Available online at ScienceDirect. Aquatic Procedia 4 (2015 )

Size: px
Start display at page:

Download "Available online at ScienceDirect. Aquatic Procedia 4 (2015 )"

Transcription

1 Available online at ScienceDirect Aquatic Procedia 4 (5 ) INTERNATIONAL CONFERENCE ON WATER RESOURCES, COASTAL AND OCEAN ENGINEERING (ICWRCOE 5) A 3D numerical wave tank study for offshore structures with linear and nonlinear mooring Shivaji GT a, Sen D b * a Indian Register of Shipping, 5-A, Adi shankaracharya Marg, Opp Powai Lake, Powai, Mumbai-47, India b Indian Institute of Technology, Kharagpur, WB 73, India. Abstract As offshore industry progressively moves towards deeper water, coupled dynamic analysis of such structures with mooring lines and risers becomes increasingly important because of the growing influence of mooring lines on the response of these structures. Experimental studies for such deepwater structures with mooring lines face serious problems due to the involved scaling and modeling issues. For such studies therefore a numerical tool capable of simulating the coupled dynamics of offshore structures is almost indispensable where the effect of mooring lines, loads arising from structural elements such as heave damping plates which are primarily due to fluid viscosity, external effects such as wind loads in case of floating wind turbines etc. are all coupled with the wave loads acting on the structure. It is widely acknowledged that for such a general and versatile numerical tool a time domain solution scheme is preferred over frequency domain solutions, particularly if nonlinearities in wave loads, mooring lines etc. are to be considered albeit in some simplified way. Based on such a premise, a solution scheme following a 3D numerical wave tank approach but with significant difference and novelty in its implementation have been under development. The developed method is capable of simulating long duration wave-structure interactions including important nonlinearities in wave loads, and in principle can also consider effects from many external sources such as linear and nonlinear mooring stiffness. While many aspects of the scheme including a validation and verification process is reported elsewhere, the purpose of the present paper is to study in detail the effect of linear and nonlinear mooring line stiffness on practical offshore configurations. As regards wave induced hydrodynamic loads, both linear loads as well as nonlinear loads arising from steep nonlinear incident wavers are considered. Results demonstrate that nonlinear mooring stiffness can have significant influence on the response of the structure. The influence of nonlinearities in mooring stiffness is relatively more pronounced when water depth is less while in deeper water a linear stiffness appears to be adequate in capturing the structure s response. The influence of hydrodynamic nonlinearity is however significant in all cases. These and other important results for practical offshore structures with different mooring configurations are presented and discussed in the paper. * Corresponding author. Tel.: ; fax: address: deb@naval.iitkgp.ernet.in 4-4X 5 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license ( Peer-review under responsibility of organizing committee of ICWRCOE 5 doi:.6/j.aqpro.5..64

