If V( y )

More information

Rank One Update And the Google Matrix by Al Bernstein Signal Science, LLC

Rank One Update And the Google Matrix by Al Bernstein Signal Science, LLC Introducton Rnk One Updte And the Google Mtrx y Al Bernsten Sgnl Scence, LLC www.sgnlscence.net here re two dfferent wys to perform mtrx multplctons. he frst uses dot product formulton nd the second uses

More information

6 Roots of Equations: Open Methods

6 Roots of Equations: Open Methods HK Km Slghtly modfed 3//9, /8/6 Frstly wrtten t Mrch 5 6 Roots of Equtons: Open Methods Smple Fed-Pont Iterton Newton-Rphson Secnt Methods MATLAB Functon: fzero Polynomls Cse Study: Ppe Frcton Brcketng

More information

Chapter Newton-Raphson Method of Solving a Nonlinear Equation

Chapter Newton-Raphson Method of Solving a Nonlinear Equation Chpter 0.04 Newton-Rphson Method o Solvng Nonlner Equton Ater redng ths chpter, you should be ble to:. derve the Newton-Rphson method ormul,. develop the lgorthm o the Newton-Rphson method,. use the Newton-Rphson

More information

Two Coefficients of the Dyson Product

Two Coefficients of the Dyson Product Two Coeffcents of the Dyson Product rxv:07.460v mth.co 7 Nov 007 Lun Lv, Guoce Xn, nd Yue Zhou 3,,3 Center for Combntorcs, LPMC TJKLC Nnk Unversty, Tnjn 30007, P.R. Chn lvlun@cfc.nnk.edu.cn gn@nnk.edu.cn

More information

Pyramid Algorithms for Barycentric Rational Interpolation

Pyramid Algorithms for Barycentric Rational Interpolation Pyrmd Algorthms for Brycentrc Rtonl Interpolton K Hormnn Scott Schefer Astrct We present new perspectve on the Floter Hormnn nterpolnt. Ths nterpolnt s rtonl of degree (n, d), reproduces polynomls of degree

More information

Statistics and Probability Letters

Statistics and Probability Letters Sttstcs nd Probblty Letters 79 (2009) 105 111 Contents lsts vlble t ScenceDrect Sttstcs nd Probblty Letters journl homepge: www.elsever.com/locte/stpro Lmtng behvour of movng verge processes under ϕ-mxng

More information

Dennis Bricker, 2001 Dept of Industrial Engineering The University of Iowa. MDP: Taxi page 1

Dennis Bricker, 2001 Dept of Industrial Engineering The University of Iowa. MDP: Taxi page 1 Denns Brcker, 2001 Dept of Industrl Engneerng The Unversty of Iow MDP: Tx pge 1 A tx serves three djcent towns: A, B, nd C. Ech tme the tx dschrges pssenger, the drver must choose from three possble ctons:

More information

90 S.S. Drgomr nd (t b)du(t) =u()(b ) u(t)dt: If we dd the bove two equltes, we get (.) u()(b ) u(t)dt = p(; t)du(t) where p(; t) := for ll ; t [; b]:

90 S.S. Drgomr nd (t b)du(t) =u()(b ) u(t)dt: If we dd the bove two equltes, we get (.) u()(b ) u(t)dt = p(; t)du(t) where p(; t) := for ll ; t [; b]: RGMIA Reserch Report Collecton, Vol., No. 1, 1999 http://sc.vu.edu.u/οrgm ON THE OSTROWSKI INTEGRAL INEQUALITY FOR LIPSCHITZIAN MAPPINGS AND APPLICATIONS S.S. Drgomr Abstrct. A generlzton of Ostrowsk's

More information

Lecture 4: Piecewise Cubic Interpolation

Lecture 4: Piecewise Cubic Interpolation Lecture notes on Vrtonl nd Approxmte Methods n Appled Mthemtcs - A Perce UBC Lecture 4: Pecewse Cubc Interpolton Compled 6 August 7 In ths lecture we consder pecewse cubc nterpolton n whch cubc polynoml

More information

Remember: Project Proposals are due April 11.

Remember: Project Proposals are due April 11. Bonformtcs ecture Notes Announcements Remember: Project Proposls re due Aprl. Clss 22 Aprl 4, 2002 A. Hdden Mrov Models. Defntons Emple - Consder the emple we tled bout n clss lst tme wth the cons. However,

More information

The Number of Rows which Equal Certain Row

The Number of Rows which Equal Certain Row Interntonl Journl of Algebr, Vol 5, 011, no 30, 1481-1488 he Number of Rows whch Equl Certn Row Ahmd Hbl Deprtment of mthemtcs Fcult of Scences Dmscus unverst Dmscus, Sr hblhmd1@gmlcom Abstrct Let be X

