Investigation of Tangent Polynomials with a Computer Algebra System The AMATYC Review, Vol. 14, No. 1, Fall 1992, pp

Size: px
Start display at page:

Download "Investigation of Tangent Polynomials with a Computer Algebra System The AMATYC Review, Vol. 14, No. 1, Fall 1992, pp"

Transcription

1 Investigation of Tangent Polynomials wit a Computer Algebra System Te AMATYC Review, Vol. 14, No. 1, Fall 199, pp. -7. Jon H. Matews California State University Fullerton Fullerton, CA 9834 By Russell W. Howell Westmont College Santa Barbara, CA 9318 Computer algebra systems (CAS's) suc as Derive, Maple and Matematica are influencing te way we teac matematics. Wit te assistance of CAS, we can examine new avenues for exploring old problems, and peraps gain new insigts. For tis paper, we take a close look at te fact tat te limit of te secant line is te tangent line. We recast tis situation in te notation of polynomial approximation and view te secant line as te Newton polynomial P 1 (x) of degree one passing troug te two points (x, f(x )) and (x +, f(x +)). Te tangent line is te Taylor polynomial T 1 (x) ) + f '(x )(x-x ). It is well known tat T 1 (x) is te limit of P 1 (x) as ->. Figure 1 sows f(x) = e x/4 cos(x) and te linear approximations T 1 (x) and P 1 (x) based on x = and = 1 4. Figure 1. Grap of f(x), P 1 (x), and T 1 (x) (dased line). It is sown ow te Newton polynomial P n (x) is derived on a given interval. Te computer algebra system Matematica is used to assist wit te construction of P n (x) and to demonstrate tat te limit of a certain sequence {P n (x)} of Newton polynomials is te Taylor polynomial T n (x) of degree n. Hence, te Taylor polynomial is visualized as te limit of approximating polynomials and is imagined to be te tangent polynomial on te given interval.

2 Preliminary Results Isaac Newton developed and refined metods for fitting polynomials to curves in te second alf of te fifteent century [Witeside, 1976, Vol. IV, pp ; Vol VIII, pp ]. In te early 169's e used tese metods to calculate te apparent pat of a coment from individual sigtings of its orbit [Witeside, 1976, Vol. VII, p. 67]. Today Newton polynomials are a familiar topic in numerical analysis [cf. Matews, 1987, p. 186], and take te following form: Te Newton polynomial of degree n=1 is P 1 (x) = + a 1 (x - x ). (1) Te coefficients in equation (1) are determined by forcing P 1 (x) to pass troug te two points (x, f(x )) and (x +, f(x + )). Tis leads to te linear system: + a 1 (x - x ) ) + a 1 (x +-x ) + ), () f(x + ) - f(x ) te solution of wic is ) and a 1 =. Hence, te polynomial P 1 (x) can be expressed in te form: P 1 (x) ) + f(x + ) - f(x ) (x - x ). (3) Assuming tat f(x) is differentiable, and letting approac in equation (3), we find tat te limit of te Newton polynomial P 1 (x) is te Taylor polynomial T 1 (x), i.e. f ( x + ) f ( x ) lim P 1 (x) ) + lim ( x x) ) + f '(x ) (x - x ) = T 1 (x). (4) A similar penomenon occurs for quadratic polynomials. We begin wit te Newton polynomial P (x) = + a 1 (x - x ) + a (x - x )(x - x 1 ). (5) Te coefficients in equation (5) are determined by forcing P (x) to pass troug te tree points (x k, f(x k )) for x k = x + k and k=,1,. Tis leads to te lower-triangular linear system ) + a 1 + ), + a 1 + a + ). (6) Tis system can easily be solved by forward substitution to obtain:

3 f(x + ) - f(x ) ), a 1 = on te form: f(x ) - f( + x ) + f(x + ) and a =!. Tus te polynomial P (x) takes f(x +) - f(x ) f(x ) - f(+x ) + f(x +) P (x) ) + (x - x ) +! (x - x ) (x - x 1 ). (7) Using te notation = x, te coefficient a can be viewed as one alf of te second order Newton difference quotient f x. It is well known tat f x is te forward difference approximation for f ''(x ), and tends to tis quantity as ->. Tus, we can conclude from equation (7) tat te limit of te Newton polynomial P (x) as -> is te Taylor polynomial T (x): f ( x + ) f ( x) lim P (x) ) + lim ( x x ) f ( x ) f ( + x) + f ( x + ) + lim ( x x)( x x )! ) + f '(x ) (x - x ) + f ''(x ) (x - x! ) = T (x). (8) Te software Matematica can solve systems, differentiate and find limits. Additionally, it can symbolically manipulate quantities involving an arbitrary function f(x). Te dialogue for establising (4) starts by defining te function P1[x] in equation (3): P1[x_,x_,_] = f[x] + (f[x+]-f[x])(x-x)/ f[x] + (x - x) (-f[x] + f[ + x]) We ten invoke Matematica s Limit procedure and let ->. As anticipated, te result is te Taylor polynomial of degree n=1: T1[x_] = Limit[P1[x,x,],->,Analytic->True] f[x] + (x - x) f'[x] CAS Investigation of Polynomials of Higer Degree A natural question to ask now is: Wat about polynomial approximation of iger degrees? Exploration of te Newton polynomials involves complicated symbolic manipulations and is prone to error wen carried out wit and computations. Tese derivations can become instructive and enjoyable wen tey are performed wit computer algebra software. Let P 3 (x) be te Newton polynomial tat passes troug te four points (x k, f(x k )) for x k = x + k and k=,..,4. It may be sown tat te Taylor polynomial T 3 (x) is te limit of P 3 (x). 3

