Theoretical Review on Prediction of Motion Response using Diffraction Potential and Morison

Size: px
Start display at page:

Download "Theoretical Review on Prediction of Motion Response using Diffraction Potential and Morison"

Transcription

1 Theoretical Review on Prediction of Motion Response using Diffraction Potential and Morison C.L.Siow, a, J. Koto, a,b,*, H.Yasukawa, c A.Matsuda, d D.Terada, d, C. Guedes Soares, e a) Department of Aeronautics, Automotive and Ocean Engineering, Faculty of Mechanical Engineering, UniversitiTeknologi Malaysia b) Ocean and Aerospace Research Institute, Indonesia c) Department of Transportation and Environmental Systems, Hiroshima University, Japan d) National Research Institute of Fisheries Engineering (NRIFE), Japan e) Centrefor Marine Technology and Engineering (CENTEC), Instituto Superior Técnico, Universidade de Lisboa, Portugal *Corresponding author: jaswar@mail.fkm.utm.my and jaswar.koto@gmail.com Paper History Received: 10-April-2015 Received in revised form: 15-April-2015 Accepted: 19-April-2015 ABSTRACT This paper reviewed the capability of the proposed diffraction potential theory with Morison Drag term to predict the Round Shape FPSO heave motion response. From both the selfdeveloped programming code and ANSYS AQWA software, it can be observed that the diffraction potential theory is over predicting the Round Shape FPSO heave motion response when the motion is dominated by damping. In this study, Morison equation drag correction method is applied to adjust the motion response predicted by diffraction potential theory. This paper briefly present the procedure to integrate the Morison equation drag term correction method with the diffraction potential theory and then, the proposed numerical method was applied to simulate the Round Shape FPSO heave motion response. From the comparison, it can be concluded that Morison equation drag correction method is able to estimate the FPSO heave response in the damping dominated region and provides more reasonable motion tendency compare to the diffraction potential theory without consider the drag effect in the calculation. KEY WORDS:Wave Response, Diffraction Potential, Damping Correction, Morison Theory. NOMENCLATURE Φ,, VelocityPotential in x, y, z directions ; GreenFunction Drag Force Horizontal Distance Wave Number 1.0 INTRODUCTION This paper is targeted to review the accuracy of correction methods applied at the diffraction potential theory in order to evaluate the motion response of offshore floating structure.the diffraction potential theory estimates wave exciting forces on the floating body based on the frequency domain and this method can be considered as an efficient one to study the motion of large size floating structure with acceptable accuracy. The accuracy of the diffraction potential method to predict the structures response was also detailed studied. The good accuracy of this diffraction theory applied to large structures is due to the significant diffraction effect that exists in the large size structure in wave [4]. In this study, the motion response of a selected Round Shape FPSO is simulated by self-developed programming code based on diffraction potential theory with Morison damping correction method. The accuracy of this programming code was checked with the previous semi-submersible experiment result which carried out at the towing tank belong to Universiti Teknologi Malaysia [5]. Besides, the behavior or Round Shape FPSO was also studied by Lamport and Josefsson in year They were carried a research to study the advantage of round shape FPSO over the 8 Published by International Society of Ocean, Mechanical and Aerospace Scientists and Engineers

2 traditional ship-shape FPSO [1]. The comparisons were made to compare motion response, mooring system design, constructability and fabrication, operability, safety and costing between both the structures. One of the finding on their study is the motions of their designed structures are similar at any direction of incident wave with little yaw excitation due to mooring and riser asymmetry. Next, Arslan, Pettersen, and Andersson (2011) are also performed a study on fluid flow around the round shape FPSO in side-by-side offloading condition. FLUENT software was used to simulate three dimensional (3D) unsteady cross flow pass a pair of ship sections in close proximity and the behavior of the vortex-shedding around the two bluff bodies [2].Besides, simulation of fluid flow Characteristic around Rounded-Shape FPSO by self-develop programming code based on RANs method also conducted by A. Efi et al.[3]. As presented by Siowet al. [6], their finding found that the diffraction potential theory is less accurate to predict the floating structure heave motion response when the wave frequency is close to the structure s natural frequency. In this situation, the heave response calculated by the diffraction potential theory is significantly higher compared to experimental result due to the low damping represented by the theory [9]. In order to improve the heave motion predict by the diffraction potential theory, Siow et al. tried to increase the damping coefficient by adding viscous damping into the motion equation. In his study, the viscous damping is treated as an extra matrix and can be added into the motion equation separately [6]. Besides,Siow et.al. also tried to integrate the linearized Morison drag equation with diffraction potential theory. The linear Morison drag equation would modify both the damping term and exciting force in the motion equation compared to the viscous damping correction method which only modified the damping term in motion equation. The accuracy of the modification solutions are also checked with the semi-submersible experiment result which was carried out at the towing tank of the UniversitiTeknologi Malaysia [10]. The 6-DOF Round Shape FPSO motion result calculated by this method and the comparison of result between the proposed methods with experiment result was published by Siow et.al in year 2015 [11]. In this paper, thetheoretical numerical calculation result of Round Shape FPSO using Diffraction Potential and Morison was reviewed. The result was compared to the original diffraction potential calculation method and the result obtained from ANSYS Software. Since the diffraction potential theory is only modified to the heave motion equation, hence the discussion in this paper only focused to the heave motion response. 2.0 NUMERICAL CALCULATION 2.1 Diffraction Potential In this study, the diffraction potential method was used to obtain the wave force act on the Round Shape FPSO also the added mass and damping for all six directions of motions. The regular wave acting on floating bodies can be described by velocity potential. The velocity potential normally written in respective to the flow direction and time as below: Φ,,,, (1),,,,,, where, g,, (2) : Gravity acceleration : Incident wave amplitude : Motions amplitude : Incident wave potential : Scattering wave potential : Radiation wave potential due to motions : Direction of motion From the above equation, it is shown that total wave potential in the system is contributed by the potential of the incident wave, scattering wave and radiation wave. In addition, the phase and amplitude of both the incident wave and scattering wave areassumed to be the same. However, radiation wave potentials are affected by each type of motions of each single floating body in the system, where the total radiation wave potential from the single body is the summation of the radiation wave generates by each type of body motions such as surge, sway,heave,roll, pitch and yaw, Also, the wave potential must be satisfied with boundary conditions as below: 0 0 (3) 0 (4) 0 (5) ~ 0 (6) (7) 2.2 Wave Potential By considering the wave potential only affected by model surface, S H, the wave potential at any point can be presented by the following equation: ; ; (8) wherep =(x, y, z) represents fluid flow pointed at any coordinate and,, represent any coordinate, (x, y, z) on model surface, S H. The green function can be applied here to estimate the strength of the wave flow potential. The green function in eq. (8) can be summarized as follow: 1 ; 4,, where,, in eq. (9) represent the effect of free surface and can be solved by second kind of Bessel function. (9) 9 Published by International Society of Ocean, Mechanical and Aerospace Scientists and Engineers