2 G.T. Shivaji and D. Sen / Aquatic Procedia 4 ( 5 ) The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license 5 The Authors. Published by Elsevier B.V. ( Peer-review under responsibility of organizing committee of ICWRCOE 5. Peer-review under responsibility of organizing committee of ICWRCOE 5 Keywords: 3D numerical wave tank, wave-structure interactions, offshore structures, mooring analysis, nonlinear wave loads. Introduction Offshore structures are required to operate in a hostile ocean environment. Wave induced motions and loads are the major factor affecting the normal operation of floating offshore units. Wind and current loads contribute to the drifting of these structures, adding to the drifting caused by mean second order wave loads. Restoring loads from the mooring line generally follows nonlinear force displacement trend. To study the combined effect of wave, wind, and current loads on a moored floating offshore structure, a time-domain solution is generally preferred over frequency domain solution as some of these loads and effects are nonlinear in nature. A brief survey of literature reveals that there have been many studies on moored structure response in waves in the past. Van Oortmerssen (976) and Wichers (979) have studied motion of moored ships exposed to ocean environment. Coupled analysis of moored SPAR platforms have been reported in Chen et al. (), Kim and Sclavounos (), Tahar et al. (6), Zhang et al. (8), Chen and Zhu (), and Yang et al. (). For a turret moored FPSO, a coupled dynamics analysis have been reported by Ormberg and Larsen (998), Heurtier et al. () and Kim et al. (3) have discussed the importance of mooring line dynamics in deeper water. Column stabilised spread moored semisubmersible coupled analysis have been presented in Garrett (5) and Kim et al. (3). Almost in all of the above time domain studies except Chen and Zhu () and Yang et al. () have followed a similar approach in which the frequency-dependent hydrodynamic coefficients (added mass, and damping) are usually computed by Morison equations, strip theory, or by linear radiation-diffraction theory, and frequency domain equations of motion are then transformed into time domain through impulse response function as suggested by Cummins (96). Mooring system dynamics is formulated using either FEM or lumped mass method and the combined equation of motion of the floating body and the mooring lines are then integrated in time domain. These studies have also shown that mooring line dynamics has substantial influence on floating body motions for water depth greater than m. In the present work, a direct time domain coupled analysis of moored floating ocean structures exposed to steep nonlinear waves have been performed following a method based upon a form of a three dimensional numerical wave tank (3D NWT) approach. The developed scheme has certain simplifying approximation to make it suitable for routine industry use without sacrificing on the accuracy. The developed numerical method can consider steep and nonlinear incident waves. The basic solution algorithm developed here is the extension of previous work detailed in Sen (), and Sen and Srinivasan (7). Rankine panel method is employed to determine the unknown flow field variables like potential and velocity, combining this with appropriate time integration schemes for updating the flow field variables as well as equations of body motions. Nonlinearities associated with incident steep waves are captured completely while the interaction hydrodynamics are linearized. Elastic catenary theory has been utilized to determine the horizontal restoring forces from the mooring lines. The coupled analysis method adopted here can be termed a coupled quasi-static method because the dynamics of mooring lines are neglected in the adopted static catenary theory. The results of developed numerical scheme in its fully linearized version are validated with other available numerical and experimental results. The necessity of nonlinear Froude Krylov (FK) and hydrostatic restoring formulation over a linear formulation, and the importance of taking a fully nonlinear incident wave are discussed. Finally, the influence of nonlinear mooring stiffness on the structure response is discussed.. Mathematical background At the outset, two right handed Cartesian coordinate systems are introduced: an earth fixed coordinated system Oxyz with origin at the undisturbed water surface z = with +z directed vertically upwards, and a body fixed system Ox y z with origin coinciding with body centre of mass. Fig. shows the brief sketch of the coordinate systems. Based on the assumption of potential flow theory, fluid velocity vector can be described by gradient of velocity potential (φ). Consider a circular fluid domain Ω with the interacting body placed at the centre as shown in Fig..

3 494 G.T. Shivaji and D. Sen / Aquatic Procedia 4 ( 5 ) The fluid domain is bounded by a time variant free surface on top, by the instantaneous wetted hull surface, by a time invariant flat bottom surface and by an exterior control surface. Fig. Coordinate system, Computational Domain The fluid flow problem is defined by the following governing equations and the corresponding boundary conditions: (, xyzt,;) fluid domain Ω () n VB. n n t x x y y z g. t on Ω D () on, (3) on z= η, (4) In addition, a suitable radiation condition on exterior control surface Ω C needs to be imposed to close the boundary value problem specification. In the above, is the free surface elevation, g is gravitational constant, t is time, h is the water depth, represent the velocity vector at any point on body surface, and is the exterior normal on the body surface. Eq. () given above is the Laplace equation, Eqs. () & (3) are impermeability conditions on rigid bottom surface Ω D and on instantaneous wetted body surface Ω B (t), Eq. (4) are the well known kinematic and dynamic free surface boundary conditions applicable on instantaneous free surface Ω F (t). Rankine panel method is adopted to solve the initial boundary value problem given above. At first, the Laplace equation given in Eq. is transformed into a well known boundary integral relation Eq.5 below which can be derived by application of Green s second identity to the velocity potential function and the basic Rankine source G = /4r in the computational fluid domain Ω, ( Q) ( P) ( P) ( Q) d( ) n (, ) (, ) B F D C Q r P Q r P Q n (5) Q In the above, P and Q are field and source points respectively, σ(p) is the solid angle, and is the radial distance. Constant panel boundary element method (BEM) is applied to solve the above boundary integral equation Eq. (5). Sea bed surface Ω D is discarded from the computational domain by making use of Rankine image sources. Exterior surface Ω C is discarded by enforcing a radiation condition in form of a wave absorbing beach on an outer annular part of the free surface (see eg. Cointe et al., 99; Ferrant, 996) and explained in Sen and Srinivasan (7). These approximations allow the discretized computational domain consisting of only body and free surface panels for the solution of the boundary value problem.