More information

GAUSS ELIMINATION. Consider the following system of algebraic linear equations

GAUSS ELIMINATION. Consider the following system of algebraic linear equations Numercl Anlyss for Engneers Germn Jordnn Unversty GAUSS ELIMINATION Consder the followng system of lgebrc lner equtons To solve the bove system usng clsscl methods, equton () s subtrcted from equton ()

More information

Partially Observable Systems. 1 Partially Observable Markov Decision Process (POMDP) Formalism

Partially Observable Systems. 1 Partially Observable Markov Decision Process (POMDP) Formalism CS294-40 Lernng for Rootcs nd Control Lecture 10-9/30/2008 Lecturer: Peter Aeel Prtlly Oservle Systems Scre: Dvd Nchum Lecture outlne POMDP formlsm Pont-sed vlue terton Glol methods: polytree, enumerton,

More information

Online Appendix to. Mandating Behavioral Conformity in Social Groups with Conformist Members

Online Appendix to. Mandating Behavioral Conformity in Social Groups with Conformist Members Onlne Appendx to Mndtng Behvorl Conformty n Socl Groups wth Conformst Members Peter Grzl Andrze Bnk (Correspondng uthor) Deprtment of Economcs, The Wllms School, Wshngton nd Lee Unversty, Lexngton, 4450

More information

INTRODUCTION TO COMPLEX NUMBERS

INTRODUCTION TO COMPLEX NUMBERS INTRODUCTION TO COMPLEX NUMBERS The numers -4, -3, -, -1, 0, 1,, 3, 4 represent the negtve nd postve rel numers termed ntegers. As one frst lerns n mddle school they cn e thought of s unt dstnce spced

More information

DCDM BUSINESS SCHOOL NUMERICAL METHODS (COS 233-8) Solutions to Assignment 3. x f(x)

DCDM BUSINESS SCHOOL NUMERICAL METHODS (COS 233-8) Solutions to Assignment 3. x f(x) DCDM BUSINESS SCHOOL NUMEICAL METHODS (COS -8) Solutons to Assgnment Queston Consder the followng dt: 5 f() 8 7 5 () Set up dfference tble through fourth dfferences. (b) Wht s the mnmum degree tht n nterpoltng

More information

ON SIMPSON S INEQUALITY AND APPLICATIONS. 1. Introduction The following inequality is well known in the literature as Simpson s inequality : 2 1 f (4)

ON SIMPSON S INEQUALITY AND APPLICATIONS. 1. Introduction The following inequality is well known in the literature as Simpson s inequality : 2 1 f (4) ON SIMPSON S INEQUALITY AND APPLICATIONS SS DRAGOMIR, RP AGARWAL, AND P CERONE Abstrct New neultes of Smpson type nd ther pplcton to udrture formule n Numercl Anlyss re gven Introducton The followng neulty

More information

Katholieke Universiteit Leuven Department of Computer Science

Katholieke Universiteit Leuven Department of Computer Science Updte Rules for Weghted Non-negtve FH*G Fctorzton Peter Peers Phlp Dutré Report CW 440, Aprl 006 Ktholeke Unverstet Leuven Deprtment of Computer Scence Celestjnenln 00A B-3001 Heverlee (Belgum) Updte Rules

More information

Math 497C Sep 17, Curves and Surfaces Fall 2004, PSU

Math 497C Sep 17, Curves and Surfaces Fall 2004, PSU Mth 497C Sep 17, 004 1 Curves nd Surfces Fll 004, PSU Lecture Notes 3 1.8 The generl defnton of curvture; Fox-Mlnor s Theorem Let α: [, b] R n be curve nd P = {t 0,...,t n } be prtton of [, b], then the

More information

Principle Component Analysis

Principle Component Analysis Prncple Component Anlyss Jng Go SUNY Bufflo Why Dmensonlty Reducton? We hve too mny dmensons o reson bout or obtn nsghts from o vsulze oo much nose n the dt Need to reduce them to smller set of fctors

More information

THE COMBINED SHEPARD ABEL GONCHAROV UNIVARIATE OPERATOR

THE COMBINED SHEPARD ABEL GONCHAROV UNIVARIATE OPERATOR REVUE D ANALYSE NUMÉRIQUE ET DE THÉORIE DE L APPROXIMATION Tome 32, N o 1, 2003, pp 11 20 THE COMBINED SHEPARD ABEL GONCHAROV UNIVARIATE OPERATOR TEODORA CĂTINAŞ Abstrct We extend the Sheprd opertor by

More information

Definition of Tracking

Definition of Tracking Trckng Defnton of Trckng Trckng: Generte some conclusons bout the moton of the scene, objects, or the cmer, gven sequence of mges. Knowng ths moton, predct where thngs re gong to project n the net mge,

More information

Statistics 423 Midterm Examination Winter 2009

Statistics 423 Midterm Examination Winter 2009 Sttstcs 43 Mdterm Exmnton Wnter 009 Nme: e-ml: 1. Plese prnt your nme nd e-ml ddress n the bove spces.. Do not turn ths pge untl nstructed to do so. 3. Ths s closed book exmnton. You my hve your hnd clcultor