3 2.3 Wave Force, Added Mass and Damping The wave force or moment act on the model to cause the motions of structure can be obtained by integral the diffraction wave potential along the structure surface.,, (10) where, is diffraction potential, Also, the added mass, A ij and damping, B ij for each motion can be obtained by integral the radiation wave due to each motion along the structure surface.,, (11),, (12) in eq. (10) to eq. (12) is the normal vector for each direction of motion, i = 1~ 6 represent the direction of motion and j = 1~6 represent the six type of motions 2.4 Drag Term of Morison Equation The linear drag term due to the wave effect on submerge model is calculated using Drag force equation as given by Morison equation: (13) Where is fluid density, is projected area in Z direction, is drag coefficient in wave particular motion direction, is velocity of particle motion at Z-direction in complex form and is structure velocity at Z-direction In order to simplify the calculation, the calculation is carried out based on the absolute velocity approach. The floating model dominates term is ignored in the calculation because it is assumed that the fluid particular velocity is much higher compared to structure velocity. Expansion of the equation (13) is shown as follows: (14) By ignoring all the term consist of, equation (14) can be reduced into following format. (15) The above equation (15) is still highly nonlinear and this is impossible to combine with the linear analysis based on diffraction potential theory. To able the drag force to join with the diffraction force calculated with diffraction potential theory, the nonlinear drag term is then expanded in Fourier series. By using the Fourier series linearization method, equation (15) can be written in the linear form as follow: (16) Where, in equation (16) is the magnitude of complex fluid particle velocity in Z direction. From the equation (16), it can summarize that the first term is linearize drag force due to wave and the second term is the viscous damping force due to the drag effect. According to Christina Sjöbris, the linearize term in the equation (16) is the standard result which can be obtained if the work of floating structure performance at resonance is assumed equal between nonlinear and linearized damping term [8]. The linearize drag equation as shown in equation (16) now can be combined with the diffraction term which calculated by diffraction potential theory. The modified motion equation is shown as follows: (17) Where is mass, is restoring force,,, is heave added mass, heave diffraction damping coefficient and heave diffraction force calculated from diffraction potential method respectively. is the viscous damping and is the drag force based on drag term of Morison equation. 2.5 Differentiation of Wave Potential for Morison Drag Force To obtain the drag force contributed to heave motion, the wave particle velocity at heave direction must be obtained first. This water particle motion is proposed to obtain from the linear wave potential equation. From the theoretical, differential of the wave potential motion in Z-direction will give the speed of water particle motion in the Z-direction. As mentioned, the drag force in Morison equation is in the function of time; therefore, the time and space dependent wave potential in the complex form should be used here. The wave potential in Euler form as follows:,, The expending for the equation (18) obtained that 18,, cos sin cos sin 19 Rearrange the equation (19), the simplify equation as follows,, cos sin 20 Differentiate the equation (20) to the Z-direction, the water particle velocity at Z-direction is shown as follows:,, cos sin Published by International Society of Ocean, Mechanical and Aerospace Scientists and Engineers

4 Since this numerical model is built for deep water condition, hence it can replace the equation by and the equation (21) is becoming as follow:,, cos sin 22 In the equations (18) to (22), is the wave amplitude, is the gravity acceleration, is the wave speed, is wave number, is the horizontal distance referring to zero coordinate, is the time dependent variable. The horizontal distance, and the time dependent variable, can be calculated by the following equation cos sin In equation (23) and equation (24), the variable is wave heading angle, is the leading phase of the wave particle velocity at the Z-direction and is time. To calculate the drag forces by using the Morison equation, equation (22) can be modified by following the assumptions below. First, since the Morison equation is a two dimensional method, therefore the projected area of the Z-direction is all projected at the bottom of structure. Second, as mentioned in the previous part, this method applies the absolute velocity method and the heave motion of model is considered very small and can be neglected; therefore, the change of displacement in Z-direction is neglected. From the first and second assumption, the variable at equation (22) is no effected by time and it is a constant and equal to the draught of the structure. By ignore the time series term, and thenthe equation (22) can be become as follow:,, Cos Sin Determination of Drag Coefficient Typically the drag coefficient can be identified from experimental results for the more accurate study. In this study, the drag coefficient is determined based on previous empirical data. To able the previous empirical used in this study, the Round Shape FPSO assumed as a vertical cylinder. Second, the laminar flow condition is applied to calculate the drag damping and drag force so it is match with the assumption applied in diffraction potential theory. The drag coefficient applied in the calculation of motion response of Round Shape FPSO as listed in Table 1 and the reference of the dimension used in calculate the drag coefficient is showed in Figure 1. Figure 1: Dimension of Vertical Cylinder and flow direction Table 1 Drag Coefficient for Cylinder with the flow direction in vertical direction [12]: Aspect Ratio, AR Drag Coefficient,,, MODEL PARTICULARS The objective of this paper is reviewing the heave motion response of new designed Round Shape FPSO estimated by the diffraction potential theory with Morison drag correction method. The designed Round Shape FPSO modelhas the diameter at the draft equal to 1.018meters and draught of meters. The model was constructed from wood following the scale of 1:110 (Table 1). Upon the model complete constructed, inclining test, androll decay test were conducted to identify the hydrostatic particular of the Round Shape FPSO model. The dimension and measured data of the model was summarized as in Table 2. Table 2: Particular of Round Shape FPSO Symbol Model Diameter (m) Depth (m) Draught(m) Free board(m) Displacement (m 3 ) Water Plan Area (m 2 ) KG (m GM (m) In this study, the proposed numerical method was applied to execute the heave motion response of Round Shape FPSO. The panel method developed based on diffraction potential theory with Morison damping correction as presented at part 2 in this paper required to generate a number of meshes on the model surface in order to predict the distribution of wave force act on this Round FPSO model. To reduce the execution time, symmetry 11 Published by International Society of Ocean, Mechanical and Aerospace Scientists and Engineers

5 theory is applied in the calculation and total number of panels generated for execution in each symmetry side is525 (1050 for whole model) for immerse part. The sample of mesh ofround Shape model used in the numerical calculation is shown in Figure 2. amplitude was existed in the same wavelength either the drag effect is included in the calculation. The predicted tendency of the heave response by the diffraction potential theory, diffraction potential theory with Morison drag correction method and ANSYS AQWAA software is showed similar between each other. In this calculation, the drag term of the linearized Morison equation has contributed to increase the damping and exciting force in the motion equation as shown in eq. 17. The good prediction of the drag effect by using Morison drag equation in this method was contributed to correct the weakness of the diffraction potential theory when this theory is applied to predict the heave motion of the Round Shape FPSOat damping dominate region. This is because the drag effect becomes significant at damping dominating region while the diffraction potential theory was neglected the drag effect in its prediction hence, causes the predicted motion amplitude become significant higher. By nvolving the drag effect in the calculation, the peak response predicted by the diffraction potential method would be reduced. Also, by compared to the experiment result, the peak heave motion responsee of the Round Shape FPSO is closer to the peak heave motion response predicted by experiment method [12]. Figure 2: Meshing for Round Shape FPSO model 2.5 Diffraction Potential Diffraction & Morison Correction ANSYS (Hydro.Diffraction) 4.0 ROUND SHAPE FPSO HEAVE RESPONSE The heave RAO calculated by the diffraction potential theory, the corrected diffraction potential theory by the Morison drag term and ANSYS Diffraction method are presented in Figure 3. From Figure 3, it can be seen that the diffraction potential theory with linearized Morison drag correction is predicted lower heave motion response amplitude compared to the diffraction potential theory without t any correction and the ANSYS Diffraction method. The tendency of the heave responsee calculated by the diffraction potential theory with and without viscous damping correction is similar between each other. The higher prediction of the heave motion of the Round Shape FPSO by diffraction potential theory is due to the small prediction of the heave damping by this theory alone. In compared to the result calculated by the ANSYSS software, the diffraction potential theory without any correction function return the same result as the result predicted by ANSYS software. The observation also proved that the self-developed diffraction potential coding is developedd based on the diffraction potential theory correctly. Since the linear potential theory is ignored the viscous effect in the calculation, so both the diffraction potential theory and the ANSYS software would predict the heave response of the Round Shape FPSO with higher amplitude. The maximum response amplitude of the Round Shape FPSO predictedd by both the ANSYS and diffraction potential theory is same and has the value of 2.43 at wavelength 3.5 meters. On the other hand, by involved the drag effect in the calculation, the predicted maximum heave response of the Round Shape FPSO was reduced from 2.43 to The peak response Heave Response Amplitude, m/m Wavelength, m Figure3Heave motion responsee predicted by Diffraction Potential theory, Diffraction Potential Theory with Morison Drag Correction method and ANSYSS AQWA software. 12 Published by International Society of Ocean, Mechanical and Aerospace Scientists and Engineers

