DIRECTLY SOLVING SECOND ORDER LINEAR BOUNDARY VALUE PROBLEMS OF ORDINARY DIFFERENTIAL EQUATIONS. Ra ft Abdelrahim 1, Z. Omar 2

Size: px
Start display at page:

Download "DIRECTLY SOLVING SECOND ORDER LINEAR BOUNDARY VALUE PROBLEMS OF ORDINARY DIFFERENTIAL EQUATIONS. Ra ft Abdelrahim 1, Z. Omar 2"

Transcription

1 International Journal of Pure and Applied Matematics Volume 6 No. 6, -9 ISSN: - (printed version); ISSN: -95 (on-line version) url: ttp:// doi:.7/ijpam.v6i. PAijpam.eu DIRECTLY SOLVING SECOND ORDER LINEAR BOUNDARY VALUE PROBLEMS OF ORDINARY DIFFERENTIAL EQUATIONS Ra ft Abdelraim, Z. Omar, Department of Matematics Scool of Quantitative Sciences College of Art and Sciences Univeristi Utara Malaysia MALAYSIA Abstract: In tis article, boundary value problems of second order linear ordinary differential equations are solved directly using ybrid block one-step metod. Power series of order six is adopted as basis function to derive tis metod troug collocation and interpolation approac. Sooting metod is employed to transform boundary value problem into initial value problem. Ten ybrid block one step is used to approximate te solution. Te performance of te new metod is sown by solving some boundary value problems examined by previous metods. AMS Subject Classification: 5J5, 5Q6, 65L6, 65L5 Key Words: ybrid one step, block metod, second order boundary value problem, tree off step points, sooting metod. Introduction Matematical models are expressed by boundary value problem (BVPs) and initial value problem (IVPs) of ordinary differential equations in order to elp Received: December, 5 Publised: February 7, 6 Correspondence autor c 6 Academic Publications, Ltd. url:

2 R. Abdelraim, Z. Omar in understanding te pysical penomena. BVPs ave long been a wide area of study because of teir vast application in sciences suc as pysics, engineering, biology and cemistry. In general, it is not easy to solve tese types of problems analytically []. Several numerical metods ave been derived to approximate te solutions for BVPs. According to [7], te using of spline metods for solving BVPs was initially investigated by Bickley in 96. In te same work, Adomian Decomposition Metod (ADM) as also been widely usedfor solving BVPs ( see [6] and [9]). In, [] proposed different finite numerical metod for solving two-point BVPs. Recently, [] presented tree-points block one-step metod for solving second order linear Diriclet and Neumann BVPs directly. However, tese metods ave dealt wit some difficulties for solving BVPs wic leads to inefficiently in term of error. Our focus in tis paper is to derive new one step ybrid block metod wit tree off step points for solving second order linear BVPs. It wort to igligt tat, one step ybrid block metod combines te advantages of block and ybrid metods( see [], [5]) wic overcomes te zero stability barrier in linear multistep metod [].. Derivation of Metod Te following second order two points linear (BVPs) of te form: y p(x)y +q(x)y +r(x), q(x), x [a,b]. y(a) α, y(b) λ, () is considered. In our strategy, te first step is employing sooting metod to transform equation () into two IVPs as below: y p(x)y +q(x)y +r(x), y (a) α, y (a), y p(x)y +q(x)y, y (a), y (a). () Ten, te developed one step ybrid block metod is used to solve () directly. Finally, te approximate solution for() is obtained as following: y(x) y (x)+ λ y (b) y (x). y (b)

3 DIRECTLY SOLVING SECOND ORDER LINEAR BOUNDARY... In order to determine y (x) and y (x), a power series of te form y(x) v+m i ( ) i x xn a i. x [x n,x n+] () is considered for approximation solution of (), were n,,,...,n, v represents te number of interpolation points, m 5 denotes te number of collocation points, x n x n and [a,b] is divided as following a x < x <... < x N < x N b. Initially, equation () is interpolated at points x n+ derivative is collocated at all points i.e x n, x n+ will produce te following system of equations ( ) ( ) (6 ) ( ) (7 ) 6 6 ( ) (7 ) ( ) (7 ) 6 (7 ) 6, x n+ a a a a a a 5 a 6, x n+, x n+ and its second and x n+. Tis y n+ y n+ f n Gaussian elimination metod is used in () to find te values of a i s, i ()6 and ten substituted into equation ()to obtain a continuous linear multistep metod of te form: y(x) i, α i (x)y n+si + β i (x)i + i Te first derivative of equation (5) are given by were y (x) i, α α d dx α i(x)y n+si + i ( ((x x n)) ) ( ((x x n)) ) i,, d dx β i(x)i + i,, () β i i. (5) d dx (x)β ii, (6)

4 R. Abdelraim, Z. Omar β (x x n) β β β + ((x x n) 6 ) (5 ) (56(x x n) ) (5) (6(x x n)) 5 (7(x x n) ) ( ) ((x x n)) ( (9(x x n) ) () ((x x n)) 6 β (7(x x n) ) (7 ) + ((x x n)) 7 (9(x x n) ) () (9(x x n)) (7(x x n) ) (5 ) + ((x x n) ) ( ) ((x x n) 5 ) ( ) + ( ) 6 + ((x x n) 5 ) (5 ) + ( ) 675 ((x x n) 6 ) (5 ) (9(x x n) ) () (6(x x n) 5 ) ( ) + (9 ) 7 + (7(x x n) 6 ) (5 ) (9(x x n) ) (5 ) + (5(x x n) 5 ) ( ) + (7 ) 7 (7(x x n) 6 ) (5 ) (x x n) () 5 + (x x n) 6 (5 ) ((x x n) 5 ) ( ) Equation(5)is evaluated at te non-interpolating point i.e x n+, x n+ and equation (6) are evaluated at all points to produce te discrete scemes and its derivatives. Te discrete sceme and its derivatives are combined in matrix of te form block as below A [] Y [] m B [] R [] + D [] R [] + E [] R [], (7) were A [] 5, Y [] m y n+ y n+ y n+ y n+,