More information

8. INVERSE Z-TRANSFORM

8. INVERSE Z-TRANSFORM 8. INVERSE Z-TRANSFORM The proce by whch Z-trnform of tme ere, nmely X(), returned to the tme domn clled the nvere Z-trnform. The nvere Z-trnform defned by: Computer tudy Z X M-fle trn.m ued to fnd nvere

More information

Formulated Algorithm for Computing Dominant Eigenvalue. and the Corresponding Eigenvector

Formulated Algorithm for Computing Dominant Eigenvalue. and the Corresponding Eigenvector Int. J. Contemp. Mth. Scences Vol. 8 23 no. 9 899-9 HIKARI Ltd www.m-hkr.com http://dx.do.org/.2988/jcms.23.3674 Formulted Algorthm for Computng Domnnt Egenlue nd the Correspondng Egenector Igob Dod Knu

More information

Quiz: Experimental Physics Lab-I

Quiz: Experimental Physics Lab-I Mxmum Mrks: 18 Totl tme llowed: 35 mn Quz: Expermentl Physcs Lb-I Nme: Roll no: Attempt ll questons. 1. In n experment, bll of mss 100 g s dropped from heght of 65 cm nto the snd contner, the mpct s clled

More information

7.2 Volume. A cross section is the shape we get when cutting straight through an object.

7.2 Volume. A cross section is the shape we get when cutting straight through an object. 7. Volume Let s revew the volume of smple sold, cylnder frst. Cylnder s volume=se re heght. As llustrted n Fgure (). Fgure ( nd (c) re specl cylnders. Fgure () s rght crculr cylnder. Fgure (c) s ox. A

More information

Math 1B, lecture 4: Error bounds for numerical methods

Math 1B, lecture 4: Error bounds for numerical methods Mth B, lecture 4: Error bounds for numericl methods Nthn Pflueger 4 September 0 Introduction The five numericl methods descried in the previous lecture ll operte by the sme principle: they pproximte the

More information

The Schur-Cohn Algorithm

The Schur-Cohn Algorithm Modelng, Estmton nd Otml Flterng n Sgnl Processng Mohmed Njm Coyrght 8, ISTE Ltd. Aendx F The Schur-Cohn Algorthm In ths endx, our m s to resent the Schur-Cohn lgorthm [] whch s often used s crteron for

More information

INTERPOLATION(1) ELM1222 Numerical Analysis. ELM1222 Numerical Analysis Dr Muharrem Mercimek

INTERPOLATION(1) ELM1222 Numerical Analysis. ELM1222 Numerical Analysis Dr Muharrem Mercimek ELM Numercl Anlss Dr Muhrrem Mercmek INTEPOLATION ELM Numercl Anlss Some of the contents re dopted from Lurene V. Fusett, Appled Numercl Anlss usng MATLAB. Prentce Hll Inc., 999 ELM Numercl Anlss Dr Muhrrem

More information

In this Chapter. Chap. 3 Markov chains and hidden Markov models. Probabilistic Models. Example: CpG Islands

In this Chapter. Chap. 3 Markov chains and hidden Markov models. Probabilistic Models. Example: CpG Islands In ths Chpter Chp. 3 Mrov chns nd hdden Mrov models Bontellgence bortory School of Computer Sc. & Eng. Seoul Ntonl Unversty Seoul 5-74, Kore The probblstc model for sequence nlyss HMM (hdden Mrov model)

More information

Lecture 36. Finite Element Methods

Lecture 36. Finite Element Methods CE 60: Numercl Methods Lecture 36 Fnte Element Methods Course Coordntor: Dr. Suresh A. Krth, Assocte Professor, Deprtment of Cvl Engneerng, IIT Guwht. In the lst clss, we dscussed on the ppromte methods

More information

Research Article On the Upper Bounds of Eigenvalues for a Class of Systems of Ordinary Differential Equations with Higher Order

Research Article On the Upper Bounds of Eigenvalues for a Class of Systems of Ordinary Differential Equations with Higher Order Hndw Publshng Corporton Interntonl Journl of Dfferentl Equtons Volume 0, Artcle ID 7703, pges do:055/0/7703 Reserch Artcle On the Upper Bounds of Egenvlues for Clss of Systems of Ordnry Dfferentl Equtons

More information

CHOVER-TYPE LAWS OF THE ITERATED LOGARITHM FOR WEIGHTED SUMS OF ρ -MIXING SEQUENCES

CHOVER-TYPE LAWS OF THE ITERATED LOGARITHM FOR WEIGHTED SUMS OF ρ -MIXING SEQUENCES CHOVER-TYPE LAWS OF THE ITERATED LOGARITHM FOR WEIGHTED SUMS OF ρ -MIXING SEQUENCES GUANG-HUI CAI Receved 24 September 2004; Revsed 3 My 2005; Accepted 3 My 2005 To derve Bum-Ktz-type result, we estblsh