4 We sall use te power of Matematica to assist us wit tis derivation. Begin by setting y(x) equal to te general form of a Newton polynomial by issuing te following Matematica commands: n = 3; Vars = Table[a[k],{k,,n}]; Eqns = Table[,{4}]; y[x_] = Sum[a[j] Product[x-x- i,{i,,j-1}],{j,,n}] Te output generated by te computer is: a[] + (x - x) a[1] + (x - x) (- + x - x) a[] + (x - x) (- + x - x) (- + x - x) a[3] points: Now form te set of four equations tat force te polynomial to pass troug te four equally-spaced n = 3; Do[Eqns[[k+1]]=y[x+k*]==f[x+k*],{k,,n}]; TableForm[Eqns] a[] == f[x] a[] + a[1] == f[ + x] a[] + a[1] + a[] == f[ + x] 3 a[] + 3 a[1] + 6 a[] + 6 a[3] == f[3 + x] Ten solve tis linear system, and construct te polynomial P 3 (x), and stored it as te function P[x,x,] (since it involves te additional parameters x and ). Solutions = Solve[Eqns,Vars]; Solutions = First[MapAll[Togeter,Solutions]]; Y = y[x]/.solutions; P[x_,x_,_] = Y f[x] + (x - x) (-f[x] + f[ + x]) + (x - x) (- + x - x) (f[x] - f[ + x] + f[ + x]) + (x-x)(-+x-x)(-+x-x)(-f[x] + 3f[+x] - 3f[+x] + f[3+x]) 6 3 Finally, compute te limit to verify tat our conjecture was correct: 4

5 T[x_] = Limit[P[x,x,],->,Analytic->True] f[x] + (x-x) f'[x] + (x-x) f''[x] + (x-x) 3 f (3) [x] 6 Eureka! Te limiting case of P 3 (x) as -> is te Taylor polynomial T 3 (x). Observe tat te option Analytic->True must be used in Matematica's limit procedure. Tis is a matematicians way to tell te computer tat f(x) is "sufficiently differentiable." An Example It is instructive to visually see ow te Newton polynomials converge to te Taylor polynomial. For illustration we use te function f(x) = e x/4 cos(x) and te point x = and draw te graps of Newton polynomials wit = 1 4 and = 1 16 and compare tem wit te Taylor polynomial. First, enter f into te session by typing f[x_] = Exp[x/4]Cos[x]. Ten use te built in Matematica command Series to generate te Taylor polynomial for f(x) centered at x = of degree 3: T[x_] = Normal[Series[f[x],{x,,3}]] 1 + x 4-15 x 3-47 x Figure sows a comparison of te Taylor polynomial T 3 (x) and f(x): gr[] = Plot[T[x],{x,-4.7,3.5},PlotRange->{-3.,1.}, PlotStyle->Dasing[{.,.}], Ticks->{Range[-4,3,1],Range[-3,3,1]}]; grf = Plot[f[x],{x,-4.7,3.5},PlotRange->{-3.,1.}, PlotStyle->Tickness[.6], Ticks->{Range[-4,3,1],Range[-3,3,1]}]; Sow[grf,gr[]]; Figure. f(x) and T 3 (x) (te dased curve). 5

6 Figure 3 compares P 3 (x,,1/4), te Newton polynomial wit x = and = 1 4, and te four equallyspaced points on wic it is based. Tis grap was obtained by issuing te subroutine call grap[1/4]. Te syntax for te subroutine grap[] is listed in te appendix. Figure 3. P 3 (x,,1) and f(x) (te "tick" curve) We can easily obtain a comparison of f(x) and P 3 (x) for smaller and smaller values of. Use te command grap[1/16] to construct P 3 (x) for = 1 16 and store it in gr[1/16]. Ten te following command will grap te Newton polynomials for = 1 4 and = 1 16 its Taylor polynomial T 3 (x) :, along wit te original function f(x) and Sow[{grf,gr[],gr[1/16],gr[1/4]}]; Figure 4. f(x) (te "tick" curve), P 3 (x,,1/4), P 3 (x,,1/16) (closest to te dased curve) and T 3 (x) (dased) Te General Case Te command to form an arbitrary Newton polynomial is: Sum[a[j] Product[x-x- i,{i,,j-1}],{j,,n}] 6

7 and was used in te above derivations. Proceeding to an arbitrary case is accomplised by merely canging te value of n to some value oter tan n=3. Experimentation as revealed tat Matematica can quickly solve te general case for degrees up to n=9. Concluding Remarks We ave sown ow a CAS suc as Matematica can be used in a meaningful way to make matematical exploration enjoyable, even wen computations become laborious. One sould note tat te CAS is limited in tat it is unable to solve our problem for a general case (n arbitrary), but rater requires specific values of n. Te interested reader is encouraged to formulate a proof for suc a general case. Appendix Te following is te listing of te subroutine for plotting te Newton polynomial, te points wic it is to pass troug, and te Taylor polynomial. Te programming language is Matematica. grap[_] := Block[{}, xys = Table[{(k-1),f[(k-1)]},{k,4}]; dots = ListPlot[xys,PlotStyle->{PointSize[.]}]; grf = Plot[f[x],{x,-4.7,3.5}, PlotRange->{-3.,1.}, Ticks->{Range[-4,3,1],Range[-3,1,1]}]; gr[] = Plot[P[x,,],{x,-4.7,3.5}, PlotRange->{-3.,1.}, PlotStyle->Tickness[.], Ticks->{Range[-4,3,1],Range[-3,1,1]}]; Sow[{grf,gr[],dots}]; ] References Matews, J. H., 1987, Numerical Metods. Englewood Cliffs, N.J.: Prentice-Hall. Witeside, D. T. (Ed.), 1976, Te Matematical Papers of Isaac Newton, New York, N..Y.: Cambridge University Press 7

8 Numerical Metods Using Matlab, 4 t Edition, 4 Jon H. Matews and Kurtis K. Fink ISBN: Prentice-Hall Inc. Upper Saddle River, New Jersey, USA ttp://vig.prenall.com/

Computer Derivations of Numerical Differentiation Formulae. Int. J. of Math. Education in Sci. and Tech., V 34, No 2 (March-April 2003), pp

Computer Derivations of Numerical Differentiation Formulae. Int. J. of Math. Education in Sci. and Tech., V 34, No 2 (March-April 2003), pp Computer Derivations o Numerical Dierentiation Formulae By Jon H. Matews Department o Matematics Caliornia State University Fullerton USA Int. J. o Mat. Education in Sci. and Tec. V No (Marc-April ) pp.8-87.