6 5.0 CONCLUSION In conclusion, this paper reviewed the tendency of heave motion response predicted by the proposed diffraction potential theory with Morison drag term correction method. In the beginning, the FPSO heave motion response predicted by the self-developed programming was compared to the predicted result by ANSYS AQWA. The comparison showed that the self-developed diffraction potential coding have the same performance as ANSYS AQWA software where both method provided same tendency of result and almost similar response amplitude at any wavelength. After that, the study was focused in compared the effect of the drag effect in the motion response prediction. By involved the Morison drag term in the calculation, the peak heave response predicted by the diffraction potential theory with Morison Drag correction method is lower compared to the diffraction potential theory and ANSYS AQWA. This shown that by involved the drag effect in the calculation would help to avoid the diffraction potential theory predict the FPSO heave motion response with the significant higher magnitude in the damping dominate region. ACKNOWLEGMENT The authors are very grateful to Faculty of Mechanical Engineering, Universiti Teknologi Malaysia, Ocean and Aerospace Research Institute, Indonesia, Department of Transportation and Environmental Systems, Hiroshima University, Japan,National Research Institute of Fisheries Engineering (NRIFE), Japanand Centre for Marine Technology and Engineering (CENTEC), Instituto Superior Técnico, Universidade de Lisboa, Portugal for supporting this research. Conference on Maritime Technology and Engineering. Lisboa, Portugal. 6. C.L Sow, Koto, J, Hassan Abyn, (2014), Semi-Submersible Heave Response Study Using Diffraction Potential Theory with Viscous Damping Correction, Journal of Ocean, Mechanical and Aerospace Science and Engineering, Vol Siow, C.L., Koto, J, Yasukawa, H., Matsuda, A., Terada, D., Soares, C.G., Zameri, M. (2014). Experiment Study on Hydrodynamics Characteristic of Rounded- Shape FPSO. The 1st Conference on Ocean, Mechanical and Aerospace- Science and Engineering-.Pekanbaru, Indonesia. 8. Siow, C. L., Koto, J, and Khairuddin, N.M. (2014). Study on Model Scale Rounded-Shape FPSO s Mooring Lines, Journal of Ocean, Mechanical and Aerospace Science and Engineering, Vol Siow, C.L., Abby, H. &Jaswar (2013). Semi-Submersible s Response Prediction by Diffraction Potential Method.The International Conference on Marine Safety and Environment.Johor, Malaysia. 10. Siow, C.L., Jaswar, Afrizal, E., Abyn, H., Maimun, A, Pauzi, M. (2013). Comparative of Hydrodynamic Effect between Double Bodies to Single Body in Tank.The 8th International Conference on Numerical Analysis in Engineering.Pekanbaru, Indonesia. 11. Siow, C. L.,Koto, J., Yasukawa, H.,Matsuda,A. Terada, D., Guedes Soares, C., Muhamad Zameri bin Mat Samad and Priyanto,A.(2015). Wave Induce Motion of Round Shaped FPSO, Journal of of Subsea and Offshore Science and Engineering, Vol Cengel, Y. A, Cimbala, J. M. (2010). Fluid Mechanics Fundamentals and Application. 2 nd Ed. REFERENCE 1. Lamport, W. B. and Josefsson, P.M.(2008). The Next Generation Of Round Fit-For-Purpose Hull Form FPSOS Offers Advantages Over Traditional Ship-Shaped Hull Forms,2008 Deep Gulf Conference, December 9-11, New Orleans, Louisiana, USA. 2. Arslan, T., Pettersen, B. and Andersson, H.I. (2011). Calculation of the Flow Around Two Interacting Ships, Computational Methods in Marine Engineering IV, L.Eça, E. Oñate, J. García, T. Kvamsdal and P. Bergan (Eds.), pp Afrizal, E., Mufti, F.M., Siow, C.L. &Jaswar. (2013). Study of Fluid Flow Characteristic around Rounded-Shape FPSO Using RANS Method. The 8th International Conference on Numerical Analysis in Engineering: Pekanbaru, Indonesia. 4. Kvittem, M.I., Bachynski, E.E. & Moan, T. (2012). Effect of Hydrodynamic Modelling in Fully Coupled Simulations of a Semi-Submersible Wind Turbine. Energy Procedia Koto, J., Siow, C.L., Khairuddin, Afrizal, N.M., Abyn, H., Soares, C.G., (2014). Comparison of floating structures motion prediction between diffraction, diffraction-viscous and diffraction-morison methods. The 2nd International 13 Published by International Society of Ocean, Mechanical and Aerospace Scientists and Engineers

Semi-Submersible Heave Response Study Using Diffraction Potential Theory with Viscous Damping Correction

Semi-Submersible Heave Response Study Using Diffraction Potential Theory with Viscous Damping Correction Semi-Submersible Heave Response Study Using Diffraction Potential Theory with Viscous Damping Correction a) Mechanical Engineering, Universiti Teknologi Malaysia b) Ocean and Aerospace Research Institute,

More information

Prediction of Semi-Submersible s Motion Response by Using Diffraction Potential Theory and Heave Viscous Damping Correction

Prediction of Semi-Submersible s Motion Response by Using Diffraction Potential Theory and Heave Viscous Damping Correction Jurnal Teknologi Full paper Prediction of Semi-Submersible s Motion Response by Using Diffraction Potential Theory and Heave Viscous Damping Correction C. L. Siow a, Jaswar Koto a,b*, Hassan Abby c, N.

More information

Theoretical Study on Effect of Turret Location on Dynamic Response of Moored Twin Hulls FPSO System

Theoretical Study on Effect of Turret Location on Dynamic Response of Moored Twin Hulls FPSO System Theoretical Study on Effect of Turret Location on Dynamic Response of Moored Twin Hulls FPSO System Nik Mohd Khairuddin B. Nik Ismail, a, and Jaswar. Koto, a,b,* a) Department of Aeronautics, Automotive

More information

Hydrodynamic Interaction of Three Floating Structures

Hydrodynamic Interaction of Three Floating Structures Hydrodynamic Interaction of Three Floating Structures Muhammad Farid Abdul Halim, a, and Jaswar Koto, a,b,* a) Department of Aeronautical, Automotive and Ocean Engineering, Faculty of Mechanical Engineering,

More information

WAMIT-MOSES Hydrodynamic Analysis Comparison Study. JRME, July 2000

WAMIT-MOSES Hydrodynamic Analysis Comparison Study. JRME, July 2000 - Hydrodynamic Analysis Comparison Study - Hydrodynamic Analysis Comparison Study JRME, Prepared by Hull Engineering Department J. Ray McDermott Engineering, LLC 1 - Hydrodynamic Analysis Comparison Study

More information

Study on Strut Effect on Turning Characteristics of LNG Carrier

Study on Strut Effect on Turning Characteristics of LNG Carrier Study on Strut Effect on Turning Characteristics of LNG Carrier Mohd Amirul Hamdi Bin Mohd Alwi, a Jaswar Koto, a, b,* and Zulkarnain, b a) Department of Aeronautics, Automotive and Ocean Engineering,Mechanical

More information

Vol.9, July.2014 ISSN

Vol.9, July.2014 ISSN Vol.9, July.2014 ISSN 2354-7065 Journal of Ocean, Mechanical and Aerospace -Science and Engineering- Vol.9: July 2014 Contents About JOMAse Scope of JOMAse Editors Title and Authors Experimental Study

More information

EXPERIMENTAL STUDY OF MOTIONS OF TWO FLOATING OFFSHORE STRUCTURES IN WAVES

EXPERIMENTAL STUDY OF MOTIONS OF TWO FLOATING OFFSHORE STRUCTURES IN WAVES Brodogradnja/Shipbuilding/Open access Volume 67 Number 2, 2016 Hassan Abyn M. Rafiqul Islam Adi Maimun Amin Mahmoudi Jaswar Kato http://dx.doi.org/10.21278/brod67201 ISSN 0007-215X eissn 1845-5859 EXPERIMENTAL

More information

Vol.6, April.2014 ISSN

Vol.6, April.2014 ISSN Vol.6, April.4 ISSN 354-765 -Science and Engineering- Vol.6: April 4 Contents About JOMAse Scope of JOMAse Editors Title and Authors Application and Development of Multi-Hulls Pages Victor A. Dubrovsky

More information

NUMERICAL MODELLING FOR HYDRODYNAMIC BEHAVIOR OF ROUND SHAPE FLNG INTERACTING WITH LNG CARRIER SIOW CHEE LOON

NUMERICAL MODELLING FOR HYDRODYNAMIC BEHAVIOR OF ROUND SHAPE FLNG INTERACTING WITH LNG CARRIER SIOW CHEE LOON NUMERICAL MODELLING FOR HYDRODYNAMIC BEHAVIOR OF ROUND SHAPE FLNG INTERACTING WITH LNG CARRIER SIOW CHEE LOON A thesis submitted in fulfilment of the requirements for the award of degree of Doctor of Philosophy