5 DIRECTLY SOLVING SECOND ORDER LINEAR BOUNDARY... 5 B [], R [] ( yn y n ), D [] ( ) 6 (9 ) ( 9) ( 579) 76 6 () ( 7) 7, R [] ( fn ), E [] (99 ) 7 (7 ) 96 ( ) ( ) ( ) ( ) (6 ) 5 () (6) 9 () (9) 675 () () 675 () 5 (9) 5 (59 ) (9 ) 5 ( ) 675 (7 ) () 5 () () 75 (99) (97 ) 66 ( ) 5 (67) 96 (7) 97 () 5 (7) 6 and R [] Multiplying Equation (7) by (A [] ) produces te following ybrid block metod I [] Y [] m B [] R [] ++ D[] R [] + Ē [] R [], () were I [], B[] (), D[] ( ) 9 ( ) ( ) ( ) () 7 (5) (7) 5 (7),

6 6 R. Abdelraim, Z. Omar Ē [] ) Numerical Results In order to confirm te performance of te new one step ybrid block metod, te following tree second linear BVPS were solved and compared wit existing metods in [6], [7] and [] as demonstrated in Tables -. Te notation below are used in te tables: MAXE maximum error of te computed solution EAD extended adomian decomposition metod in [6] BVP direct tree-point block one-step metod in [] ECBIM extended cubic b-spline metod minimizing using Newton s metod in [7] OSHBT implementation of te one step ybrid block metod wit tree off-step points. Problem. Exact solution: Problem. y (x) y(x)+cos(x), y(), y(), x [,]. y(x) cos()+sin()+cos()+ e x sin() + cos()+sin() cos() e x sin() + cos(x). y (x) y (x)+e x, y(), y(). Exact solution: y(x) x( e x ).

7 DIRECTLY SOLVING SECOND ORDER LINEAR BOUNDARY... 7 x MAXE BVP[ 5] MAXE EAD [] MAXE OSHBT.e 7.7e e.e 7.7e 7.9e.e 7.5e 6.e.e 7.e 6.5e 5.9e 7.5e 6.5e 6.65e 7.7e 7.6e 7.e 7.7e 7.e Table : Comparison of te new metod wit [6] and [], solving Problem wit.5 Problem. y (x) ( x )y (x)+y(x)+( x )e x, y(), y(), x [,]. Exact solution y(x) x( e x ).. Conclusion Hig accurate one step ybrid block metod for solving second order linear Boundary value problem directly as been successfully developed. Te new metod outperformed te existing metods wen solving te same BVPs of second order ODEs directly. References [] T. A. Anake, Continuous implicit ybrid one-step metods for te solution of initial value problems of general second-order ordinary differential equations (Unpublised doctoral dissertation). Covenant University,

8 R. Abdelraim, Z. Omar x MAXE BVP[ 5] MAXE ECBIM [] MAXE OSHBT..e.e..5e.5e.e..9e.e..9e.6e.5.e 5.95e.6.96e 6.6e.7.76e 6.7e..6e 6.9e.9.e 7 5.e Table : Comparison of te new metod wit [] and [7], solving Problem wit. [] A. Sagir, An accurate computation of block ybrid metod for solving stiff ordinary differential equations, Journal of Matematics,,,pp. -. [] J. D. Lambert, Computational Metods in Ordinary Differential Equation, Jon Wiley and Sons Inc, London,97. [] D. O. Awoyemi, A P-stable Linear Multistep Metod for Solving Tird Order Ordinary Differential Equation, Inter. J. Computer Mat,,,pp [5] Z.Omar and Ra ft, Abdelraim, Developing a Single Step Hybrid Block Metod wit Generalized Tree Off -step Points for te Direct Solution of Second Order Ordinary Differential Equations, International Journal of Matematical Analysis, 9,6, 5, pp [6] J. Bongsoo,Two-point boundary value problems by te extended Adomian decomposition metod, Journal of Computational and Applied Matematics, 9,,, pp [7] N. A. Hamid, A. A. Majid and A. I. Ismail, Extended cubic B-spline Metod for Linear Two-Point Boundary Value Problems, Sains Malaysiana,,,,pp. 5-9 [] Q. Fang,T. Tsuciya, and T.Yamamoto,Finite difference, finite element and finite volume metods applied to two-point boundary value problems,journal of Computational and Applied Matematics,9,,,pp. 9-9

9 DIRECTLY SOLVING SECOND ORDER LINEAR BOUNDARY... 9 x EXACT SOLUTION COMPUTED SOLUTION ERROR e e e e e e e e e.. -..e 7 Table : Numerical results of te new metod, solving Problem wit. [9] H. A. Emad,E. Abdelalim and R. Randolp, Advances in te Adomian decomposition metod for solving two-point nonlinear boundary value problems wit Neumann boundary conditions, Computer and Matematics wit Applications, 6,,pp [] Z. A. Majid, M.M. Hasni & N. Senu, Solving second order linear Diriclet and Neumann boundary value problems by block metod. Int J Appl Mat,,(),(), 7-76.

10 5

Two Step Hybrid Block Method with Two Generalized Off-step Points for Solving Second Ordinary Order Differential Equations Directly

Two Step Hybrid Block Method with Two Generalized Off-step Points for Solving Second Ordinary Order Differential Equations Directly Global Journal of Pure and Applied Matematics. ISSN 0973-768 Volume 2, Number 2 (206), pp. 59-535 Researc India Publications ttp://www.ripublication.com/gjpam.tm Two Step Hybrid Block Metod wit Two Generalized

More information

Z. Omar. Department of Mathematics School of Quantitative Sciences College of Art and Sciences Univeristi Utara Malaysia, Malaysia. Ra ft.

Z. Omar. Department of Mathematics School of Quantitative Sciences College of Art and Sciences Univeristi Utara Malaysia, Malaysia. Ra ft. International Journal of Mathematical Analysis Vol. 9, 015, no. 46, 57-7 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/10.1988/ijma.015.57181 Developing a Single Step Hybrid Block Method with Generalized

More information

One-Step Hybrid Block Method with One Generalized Off-Step Points for Direct Solution of Second Order Ordinary Differential Equations

One-Step Hybrid Block Method with One Generalized Off-Step Points for Direct Solution of Second Order Ordinary Differential Equations Applied Mathematical Sciences, Vol. 10, 2016, no. 29, 142-142 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/10.12988/ams.2016.6127 One-Step Hybrid Block Method with One Generalized Off-Step Points for

More information

Solving Second Order Linear Dirichlet and Neumann Boundary Value Problems by Block Method

Solving Second Order Linear Dirichlet and Neumann Boundary Value Problems by Block Method IAENG International Journal o Applied Matematics 43: IJAM_43 04 Solving Second Order Linear Diriclet and Neumann Boundar Value Problems b Block Metod Zanaria Abdul Majid Mod Mugti Hasni and Norazak Senu