More information

How to Find the Derivative of a Function: Calculus 1

How to Find the Derivative of a Function: Calculus 1 Introduction How to Find te Derivative of a Function: Calculus 1 Calculus is not an easy matematics course Te fact tat you ave enrolled in suc a difficult subject indicates tat you are interested in te

More information

Click here to see an animation of the derivative

Click here to see an animation of the derivative Differentiation Massoud Malek Derivative Te concept of derivative is at te core of Calculus; It is a very powerful tool for understanding te beavior of matematical functions. It allows us to optimize functions,

More information

The Tangent Parabola The AMATYC Review, Vol. 23, No. 1, Fall 2001, pp

The Tangent Parabola The AMATYC Review, Vol. 23, No. 1, Fall 2001, pp The Tangent Parabola The AMATYC Review, Vol. 3, No., Fall, pp. 5-3. John H. Mathews California State University Fullerton Fullerton, CA 9834 By Russell W. Howell Westmont College Santa Barbara, CA 938

More information

2.11 That s So Derivative

2.11 That s So Derivative 2.11 Tat s So Derivative Introduction to Differential Calculus Just as one defines instantaneous velocity in terms of average velocity, we now define te instantaneous rate of cange of a function at a point

More information

The derivative function

The derivative function Roberto s Notes on Differential Calculus Capter : Definition of derivative Section Te derivative function Wat you need to know already: f is at a point on its grap and ow to compute it. Wat te derivative

More information

Section 15.6 Directional Derivatives and the Gradient Vector

Section 15.6 Directional Derivatives and the Gradient Vector Section 15.6 Directional Derivatives and te Gradient Vector Finding rates of cange in different directions Recall tat wen we first started considering derivatives of functions of more tan one variable,

More information

MVT and Rolle s Theorem

MVT and Rolle s Theorem AP Calculus CHAPTER 4 WORKSHEET APPLICATIONS OF DIFFERENTIATION MVT and Rolle s Teorem Name Seat # Date UNLESS INDICATED, DO NOT USE YOUR CALCULATOR FOR ANY OF THESE QUESTIONS In problems 1 and, state

More information

REVIEW LAB ANSWER KEY

REVIEW LAB ANSWER KEY REVIEW LAB ANSWER KEY. Witout using SN, find te derivative of eac of te following (you do not need to simplify your answers): a. f x 3x 3 5x x 6 f x 3 3x 5 x 0 b. g x 4 x x x notice te trick ere! x x g

More information

Numerical Differentiation

Numerical Differentiation Numerical Differentiation Finite Difference Formulas for te first derivative (Using Taylor Expansion tecnique) (section 8.3.) Suppose tat f() = g() is a function of te variable, and tat as 0 te function

More information

Lesson 4 - Limits & Instantaneous Rates of Change

Lesson 4 - Limits & Instantaneous Rates of Change Lesson Objectives Lesson 4 - Limits & Instantaneous Rates of Cange SL Topic 6 Calculus - Santowski 1. Calculate an instantaneous rate of cange using difference quotients and limits. Calculate instantaneous

More information

2.1 THE DEFINITION OF DERIVATIVE

2.1 THE DEFINITION OF DERIVATIVE 2.1 Te Derivative Contemporary Calculus 2.1 THE DEFINITION OF DERIVATIVE 1 Te grapical idea of a slope of a tangent line is very useful, but for some uses we need a more algebraic definition of te derivative

More information

MATH CALCULUS I 2.1: Derivatives and Rates of Change

MATH CALCULUS I 2.1: Derivatives and Rates of Change MATH 12002 - CALCULUS I 2.1: Derivatives and Rates of Cange Professor Donald L. Wite Department of Matematical Sciences Kent State University D.L. Wite (Kent State University) 1 / 1 Introduction Our main

More information

Main Points: 1. Limit of Difference Quotients. Prep 2.7: Derivatives and Rates of Change. Names of collaborators:

Main Points: 1. Limit of Difference Quotients. Prep 2.7: Derivatives and Rates of Change. Names of collaborators: Name: Section: Names of collaborators: Main Points:. Definition of derivative as limit of difference quotients. Interpretation of derivative as slope of grap. Interpretation of derivative as instantaneous

More information

Section 3.1: Derivatives of Polynomials and Exponential Functions

Section 3.1: Derivatives of Polynomials and Exponential Functions Section 3.1: Derivatives of Polynomials and Exponential Functions In previous sections we developed te concept of te derivative and derivative function. Te only issue wit our definition owever is tat it

More information

Derivatives and Rates of Change

Derivatives and Rates of Change Section.1 Derivatives and Rates of Cange 2016 Kiryl Tsiscanka Derivatives and Rates of Cange Measuring te Rate of Increase of Blood Alcool Concentration Biomedical scientists ave studied te cemical and

More information

Introduction to Derivatives

Introduction to Derivatives Introduction to Derivatives 5-Minute Review: Instantaneous Rates and Tangent Slope Recall te analogy tat we developed earlier First we saw tat te secant slope of te line troug te two points (a, f (a))

More information

1 The concept of limits (p.217 p.229, p.242 p.249, p.255 p.256) 1.1 Limits Consider the function determined by the formula 3. x since at this point

1 The concept of limits (p.217 p.229, p.242 p.249, p.255 p.256) 1.1 Limits Consider the function determined by the formula 3. x since at this point MA00 Capter 6 Calculus and Basic Linear Algebra I Limits, Continuity and Differentiability Te concept of its (p.7 p.9, p.4 p.49, p.55 p.56). Limits Consider te function determined by te formula f Note