More information

Seakeeping Models in the Frequency Domain

Seakeeping Models in the Frequency Domain Seakeeping Models in the Frequency Domain (Module 6) Dr Tristan Perez Centre for Complex Dynamic Systems and Control (CDSC) Prof. Thor I Fossen Department of Engineering Cybernetics 18/09/2007 One-day

More information

Seakeeping characteristics of intact and damaged ship in the Adriatic Sea

Seakeeping characteristics of intact and damaged ship in the Adriatic Sea Towards Green Marine Technology and Transport Guedes Soares, Dejhalla & Pavleti (Eds) 2015 Taylor & Francis Group, London, ISBN 978-1-138-02887-6 Seakeeping characteristics of intact and damaged ship in

More information

Effect of Tethers Tension Force in the Behavior of a Tension Leg Platform Subjected to Hydrodynamic Force Amr R. El-Gamal, Ashraf Essa, Ayman Ismail

Effect of Tethers Tension Force in the Behavior of a Tension Leg Platform Subjected to Hydrodynamic Force Amr R. El-Gamal, Ashraf Essa, Ayman Ismail Vol:7, No:1, 13 Effect of Tethers Tension Force in the Behavior of a Tension Leg Platform Subjected to Hydrodynamic Force Amr R. El-Gamal, Ashraf Essa, Ayman Ismail International Science Index, Bioengineering

More information

HEAVE DAMPING EFFECTS DUE TO CIRCULAR PLATES ATTACHED AT KEEL TO SPAR HULL

HEAVE DAMPING EFFECTS DUE TO CIRCULAR PLATES ATTACHED AT KEEL TO SPAR HULL HEAVE DAMPING EFFECTS DUE TO CIRCULAR PLATES ATTACHED AT KEEL TO SPAR HULL P.Uma 1 1 M.TECH Civil Engineering Dadi Institute of Engineering and Technology College Abstract Single point Anchor Reservoir

More information

DYNAMIC CHARACTERISTICS OF OFFSHORE TENSION LEG PLATFORMS UNDER HYDRODYNAMIC FORCES

DYNAMIC CHARACTERISTICS OF OFFSHORE TENSION LEG PLATFORMS UNDER HYDRODYNAMIC FORCES International Journal of Civil Engineering (IJCE) ISSN(P): 2278-9987; ISSN(E): 2278-9995 Vol. 3, Issue 1, Jan 214, 7-16 IASET DYNAMIC CHARACTERISTICS OF OFFSHORE TENSION LEG PLATFORMS UNDER HYDRODYNAMIC

More information

Prediction of Propeller Performance Using Quasi-Continuous Method

Prediction of Propeller Performance Using Quasi-Continuous Method Prediction of Propeller Performance Using Quasi-Continuous Method Hao Rui, a,* and Jaswar Koto, b a) Aeronautics, Automotive and Ocean Engineering, Universiti Teknologi Malaysia, Malaysia b) Ocean and

More information

MODELLING RECURRENCE MOTION OF A LARGE VOLUME SEMI- SUBMERSIBLE

MODELLING RECURRENCE MOTION OF A LARGE VOLUME SEMI- SUBMERSIBLE Jurnal Mekanikal December 2012, No 35, 13-27 MODELLING RECURRENCE MOTION OF A LARGE VOLUME SEMI- SUBMERSIBLE Agoes Priyanto *, Adi Maimun and Dwi Putra Rishandi Faculty of Mechanical Engineering, Universiti

More information

Effect of Tethers Tension Force on the Behavior of Triangular Tension Leg Platform

Effect of Tethers Tension Force on the Behavior of Triangular Tension Leg Platform American Journal of Civil Engineering and Architecture,, Vol., No. 3, 7- Available online at http://pubs.sciepub.com/ajcea//3/3 Science and Education Publishing DOI:.9/ajcea--3-3 Effect of Tethers Tension

More information

Hull-tether-riser dynamics of deep water tension leg platforms

Hull-tether-riser dynamics of deep water tension leg platforms Fluid Structure Interaction V 15 Hull-tether-riser dynamics of deep water tension leg platforms R. Jayalekshmi 1, R. Sundaravadivelu & V. G. Idichandy 1 Department of Civil Engineering, NSS College of

More information

IJEScA. Motions Analysis of a Phinisi Ship Hull with New Strip Method. F. Mahmuddin 1, A. Fitriadhy 2 and S. Dewa 1 ABSTRACT 1.

IJEScA. Motions Analysis of a Phinisi Ship Hull with New Strip Method. F. Mahmuddin 1, A. Fitriadhy 2 and S. Dewa 1 ABSTRACT 1. Motions Analysis of a Phinisi Ship Hull with New Strip Method ABSTRACT F. Mahmuddin 1, A. Fitriadhy 2 and S. Dewa 1 1 Naval Architecture Department, Engineering Faculty, Hasanuddin University, Indonesia

More information

Trajectory Tracking of a Near-Surface Torpedo using Numerical Methods

Trajectory Tracking of a Near-Surface Torpedo using Numerical Methods ISSN (Print) : 2347-671 An ISO 3297: 27 Certified Organization Vol.4, Special Issue 12, September 215 Trajectory Tracking of a Near-Surface Torpedo using Numerical Methods Anties K. Martin, Anubhav C.A.,

More information

Response of square tension leg platforms to hydrodynamic forces

Response of square tension leg platforms to hydrodynamic forces Ocean Systems Engineering, Vol., No. (01) 000-000 1 Response of square tension leg platforms to hydrodynamic forces A.M. Abou-Rayan 1, Ayman A. Seleemah* and Amr R. El-gamal 1 1 Civil Engineering Tec.

More information

Proceedings of the ASME th International Conference on Ocean, Offshore and Arctic Engineering OMAE2013 June 9-14, 2013, Nantes, France

Proceedings of the ASME th International Conference on Ocean, Offshore and Arctic Engineering OMAE2013 June 9-14, 2013, Nantes, France Proceedings of the ASME 2011 32th International Conference on Ocean, Offshore and Arctic Engineering OMAE2013 June 9-14, 2013, Nantes, France OMAE2013-10124 APPLYING STRIP THEORY BASED LINEAR SEAKEEPING

More information

INFLUENCE OF TETHER LENGTH IN THE RESPONSE BEHAVIOR OF SQUARE TENSION LEG PLATFORM IN REGULAR WAVES

INFLUENCE OF TETHER LENGTH IN THE RESPONSE BEHAVIOR OF SQUARE TENSION LEG PLATFORM IN REGULAR WAVES INFLUENCE OF TETHER LENGTH IN THE RESPONSE BEHAVIOR OF SQUARE TENSION LEG PLATFOR IN REGULAR WAVES 1 Amr R. El-gamal, 2 Ashraf Essa, 1 Faculty of Engineering, Benha Univ., Egypt, 2 Associated prof., National

More information

International Journal of Scientific & Engineering Research Volume 9, Issue 2, February ISSN

International Journal of Scientific & Engineering Research Volume 9, Issue 2, February ISSN International Journal of Scientific & Engineering Research Volume 9, Issue, February-8 48 Structural Response of a Standalone FPSO by Swell Wave in Offshore Nigeria Abam Tamunopekere Joshua*, Akaawase

More information

Hydrodynamic Forces on Floating Bodies

Hydrodynamic Forces on Floating Bodies Hydrodynamic Forces on Floating Bodies 13.42 Lecture Notes; c A.H. Techet 1. Forces on Large Structures For discussion in this section we will be considering bodies that are quite large compared to the

More information

Development of formulas allowing to predict hydrodynamic responses of inland vessels operated within the range of navigation 0.6 Hs 2.