4 G.T. Shivaji and D. Sen / Aquatic Procedia 4 ( 5 ) The motion equation of rigid floating body is given in Newtonian form, [ M]{ v } { F}; { F} { FHS FHD FMoor Fother} {} v {};{} x v {} x (6) In Eq.6 [M] is the generalized mass matrix, is the generalized instantaneous acceleration vector, is the generalized velocity vector, and is the generalized total external force/moment vector acting on the body. The external forces consist of,,, and representing the generalized hydrostatic restoring force, total wave hydrodynamic force, mooring restoring force, and other forces such as viscous damping forces respectively. Instantaneous total forces and moments acting on the body are computed by following Eq.7. F pnd( ) ; M p( rn) d( ); p. t B() t B() t (7) In the above equation is the unit exterior normal to the body surface, is the radial distance between panel centroid and centre of mass, and p is the hydrodynamic pressure given by Bernoulli's equation. For linear computation (FK-Lin), the incident Froude Krylov forces and hydrodynamic interaction forces are computed on time invariant mean wetted surface i.e. on Ω B (), and hydrostatic restoring forces are expressed by means of wellknown hydrostatic restoring coefficients. In the approximate nonlinear formulation (termed FK-Nonlin here), incident Froude Krylov and hydrostatic restoring are computed on exact wetted surface at the displaced location Ω B (t) but the hydrodynamic interaction (diffraction + radiation) are linearized around mean wetted surface Ω B (). Details of numerical computation of total wave hydrodynamics loads are given in Sen (). In the developed numerical scheme, ambient incident waves can be prescribed by linear Airy wave theory, Stokes second order theory or even full nonlinear numerical wave theory. In the present work, we use a fully nonlinear incident wave defined by the Fourier approximation method of Rienecker and Fenton (98). Mooring line can be model as either linear or nonlinear springs. Nonlinear load excursion characteristics of the mooring lines are determined by static catenary theory. Assuming restraining forces and moment in the vertical direction (heave, roll and pitch) are comparatively much smaller than hydrostatic restoring forces/moments, in this paper only horizontal restoring forces from mooring lines are modeled. The horizontal stiffness of any elastic catenary mooring line as it translates in its own plane can be determined by the scope of the line for any given horizontal force. Fig. show a schematic view of single elastic mooring line with tension T at the fairlead connection. Horizontal load excursion plot can be established by the following relations (Barltrop 998): Fig.. Mooring line configuration for catenary solution