More information

A Family of Multivariate Abel Series Distributions. of Order k

A Family of Multivariate Abel Series Distributions. of Order k Appled Mthemtcl Scences, Vol. 2, 2008, no. 45, 2239-2246 A Fmly of Multvrte Abel Seres Dstrbutons of Order k Rupk Gupt & Kshore K. Ds 2 Fculty of Scence & Technology, The Icf Unversty, Agrtl, Trpur, Ind

More information

UNIFORM CONVERGENCE. Contents 1. Uniform Convergence 1 2. Properties of uniform convergence 3

UNIFORM CONVERGENCE. Contents 1. Uniform Convergence 1 2. Properties of uniform convergence 3 UNIFORM CONVERGENCE Contents 1. Uniform Convergence 1 2. Properties of uniform convergence 3 Suppose f n : Ω R or f n : Ω C is sequence of rel or complex functions, nd f n f s n in some sense. Furthermore,

More information

W. We shall do so one by one, starting with I 1, and we shall do it greedily, trying

W. We shall do so one by one, starting with I 1, and we shall do it greedily, trying Vitli covers 1 Definition. A Vitli cover of set E R is set V of closed intervls with positive length so tht, for every δ > 0 nd every x E, there is some I V with λ(i ) < δ nd x I. 2 Lemm (Vitli covering)

More information

Computing a complete histogram of an image in Log(n) steps and minimum expected memory requirements using hypercubes

Computing a complete histogram of an image in Log(n) steps and minimum expected memory requirements using hypercubes Computng complete hstogrm of n mge n Log(n) steps nd mnmum expected memory requrements usng hypercubes TAREK M. SOBH School of Engneerng, Unversty of Brdgeport, Connectcut, USA. Abstrct Ths work frst revews

More information

ESCI 342 Atmospheric Dynamics I Lesson 1 Vectors and Vector Calculus

ESCI 342 Atmospheric Dynamics I Lesson 1 Vectors and Vector Calculus ESI 34 tmospherc Dnmcs I Lesson 1 Vectors nd Vector lculus Reference: Schum s Outlne Seres: Mthemtcl Hndbook of Formuls nd Tbles Suggested Redng: Mrtn Secton 1 OORDINTE SYSTEMS n orthonorml coordnte sstem

More information

Demand. Demand and Comparative Statics. Graphically. Marshallian Demand. ECON 370: Microeconomic Theory Summer 2004 Rice University Stanley Gilbert

Demand. Demand and Comparative Statics. Graphically. Marshallian Demand. ECON 370: Microeconomic Theory Summer 2004 Rice University Stanley Gilbert Demnd Demnd nd Comrtve Sttcs ECON 370: Mcroeconomc Theory Summer 004 Rce Unversty Stnley Glbert Usng the tools we hve develoed u to ths ont, we cn now determne demnd for n ndvdul consumer We seek demnd

More information

Point-based methods for estimating the length of a parametric curve

Point-based methods for estimating the length of a parametric curve Journl of Computtonl nd Appled Mthemtcs 196 (006) 51 5 www.elsever.com/locte/cm Pont-bsed methods for estmtng the length of prmetrc curve Mchel S. Floter, Atgerr F. Rsmussen CMA, Unversty of Oslo, P.O.

More information

CS434a/541a: Pattern Recognition Prof. Olga Veksler. Lecture 9

CS434a/541a: Pattern Recognition Prof. Olga Veksler. Lecture 9 CS434/541: Pttern Recognton Prof. Olg Veksler Lecture 9 Announcements Fnl project proposl due Nov. 1 1-2 prgrph descrpton Lte Penlt: s 1 pont off for ech d lte Assgnment 3 due November 10 Dt for fnl project

More information

Review of linear algebra. Nuno Vasconcelos UCSD

Review of linear algebra. Nuno Vasconcelos UCSD Revew of lner lgebr Nuno Vsconcelos UCSD Vector spces Defnton: vector spce s set H where ddton nd sclr multplcton re defned nd stsf: ) +( + ) (+ )+ 5) λ H 2) + + H 6) 3) H, + 7) λ(λ ) (λλ ) 4) H, - + 8)

More information

Chemical Reaction Engineering

Chemical Reaction Engineering Lecture 20 hemcl Recton Engneerng (RE) s the feld tht studes the rtes nd mechnsms of chemcl rectons nd the desgn of the rectors n whch they tke plce. Lst Lecture Energy Blnce Fundmentls F 0 E 0 F E Q W

More information

Jean Fernand Nguema LAMETA UFR Sciences Economiques Montpellier. Abstract

Jean Fernand Nguema LAMETA UFR Sciences Economiques Montpellier. Abstract Stochstc domnnce on optml portfolo wth one rsk less nd two rsky ssets Jen Fernnd Nguem LAMETA UFR Scences Economques Montpeller Abstrct The pper provdes restrctons on the nvestor's utlty functon whch re