More information

The Derivative The rate of change

The Derivative The rate of change Calculus Lia Vas Te Derivative Te rate of cange Knowing and understanding te concept of derivative will enable you to answer te following questions. Let us consider a quantity wose size is described by

More information

Mathematics 5 Worksheet 11 Geometry, Tangency, and the Derivative

Mathematics 5 Worksheet 11 Geometry, Tangency, and the Derivative Matematics 5 Workseet 11 Geometry, Tangency, and te Derivative Problem 1. Find te equation of a line wit slope m tat intersects te point (3, 9). Solution. Te equation for a line passing troug a point (x

More information

MAT 145. Type of Calculator Used TI-89 Titanium 100 points Score 100 possible points

MAT 145. Type of Calculator Used TI-89 Titanium 100 points Score 100 possible points MAT 15 Test #2 Name Solution Guide Type of Calculator Used TI-89 Titanium 100 points Score 100 possible points Use te grap of a function sown ere as you respond to questions 1 to 8. 1. lim f (x) 0 2. lim

More information

Taylor Series and the Mean Value Theorem of Derivatives

Taylor Series and the Mean Value Theorem of Derivatives 1 - Taylor Series and te Mean Value Teorem o Derivatives Te numerical solution o engineering and scientiic problems described by matematical models oten requires solving dierential equations. Dierential

More information

Continuity. Example 1

Continuity. Example 1 Continuity MATH 1003 Calculus and Linear Algebra (Lecture 13.5) Maoseng Xiong Department of Matematics, HKUST A function f : (a, b) R is continuous at a point c (a, b) if 1. x c f (x) exists, 2. f (c)

More information

2.3 Algebraic approach to limits

2.3 Algebraic approach to limits CHAPTER 2. LIMITS 32 2.3 Algebraic approac to its Now we start to learn ow to find its algebraically. Tis starts wit te simplest possible its, and ten builds tese up to more complicated examples. Fact.

More information

THE IDEA OF DIFFERENTIABILITY FOR FUNCTIONS OF SEVERAL VARIABLES Math 225

THE IDEA OF DIFFERENTIABILITY FOR FUNCTIONS OF SEVERAL VARIABLES Math 225 THE IDEA OF DIFFERENTIABILITY FOR FUNCTIONS OF SEVERAL VARIABLES Mat 225 As we ave seen, te definition of derivative for a Mat 111 function g : R R and for acurveγ : R E n are te same, except for interpretation:

More information

Section 2.7 Derivatives and Rates of Change Part II Section 2.8 The Derivative as a Function. at the point a, to be. = at time t = a is

Section 2.7 Derivatives and Rates of Change Part II Section 2.8 The Derivative as a Function. at the point a, to be. = at time t = a is Mat 180 www.timetodare.com Section.7 Derivatives and Rates of Cange Part II Section.8 Te Derivative as a Function Derivatives ( ) In te previous section we defined te slope of te tangent to a curve wit

More information

SECTION 1.10: DIFFERENCE QUOTIENTS LEARNING OBJECTIVES

SECTION 1.10: DIFFERENCE QUOTIENTS LEARNING OBJECTIVES (Section.0: Difference Quotients).0. SECTION.0: DIFFERENCE QUOTIENTS LEARNING OBJECTIVES Define average rate of cange (and average velocity) algebraically and grapically. Be able to identify, construct,

More information

Precalculus Test 2 Practice Questions Page 1. Note: You can expect other types of questions on the test than the ones presented here!

Precalculus Test 2 Practice Questions Page 1. Note: You can expect other types of questions on the test than the ones presented here! Precalculus Test 2 Practice Questions Page Note: You can expect oter types of questions on te test tan te ones presented ere! Questions Example. Find te vertex of te quadratic f(x) = 4x 2 x. Example 2.

More information

Some Review Problems for First Midterm Mathematics 1300, Calculus 1

Some Review Problems for First Midterm Mathematics 1300, Calculus 1 Some Review Problems for First Midterm Matematics 00, Calculus. Consider te trigonometric function f(t) wose grap is sown below. Write down a possible formula for f(t). Tis function appears to be an odd,

More information

Section 3: The Derivative Definition of the Derivative

Section 3: The Derivative Definition of the Derivative Capter 2 Te Derivative Business Calculus 85 Section 3: Te Derivative Definition of te Derivative Returning to te tangent slope problem from te first section, let's look at te problem of finding te slope

More information

SECTION 3.2: DERIVATIVE FUNCTIONS and DIFFERENTIABILITY

SECTION 3.2: DERIVATIVE FUNCTIONS and DIFFERENTIABILITY (Section 3.2: Derivative Functions and Differentiability) 3.2.1 SECTION 3.2: DERIVATIVE FUNCTIONS and DIFFERENTIABILITY LEARNING OBJECTIVES Know, understand, and apply te Limit Definition of te Derivative

More information

Average Rate of Change

Average Rate of Change Te Derivative Tis can be tougt of as an attempt to draw a parallel (pysically and metaporically) between a line and a curve, applying te concept of slope to someting tat isn't actually straigt. Te slope

More information

NUMERICAL DIFFERENTIATION. James T. Smith San Francisco State University. In calculus classes, you compute derivatives algebraically: for example,

NUMERICAL DIFFERENTIATION. James T. Smith San Francisco State University. In calculus classes, you compute derivatives algebraically: for example, NUMERICAL DIFFERENTIATION James T Smit San Francisco State University In calculus classes, you compute derivatives algebraically: for example, f( x) = x + x f ( x) = x x Tis tecnique requires your knowing

More information

A.P. CALCULUS (AB) Outline Chapter 3 (Derivatives)

A.P. CALCULUS (AB) Outline Chapter 3 (Derivatives) A.P. CALCULUS (AB) Outline Capter 3 (Derivatives) NAME Date Previously in Capter 2 we determined te slope of a tangent line to a curve at a point as te limit of te slopes of secant lines using tat point

More information

1 Calculus. 1.1 Gradients and the Derivative. Q f(x+h) f(x)

1 Calculus. 1.1 Gradients and the Derivative. Q f(x+h) f(x) Calculus. Gradients and te Derivative Q f(x+) δy P T δx R f(x) 0 x x+ Let P (x, f(x)) and Q(x+, f(x+)) denote two points on te curve of te function y = f(x) and let R denote te point of intersection of

More information

. Compute the following limits.