More information

New Fourth Order Quartic Spline Method for Solving Second Order Boundary Value Problems

New Fourth Order Quartic Spline Method for Solving Second Order Boundary Value Problems MATEMATIKA, 2015, Volume 31, Number 2, 149 157 c UTM Centre for Industrial Applied Matematics New Fourt Order Quartic Spline Metod for Solving Second Order Boundary Value Problems 1 Osama Ala yed, 2 Te

More information

On One Justification on the Use of Hybrids for the Solution of First Order Initial Value Problems of Ordinary Differential Equations

On One Justification on the Use of Hybrids for the Solution of First Order Initial Value Problems of Ordinary Differential Equations Pure and Applied Matematics Journal 7; 6(5: 74 ttp://wwwsciencepublisinggroupcom/j/pamj doi: 648/jpamj765 ISSN: 6979 (Print; ISSN: 698 (Online On One Justiication on te Use o Hybrids or te Solution o First

More information

Parameter Fitted Scheme for Singularly Perturbed Delay Differential Equations

Parameter Fitted Scheme for Singularly Perturbed Delay Differential Equations International Journal of Applied Science and Engineering 2013. 11, 4: 361-373 Parameter Fitted Sceme for Singularly Perturbed Delay Differential Equations Awoke Andargiea* and Y. N. Reddyb a b Department

More information

Module 4 Linear Boundary value problems

Module 4 Linear Boundary value problems Module 4 Linear Boundary value problems Lecture Content Hours 1 Finite Difference Metods: Diriclet type boundary 1 condition Finite Difference Metods: Mixed boundary condition 1 3 Sooting Metod 1 4 Sooting

More information

Parametric Spline Method for Solving Bratu s Problem

Parametric Spline Method for Solving Bratu s Problem ISSN 749-3889 print, 749-3897 online International Journal of Nonlinear Science Vol4202 No,pp3-0 Parametric Spline Metod for Solving Bratu s Problem M Zarebnia, Z Sarvari 2,2 Department of Matematics,

More information

An Accurate Self-Starting Initial Value Solvers for. Second Order Ordinary Differential Equations

An Accurate Self-Starting Initial Value Solvers for. Second Order Ordinary Differential Equations International Journal of Contemporar Matematical Sciences Vol. 9, 04, no. 5, 77-76 HIKARI Ltd, www.m-iari.com ttp://dx.doi.org/0.988/icms.04.4554 An Accurate Self-Starting Initial Value Solvers for Second

More information

NON STANDARD FITTED FINITE DIFFERENCE METHOD FOR SINGULAR PERTURBATION PROBLEMS USING CUBIC SPLINE

NON STANDARD FITTED FINITE DIFFERENCE METHOD FOR SINGULAR PERTURBATION PROBLEMS USING CUBIC SPLINE Global and Stocastic Analysis Vol. 4 No. 1, January 2017, 1-10 NON STANDARD FITTED FINITE DIFFERENCE METHOD FOR SINGULAR PERTURBATION PROBLEMS USING CUBIC SPLINE K. PHANEENDRA AND E. SIVA PRASAD Abstract.

More information

Chapter 8. Numerical Solution of Ordinary Differential Equations. Module No. 2. Predictor-Corrector Methods

Chapter 8. Numerical Solution of Ordinary Differential Equations. Module No. 2. Predictor-Corrector Methods Numerical Analysis by Dr. Anita Pal Assistant Professor Department of Matematics National Institute of Tecnology Durgapur Durgapur-7109 email: anita.buie@gmail.com 1 . Capter 8 Numerical Solution of Ordinary

More information

Numerical Analysis MTH603. dy dt = = (0) , y n+1. We obtain yn. Therefore. and. Copyright Virtual University of Pakistan 1

Numerical Analysis MTH603. dy dt = = (0) , y n+1. We obtain yn. Therefore. and. Copyright Virtual University of Pakistan 1 Numerical Analysis MTH60 PREDICTOR CORRECTOR METHOD Te metods presented so far are called single-step metods, were we ave seen tat te computation of y at t n+ tat is y n+ requires te knowledge of y n only.

More information

LIMITS AND DERIVATIVES CONDITIONS FOR THE EXISTENCE OF A LIMIT

LIMITS AND DERIVATIVES CONDITIONS FOR THE EXISTENCE OF A LIMIT LIMITS AND DERIVATIVES Te limit of a function is defined as te value of y tat te curve approaces, as x approaces a particular value. Te limit of f (x) as x approaces a is written as f (x) approaces, as

More information

Block Algorithm for General Third Order Ordinary Differential Equation

Block Algorithm for General Third Order Ordinary Differential Equation ICASTOR Journal of Mathematical Sciences Vol. 7, No. 2 (2013) 127-136 Block Algorithm for General Third Order Ordinary Differential Equation T. A. Anake 1, A. O. Adesanya 2, G. J. Oghonyon 1 & M.C. Agarana

More information

N igerian Journal of M athematics and Applications V olume 23, (2014), 1 13

N igerian Journal of M athematics and Applications V olume 23, (2014), 1 13 N igerian Journal of M atematics and Applications V olume 23, (24), 3 c N ig. J. M at. Appl. ttp : //www.kwsman.com CONSTRUCTION OF POLYNOMIAL BASIS AND ITS APPLICATION TO ORDINARY DIFFERENTIAL EQUATIONS

More information

An Approximation to the Solution of the Brusselator System by Adomian Decomposition Method and Comparing the Results with Runge-Kutta Method

An Approximation to the Solution of the Brusselator System by Adomian Decomposition Method and Comparing the Results with Runge-Kutta Method Int. J. Contemp. Mat. Sciences, Vol. 2, 27, no. 2, 983-989 An Approximation to te Solution of te Brusselator System by Adomian Decomposition Metod and Comparing te Results wit Runge-Kutta Metod J. Biazar

More information

ETNA Kent State University

ETNA Kent State University Electronic Transactions on Numerical Analysis. Volume 34, pp. 14-19, 2008. Copyrigt 2008,. ISSN 1068-9613. ETNA A NOTE ON NUMERICALLY CONSISTENT INITIAL VALUES FOR HIGH INDEX DIFFERENTIAL-ALGEBRAIC EQUATIONS