More information

Advanced Calculus: MATH 410 Notes on Integrals and Integrability Professor David Levermore 17 October 2004

Advanced Calculus: MATH 410 Notes on Integrals and Integrability Professor David Levermore 17 October 2004 Advnced Clculus: MATH 410 Notes on Integrls nd Integrbility Professor Dvid Levermore 17 October 2004 1. Definite Integrls In this section we revisit the definite integrl tht you were introduced to when

More information

CMDA 4604: Intermediate Topics in Mathematical Modeling Lecture 19: Interpolation and Quadrature

CMDA 4604: Intermediate Topics in Mathematical Modeling Lecture 19: Interpolation and Quadrature CMDA 4604: Intermedite Topics in Mthemticl Modeling Lecture 19: Interpoltion nd Qudrture In this lecture we mke brief diversion into the res of interpoltion nd qudrture. Given function f C[, b], we sy

More information

An Introduction to Support Vector Machines

An Introduction to Support Vector Machines An Introducton to Support Vector Mchnes Wht s good Decson Boundry? Consder two-clss, lnerly seprble clssfcton problem Clss How to fnd the lne (or hyperplne n n-dmensons, n>)? Any de? Clss Per Lug Mrtell

More information

Numerische Mathematik

Numerische Mathematik Numer. Mth. (2003) 95: 427 457 Dgtl Object Identfer (DOI) 10.1007/s00211-002-0429-6 Numersche Mthemtk Addtve Schwrz Methods for Ellptc Mortr Fnte Element Problems Petter E. Bjørstd 1,, Mksymln Dryj 2,,

More information

Many-Body Calculations of the Isotope Shift

Many-Body Calculations of the Isotope Shift Mny-Body Clcultons of the Isotope Shft W. R. Johnson Mrch 11, 1 1 Introducton Atomc energy levels re commonly evluted ssumng tht the nucler mss s nfnte. In ths report, we consder correctons to tomc levels

More information

Electrochemical Thermodynamics. Interfaces and Energy Conversion

Electrochemical Thermodynamics. Interfaces and Energy Conversion CHE465/865, 2006-3, Lecture 6, 18 th Sep., 2006 Electrochemcl Thermodynmcs Interfces nd Energy Converson Where does the energy contrbuton F zϕ dn come from? Frst lw of thermodynmcs (conservton of energy):

More information

Fall 2012 Analysis of Experimental Measurements B. Eisenstein/rev. S. Errede

Fall 2012 Analysis of Experimental Measurements B. Eisenstein/rev. S. Errede Fll Anlss of Epermentl Mesurements B. Esensten/rev. S. Errede Monte Crlo Methods/Technques: These re mong the most powerful tools for dt nlss nd smulton of eperments. The growth of ther mportnce s closel

More information

Linear and Nonlinear Optimization

Linear and Nonlinear Optimization Lner nd Nonlner Optmzton Ynyu Ye Deprtment of Mngement Scence nd Engneerng Stnford Unversty Stnford, CA 9430, U.S.A. http://www.stnford.edu/~yyye http://www.stnford.edu/clss/msnde/ Ynyu Ye, Stnford, MS&E

More information

CHI-SQUARE DIVERGENCE AND MINIMIZATION PROBLEM

CHI-SQUARE DIVERGENCE AND MINIMIZATION PROBLEM CHI-SQUARE DIVERGENCE AND MINIMIZATION PROBLEM PRANESH KUMAR AND INDER JEET TANEJA Abstrct The mnmum dcrmnton nformton prncple for the Kullbck-Lebler cross-entropy well known n the lterture In th pper

More information

LOCAL FRACTIONAL LAPLACE SERIES EXPANSION METHOD FOR DIFFUSION EQUATION ARISING IN FRACTAL HEAT TRANSFER

LOCAL FRACTIONAL LAPLACE SERIES EXPANSION METHOD FOR DIFFUSION EQUATION ARISING IN FRACTAL HEAT TRANSFER Yn, S.-P.: Locl Frctonl Lplce Seres Expnson Method for Dffuson THERMAL SCIENCE, Yer 25, Vol. 9, Suppl., pp. S3-S35 S3 LOCAL FRACTIONAL LAPLACE SERIES EXPANSION METHOD FOR DIFFUSION EQUATION ARISING IN

More information

Lecture 14: Quadrature

Lecture 14: Quadrature Lecture 14: Qudrture This lecture is concerned with the evlution of integrls fx)dx 1) over finite intervl [, b] The integrnd fx) is ssumed to be rel-vlues nd smooth The pproximtion of n integrl by numericl