5 496 G.T. Shivaji and D. Sen / Aquatic Procedia 4 ( 5 ) H wl H wl L S S T H H LL sinh sinh w H w H AE T wh H AE AE; L T H AE AE w T wh ; H AE AE L T H AE AE w (8) where, w is the mooring line submerged weight per unit length, h is water depth or vertical span of the line, A and E are the average cross sectional area and the effective modulus of elasticity of the line, S is the horizontal scope, L is the length of the line in water (distance between touchdown to fairlead), and L T is the total un-stretched length. As indicated in Fig.. H, V, and T are the horizontal, vertical and net tension force at the fairlead. Quantities with subscripts are corresponding quantities related to the initial working pretension, thus H o is horizontal pretension force. Usually floating offshore structures are moored with multiple mooring lines; the net horizontal load exerted on the floating body can be obtained by combining the contribution from each line given by Faltinsen (99). In the present study, nonlinear load excursion plot if fitted with a nd order polynomial and the restoring horizontal loads are computed for exact displacement of the connection point at every time step. The time evolving six degree of freedom (DOF) motion of floating body can be obtained by integrating the motion equations Eq.6 and establishing the total forces and moments acting on the body at every instant. Estimation of total force/moments due to wave loading are detailed in Sen () are not repeated here. Fourth order Runge- Kutta method and Adams-Bashforth-Moulton methods are used to update the flow field and kinetics of floating body. 3. Numerical results and discussion Numerical results based on linear formulation (i.e. when all the external forces are computed on mean wetted surface at mean location) for a rectangular barge and a six-column semisubmersible are compared with well known experimental results of (98). In the present numerical simulation, 5% of critical roll damping is introduced as a roll damping value. Body panels of both geometries are displayed in Fig 3. The length, breadth and draft of the barge are 5m., 5m., and m. The semisubmersible pontoons are m long, total breadth and draft are 76m and m respectively. For the purpose of comparison, time series motion results of each individual incident wave are converted to frequency domain using Fast Fourier transform. The translational are non-dimensionalized by wave amplitude (ξ a ) and rotational motions by kξ a where k is /λ is wave number, and λ is wave length. Fig. 4 shows the comparison of motions RAOs for the rectangular barge and semisubmersible in a head sea (wave headings β=8 ). Observed good agreement validates the present method. Further detailed verification and validation of the developed scheme for the linear solution has been reported elsewhere by the authors. Fig. 3. Barge Six leg semisubmersible.

6 G.T. Shivaji and D. Sen / Aquatic Procedia 4 ( 5 ) ξ /ξ a ξ 3 /ξ a ξ 5 /kξ a ξ /ξ a ξ 3 /ξ a Fig. 4. RAOs Comparison Barge Six-column semisubmersible. ξ 5 /ξ a.5.5 Next, a brief comparative study between linear (FK-Lin) and nonlinear (FK-Nonlin) formulation for moored floating structures are presented. Fig. 5 displays a schematic view of barge spread moored with six lines operating at water depth of m, and the semisubmersible operating at water depth of m moored with four lines. Fig. 5. Spread mooring system Barge 6 lines Semisubmersible 4 lines. Mooring line parameter to determine load excursion plot are taken from Kim BW et al. (3). Load excursion plot for a single mooring line operating at these two different water depth are determined based on (8). Note that slope of this load-excursion plot about origin gives linear mooring stiffness. When nonlinearities in mooring stiffness are considered, then the horizontal tension at the fairlead is determined from the exact displacement of the connection point. Fig. 6 shows the resulting six DOF motions of moored barge and semisubmersible in bow quartering sea. For clarification only a part of motion results are shown for vertical motions (heave, roll, and pitch). Complete motion results are shown for horizontal motions (surge, sway, and yaw) to demonstrate the importance of low frequency motion along with wave frequency motions. For both structures, it is observed that the motions in horizontal direction show significant differences between FK-Lin and FK-Nonlin formulation. There seems negligible difference in the first order motion between both formulations. The nonlinear formulation is able to capture the low frequency motions along with mean offset position. Minor variations are observed in the vertical motions (heave, roll, and pitch) between both formulations. Even for semisubmersible which is a small water plane area structure,