More information

MANY scientific and engineering problems can be

MANY scientific and engineering problems can be A Domain Decomposition Metod using Elliptical Arc Artificial Boundary for Exterior Problems Yajun Cen, and Qikui Du Abstract In tis paper, a Diriclet-Neumann alternating metod using elliptical arc artificial

More information

Continuous Hybrid Multistep Methods with Legendre Basis Function for Direct Treatment of Second Order Stiff ODEs

Continuous Hybrid Multistep Methods with Legendre Basis Function for Direct Treatment of Second Order Stiff ODEs American Journal o Computational and Applied Matematics 06, 6(): 8-9 DOI: 0.59/j.ajcam.06060.0 Continuous Hybrid Multistep Metods wit Legendre Basis Function or Direct Treatment o Second Order Sti ODEs

More information

Chapter 4: Numerical Methods for Common Mathematical Problems

Chapter 4: Numerical Methods for Common Mathematical Problems 1 Capter 4: Numerical Metods for Common Matematical Problems Interpolation Problem: Suppose we ave data defined at a discrete set of points (x i, y i ), i = 0, 1,..., N. Often it is useful to ave a smoot

More information

Numerical Solution of Convection Diffusion Problem Using Non- Standard Finite Difference Method and Comparison With Standard Finite Difference Methods

Numerical Solution of Convection Diffusion Problem Using Non- Standard Finite Difference Method and Comparison With Standard Finite Difference Methods IOSR Journal of Matematics (IOSR-JM) e-issn: 2278-5728, p-issn: 2319-765X. Volume 12, Issue 3 Ver. IV (May. - Jun. 2016), PP 94-109 www.iosrjournals.org Numerical Solution of Convection Diffusion Problem

More information

Department of Mathematical Sciences University of South Carolina Aiken Aiken, SC 29801

Department of Mathematical Sciences University of South Carolina Aiken Aiken, SC 29801 RESEARCH SUMMARY AND PERSPECTIVES KOFFI B. FADIMBA Department of Matematical Sciences University of Sout Carolina Aiken Aiken, SC 29801 Email: KoffiF@usca.edu 1. Introduction My researc program as focused

More information

Polynomial Interpolation

Polynomial Interpolation Capter 4 Polynomial Interpolation In tis capter, we consider te important problem of approximatinga function fx, wose values at a set of distinct points x, x, x,, x n are known, by a polynomial P x suc

More information

PAijpam.eu NEW SELF-STARTING APPROACH FOR SOLVING SPECIAL THIRD ORDER INITIAL VALUE PROBLEMS

PAijpam.eu NEW SELF-STARTING APPROACH FOR SOLVING SPECIAL THIRD ORDER INITIAL VALUE PROBLEMS International Journal of Pure and Applied Mathematics Volume 118 No. 3 218, 511-517 ISSN: 1311-88 (printed version); ISSN: 1314-3395 (on-line version) url: http://www.ijpam.eu doi: 1.12732/ijpam.v118i3.2

More information

Continuous Block Hybrid-Predictor-Corrector method for the solution of y = f (x, y, y )

Continuous Block Hybrid-Predictor-Corrector method for the solution of y = f (x, y, y ) International Journal of Mathematics and Soft Computing Vol., No. 0), 5-4. ISSN 49-8 Continuous Block Hybrid-Predictor-Corrector method for the solution of y = f x, y, y ) A.O. Adesanya, M.R. Odekunle

More information

Application of Quintic B-splines Collocation Method on Some Rosenau Type Nonlinear Higher Order Evolution Equations.

Application of Quintic B-splines Collocation Method on Some Rosenau Type Nonlinear Higher Order Evolution Equations. ISSN 1749-3889 (print), 1749-3897 (online) International Journal of Nonlinear Science Vol.13(2012) No.2,pp.142-152 Application of Quintic B-splines Collocation Metod on Some Rosenau Type Nonlinear Higer

More information

The Sinc-Collocation Method for Solving the Telegraph Equation

The Sinc-Collocation Method for Solving the Telegraph Equation Te Sinc-Collocation Metod for Solving te Telegrap Equation E. Hesameddini *1, E. Asadolaifard Department of Matematics, Faculty of Basic Sciences, Siraz University of Tecnology, Siraz, Iran *1 esameddini@sutec.ac.ir;

More information

Lecture 21. Numerical differentiation. f ( x+h) f ( x) h h

Lecture 21. Numerical differentiation. f ( x+h) f ( x) h h Lecture Numerical differentiation Introduction We can analytically calculate te derivative of any elementary function, so tere migt seem to be no motivation for calculating derivatives numerically. However

More information

1 Calculus. 1.1 Gradients and the Derivative. Q f(x+h) f(x)

1 Calculus. 1.1 Gradients and the Derivative. Q f(x+h) f(x) Calculus. Gradients and te Derivative Q f(x+) δy P T δx R f(x) 0 x x+ Let P (x, f(x)) and Q(x+, f(x+)) denote two points on te curve of te function y = f(x) and let R denote te point of intersection of

More information

1 2 x Solution. The function f x is only defined when x 0, so we will assume that x 0 for the remainder of the solution. f x. f x h f x.

1 2 x Solution. The function f x is only defined when x 0, so we will assume that x 0 for the remainder of the solution. f x. f x h f x. Problem. Let f x x. Using te definition of te derivative prove tat f x x Solution. Te function f x is only defined wen x 0, so we will assume tat x 0 for te remainder of te solution. By te definition of

More information

Polynomial Interpolation

Polynomial Interpolation Capter 4 Polynomial Interpolation In tis capter, we consider te important problem of approximating a function f(x, wose values at a set of distinct points x, x, x 2,,x n are known, by a polynomial P (x

More information

[21] B. J. McCartin, Theory of exponential splines, Journal of Approximation Theory 66 (1991) 1 23.

[21] B. J. McCartin, Theory of exponential splines, Journal of Approximation Theory 66 (1991) 1 23. 15 T. Ak, S. B. G. Karakoc, H. Triki, Numerical simulation for treatment of dispersive sallow water waves wit Rosenau- KdV equation, Te European Pysical Journal Plus 131 (1 (16 356-37. 16 M. Abbas, A.