More information

Online Stochastic Matching: New Algorithms with Better Bounds

Online Stochastic Matching: New Algorithms with Better Bounds Onlne Stochstc Mtchng: New Algorthms wth Better Bounds Ptrck Jllet Xn Lu My 202; revsed Jnury 203, June 203 Abstrct We consder vrnts of the onlne stochstc bprtte mtchng problem motvted by Internet dvertsng

More information

MTH 146 Class 7 Notes

MTH 146 Class 7 Notes 7.7- Approxmte Itegrto Motvto: MTH 46 Clss 7 Notes I secto 7.5 we lered tht some defte tegrls, lke x e dx, cot e wrtte terms of elemetry fuctos. So, good questo to sk would e: How c oe clculte somethg

More information

Study of Trapezoidal Fuzzy Linear System of Equations S. M. Bargir 1, *, M. S. Bapat 2, J. D. Yadav 3 1

Study of Trapezoidal Fuzzy Linear System of Equations S. M. Bargir 1, *, M. S. Bapat 2, J. D. Yadav 3 1 mercn Interntonl Journl of Reserch n cence Technology Engneerng & Mthemtcs vlble onlne t http://wwwsrnet IN (Prnt: 38-349 IN (Onlne: 38-3580 IN (CD-ROM: 38-369 IJRTEM s refereed ndexed peer-revewed multdscplnry

More information

2E Pattern Recognition Solutions to Introduction to Pattern Recognition, Chapter 2: Bayesian pattern classification

2E Pattern Recognition Solutions to Introduction to Pattern Recognition, Chapter 2: Bayesian pattern classification E395 - Pattern Recognton Solutons to Introducton to Pattern Recognton, Chapter : Bayesan pattern classfcaton Preface Ths document s a soluton manual for selected exercses from Introducton to Pattern Recognton

More information

Exam 2, Mathematics 4701, Section ETY6 6:05 pm 7:40 pm, March 31, 2016, IH-1105 Instructor: Attila Máté 1

Exam 2, Mathematics 4701, Section ETY6 6:05 pm 7:40 pm, March 31, 2016, IH-1105 Instructor: Attila Máté 1 Exm, Mthemtics 471, Section ETY6 6:5 pm 7:4 pm, Mrch 1, 16, IH-115 Instructor: Attil Máté 1 17 copies 1. ) Stte the usul sufficient condition for the fixed-point itertion to converge when solving the eqution

More information

Jens Siebel (University of Applied Sciences Kaiserslautern) An Interactive Introduction to Complex Numbers

Jens Siebel (University of Applied Sciences Kaiserslautern) An Interactive Introduction to Complex Numbers Jens Sebel (Unversty of Appled Scences Kserslutern) An Interctve Introducton to Complex Numbers 1. Introducton We know tht some polynoml equtons do not hve ny solutons on R/. Exmple 1.1: Solve x + 1= for

More information

NUMERICAL MODELLING OF A CILIUM USING AN INTEGRAL EQUATION

NUMERICAL MODELLING OF A CILIUM USING AN INTEGRAL EQUATION NUEICAL ODELLING OF A CILIU USING AN INTEGAL EQUATION IHAI EBICAN, DANIEL IOAN Key words: Cl, Numercl nlyss, Electromgnetc feld, gnetton. The pper presents fst nd ccurte method to model the mgnetc behvour

More information

Review of Calculus, cont d

Review of Calculus, cont d Jim Lmbers MAT 460 Fll Semester 2009-10 Lecture 3 Notes These notes correspond to Section 1.1 in the text. Review of Clculus, cont d Riemnn Sums nd the Definite Integrl There re mny cses in which some

More information

Lecture 1. Functional series. Pointwise and uniform convergence.

Lecture 1. Functional series. Pointwise and uniform convergence. 1 Introduction. Lecture 1. Functionl series. Pointwise nd uniform convergence. In this course we study mongst other things Fourier series. The Fourier series for periodic function f(x) with period 2π is

More information

5.7 Improper Integrals

5.7 Improper Integrals 458 pplictions of definite integrls 5.7 Improper Integrls In Section 5.4, we computed the work required to lift pylod of mss m from the surfce of moon of mss nd rdius R to height H bove the surfce of the

More information

Chemical Reaction Engineering

Chemical Reaction Engineering Lecture 20 hemcl Recton Engneerng (RE) s the feld tht studes the rtes nd mechnsms of chemcl rectons nd the desgn of the rectors n whch they tke plce. Lst Lecture Energy Blnce Fundmentls F E F E + Q! 0

More information

Soft Set Theoretic Approach for Dimensionality Reduction 1

Soft Set Theoretic Approach for Dimensionality Reduction 1 Interntonl Journl of Dtbse Theory nd pplcton Vol No June 00 Soft Set Theoretc pproch for Dmensonlty Reducton Tutut Herwn Rozd Ghzl Mustf Mt Ders Deprtment of Mthemtcs Educton nversts hmd Dhln Yogykrt Indones

More information

Chapter 5 Supplemental Text Material R S T. ij i j ij ijk

Chapter 5 Supplemental Text Material R S T. ij i j ij ijk Chpter 5 Supplementl Text Mterl 5-. Expected Men Squres n the Two-fctor Fctorl Consder the two-fctor fxed effects model y = µ + τ + β + ( τβ) + ε k R S T =,,, =,,, k =,,, n gven s Equton (5-) n the textook.