Development of formulas allowing to predict hydrodynamic responses of inland vessels operated within the range of navigation 0.6 Hs 2. Gian Carlo Matheus Torres 6 th EMship cycle: October 2015 February 2017 Master Thesis Development of formulas allowing to predict hydrodynamic responses of inland vessels operated within the range of navigation

More information

Wave Energy Converter Modeling in the Time Domain: A Design Guide

Wave Energy Converter Modeling in the Time Domain: A Design Guide Wave Energy Converter Modeling in the Time Domain: A Design Guide Bret Bosma, Ted K.A. Brekken, H. Tuba Özkan-Haller, Solomon C. Yim Oregon State University Corvallis, OR USA Abstract As the ocean wave

More information

Coupled Heave-Pitch Motions and Froude Krylov Excitation Forces

Coupled Heave-Pitch Motions and Froude Krylov Excitation Forces Coupled Heave-Pitch Motions and Froude Krylov Excitation Forces 13.42 Lecture Notes; Spring 2004; c A.H. Techet 1. Coupled Equation of Motion in Heave and Pitch Once we have set up the simple equation

More information

Design, Construction & Operation of LNG/LPG Ships, November, Glasgow, UK

Design, Construction & Operation of LNG/LPG Ships, November, Glasgow, UK Design, Construction & Operation of LNG/LPG Ships, 29-3 November, Glasgow, UK SLOSHING AND SWIRLING IN MEMBRANE LNG TANKS AND THEIR COUPLING EFFECTS WITH SHIP MOTION M Arai and G M Karuka, Yokohama National

More information

Student name: This is a closed book examination. You are allowed 1 sheet of 8.5 x 11 paper with notes.

Student name: This is a closed book examination. You are allowed 1 sheet of 8.5 x 11 paper with notes. 13.012 Marine Hydrodynamics for Ocean Engineers Fall 2004 Quiz #2 Student name: This is a closed book examination. You are allowed 1 sheet of 8.5 x 11 paper with notes. For the problems in Section A, fill

More information

Study on Motions of a Floating Body under Composite External Loads

Study on Motions of a Floating Body under Composite External Loads 137 Study on Motions of a Floating Body under Composite External Loads by Kunihiro Ikegami*, Member Masami Matsuura*, Member Summary In the field of marine engineering, various types of floating bodies

More information

NONLINEAR BEHAVIOR OF A SINGLE- POINT MOORING SYSTEM FOR FLOATING OFFSHORE WIND TURBINE

NONLINEAR BEHAVIOR OF A SINGLE- POINT MOORING SYSTEM FOR FLOATING OFFSHORE WIND TURBINE NONLINEAR BEHAVIOR OF A SINGLE- POINT MOORING SYSTEM FOR FLOATING OFFSHORE WIND TURBINE Ma Chong, Iijima Kazuhiro, Masahiko Fujikubo Dept. of Naval Architecture and Ocean Engineering OSAKA UNIVERSITY RESEARCH

More information

VIOLENT WAVE TRAPPING - SOME RESULTS ON WATER PROJECTION AROUND SEMI-SUBs AND TLPs

VIOLENT WAVE TRAPPING - SOME RESULTS ON WATER PROJECTION AROUND SEMI-SUBs AND TLPs VIOLENT WAVE TRAPPING - SOME RESULTS ON WATER PROJECTION AROUND SEMI-SUBs AND TLPs Paul H. Taylor James Grice Rodney Eatock Taylor Department of Engineering Science University of Oxford Contents Introduction

More information

The effects of second-order hydrodynamics on a semisubmersible floating offshore wind turbine

The effects of second-order hydrodynamics on a semisubmersible floating offshore wind turbine Journal of Physics: Conference Series OPEN ACCESS The effects of second-order hydrodynamics on a semisubmersible floating offshore wind turbine To cite this article: I Bayati et al 2014 J. Phys.: Conf.

More information

The simulation of the Saint Petersburg flood defense system gate vibration under the loads from the moving water

The simulation of the Saint Petersburg flood defense system gate vibration under the loads from the moving water The simulation of the Saint Petersburg flood defense system gate vibration under the loads from the moving water Eugene Petukhov (eugene@lamm.spbstu.ru) Saint Petersburg Polytechnical University 1. Motivation

More information

OFFSHORE HYDROMECHANICS OE 4620-d

OFFSHORE HYDROMECHANICS OE 4620-d Lecture OFFSHORE HYDROMECHANICS OE 4620-d MODULE 4 ch. 12 Wave Forces on Slender Cylinders ch. 13 Survival Loads on Tower Structures ch. 14 Sea Bed Boundary Effects Successive to Module 1. Morison Lab.

More information

Optimization of a Multi-pendulum Wave Energy Converter

Optimization of a Multi-pendulum Wave Energy Converter Send Orders for Reprints to reprints@benthamscience.ae The Open Electrical & Electronic Engineering Journal, 2015, 9, 67-73 67 Optimization of a Multi-pendulum Wave Energy Converter Open Access Jun Zhang

More information

Comparison of Present Wave Induced Load Criteria with Loads Induced by an Abnormal Wave

Comparison of Present Wave Induced Load Criteria with Loads Induced by an Abnormal Wave Rogue Waves 2004 1 Comparison of Present Wave Induced Load Criteria with Loads Induced by an Abnormal Wave C. Guedes Soares, N. Fonseca, R. Pascoal Unit of Marine Engineering and Technology, Technical

More information

1 POTENTIAL FLOW THEORY Formulation of the seakeeping problem

1 POTENTIAL FLOW THEORY Formulation of the seakeeping problem 1 POTENTIAL FLOW THEORY Formulation of the seakeeping problem Objective of the Chapter: Formulation of the potential flow around the hull of a ship advancing and oscillationg in waves Results of the Chapter:

More information

Simplified formulas of heave added mass coefficients at high frequency for various two-dimensional bodies in a finite water depth

Simplified formulas of heave added mass coefficients at high frequency for various two-dimensional bodies in a finite water depth csnak, 2015 Int. J. Nav. Archit. Ocean Eng. (2015) 7:115~127 http://dx.doi.org/10.1515/ijnaoe-2015-0009 pissn: 2092-6782, eissn: 2092-6790 Simplified formulas of heave added mass coefficients at high frequency

More information

Available online at ScienceDirect. Aquatic Procedia 4 (2015 )

Available online at   ScienceDirect. Aquatic Procedia 4 (2015 ) Available online at www.sciencedirect.com ScienceDirect Aquatic Procedia 4 (5 ) 49 499 INTERNATIONAL CONFERENCE ON WATER RESOURCES, COASTAL AND OCEAN ENGINEERING (ICWRCOE 5) A 3D numerical wave tank study

More information

Final Exam TTK4190 Guidance and Control

Final Exam TTK4190 Guidance and Control Trondheim Department of engineering Cybernetics Contact person: Professor Thor I. Fossen Phone: 73 59 43 61 Cell: 91 89 73 61 Email: tif@itk.ntnu.no Final Exam TTK4190 Guidance and Control Friday May 15,

More information

Optimal Design of FPSO Vessels

Optimal Design of FPSO Vessels November 2, 201 Optimal Design of FPSO Vessels Ezebuchi Akandu PhD, MTech, BTech, COREN, RINA, MNSE Department of Marine Engineering, Rivers State University, Port Harcourt, Nigeria akandu.ezebuchi@ust.edu.ng

More information

Hydrodynamic analysis and modelling of ships

Hydrodynamic analysis and modelling of ships Hydrodynamic analysis and modelling of ships Wave loading Harry B. Bingham Section for Coastal, Maritime & Structural Eng. Department of Mechanical Engineering Technical University of Denmark DANSIS møde

More information

ROLL MOTION OF A RORO-SHIP IN IRREGULAR FOLLOWING WAVES

ROLL MOTION OF A RORO-SHIP IN IRREGULAR FOLLOWING WAVES 38 Journal of Marine Science and Technology, Vol. 9, o. 1, pp. 38-44 (2001) ROLL MOTIO OF A RORO-SHIP I IRREGULAR FOLLOWIG WAVES Jianbo Hua* and Wei-Hui Wang** Keywords: roll motion, parametric excitation,

More information

SIMPLIFICATION BY MATHEMATIC MODEL TO SOLVE THE EXPERIMENTAL OF SLOSHING EFFECT ON THE FPSO VESSEL

SIMPLIFICATION BY MATHEMATIC MODEL TO SOLVE THE EXPERIMENTAL OF SLOSHING EFFECT ON THE FPSO VESSEL European International Journal of Science and Technology Vol. 3 No. 5 June, 2014 SIMPLIFICATION BY MATHEMATIC MODEL TO SOLVE THE EXPERIMENTAL OF SLOSHING EFFECT ON THE FPSO VESSEL LuhutTumpalParulianSinaga

More information

Response to Pontoon and Pendulum Motion at Wave Energy Converter Based on Pendulum System

Response to Pontoon and Pendulum Motion at Wave Energy Converter Based on Pendulum System Response to Pontoon and Pendulum Motion at Wave Energy Converter Based on Pendulum System I. S. Arief 1, I. K. A. P. Utama 2, R. Hantoro 3, J. Prananda 3, Y. Safitri 2, T. Rachmattra A. 3, and Rindu F.