More information

(4.2) -Richardson Extrapolation

(4.2) -Richardson Extrapolation (.) -Ricardson Extrapolation. Small-O Notation: Recall tat te big-o notation used to define te rate of convergence in Section.: Suppose tat lim G 0 and lim F L. Te function F is said to converge to L as

More information

Differential equations. Differential equations

Differential equations. Differential equations Differential equations A differential equation (DE) describes ow a quantity canges (as a function of time, position, ) d - A ball dropped from a building: t gt () dt d S qx - Uniformly loaded beam: wx

More information

MAT 1339-S14 Class 2

MAT 1339-S14 Class 2 MAT 1339-S14 Class 2 July 07, 2014 Contents 1 Rate of Cange 1 1.5 Introduction to Derivatives....................... 1 2 Derivatives 5 2.1 Derivative of Polynomial function.................... 5 2.2 Te

More information

Click here to see an animation of the derivative

Click here to see an animation of the derivative Differentiation Massoud Malek Derivative Te concept of derivative is at te core of Calculus; It is a very powerful tool for understanding te beavior of matematical functions. It allows us to optimize functions,

More information

Taylor Series and the Mean Value Theorem of Derivatives

Taylor Series and the Mean Value Theorem of Derivatives 1 - Taylor Series and te Mean Value Teorem o Derivatives Te numerical solution o engineering and scientiic problems described by matematical models oten requires solving dierential equations. Dierential

More information

How to Find the Derivative of a Function: Calculus 1

How to Find the Derivative of a Function: Calculus 1 Introduction How to Find te Derivative of a Function: Calculus 1 Calculus is not an easy matematics course Te fact tat you ave enrolled in suc a difficult subject indicates tat you are interested in te

More information

Research Article Cubic Spline Iterative Method for Poisson s Equation in Cylindrical Polar Coordinates

Research Article Cubic Spline Iterative Method for Poisson s Equation in Cylindrical Polar Coordinates International Scolarly Researc Network ISRN Matematical Pysics Volume 202, Article ID 2456, pages doi:0.5402/202/2456 Researc Article Cubic Spline Iterative Metod for Poisson s Equation in Cylindrical

More information

5 Ordinary Differential Equations: Finite Difference Methods for Boundary Problems

5 Ordinary Differential Equations: Finite Difference Methods for Boundary Problems 5 Ordinary Differential Equations: Finite Difference Metods for Boundary Problems Read sections 10.1, 10.2, 10.4 Review questions 10.1 10.4, 10.8 10.9, 10.13 5.1 Introduction In te previous capters we

More information

= 0 and states ''hence there is a stationary point'' All aspects of the proof dx must be correct (c)

= 0 and states ''hence there is a stationary point'' All aspects of the proof dx must be correct (c) Paper 1: Pure Matematics 1 Mark Sceme 1(a) (i) (ii) d d y 3 1x 4x x M1 A1 d y dx 1.1b 1.1b 36x 48x A1ft 1.1b Substitutes x = into teir dx (3) 3 1 4 Sows d y 0 and states ''ence tere is a stationary point''

More information

Numerical Solution to Parabolic PDE Using Implicit Finite Difference Approach

Numerical Solution to Parabolic PDE Using Implicit Finite Difference Approach Numerical Solution to arabolic DE Using Implicit Finite Difference Approac Jon Amoa-Mensa, Francis Oene Boateng, Kwame Bonsu Department of Matematics and Statistics, Sunyani Tecnical University, Sunyani,

More information

1 The concept of limits (p.217 p.229, p.242 p.249, p.255 p.256) 1.1 Limits Consider the function determined by the formula 3. x since at this point

1 The concept of limits (p.217 p.229, p.242 p.249, p.255 p.256) 1.1 Limits Consider the function determined by the formula 3. x since at this point MA00 Capter 6 Calculus and Basic Linear Algebra I Limits, Continuity and Differentiability Te concept of its (p.7 p.9, p.4 p.49, p.55 p.56). Limits Consider te function determined by te formula f Note

More information

Modified block method for the direct solution of second order ordinary differential equations

Modified block method for the direct solution of second order ordinary differential equations c Copyright, Darbose International Journal of Applied Mathematics and Computation Volume 3(3),pp 181 188, 2011 http://ijamc.psit.in Modified block method for the direct solution of second order ordinary

More information

One Step Continuous Hybrid Block Method for the Solution of

One Step Continuous Hybrid Block Method for the Solution of ISSN 4-86 (Paper) ISSN -9 (Online) Vol.4 No. 4 One Step Continuous Hybrid Block Method for the Solution of y = f ( x y y y ). K. M. Fasasi * A. O. Adesanya S. O. Adee Department of Mathematics Modibbo

More information

Khyber Pakhtunkhwa Agricultural University, Peshawar, Pakistan

Khyber Pakhtunkhwa Agricultural University, Peshawar, Pakistan ttp://www.lifesciencesite.com Septic B-Spline Collocation metod for numerical solution of te Equal Widt Wave (EW) equation 1 Fazal-i-Haq, 2 Inayat Ali sa and 3 Sakeel Amad 1 Department of Matematics, Statistics

More information

arxiv: v1 [math.na] 31 Oct 2016

arxiv: v1 [math.na] 31 Oct 2016 RKFD Methods - a short review Maciej Jaromin November, 206 arxiv:60.09739v [math.na] 3 Oct 206 Abstract In this paper, a recently published method [Hussain, Ismail, Senua, Solving directly special fourthorder

More information

Numerical study of the Benjamin-Bona-Mahony-Burgers equation

Numerical study of the Benjamin-Bona-Mahony-Burgers equation Bol. Soc. Paran. Mat. (3s.) v. 35 1 (017): 17 138. c SPM ISSN-175-1188 on line ISSN-0037871 in press SPM: www.spm.uem.br/bspm doi:10.569/bspm.v35i1.8804 Numerical study of te Benjamin-Bona-Maony-Burgers

More information

INTRODUCTION AND MATHEMATICAL CONCEPTS

INTRODUCTION AND MATHEMATICAL CONCEPTS Capter 1 INTRODUCTION ND MTHEMTICL CONCEPTS PREVIEW Tis capter introduces you to te basic matematical tools for doing pysics. You will study units and converting between units, te trigonometric relationsips

More information

Reflection Symmetries of q-bernoulli Polynomials

Reflection Symmetries of q-bernoulli Polynomials Journal of Nonlinear Matematical Pysics Volume 1, Supplement 1 005, 41 4 Birtday Issue Reflection Symmetries of q-bernoulli Polynomials Boris A KUPERSHMIDT Te University of Tennessee Space Institute Tullaoma,