. Compute the following limits. Today: Tangent Lines and te Derivative at a Point Warmup:. Let f(x) =x. Compute te following limits. f( + ) f() (a) lim f( +) f( ) (b) lim. Let g(x) = x. Compute te following limits. g(3 + ) g(3) (a) lim

More information

Tangent Lines-1. Tangent Lines

Tangent Lines-1. Tangent Lines Tangent Lines- Tangent Lines In geometry, te tangent line to a circle wit centre O at a point A on te circle is defined to be te perpendicular line at A to te line OA. Te tangent lines ave te special property

More information

ACCESS TO SCIENCE, ENGINEERING AND AGRICULTURE: MATHEMATICS 1 MATH00030 SEMESTER /2019

ACCESS TO SCIENCE, ENGINEERING AND AGRICULTURE: MATHEMATICS 1 MATH00030 SEMESTER /2019 ACCESS TO SCIENCE, ENGINEERING AND AGRICULTURE: MATHEMATICS MATH00030 SEMESTER 208/209 DR. ANTHONY BROWN 6. Differential Calculus 6.. Differentiation from First Principles. In tis capter, we will introduce

More information

lecture 26: Richardson extrapolation

lecture 26: Richardson extrapolation 43 lecture 26: Ricardson extrapolation 35 Ricardson extrapolation, Romberg integration Trougout numerical analysis, one encounters procedures tat apply some simple approximation (eg, linear interpolation)

More information

1. Consider the trigonometric function f(t) whose graph is shown below. Write down a possible formula for f(t).

1. Consider the trigonometric function f(t) whose graph is shown below. Write down a possible formula for f(t). . Consider te trigonometric function f(t) wose grap is sown below. Write down a possible formula for f(t). Tis function appears to be an odd, periodic function tat as been sifted upwards, so we will use

More information

158 Calculus and Structures

158 Calculus and Structures 58 Calculus and Structures CHAPTER PROPERTIES OF DERIVATIVES AND DIFFERENTIATION BY THE EASY WAY. Calculus and Structures 59 Copyrigt Capter PROPERTIES OF DERIVATIVES. INTRODUCTION In te last capter you

More information

Material for Difference Quotient

Material for Difference Quotient Material for Difference Quotient Prepared by Stepanie Quintal, graduate student and Marvin Stick, professor Dept. of Matematical Sciences, UMass Lowell Summer 05 Preface Te following difference quotient

More information

Math 212-Lecture 9. For a single-variable function z = f(x), the derivative is f (x) = lim h 0

Math 212-Lecture 9. For a single-variable function z = f(x), the derivative is f (x) = lim h 0 3.4: Partial Derivatives Definition Mat 22-Lecture 9 For a single-variable function z = f(x), te derivative is f (x) = lim 0 f(x+) f(x). For a function z = f(x, y) of two variables, to define te derivatives,

More information

A = h w (1) Error Analysis Physics 141

A = h w (1) Error Analysis Physics 141 Introduction In all brances of pysical science and engineering one deals constantly wit numbers wic results more or less directly from experimental observations. Experimental observations always ave inaccuracies.

More information

Finding and Using Derivative The shortcuts

Finding and Using Derivative The shortcuts Calculus 1 Lia Vas Finding and Using Derivative Te sortcuts We ave seen tat te formula f f(x+) f(x) (x) = lim 0 is manageable for relatively simple functions like a linear or quadratic. For more complex

More information

1 2 x Solution. The function f x is only defined when x 0, so we will assume that x 0 for the remainder of the solution. f x. f x h f x.

1 2 x Solution. The function f x is only defined when x 0, so we will assume that x 0 for the remainder of the solution. f x. f x h f x. Problem. Let f x x. Using te definition of te derivative prove tat f x x Solution. Te function f x is only defined wen x 0, so we will assume tat x 0 for te remainder of te solution. By te definition of

More information

Chapter 2 Limits and Continuity

Chapter 2 Limits and Continuity 4 Section. Capter Limits and Continuity Section. Rates of Cange and Limits (pp. 6) Quick Review.. f () ( ) () 4 0. f () 4( ) 4. f () sin sin 0 4. f (). 4 4 4 6. c c c 7. 8. c d d c d d c d c 9. 8 ( )(

More information

Combining functions: algebraic methods

Combining functions: algebraic methods Combining functions: algebraic metods Functions can be added, subtracted, multiplied, divided, and raised to a power, just like numbers or algebra expressions. If f(x) = x 2 and g(x) = x + 2, clearly f(x)

More information

Practice Problem Solutions: Exam 1

Practice Problem Solutions: Exam 1 Practice Problem Solutions: Exam 1 1. (a) Algebraic Solution: Te largest term in te numerator is 3x 2, wile te largest term in te denominator is 5x 2 3x 2 + 5. Tus lim x 5x 2 2x 3x 2 x 5x 2 = 3 5 Numerical

More information

2.3 More Differentiation Patterns

2.3 More Differentiation Patterns 144 te derivative 2.3 More Differentiation Patterns Polynomials are very useful, but tey are not te only functions we need. Tis section uses te ideas of te two previous sections to develop tecniques for

More information

Gradient Descent etc.