More information

Motions and Resistance of a Ship in Regular Following Waves

Motions and Resistance of a Ship in Regular Following Waves Reprinted: 01-11-2000 Revised: 03-10-2007 Website: www.shipmotions.nl Report 440, September 1976, Delft University of Technology, Ship Hydromechanics Laboratory, Mekelweg 2, 2628 CD Delft, The Netherlands.

More information

A Preliminary Analysis on the Statistics of about One-Year Air Gap Measurement for a Semi-submersible in South China Sea

A Preliminary Analysis on the Statistics of about One-Year Air Gap Measurement for a Semi-submersible in South China Sea Proceedings of the Twenty-sixth (2016) International Ocean and Polar Engineering Conference Rhodes, Greece, June 26-July 1, 2016 Copyright 2016 by the International Society of Offshore and Polar Engineers

More information

SEAKEEPING AND MANEUVERING Prof. Dr. S. Beji 2

SEAKEEPING AND MANEUVERING Prof. Dr. S. Beji 2 SEAKEEPING AND MANEUVERING Prof. Dr. S. Beji 2 Ship Motions Ship motions in a seaway are very complicated but can be broken down into 6-degrees of freedom motions relative to 3 mutually perpendicular axes

More information

1. Froude Krylov Excitation Force

1. Froude Krylov Excitation Force .016 Hydrodynamics eading #8.016 Hydrodynamics Prof. A.H. Techet 1. Froude Krylov Ecitation Force Ultimately, if we assume the body to be sufficiently small as not to affect the pressure field due to an

More information

ANALYSIS OF THE AXIAL BEHAVIOR OF A DRILLING RISER WITH A SUSPENDED MASS

ANALYSIS OF THE AXIAL BEHAVIOR OF A DRILLING RISER WITH A SUSPENDED MASS Copyright 2013 by ABCM ANALYSIS OF THE AXIAL BEHAVIOR OF A DRILLING RISER WITH A SUSPENDED MASS Marcelo Anunciação Jaculli José Ricardo Pelaquim Mendes Celso Kazuyuki Morooka Dept. of Petroleum Engineering

More information

Floating substructure flexibility of large-volume 10MW offshore wind turbine platforms in dynamic calculations

Floating substructure flexibility of large-volume 10MW offshore wind turbine platforms in dynamic calculations Journal of Physics: Conference Series PAPER OPEN ACCESS Floating substructure flexibility of large-volume 10MW offshore wind turbine platforms in dynamic calculations To cite this article: Michael Borg

More information

Viscous Damping of Vessels Moored in Close Proximity of Another Object

Viscous Damping of Vessels Moored in Close Proximity of Another Object Proceedings of The Fifteenth (5) International Offshore and Polar Engineering Conference Seoul, Korea, June 9 4, 5 Copyright 5 by The International Society of Offshore and Polar Engineers ISBN -885-4-8

More information

ADDED RESISTANCE IN WAVES OF INTACT AND DAMAGED SHIP IN THE ADRIATIC SEA

ADDED RESISTANCE IN WAVES OF INTACT AND DAMAGED SHIP IN THE ADRIATIC SEA Brodogradnja/Shipbilding Volume 66 Number, 15 Ivana Martić Nastia Degiuli ISSN 7-15X eissn 1845-5859 ADDED RESISTANCE IN WAVES OF INTACT AND DAMAGED SHIP IN THE ADRIATIC SEA Summary UDC 69.5.15.4(6.3)

More information

NUMERICAL INVESTIGATION OF DAMPING EFFECTS ON COUPLED HEAVE AND PITCH MOTION OF AN INNOVATIVE DEEP DRAFT MULTI-SPAR

NUMERICAL INVESTIGATION OF DAMPING EFFECTS ON COUPLED HEAVE AND PITCH MOTION OF AN INNOVATIVE DEEP DRAFT MULTI-SPAR Journal of Marine Science and Technology, Vol. 9, No., pp. - () NUMERICAL INVESTIGATION OF DAMPING EFFECTS ON COUPLED HEAVE AND PITCH MOTION OF AN INNOVATIVE DEEP DRAFT MULTI-SPAR Bin-Bin Li*, Jin-Ping

More information

On the evaluation quadratic forces on stationary bodies

On the evaluation quadratic forces on stationary bodies On the evaluation quadratic forces on stationary bodies Chang-Ho Lee AMIT Inc., Chestnut Hill MA, USA June 9, 006 Abstract. Conservation of momentum is applied to finite fluid volume surrounding a body

More information

PARAMETRIC EXCITATION OF A DWSC. A Thesis CHANDAN LAKHOTIA

PARAMETRIC EXCITATION OF A DWSC. A Thesis CHANDAN LAKHOTIA PARAMETRIC EXCITATION OF A DWSC A Thesis by CHANDAN LAKHOTIA Submitted to the Office of Graduate Studies of Texas A&M University in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE

More information

13.42 LECTURE 13: FLUID FORCES ON BODIES. Using a two dimensional cylinder within a two-dimensional flow we can demonstrate some of the principles

13.42 LECTURE 13: FLUID FORCES ON BODIES. Using a two dimensional cylinder within a two-dimensional flow we can demonstrate some of the principles 13.42 LECTURE 13: FLUID FORCES ON BODIES SPRING 2003 c A. H. TECHET & M.S. TRIANTAFYLLOU 1. Morrison s Equation Using a two dimensional cylinder within a two-dimensional flow we can demonstrate some of

More information

Numerical analysis of wave-induced responses of floating bridge pontoons with bilge boxes. Master Thesis

Numerical analysis of wave-induced responses of floating bridge pontoons with bilge boxes. Master Thesis Numerical analysis of wave-induced responses of floating bridge pontoons with bilge boxes Master Thesis Espen Kleppa June 2017 DTU Mechanical Engineering Section of Fluid Mechanics, Coastal and Maritime

More information

2da Asamblea de la Red Global MX Capitulo

2da Asamblea de la Red Global MX Capitulo Desarrollo de Tecnología en Ingeniería Costa-Afuera para Aguas Profundas en el Golfo de Mexico 2da Asamblea de la Red Global MX Capitulo Corea 12 de Diciembre de 2017 Cristobal Santiago 1, 1 Korea Research

More information

Mirko Previsic, Kourosh Shoele, Jeff Epler, Re Vision Consulting, Sacramento, CA, USA

Mirko Previsic, Kourosh Shoele, Jeff Epler, Re Vision Consulting, Sacramento, CA, USA Validation of Theoretical Performance Results using Wave Tank Testing of Heaving Point Absorber Wave Energy Conversion Device working against a Subsea Reaction Plate Mirko Previsic, mirko@re-vision.net

More information

Prediction of Wave and Wind induced Dynamic Response in Time Domain using RM Bridge

Prediction of Wave and Wind induced Dynamic Response in Time Domain using RM Bridge Prediction of Wave and Wind induced Dynamic Response in Time Domain using RM Bridge Johann Stampler, Jörg Sello, Mitja Papinutti Bentley Systems Austria, Graz, Austria Arne Bruer, Mathias Marley TDA AS,

More information

MODELLING THE INTERACTION BETWEEN WATER WAVES AND THE OSCILLATING WATER COLUMN WAVE ENERGY DEVICE. Utku Şentürk, Aydoğan Özdamar

MODELLING THE INTERACTION BETWEEN WATER WAVES AND THE OSCILLATING WATER COLUMN WAVE ENERGY DEVICE. Utku Şentürk, Aydoğan Özdamar Mathematical and Computational Applications, Vol. 16, No. 3, pp. 630-640, 2011. Association for Scientific Research MODELLING THE INTERACTION BETWEEN WATER WAVES AND THE OSCILLATING WATER COLUMN WAVE ENERGY