More information

Math Spring 2013 Solutions to Assignment # 3 Completion Date: Wednesday May 15, (1/z) 2 (1/z 1) 2 = lim

Math Spring 2013 Solutions to Assignment # 3 Completion Date: Wednesday May 15, (1/z) 2 (1/z 1) 2 = lim Mat 311 - Spring 013 Solutions to Assignment # 3 Completion Date: Wednesday May 15, 013 Question 1. [p 56, #10 (a)] 4z Use te teorem of Sec. 17 to sow tat z (z 1) = 4. We ave z 4z (z 1) = z 0 4 (1/z) (1/z

More information

A finite element approximation for the quasi-static Maxwell Landau Lifshitz Gilbert equations

A finite element approximation for the quasi-static Maxwell Landau Lifshitz Gilbert equations ANZIAM J. 54 (CTAC2012) pp.c681 C698, 2013 C681 A finite element approximation for te quasi-static Maxwell Landau Lifsitz Gilbert equations Kim-Ngan Le 1 T. Tran 2 (Received 31 October 2012; revised 29

More information

4.2 - Richardson Extrapolation

4.2 - Richardson Extrapolation . - Ricardson Extrapolation. Small-O Notation: Recall tat te big-o notation used to define te rate of convergence in Section.: Definition Let x n n converge to a number x. Suppose tat n n is a sequence

More information

2.1 THE DEFINITION OF DERIVATIVE

2.1 THE DEFINITION OF DERIVATIVE 2.1 Te Derivative Contemporary Calculus 2.1 THE DEFINITION OF DERIVATIVE 1 Te grapical idea of a slope of a tangent line is very useful, but for some uses we need a more algebraic definition of te derivative

More information

GENERALIZED DIFFERENTIAL TRANSFORM METHOD FOR SOLUTIONS OF NON-LINEAR PARTIAL DIFFERENTIAL EQUATIONS OF FRACTIONAL ORDER

GENERALIZED DIFFERENTIAL TRANSFORM METHOD FOR SOLUTIONS OF NON-LINEAR PARTIAL DIFFERENTIAL EQUATIONS OF FRACTIONAL ORDER December 7 Volume Issue JETIR (ISSN-39-56) GENERALIZED DIFFERENTIAL TRANSFORM METHOD FOR SOLTIONS OF NON-LINEAR PARTIAL DIFFERENTIAL EQATIONS OF FRACTIONAL ORDER Deepanjan Das Department of Matematics

More information

Exercises for numerical differentiation. Øyvind Ryan

Exercises for numerical differentiation. Øyvind Ryan Exercises for numerical differentiation Øyvind Ryan February 25, 2013 1. Mark eac of te following statements as true or false. a. Wen we use te approximation f (a) (f (a +) f (a))/ on a computer, we can

More information

Cubic B-spline Collocation Method for Fourth Order Boundary Value Problems. 1 Introduction

Cubic B-spline Collocation Method for Fourth Order Boundary Value Problems. 1 Introduction ISSN 1749-3889 print, 1749-3897 online International Journal of Nonlinear Science Vol.142012 No.3,pp.336-344 Cubic B-spline Collocation Method for Fourth Order Boundary Value Problems K.N.S. Kasi Viswanadham,

More information

Numerical Differentiation

Numerical Differentiation Numerical Differentiation Finite Difference Formulas for te first derivative (Using Taylor Expansion tecnique) (section 8.3.) Suppose tat f() = g() is a function of te variable, and tat as 0 te function

More information

Investigating Euler s Method and Differential Equations to Approximate π. Lindsay Crowl August 2, 2001

Investigating Euler s Method and Differential Equations to Approximate π. Lindsay Crowl August 2, 2001 Investigating Euler s Metod and Differential Equations to Approximate π Lindsa Crowl August 2, 2001 Tis researc paper focuses on finding a more efficient and accurate wa to approximate π. Suppose tat x

More information

WYSE Academic Challenge 2004 Sectional Mathematics Solution Set

WYSE Academic Challenge 2004 Sectional Mathematics Solution Set WYSE Academic Callenge 00 Sectional Matematics Solution Set. Answer: B. Since te equation can be written in te form x + y, we ave a major 5 semi-axis of lengt 5 and minor semi-axis of lengt. Tis means

More information

New Streamfunction Approach for Magnetohydrodynamics

New Streamfunction Approach for Magnetohydrodynamics New Streamfunction Approac for Magnetoydrodynamics Kab Seo Kang Brooaven National Laboratory, Computational Science Center, Building 63, Room, Upton NY 973, USA. sang@bnl.gov Summary. We apply te finite

More information

Blanca Bujanda, Juan Carlos Jorge NEW EFFICIENT TIME INTEGRATORS FOR NON-LINEAR PARABOLIC PROBLEMS

Blanca Bujanda, Juan Carlos Jorge NEW EFFICIENT TIME INTEGRATORS FOR NON-LINEAR PARABOLIC PROBLEMS Opuscula Matematica Vol. 26 No. 3 26 Blanca Bujanda, Juan Carlos Jorge NEW EFFICIENT TIME INTEGRATORS FOR NON-LINEAR PARABOLIC PROBLEMS Abstract. In tis work a new numerical metod is constructed for time-integrating

More information

Seepage Analysis through Earth Dam Based on Finite Difference Method

Seepage Analysis through Earth Dam Based on Finite Difference Method J. Basic. Appl. Sci. Res., (11)111-1, 1 1, TetRoad Publication ISSN -44 Journal of Basic and Applied Scientific Researc www.tetroad.com Seepage Analysis troug Eart Dam Based on Finite Difference Metod

More information

1.72, Groundwater Hydrology Prof. Charles Harvey Lecture Packet #9: Numerical Modeling of Groundwater Flow

1.72, Groundwater Hydrology Prof. Charles Harvey Lecture Packet #9: Numerical Modeling of Groundwater Flow 1.7, Groundwater Hydrology Prof. Carles Harvey Lecture Packet #9: Numerical Modeling of Groundwater Flow Simulation: Te prediction of quantities of interest (dependent variables) based upon an equation

More information

Numerical Solution of One Dimensional Nonlinear Longitudinal Oscillations in a Class of Generalized Functions