More information

Model Fitting and Robust Regression Methods

Model Fitting and Robust Regression Methods Dertment o Comuter Engneerng Unverst o Clorn t Snt Cruz Model Fttng nd Robust Regresson Methods CMPE 64: Imge Anlss nd Comuter Vson H o Fttng lnes nd ellses to mge dt Dertment o Comuter Engneerng Unverst

More information

Sequences of Intuitionistic Fuzzy Soft G-Modules

Sequences of Intuitionistic Fuzzy Soft G-Modules Interntonl Mthemtcl Forum, Vol 13, 2018, no 12, 537-546 HIKARI Ltd, wwwm-hkrcom https://doorg/1012988/mf201881058 Sequences of Intutonstc Fuzzy Soft G-Modules Velyev Kemle nd Huseynov Afq Bku Stte Unversty,

More information

Effects of polarization on the reflected wave

Effects of polarization on the reflected wave Lecture Notes. L Ros PPLIED OPTICS Effects of polrzton on the reflected wve Ref: The Feynmn Lectures on Physcs, Vol-I, Secton 33-6 Plne of ncdence Z Plne of nterfce Fg. 1 Y Y r 1 Glss r 1 Glss Fg. Reflecton

More information

Solution for Assignment 1 : Intro to Probability and Statistics, PAC learning

Solution for Assignment 1 : Intro to Probability and Statistics, PAC learning Solution for Assignment 1 : Intro to Probbility nd Sttistics, PAC lerning 10-701/15-781: Mchine Lerning (Fll 004) Due: Sept. 30th 004, Thursdy, Strt of clss Question 1. Bsic Probbility ( 18 pts) 1.1 (

More information

Numerical Analysis: Trapezoidal and Simpson s Rule

Numerical Analysis: Trapezoidal and Simpson s Rule nd Simpson s Mthemticl question we re interested in numericlly nswering How to we evlute I = f (x) dx? Clculus tells us tht if F(x) is the ntiderivtive of function f (x) on the intervl [, b], then I =

More information

Foundations of Arithmetic

Foundations of Arithmetic Foundatons of Arthmetc Notaton We shall denote the sum and product of numbers n the usual notaton as a 2 + a 2 + a 3 + + a = a, a 1 a 2 a 3 a = a The notaton a b means a dvdes b,.e. ac = b where c s an

More information

Variable time amplitude amplification and quantum algorithms for linear algebra. Andris Ambainis University of Latvia

Variable time amplitude amplification and quantum algorithms for linear algebra. Andris Ambainis University of Latvia Vrble tme mpltude mplfcton nd quntum lgorthms for lner lgebr Andrs Ambns Unversty of Ltv Tlk outlne. ew verson of mpltude mplfcton;. Quntum lgorthm for testng f A s sngulr; 3. Quntum lgorthm for solvng

More information

Goals: Determine how to calculate the area described by a function. Define the definite integral. Explore the relationship between the definite

Goals: Determine how to calculate the area described by a function. Define the definite integral. Explore the relationship between the definite Unit #8 : The Integrl Gols: Determine how to clculte the re described by function. Define the definite integrl. Eplore the reltionship between the definite integrl nd re. Eplore wys to estimte the definite

More information

A Tri-Valued Belief Network Model for Information Retrieval

A Tri-Valued Belief Network Model for Information Retrieval December 200 A Tr-Vlued Belef Networ Model for Informton Retrevl Fernndo Ds-Neves Computer Scence Dept. Vrgn Polytechnc Insttute nd Stte Unversty Blcsburg, VA 24060. IR models t Combnng Evdence Grphcl

More information

More metrics on cartesian products

More metrics on cartesian products More metrcs on cartesan products If (X, d ) are metrc spaces for 1 n, then n Secton II4 of the lecture notes we defned three metrcs on X whose underlyng topologes are the product topology The purpose of

More information

Bi-level models for OD matrix estimation

Bi-level models for OD matrix estimation TNK084 Trffc Theory seres Vol.4, number. My 2008 B-level models for OD mtrx estmton Hn Zhng, Quyng Meng Abstrct- Ths pper ntroduces two types of O/D mtrx estmton model: ME2 nd Grdent. ME2 s mxmum-entropy

More information

1 Online Learning and Regret Minimization

1 Online Learning and Regret Minimization 2.997 Decision-Mking in Lrge-Scle Systems My 10 MIT, Spring 2004 Hndout #29 Lecture Note 24 1 Online Lerning nd Regret Minimiztion In this lecture, we consider the problem of sequentil decision mking in