More information

SCALE MODEL TESTS OF A FISHING VESSEL IN ROLL MOTION PARAMETRIC RESONANCE

SCALE MODEL TESTS OF A FISHING VESSEL IN ROLL MOTION PARAMETRIC RESONANCE N. Perez Síntesis Tecnológica. V.3 Nº 1 (26) 33-37 SCALE MODEL TESTS OF A FISHING VESSEL IN ROLL MOTION PARAMETRIC RESONANCE NELSON A. PEREZ M. Instituto de Ciencias Navales y Marítimas, M.Sc, nperez@uach.cl,

More information

NUMERICAL ANALYSIS OF A FLOATING HARBOR SYSTEM AND COMPARISON WITH EXPERIMENTAL RESULTS. A Thesis HEONYONG KANG

NUMERICAL ANALYSIS OF A FLOATING HARBOR SYSTEM AND COMPARISON WITH EXPERIMENTAL RESULTS. A Thesis HEONYONG KANG NUMERICAL ANALYSIS OF A FLOATING HARBOR SYSTEM AND COMPARISON WITH EXPERIMENTAL RESULTS A Thesis by HEONYONG KANG Submitted to the Office of Graduate Studies of Texas A&M University in partial fulfillment

More information

A STUDY ON INFLUENCE OF HEAVE PLATE ON DYNAMIC RESPONSE OF FLOATING OFFSHORE WIND TURBINE SYSTEM

A STUDY ON INFLUENCE OF HEAVE PLATE ON DYNAMIC RESPONSE OF FLOATING OFFSHORE WIND TURBINE SYSTEM A STUDY ON INFLUENCE OF HEAVE PLATE ON DYNAMIC RESPONSE OF FLOATING OFFSHORE WIND TURBINE SYSTEM Takeshi Ishihara, Muhammad Bilal Waris & Hiroyuki Sukegawa Professor, Department of Civil Engineering, School

More information

Reliability of Marine Structures Program

Reliability of Marine Structures Program Reliability of Marine Structures Program SPAR FLOATING PLATFORM: NUMERICAL ANALYSIS AND COMPARISON WITH DATA Alok K. Jha Supervised by Steven R. Winterstein Civil Engineering Department, Stanford University

More information

Analysis of the DeepCwind model tests and a first attempt to simulate a semi-submersible floating wind platform with anysim

Analysis of the DeepCwind model tests and a first attempt to simulate a semi-submersible floating wind platform with anysim Analysis of the DeepCwind model tests and a first attempt to simulate a semi-submersible floating wind platform with anysim Final report Report No. : 24602-MSG-1 Date : 20th March 2012 M A R I N P.O. Box

More information

OpenFOAM simulations of irregular waves and free surface effects around a monopile offshore wind turbine

OpenFOAM simulations of irregular waves and free surface effects around a monopile offshore wind turbine OpenFOAM simulations of irregular waves and free surface effects around a monopile offshore wind turbine Ariel J. Edesess 1 4 th Year PhD Candidate Supervisors: Dr. Denis Kelliher 1, Dr. Gareth Thomas

More information

Chapter 1 INTRODUCTION

Chapter 1 INTRODUCTION Chapter 1 INTRODUCTION 1-1 The Fluid. 1-2 Dimensions. 1-3 Units. 1-4 Fluid Properties. 1 1-1 The Fluid: It is the substance that deforms continuously when subjected to a shear stress. Matter Solid Fluid

More information

FACULTY OF SCIENCE AND TECHNOLOGY MASTER'S THESIS. Open. Author: Thorgeir Anundsen (signature author)

FACULTY OF SCIENCE AND TECHNOLOGY MASTER'S THESIS. Open. Author: Thorgeir Anundsen (signature author) FACULTY OF SCIENCE AND TECHNOLOGY MASTER'S THESIS Study program/specialization: Master Offshore systems, Marine and subsea technology. Spring semester, 2008 Open Author: Thorgeir Anundsen (signature author)

More information

COMPUTATION OF ADDED MASS AND DAMPING COEFFICIENTS DUE TO A HEAVING CYLINDER

COMPUTATION OF ADDED MASS AND DAMPING COEFFICIENTS DUE TO A HEAVING CYLINDER J. Appl. Math. & Computing Vol. 3(007), No. 1 -, pp. 17-140 Website: http://jamc.net COMPUTATION OF ADDED MASS AND DAMPING COEFFICIENTS DUE TO A HEAVING CYLINDER DAMBARU D BHATTA Abstract. We present the

More information

EVALUATION OF THE EFFECT OF CONTACT BETWEEN RISERS AND GUIDE FRAMES ON OFFSHORE SPAR PLATFORM MOTIONS. A Dissertation BON-JUN KOO

EVALUATION OF THE EFFECT OF CONTACT BETWEEN RISERS AND GUIDE FRAMES ON OFFSHORE SPAR PLATFORM MOTIONS. A Dissertation BON-JUN KOO EVALUATION OF THE EFFECT OF CONTACT BETWEEN RISERS AND GUIDE FRAMES ON OFFSHORE SPAR PLATFORM MOTIONS A Dissertation by BON-JUN KOO Submitted to the Office of Graduate Studies of Texas A&M University in

More information

Available online at Procedia Engineering 2 (2010) Procedia Engineering 4 (2010) ISAB-2010.

Available online at   Procedia Engineering 2 (2010) Procedia Engineering 4 (2010) ISAB-2010. Available online at www.sciencedirect.com Procedia Engineering (010) 000 000 Procedia Engineering 4 (010) 99 105 ISAB-010 Procedia Engineering www.elsevier.com/locate/procedia www.elsevier.com/locate/procedia

More information

MATHIEU STABILITY IN THE DYNAMICS OF TLP's TETHERS CONSIDERING VARIABLE TENSION ALONG THE LENGTH

MATHIEU STABILITY IN THE DYNAMICS OF TLP's TETHERS CONSIDERING VARIABLE TENSION ALONG THE LENGTH MATHIEU STABILITY IN THE DYNAMICS OF TLP's TETHERS CONSIDERING VARIABLE TENSION ALONG THE LENGTH Simos, A.M.' & Pesce, C.P. Escola Politecnica, USP, CP61548, S.P., Brazil * Dep. of Naval Architecture and

More information

Chenyu Luan - CeSOS 1. Chenyu Luan a,b,c, Valentin Chabaud a,d, Erin E. Bachynski b,c,d, Zhen Gao b,c,d and Torgeir Moan a,b,c,d

Chenyu Luan - CeSOS 1. Chenyu Luan a,b,c, Valentin Chabaud a,d, Erin E. Bachynski b,c,d, Zhen Gao b,c,d and Torgeir Moan a,b,c,d Validation of a time-domain numerical approach for determining forces and moments in floaters by using measured data of a semi-submersible wind turbine model test Chenyu Luan a,b,c, Valentin Chabaud a,d,

More information

OTG-13. Prediction of air gap for column stabilised units. Won Ho Lee 01 February Ungraded. 01 February 2017 SAFER, SMARTER, GREENER

OTG-13. Prediction of air gap for column stabilised units. Won Ho Lee 01 February Ungraded. 01 February 2017 SAFER, SMARTER, GREENER OTG-13 Prediction of air gap for column stabilised units Won Ho Lee 1 SAFER, SMARTER, GREENER Contents Air gap design requirements Purpose of OTG-13 OTG-13 vs. OTG-14 Contributions to air gap Linear analysis

More information

Review on Vortex-Induced Vibration for Wave Propagation Class

Review on Vortex-Induced Vibration for Wave Propagation Class Review on Vortex-Induced Vibration for Wave Propagation Class By Zhibiao Rao What s Vortex-Induced Vibration? In fluid dynamics, vortex-induced vibrations (VIV) are motions induced on bodies interacting

More information

Renewable Energy: Ocean Wave-Energy Conversion

Renewable Energy: Ocean Wave-Energy Conversion Renewable Energy: Ocean Wave-Energy Conversion India Institute of Science Bangalore, India 17 June 2011 David R. B. Kraemer, Ph.D. University of Wisconsin Platteville USA B.S.: My background Mechanical