Numerical Solution of One Dimensional Nonlinear Longitudinal Oscillations in a Class of Generalized Functions Proc. of te 8t WSEAS Int. Conf. on Matematical Metods and Computational Tecniques in Electrical Engineering, Bucarest, October 16-17, 2006 219 Numerical Solution of One Dimensional Nonlinear Longitudinal

More information

MA2264 -NUMERICAL METHODS UNIT V : INITIAL VALUE PROBLEMS FOR ORDINARY DIFFERENTIAL. By Dr.T.Kulandaivel Department of Applied Mathematics SVCE

MA2264 -NUMERICAL METHODS UNIT V : INITIAL VALUE PROBLEMS FOR ORDINARY DIFFERENTIAL. By Dr.T.Kulandaivel Department of Applied Mathematics SVCE MA64 -NUMERICAL METHODS UNIT V : INITIAL VALUE PROBLEMS FOR ORDINARY DIFFERENTIAL EQUATIONS B Dr.T.Kulandaivel Department of Applied Matematics SVCE Numerical ordinar differential equations is te part

More information

A Numerical Method for Linear ODEs using Non-recursive Haar Connection Coefficients

A Numerical Method for Linear ODEs using Non-recursive Haar Connection Coefficients International Journal of Computational Science and Matematics ISSN 0974-389 Volume, Number 3 (00), pp 49--440 International Researc Publication House ttp://wwwirpousecom A Numerical Metod for Linear ODEs

More information

An approximation method using approximate approximations

An approximation method using approximate approximations Applicable Analysis: An International Journal Vol. 00, No. 00, September 2005, 1 13 An approximation metod using approximate approximations FRANK MÜLLER and WERNER VARNHORN, University of Kassel, Germany,

More information

Test 2 Review. 1. Find the determinant of the matrix below using (a) cofactor expansion and (b) row reduction. A = 3 2 =

Test 2 Review. 1. Find the determinant of the matrix below using (a) cofactor expansion and (b) row reduction. A = 3 2 = Test Review Find te determinant of te matrix below using (a cofactor expansion and (b row reduction Answer: (a det + = (b Observe R R R R R R R R R Ten det B = (((det Hence det Use Cramer s rule to solve:

More information

Simulation and verification of a plate heat exchanger with a built-in tap water accumulator

Simulation and verification of a plate heat exchanger with a built-in tap water accumulator Simulation and verification of a plate eat excanger wit a built-in tap water accumulator Anders Eriksson Abstract In order to test and verify a compact brazed eat excanger (CBE wit a built-in accumulation

More information

The Verlet Algorithm for Molecular Dynamics Simulations

The Verlet Algorithm for Molecular Dynamics Simulations Cemistry 380.37 Fall 2015 Dr. Jean M. Standard November 9, 2015 Te Verlet Algoritm for Molecular Dynamics Simulations Equations of motion For a many-body system consisting of N particles, Newton's classical

More information

Teaching Differentiation: A Rare Case for the Problem of the Slope of the Tangent Line

Teaching Differentiation: A Rare Case for the Problem of the Slope of the Tangent Line Teacing Differentiation: A Rare Case for te Problem of te Slope of te Tangent Line arxiv:1805.00343v1 [mat.ho] 29 Apr 2018 Roman Kvasov Department of Matematics University of Puerto Rico at Aguadilla Aguadilla,

More information

LECTURE 14 NUMERICAL INTEGRATION. Find

LECTURE 14 NUMERICAL INTEGRATION. Find LECTURE 14 NUMERCAL NTEGRATON Find b a fxdx or b a vx ux fx ydy dx Often integration is required. However te form of fx may be suc tat analytical integration would be very difficult or impossible. Use

More information

Lecture 15. Interpolation II. 2 Piecewise polynomial interpolation Hermite splines

Lecture 15. Interpolation II. 2 Piecewise polynomial interpolation Hermite splines Lecture 5 Interpolation II Introduction In te previous lecture we focused primarily on polynomial interpolation of a set of n points. A difficulty we observed is tat wen n is large, our polynomial as to

More information

ON THE NUMERICAL SOLUTION FOR THE FRACTIONAL WAVE EQUATION USING LEGENDRE PSEUDOSPECTRAL METHOD

ON THE NUMERICAL SOLUTION FOR THE FRACTIONAL WAVE EQUATION USING LEGENDRE PSEUDOSPECTRAL METHOD International Journal of Pure and Applied Mathematics Volume 84 No. 4 2013, 307-319 ISSN: 1311-8080 (printed version); ISSN: 1314-3395 (on-line version) url: http://www.ijpam.eu doi: http://dx.doi.org/10.12732/ijpam.v84i4.1

More information

Derivation Of The Schwarzschild Radius Without General Relativity

Derivation Of The Schwarzschild Radius Without General Relativity Derivation Of Te Scwarzscild Radius Witout General Relativity In tis paper I present an alternative metod of deriving te Scwarzscild radius of a black ole. Te metod uses tree of te Planck units formulas:

More information

Math 212-Lecture 9. For a single-variable function z = f(x), the derivative is f (x) = lim h 0

Math 212-Lecture 9. For a single-variable function z = f(x), the derivative is f (x) = lim h 0 3.4: Partial Derivatives Definition Mat 22-Lecture 9 For a single-variable function z = f(x), te derivative is f (x) = lim 0 f(x+) f(x). For a function z = f(x, y) of two variables, to define te derivatives,

More information

Decay of solutions of wave equations with memory

Decay of solutions of wave equations with memory Proceedings of te 14t International Conference on Computational and Matematical Metods in Science and Engineering, CMMSE 14 3 7July, 14. Decay of solutions of wave equations wit memory J. A. Ferreira 1,

More information

Investigation of Tangent Polynomials with a Computer Algebra System The AMATYC Review, Vol. 14, No. 1, Fall 1992, pp

Investigation of Tangent Polynomials with a Computer Algebra System The AMATYC Review, Vol. 14, No. 1, Fall 1992, pp Investigation of Tangent Polynomials wit a Computer Algebra System Te AMATYC Review, Vol. 14, No. 1, Fall 199, pp. -7. Jon H. Matews California State University Fullerton Fullerton, CA 9834 By Russell

More information

Symmetry Labeling of Molecular Energies

Symmetry Labeling of Molecular Energies Capter 7. Symmetry Labeling of Molecular Energies Notes: Most of te material presented in tis capter is taken from Bunker and Jensen 1998, Cap. 6, and Bunker and Jensen 2005, Cap. 7. 7.1 Hamiltonian Symmetry