More information

Math 8 Winter 2015 Applications of Integration

Math 8 Winter 2015 Applications of Integration Mth 8 Winter 205 Applictions of Integrtion Here re few importnt pplictions of integrtion. The pplictions you my see on n exm in this course include only the Net Chnge Theorem (which is relly just the Fundmentl

More information

Polynomial Approximations for the Natural Logarithm and Arctangent Functions. Math 230

Polynomial Approximations for the Natural Logarithm and Arctangent Functions. Math 230 Polynomil Approimtions for the Nturl Logrithm nd Arctngent Functions Mth 23 You recll from first semester clculus how one cn use the derivtive to find n eqution for the tngent line to function t given

More information

Math Lecture 23

Math Lecture 23 Mth 8 - Lecture 3 Dyln Zwick Fll 3 In our lst lecture we delt with solutions to the system: x = Ax where A is n n n mtrix with n distinct eigenvlues. As promised, tody we will del with the question of

More information

The Regulated and Riemann Integrals

The Regulated and Riemann Integrals Chpter 1 The Regulted nd Riemnn Integrls 1.1 Introduction We will consider severl different pproches to defining the definite integrl f(x) dx of function f(x). These definitions will ll ssign the sme vlue

More information

LAPLACE TRANSFORM SOLUTION OF THE PROBLEM OF TIME-FRACTIONAL HEAT CONDUCTION IN A TWO-LAYERED SLAB

LAPLACE TRANSFORM SOLUTION OF THE PROBLEM OF TIME-FRACTIONAL HEAT CONDUCTION IN A TWO-LAYERED SLAB Journl of Appled Mthemtcs nd Computtonl Mechncs 5, 4(4), 5-3 www.mcm.pcz.pl p-issn 99-9965 DOI:.75/jmcm.5.4. e-issn 353-588 LAPLACE TRANSFORM SOLUTION OF THE PROBLEM OF TIME-FRACTIONAL HEAT CONDUCTION

More information

Machine Learning Support Vector Machines SVM

Machine Learning Support Vector Machines SVM Mchne Lernng Support Vector Mchnes SVM Lesson 6 Dt Clssfcton problem rnng set:, D,,, : nput dt smple {,, K}: clss or lbel of nput rget: Construct functon f : X Y f, D Predcton of clss for n unknon nput

More information

PLEASE SCROLL DOWN FOR ARTICLE

PLEASE SCROLL DOWN FOR ARTICLE Ths rtcle ws downloded by:ntonl Cheng Kung Unversty] On: 1 September 7 Access Detls: subscrpton number 7765748] Publsher: Tylor & Frncs Inform Ltd Regstered n Englnd nd Wles Regstered Number: 17954 Regstered

More information

Smart Motorways HADECS 3 and what it means for your drivers

Smart Motorways HADECS 3 and what it means for your drivers Vehcle Rentl Smrt Motorwys HADECS 3 nd wht t mens for your drvers Vehcle Rentl Smrt Motorwys HADECS 3 nd wht t mens for your drvers You my hve seen some news rtcles bout the ntroducton of Hghwys Englnd

More information

A Theoretical Study on the Rank of the Integral Operators for Large- Scale Electrodynamic Analysis

A Theoretical Study on the Rank of the Integral Operators for Large- Scale Electrodynamic Analysis Purdue Unversty Purdue e-pubs ECE Techncl Reports Electrcl nd Computer Engneerng -22-2 A Theoretcl Study on the Rnk of the Integrl Opertors for Lrge- Scle Electrodynmc Anlyss Wenwen Ch Purdue Unversty,

More information

Proof that if Voting is Perfect in One Dimension, then the First. Eigenvector Extracted from the Double-Centered Transformed

Proof that if Voting is Perfect in One Dimension, then the First. Eigenvector Extracted from the Double-Centered Transformed Proof tht f Votng s Perfect n One Dmenson, then the Frst Egenvector Extrcted from the Doule-Centered Trnsformed Agreement Score Mtrx hs the Sme Rn Orderng s the True Dt Keth T Poole Unversty of Houston

More information

3.4 Numerical integration

3.4 Numerical integration 3.4. Numericl integrtion 63 3.4 Numericl integrtion In mny economic pplictions it is necessry to compute the definite integrl of relvlued function f with respect to "weight" function w over n intervl [,

More information

Overview of Calculus I

Overview of Calculus I Overview of Clculus I Prof. Jim Swift Northern Arizon University There re three key concepts in clculus: The limit, the derivtive, nd the integrl. You need to understnd the definitions of these three things,

More information

p-adic Egyptian Fractions

p-adic Egyptian Fractions p-adic Egyptin Frctions Contents 1 Introduction 1 2 Trditionl Egyptin Frctions nd Greedy Algorithm 2 3 Set-up 3 4 p-greedy Algorithm 5 5 p-egyptin Trditionl 10 6 Conclusion 1 Introduction An Egyptin frction

More information