Gradient Descent etc. 1 Gradient Descent etc EE 13: Networked estimation and control Prof Kan) I DERIVATIVE Consider f : R R x fx) Te derivative is defined as d fx) = lim dx fx + ) fx) Te cain rule states tat if d d f gx) )

More information

Exercises for numerical differentiation. Øyvind Ryan

Exercises for numerical differentiation. Øyvind Ryan Exercises for numerical differentiation Øyvind Ryan February 25, 2013 1. Mark eac of te following statements as true or false. a. Wen we use te approximation f (a) (f (a +) f (a))/ on a computer, we can

More information

LIMITS AND DERIVATIVES CONDITIONS FOR THE EXISTENCE OF A LIMIT

LIMITS AND DERIVATIVES CONDITIONS FOR THE EXISTENCE OF A LIMIT LIMITS AND DERIVATIVES Te limit of a function is defined as te value of y tat te curve approaces, as x approaces a particular value. Te limit of f (x) as x approaces a is written as f (x) approaces, as

More information

Definition of the Derivative

Definition of the Derivative Te Limit Definition of te Derivative Tis Handout will: Define te limit grapically and algebraically Discuss, in detail, specific features of te definition of te derivative Provide a general strategy of

More information

Section 2.1 The Definition of the Derivative. We are interested in finding the slope of the tangent line at a specific point.

Section 2.1 The Definition of the Derivative. We are interested in finding the slope of the tangent line at a specific point. Popper 6: Review of skills: Find tis difference quotient. f ( x ) f ( x) if f ( x) x Answer coices given in audio on te video. Section.1 Te Definition of te Derivative We are interested in finding te slope

More information

MATHEMATICS FOR ENGINEERING DIFFERENTIATION TUTORIAL 1 - BASIC DIFFERENTIATION

MATHEMATICS FOR ENGINEERING DIFFERENTIATION TUTORIAL 1 - BASIC DIFFERENTIATION MATHEMATICS FOR ENGINEERING DIFFERENTIATION TUTORIAL 1 - BASIC DIFFERENTIATION Tis tutorial is essential pre-requisite material for anyone stuing mecanical engineering. Tis tutorial uses te principle of

More information

Derivatives. By: OpenStaxCollege

Derivatives. By: OpenStaxCollege By: OpenStaxCollege Te average teen in te United States opens a refrigerator door an estimated 25 times per day. Supposedly, tis average is up from 10 years ago wen te average teenager opened a refrigerator

More information

Lesson 6: The Derivative

Lesson 6: The Derivative Lesson 6: Te Derivative Def. A difference quotient for a function as te form f(x + ) f(x) (x + ) x f(x + x) f(x) (x + x) x f(a + ) f(a) (a + ) a Notice tat a difference quotient always as te form of cange

More information

1. Questions (a) through (e) refer to the graph of the function f given below. (A) 0 (B) 1 (C) 2 (D) 4 (E) does not exist

1. Questions (a) through (e) refer to the graph of the function f given below. (A) 0 (B) 1 (C) 2 (D) 4 (E) does not exist Mat 1120 Calculus Test 2. October 18, 2001 Your name Te multiple coice problems count 4 points eac. In te multiple coice section, circle te correct coice (or coices). You must sow your work on te oter

More information

ALGEBRA AND TRIGONOMETRY REVIEW by Dr TEBOU, FIU. A. Fundamental identities Throughout this section, a and b denotes arbitrary real numbers.

ALGEBRA AND TRIGONOMETRY REVIEW by Dr TEBOU, FIU. A. Fundamental identities Throughout this section, a and b denotes arbitrary real numbers. ALGEBRA AND TRIGONOMETRY REVIEW by Dr TEBOU, FIU A. Fundamental identities Trougout tis section, a and b denotes arbitrary real numbers. i) Square of a sum: (a+b) =a +ab+b ii) Square of a difference: (a-b)

More information

Numerical Analysis MTH603. dy dt = = (0) , y n+1. We obtain yn. Therefore. and. Copyright Virtual University of Pakistan 1

Numerical Analysis MTH603. dy dt = = (0) , y n+1. We obtain yn. Therefore. and. Copyright Virtual University of Pakistan 1 Numerical Analysis MTH60 PREDICTOR CORRECTOR METHOD Te metods presented so far are called single-step metods, were we ave seen tat te computation of y at t n+ tat is y n+ requires te knowledge of y n only.

More information

Order of Accuracy. ũ h u Ch p, (1)

Order of Accuracy. ũ h u Ch p, (1) Order of Accuracy 1 Terminology We consider a numerical approximation of an exact value u. Te approximation depends on a small parameter, wic can be for instance te grid size or time step in a numerical

More information

Lab 6 Derivatives and Mutant Bacteria

Lab 6 Derivatives and Mutant Bacteria Lab 6 Derivatives and Mutant Bacteria Date: September 27, 20 Assignment Due Date: October 4, 20 Goal: In tis lab you will furter explore te concept of a derivative using R. You will use your knowledge

More information

DEFINITION OF A DERIVATIVE

DEFINITION OF A DERIVATIVE DEFINITION OF A DERIVATIVE Section 2.1 Calculus AP/Dual, Revised 2017 viet.dang@umbleisd.net 2.1: Definition of a Derivative 1 DEFINITION A. Te derivative of a function allows you to find te SLOPE OF THE

More information

LIMITATIONS OF EULER S METHOD FOR NUMERICAL INTEGRATION

LIMITATIONS OF EULER S METHOD FOR NUMERICAL INTEGRATION LIMITATIONS OF EULER S METHOD FOR NUMERICAL INTEGRATION LAURA EVANS.. Introduction Not all differential equations can be explicitly solved for y. Tis can be problematic if we need to know te value of y

More information

lim 1 lim 4 Precalculus Notes: Unit 10 Concepts of Calculus

lim 1 lim 4 Precalculus Notes: Unit 10 Concepts of Calculus Syllabus Objectives: 1.1 Te student will understand and apply te concept of te limit of a function at given values of te domain. 1. Te student will find te limit of a function at given values of te domain.