More information

Overview of BV R&D activities in Marine Hydrodynamics

Overview of BV R&D activities in Marine Hydrodynamics Overview of BV R&D activities in Marine Hydrodynamics Special attention to hydro-structure interactions Šime Malenica Bureau Veritas Marine & Offshore Division Research Department Harbin, 29th of June

More information

storage tank, or the hull of a ship at rest, is subjected to fluid pressure distributed over its surface.

storage tank, or the hull of a ship at rest, is subjected to fluid pressure distributed over its surface. Hydrostatic Forces on Submerged Plane Surfaces Hydrostatic forces mean forces exerted by fluid at rest. - A plate exposed to a liquid, such as a gate valve in a dam, the wall of a liquid storage tank,

More information

Dynamic behavior of offshore spar platforms under regular sea waves

Dynamic behavior of offshore spar platforms under regular sea waves Dynamic behavior of offshore spar platforms under regular sea waves A.K. Agarwal, A.K. Jain * Department of Civil Engineering, Indian Institute of Technology, Hauz Khas, New Delhi-110016, India Received

More information

TRUNCATED MODEL TESTS FOR MOORING LINES OF A SEMI-SUBMERSIBLE PLATFORM AND ITS EQUIVALENT COMPENSATED METHOD

TRUNCATED MODEL TESTS FOR MOORING LINES OF A SEMI-SUBMERSIBLE PLATFORM AND ITS EQUIVALENT COMPENSATED METHOD Journal of Marine Science and Technology, Vol., No., pp. 5-36 (4) 5 DOI:.69/JMST-3-8- TRUNCATED MODEL TESTS FOR MOORING LINES OF A SEMI-SUBMERSIBLE PLATFORM AND ITS EQUIVALENT COMPENSATED METHOD Dong-Sheng

More information

ANALYSIS OF THE DYNAMICS OF A FLOATING BODY WITH THIN SKIRTS BY USING THE DUAL BOUNDARY ELEMENT METHOD

ANALYSIS OF THE DYNAMICS OF A FLOATING BODY WITH THIN SKIRTS BY USING THE DUAL BOUNDARY ELEMENT METHOD 598 Journal of Marine Science and Technology, Vol. 3, No. 5, pp. 598-67 (5) DOI:.69/JMST-5-5- ANALYSIS OF THE DYNAMICS OF A FLOATING BODY WITH THIN SKIRTS BY USING THE DUAL BOUNDARY ELEMENT METHOD Wen-Kai

More information

Mooring Model for Barge Tows in Lock Chamber

Mooring Model for Barge Tows in Lock Chamber Mooring Model for Barge Tows in Lock Chamber by Richard L. Stockstill BACKGROUND: Extensive research has been conducted in the area of modeling mooring systems in sea environments where the forcing function

More information

Stability Analysis of a Wing in Ground Effect Craft

Stability Analysis of a Wing in Ground Effect Craft Stability Analysis of a Wing in Ground Effect Craft Rahimuddin 1,2, Adi Maimun 1, M. Mobassher Tofa 1, Saeed Jamei 1,Tarmizi 1 1. Marine Technology Centre, Faculty of Mechanical Engineering, Universiti

More information

Wave-free motions of isolated bodies and the existence of motion trapped modes

Wave-free motions of isolated bodies and the existence of motion trapped modes Under consideration for publication in J. Fluid Mech. 1 Wave-free motions of isolated bodies and the existence of motion trapped modes By D. V. E V A N S A N D R. P O R T E R School of Mathematics, University

More information

EXPERIMENTAL STUDY ON HYDRODYNAMIC PERFORMANCE OF A NEW TYPE OF DEEP DRAFT MULTI-COLUMN FDPSO

EXPERIMENTAL STUDY ON HYDRODYNAMIC PERFORMANCE OF A NEW TYPE OF DEEP DRAFT MULTI-COLUMN FDPSO Journal of Marine Science and Technology, Vol. 5, No. 3, pp. 39-3 (17) 39 DOI: 1.6119/JMST-17-15-1 EXPERIMENTAL STUDY ON HYDRODYNAMIC PERFORMANCE OF A NEW TYPE OF DEEP DRAFT MULTI-COLUMN FDPSO Jia-Yang

More information

Theory of Ship Waves (Wave-Body Interaction Theory) Quiz No. 2, April 25, 2018

Theory of Ship Waves (Wave-Body Interaction Theory) Quiz No. 2, April 25, 2018 Quiz No. 2, April 25, 2018 (1) viscous effects (2) shear stress (3) normal pressure (4) pursue (5) bear in mind (6) be denoted by (7) variation (8) adjacent surfaces (9) be composed of (10) integrand (11)

More information

NUMERICAL SIMULATION OF FREE STANDING HYBRID RISERS. A Thesis TIANCONG HOU

NUMERICAL SIMULATION OF FREE STANDING HYBRID RISERS. A Thesis TIANCONG HOU NUMERICAL SIMULATION OF FREE STANDING HYBRID RISERS A Thesis by TIANCONG HOU Submitted to the Office of Graduate and Professional Studies of Texas A&M University in partial fulfillment of the requirements

More information

Department of Aerospace and Ocean Engineering Graduate Study Specialization in Ocean Engineering. Written Preliminary Examination Information

Department of Aerospace and Ocean Engineering Graduate Study Specialization in Ocean Engineering. Written Preliminary Examination Information Department of Aerospace and Ocean Engineering Graduate Study Specialization in Ocean Engineering Written Preliminary Examination Information Faculty: Professors W. Neu, O. Hughes, A. Brown, M. Allen Test

More information

Classification of offshore structures

Classification of offshore structures Classification: Internal Status: Draft Classification of offshore structures A classification in degree of non-linearities and importance of dynamics. Sverre Haver, StatoilHydro, January 8 A first classification

More information

The Floating Production, Storage and Offloading Vessel Design for Oil Field Development in Harsh Marine Environment

The Floating Production, Storage and Offloading Vessel Design for Oil Field Development in Harsh Marine Environment The Floating Production, Storage and Offloading Vessel Design for Oil Field Development in Harsh Marine Environment Ezebuchi Akandu, a,* AtillaIncecik, a and Nigel Barltrop, a a) Department of Naval Architecture,

More information

Dynamic response and fluid structure interaction of submerged floating tunnels

Dynamic response and fluid structure interaction of submerged floating tunnels Fluid Structure Interaction and Moving Boundary Problems 247 Dynamic response and fluid structure interaction of submerged floating tunnels S. Remseth 1, B. J. Leira 2, A. Rönnquist 1 & G. Udahl 1 1 Department

More information

Recent hydrodynamic investigations Floating solar islands and Ringing of offshore wind turbines

Recent hydrodynamic investigations Floating solar islands and Ringing of offshore wind turbines Recent hydrodynamic investigations Floating solar islands and Ringing of offshore wind turbines AMOS days 2017 Trondheim, Norway, 09.11.2017 Trygve Kristiansen 1 1 Dept. of Marine Technology and NTNU AMOS,

More information

Min-Guk Seo, Dong-Min Park, Jae-Hoon Lee, Kyong-Hwan Kim, Yonghwan Kim

Min-Guk Seo, Dong-Min Park, Jae-Hoon Lee, Kyong-Hwan Kim, Yonghwan Kim International Research Exchange Meeting of Ship and Ocean Engineering in Osaka, December 1-, Osaka, Japan Comparative Study on Added Resistance Computation Min-Guk Seo, Dong-Min Park, Jae-Hoon Lee, Kyong-Hwan

More information

Published in: Proceedings of the Twentieth (2010) International Offshore and Polar Engineering Conference

Published in: Proceedings of the Twentieth (2010) International Offshore and Polar Engineering Conference Aalborg Universitet Performance Evaluation of an Axysimmetric Floating OWC Alves, M. A.; Costa, I. R.; Sarmento, A. J.; Chozas, Julia Fernandez Published in: Proceedings of the Twentieth (010) International

More information

Time Domain Simulation of Data Buoy Motion

Time Domain Simulation of Data Buoy Motion Proc. Natl. Sci. Counc. ROC(A) Vol. 22, No. 6, 1998. pp. 820-830 Time Domain Simulation of Data Buoy Motion MIN-CHIH HUANG Department of Naval Architecture and Marine Engineering National Cheng Kung University

More information