More information

Section 15.6 Directional Derivatives and the Gradient Vector

Section 15.6 Directional Derivatives and the Gradient Vector Section 15.6 Directional Derivatives and te Gradient Vector Finding rates of cange in different directions Recall tat wen we first started considering derivatives of functions of more tan one variable,

More information

Fourier Type Super Convergence Study on DDGIC and Symmetric DDG Methods

Fourier Type Super Convergence Study on DDGIC and Symmetric DDG Methods DOI 0.007/s095-07-048- Fourier Type Super Convergence Study on DDGIC and Symmetric DDG Metods Mengping Zang Jue Yan Received: 7 December 06 / Revised: 7 April 07 / Accepted: April 07 Springer Science+Business

More information

Chapter XI. Solution of Ordinary Differential Equations

Chapter XI. Solution of Ordinary Differential Equations dy d 7 Capter XI Solution of Ordinary Differential Equations Several approaces are described for te solution of ODE (ordinary differential equations). Tese include: Te Taylor series Metod Te Euler Metod

More information

1. Introduction. We consider the model problem: seeking an unknown function u satisfying

1. Introduction. We consider the model problem: seeking an unknown function u satisfying A DISCONTINUOUS LEAST-SQUARES FINITE ELEMENT METHOD FOR SECOND ORDER ELLIPTIC EQUATIONS XIU YE AND SHANGYOU ZHANG Abstract In tis paper, a discontinuous least-squares (DLS) finite element metod is introduced

More information

Robotic manipulation project

Robotic manipulation project Robotic manipulation project Bin Nguyen December 5, 2006 Abstract Tis is te draft report for Robotic Manipulation s class project. Te cosen project aims to understand and implement Kevin Egan s non-convex

More information

(6.1) -The Linear Shooting Method

(6.1) -The Linear Shooting Method (6.1) -The Linear Shooting Method Consider the boundary value problems (BVPs) for the second order differential equation of the form (*) y fx,y,y, a x b, ya and yb. Under what conditions does a boundary

More information

Some Review Problems for First Midterm Mathematics 1300, Calculus 1

Some Review Problems for First Midterm Mathematics 1300, Calculus 1 Some Review Problems for First Midterm Matematics 00, Calculus. Consider te trigonometric function f(t) wose grap is sown below. Write down a possible formula for f(t). Tis function appears to be an odd,

More information

RightStart Mathematics

RightStart Mathematics Most recent update: January 7, 2019 RigtStart Matematics Corrections and Updates for Level F/Grade 5 Lessons and Workseets, second edition LESSON / WORKSHEET CHANGE DATE CORRECTION OR UPDATE Lesson 7 04/18/2018

More information

Department of Statistics & Operations Research, Aligarh Muslim University, Aligarh, India

Department of Statistics & Operations Research, Aligarh Muslim University, Aligarh, India Open Journal of Optimization, 04, 3, 68-78 Publised Online December 04 in SciRes. ttp://www.scirp.org/ournal/oop ttp://dx.doi.org/0.436/oop.04.34007 Compromise Allocation for Combined Ratio Estimates of

More information

Order of Accuracy. ũ h u Ch p, (1)

Order of Accuracy. ũ h u Ch p, (1) Order of Accuracy 1 Terminology We consider a numerical approximation of an exact value u. Te approximation depends on a small parameter, wic can be for instance te grid size or time step in a numerical

More information

More on generalized inverses of partitioned matrices with Banachiewicz-Schur forms

More on generalized inverses of partitioned matrices with Banachiewicz-Schur forms More on generalized inverses of partitioned matrices wit anaciewicz-scur forms Yongge Tian a,, Yosio Takane b a Cina Economics and Management cademy, Central University of Finance and Economics, eijing,

More information

MATH745 Fall MATH745 Fall

MATH745 Fall MATH745 Fall MATH745 Fall 5 MATH745 Fall 5 INTRODUCTION WELCOME TO MATH 745 TOPICS IN NUMERICAL ANALYSIS Instructor: Dr Bartosz Protas Department of Matematics & Statistics Email: bprotas@mcmasterca Office HH 36, Ext

More information

1 Lecture 13: The derivative as a function.

1 Lecture 13: The derivative as a function. 1 Lecture 13: Te erivative as a function. 1.1 Outline Definition of te erivative as a function. efinitions of ifferentiability. Power rule, erivative te exponential function Derivative of a sum an a multiple

More information

Definition of the Derivative

Definition of the Derivative Te Limit Definition of te Derivative Tis Handout will: Define te limit grapically and algebraically Discuss, in detail, specific features of te definition of te derivative Provide a general strategy of

More information

Quaternion Dynamics, Part 1 Functions, Derivatives, and Integrals. Gary D. Simpson. rev 01 Aug 08, 2016.

Quaternion Dynamics, Part 1 Functions, Derivatives, and Integrals. Gary D. Simpson. rev 01 Aug 08, 2016. Quaternion Dynamics, Part 1 Functions, Derivatives, and Integrals Gary D. Simpson gsim1887@aol.com rev 1 Aug 8, 216 Summary Definitions are presented for "quaternion functions" of a quaternion. Polynomial

More information

A = h w (1) Error Analysis Physics 141

A = h w (1) Error Analysis Physics 141 Introduction In all brances of pysical science and engineering one deals constantly wit numbers wic results more or less directly from experimental observations. Experimental observations always ave inaccuracies.

More information

Sin, Cos and All That

Sin, Cos and All That Sin, Cos and All Tat James K. Peterson Department of Biological Sciences and Department of Matematical Sciences Clemson University Marc 9, 2017 Outline Sin, Cos and all tat! A New Power Rule Derivatives

More information

Heat Transfer and MHD Boundary Layer Flow over a Rotating Disk

Heat Transfer and MHD Boundary Layer Flow over a Rotating Disk J. Basic. Appl. Sci. Res., 4()37-33, 4 4, TextRoad Publication ISSN 9-434 Journal of Basic and Applied Scientific Researc www.textroad.com Heat Transfer and MHD Boundary Layer Flow over a Rotating Disk

More information

Poisson Equation in Sobolev Spaces

Poisson Equation in Sobolev Spaces Poisson Equation in Sobolev Spaces OcMountain Dayligt Time. 6, 011 Today we discuss te Poisson equation in Sobolev spaces. It s existence, uniqueness, and regularity. Weak Solution. u = f in, u = g on

More information