More information

Differentiation. Area of study Unit 2 Calculus

Differentiation. Area of study Unit 2 Calculus Differentiation 8VCE VCEco Area of stud Unit Calculus coverage In tis ca 8A 8B 8C 8D 8E 8F capter Introduction to limits Limits of discontinuous, rational and brid functions Differentiation using first

More information

Notes: DERIVATIVES. Velocity and Other Rates of Change

Notes: DERIVATIVES. Velocity and Other Rates of Change Notes: DERIVATIVES Velocity and Oter Rates of Cange I. Average Rate of Cange A.) Def.- Te average rate of cange of f(x) on te interval [a, b] is f( b) f( a) b a secant ( ) ( ) m troug a, f ( a ) and b,

More information

Solutions to the Multivariable Calculus and Linear Algebra problems on the Comprehensive Examination of January 31, 2014

Solutions to the Multivariable Calculus and Linear Algebra problems on the Comprehensive Examination of January 31, 2014 Solutions to te Multivariable Calculus and Linear Algebra problems on te Compreensive Examination of January 3, 24 Tere are 9 problems ( points eac, totaling 9 points) on tis portion of te examination.

More information

Chapter Primer on Differentiation

Chapter Primer on Differentiation Capter 0.01 Primer on Differentiation After reaing tis capter, you soul be able to: 1. unerstan te basics of ifferentiation,. relate te slopes of te secant line an tangent line to te erivative of a function,.

More information

The Derivative as a Function

The Derivative as a Function Section 2.2 Te Derivative as a Function 200 Kiryl Tsiscanka Te Derivative as a Function DEFINITION: Te derivative of a function f at a number a, denoted by f (a), is if tis limit exists. f (a) f(a + )

More information

f a h f a h h lim lim

f a h f a h h lim lim Te Derivative Te derivative of a function f at a (denoted f a) is f a if tis it exists. An alternative way of defining f a is f a x a fa fa fx fa x a Note tat te tangent line to te grap of f at te point

More information

Midterm #1B. x 8 < < x 8 < 11 3 < x < x > x < 5 or 3 2x > 5 2x < 8 2x > 2

Midterm #1B. x 8 < < x 8 < 11 3 < x < x > x < 5 or 3 2x > 5 2x < 8 2x > 2 Mat 30 College Algebra Februar 2, 2016 Midterm #1B Name: Answer Ke David Arnold Instructions. ( points) For eac o te ollowing questions, select te best answer and darken te corresponding circle on our

More information

Name: Answer Key No calculators. Show your work! 1. (21 points) All answers should either be,, a (finite) real number, or DNE ( does not exist ).

Name: Answer Key No calculators. Show your work! 1. (21 points) All answers should either be,, a (finite) real number, or DNE ( does not exist ). Mat - Final Exam August 3 rd, Name: Answer Key No calculators. Sow your work!. points) All answers sould eiter be,, a finite) real number, or DNE does not exist ). a) Use te grap of te function to evaluate

More information

Pre-Calculus Review Preemptive Strike

Pre-Calculus Review Preemptive Strike Pre-Calculus Review Preemptive Strike Attaced are some notes and one assignment wit tree parts. Tese are due on te day tat we start te pre-calculus review. I strongly suggest reading troug te notes torougly

More information

1 Lecture 13: The derivative as a function.

1 Lecture 13: The derivative as a function. 1 Lecture 13: Te erivative as a function. 1.1 Outline Definition of te erivative as a function. efinitions of ifferentiability. Power rule, erivative te exponential function Derivative of a sum an a multiple

More information

Preface. Here are a couple of warnings to my students who may be here to get a copy of what happened on a day that you missed.

Preface. Here are a couple of warnings to my students who may be here to get a copy of what happened on a day that you missed. Preface Here are my online notes for my course tat I teac ere at Lamar University. Despite te fact tat tese are my class notes, tey sould be accessible to anyone wanting to learn or needing a refreser

More information

Time (hours) Morphine sulfate (mg)

Time (hours) Morphine sulfate (mg) Mat Xa Fall 2002 Review Notes Limits and Definition of Derivative Important Information: 1 According to te most recent information from te Registrar, te Xa final exam will be eld from 9:15 am to 12:15

More information

Chapter 2. Limits and Continuity 16( ) 16( 9) = = 001. Section 2.1 Rates of Change and Limits (pp ) Quick Review 2.1

Chapter 2. Limits and Continuity 16( ) 16( 9) = = 001. Section 2.1 Rates of Change and Limits (pp ) Quick Review 2.1 Capter Limits and Continuity Section. Rates of Cange and Limits (pp. 969) Quick Review..... f ( ) ( ) ( ) 0 ( ) f ( ) f ( ) sin π sin π 0 f ( ). < < < 6. < c c < < c 7. < < < < < 8. 9. 0. c < d d < c

More information

Polynomial Interpolation

Polynomial Interpolation Capter 4 Polynomial Interpolation In tis capter, we consider te important problem of approximatinga function fx, wose values at a set of distinct points x, x, x,, x n are known, by a polynomial P x suc

More information

The Laplace equation, cylindrically or spherically symmetric case

The Laplace equation, cylindrically or spherically symmetric case Numerisce Metoden II, 7 4, und Übungen, 7 5 Course Notes, Summer Term 7 Some material and exercises Te Laplace equation, cylindrically or sperically symmetric case Electric and gravitational potential,

More information

Section 2: The Derivative Definition of the Derivative

Section 2: The Derivative Definition of the Derivative Capter 2 Te Derivative Applied Calculus 80 Section 2: Te Derivative Definition of te Derivative Suppose we drop a tomato from te top of a 00 foot building and time its fall. Time (sec) Heigt (ft) 0.0 00

More information

arxiv: v1 [math.dg] 4 Feb 2015

arxiv: v1 [math.dg] 4 Feb 2015 CENTROID OF TRIANGLES ASSOCIATED WITH A CURVE arxiv:1502.01205v1 [mat.dg] 4 Feb 2015 Dong-Soo Kim and Dong Seo Kim Abstract. Arcimedes sowed tat te area between a parabola and any cord AB on te parabola

More information

Teaching Differentiation: A Rare Case for the Problem of the Slope of the Tangent Line

Teaching Differentiation: A Rare Case for the Problem of the Slope of the Tangent Line Teacing Differentiation: A Rare Case for te Problem of te Slope of te Tangent Line arxiv:1805.00343v1 [mat.ho] 29 Apr 2018 Roman Kvasov Department of Matematics University of Puerto Rico at Aguadilla Aguadilla,

More information

3.4 Worksheet: Proof of the Chain Rule NAME

3.4 Worksheet: Proof of the Chain Rule NAME Mat 1170 3.4 Workseet: Proof of te Cain Rule NAME Te Cain Rule So far we are able to differentiate all types of functions. For example: polynomials, rational, root, and trigonometric functions. We are

More information

1watt=1W=1kg m 2 /s 3

1watt=1W=1kg m 2 /s 3 Appendix A Matematics Appendix A.1 Units To measure a pysical quantity, you need a standard. Eac pysical quantity as certain units. A unit is just a standard we use to compare, e.g. a ruler. In tis laboratory

More information

2.8 The Derivative as a Function

2.8 The Derivative as a Function .8 Te Derivative as a Function Typically, we can find te derivative of a function f at many points of its domain: Definition. Suppose tat f is a function wic is differentiable at every point of an open

More information

5. (a) Find the slope of the tangent line to the parabola y = x + 2x

5. (a) Find the slope of the tangent line to the parabola y = x + 2x MATH 141 090 Homework Solutions Fall 00 Section.6: Pages 148 150 3. Consider te slope of te given curve at eac of te five points sown (see text for figure). List tese five slopes in decreasing order and

More information

Bob Brown Math 251 Calculus 1 Chapter 3, Section 1 Completed 1 CCBC Dundalk

Bob Brown Math 251 Calculus 1 Chapter 3, Section 1 Completed 1 CCBC Dundalk Bob Brown Mat 251 Calculus 1 Capter 3, Section 1 Completed 1 Te Tangent Line Problem Te idea of a tangent line first arises in geometry in te context of a circle. But before we jump into a discussion of

More information

MTH-112 Quiz 1 Name: # :

MTH-112 Quiz 1 Name: # : MTH- Quiz Name: # : Please write our name in te provided space. Simplif our answers. Sow our work.. Determine weter te given relation is a function. Give te domain and range of te relation.. Does te equation

More information

Quaternion Dynamics, Part 1 Functions, Derivatives, and Integrals. Gary D. Simpson. rev 01 Aug 08, 2016.

Quaternion Dynamics, Part 1 Functions, Derivatives, and Integrals. Gary D. Simpson. rev 01 Aug 08, 2016. Quaternion Dynamics, Part 1 Functions, Derivatives, and Integrals Gary D. Simpson gsim1887@aol.com rev 1 Aug 8, 216 Summary Definitions are presented for "quaternion functions" of a quaternion. Polynomial

More information

Outline. MS121: IT Mathematics. Limits & Continuity Rates of Change & Tangents. Is there a limit to how fast a man can run?

Outline. MS121: IT Mathematics. Limits & Continuity Rates of Change & Tangents. Is there a limit to how fast a man can run? Outline MS11: IT Matematics Limits & Continuity & 1 Limits: Atletics Perspective Jon Carroll Scool of Matematical Sciences Dublin City University 3 Atletics Atletics Outline Is tere a limit to ow fast

More information

MATH1131/1141 Calculus Test S1 v8a

MATH1131/1141 Calculus Test S1 v8a MATH/ Calculus Test 8 S v8a October, 7 Tese solutions were written by Joann Blanco, typed by Brendan Trin and edited by Mattew Yan and Henderson Ko Please be etical wit tis resource It is for te use of

More information

INTRODUCTION TO CALCULUS LIMITS

INTRODUCTION TO CALCULUS LIMITS Calculus can be divided into two ke areas: INTRODUCTION TO CALCULUS Differential Calculus dealing wit its, rates of cange, tangents and normals to curves, curve sketcing, and applications to maima and

More information

7.1 Using Antiderivatives to find Area

7.1 Using Antiderivatives to find Area 7.1 Using Antiderivatives to find Area Introduction finding te area under te grap of a nonnegative, continuous function f In tis section a formula is obtained for finding te area of te region bounded between

More information

Key Concepts. Important Techniques. 1. Average rate of change slope of a secant line. You will need two points ( a, the formula: to find value

Key Concepts. Important Techniques. 1. Average rate of change slope of a secant line. You will need two points ( a, the formula: to find value AB Calculus Unit Review Key Concepts Average and Instantaneous Speed Definition of Limit Properties of Limits One-sided and Two-sided Limits Sandwic Teorem Limits as x ± End Beaviour Models Continuity

More information

Polynomial Functions. Linear Functions. Precalculus: Linear and Quadratic Functions

Polynomial Functions. Linear Functions. Precalculus: Linear and Quadratic Functions Concepts: definition of polynomial functions, linear functions tree representations), transformation of y = x to get y = mx + b, quadratic functions axis of symmetry, vertex, x-intercepts), transformations

More information

Derivatives of Exponentials

Derivatives of Exponentials mat 0 more on derivatives: day 0 Derivatives of Eponentials Recall tat DEFINITION... An eponential function as te form f () =a, were te base is a real number a > 0. Te domain of an eponential function

More information

The total error in numerical differentiation

The total error in numerical differentiation AMS 147 Computational Metods and Applications Lecture 08 Copyrigt by Hongyun Wang, UCSC Recap: Loss of accuracy due to numerical cancellation A B 3, 3 ~10 16 In calculating te difference between A and

More information

160 Chapter 3: Differentiation

160 Chapter 3: Differentiation 3. Differentiation Rules 159 3. Differentiation Rules Tis section introuces a few rules tat allow us to ifferentiate a great variety of functions. By proving tese rules ere, we can ifferentiate functions

More information