7 498 G.T. Shivaji and D. Sen / Aquatic Procedia 4 ( 5 ) interesting results in horizontal motions are observed where in particular mean equilibrium position in yaw direction are captured by the nonlinear formulation. These results reveal the importance of nonlinear formulation over linear formulation for accurate prediction of six DOF motions of moored floating body. Fig. 6. Six DOF Motions for wave heading β =35 Barge ξ a =5, T= sec Semisubmersible ξ a =5, T= sec Next we present results to demonstrate the effect of considering linear and nonlinear mooring stiffness in modelling mooring line forces. Fig. 7 shows the motions of moored barge and semisubmersible for wave heading of 35, i.e. for the bow quartering waves. For both structures, nonlinear mooring stiffness provides greater restoring effect in surge and sway direction to restrict large mean offset, but also provides sufficient damping to arrest the low frequency motion to attain the equilibrium state. In case of the semisubmersible the effectiveness of nonlinear stiffness is realized only in yaw motion as compared to surge and sway motions. As expected, differences in vertical motions (heave, roll, and pitch) are absent. Fig. 7. Six DOF Motions for wave heading β =35 Barge in ξ a =5, T= sec Semisubmersible ξ a =5, T= sec

8 G.T. Shivaji and D. Sen / Aquatic Procedia 4 ( 5 ) Conclusion In this paper, a coupled time domain solution is developed based on a 3D NWT approach to determine six DOF motions of moored floating body. Rankine panel method is utilized to solve the initial boundary value hydrodynamic problem using lower order boundary element method. Two levels of numerical simulation are performed, a fully linear and an approximately nonlinear where FK and hydrostatic restoring forces are exact but the interaction hydrodynamic forces of radiation and diffraction are linearized. The developed method can consider the nonlinearity associated with mooring line stiffness which is determined based on static catenary equations. The results from the linear version of the present method have been compared with experimental results for a rectangular barge and twin pontoon six column semisubmersible and the computed motions results showed good correlation with experimental results. A comparative study between linear and nonlinear formulation showed significant variation in computed horizontal motion results between the two computations, revealing the importance of nonlinear formulation and in particular its ability to capture nonlinearity arising from the time variant wetted surface. Finally, motion results are compared when mooring line restoring forces are determined based on linear and nonlinear mooring stiffness. It is observed that the influences of nonlinear stiffness on horizontal motions are relatively more significant in shallow water compared to when water depth is large. References Barltrop NDP (Ed). (998) Floating structures: A guide for design and analysis, Volume II, Chapter 9. The Centre for Marine and Petroleum Technology Publication. Chen J and Zhu D. () A direct time domain simulation of floating structures with mooring lines. Proceeding of the ASME 3 th International conference on Ocean, Offshore and Arctic Engineering, Rotterdam, The Netherlands. Chen X, Zhang J, and Ma W. () On dynamic coupling effects between a spar and its mooring lines. Ocean Engineering 8(7), Cointe RGP, King B, Molin B and Tramoni M. (99) Nonlinear and linear motions of a rectangular barge in a perfect fluid. 8 th Symposium on Naval Hydrodynamics. The National Academies Press. Cummins WE. (96) The impulse response function and ship motions. no. dtmb-66. David Taylor model basin, Washington DC. Faltinsen OM. (99) Sea Loads on Ships and Offshore Structures. Chapter 8. Cambridge university press. Ferrant P. (996) Simulation of Strongly Nonlinear Wave Generation and Wave-Body Interactions Using a 3-D MEL Model. st Symposium on Naval Hydrodynamics, National Academy Press. Garrett, DL. (5) Coupled analysis of floating production systems. Ocean Engineering; 3(7), Heurtier JM, Le Buhan P, Fontaine E, Le Cunff C, Biolley F and Berhault C. () Coupled dynamic response of moored FPSO with risers. Proceedings of the th International Offshore and Polar Engineering Conference Stavanger, Norway. Kim BW, Sung HG, Kim JH, and Hong SY. (3) Comparison of linear spring and nonlinear FEM methods in dynamic coupled analysis of floating structure and mooring system. Journal of Fluids and Structures 4, 5-7. Kim S and Sclavounos P D. () Fully coupled response simulations of theme offshore structures in water depths of up to, feet. In Proceedings of the th International Offshore and Polar Engineering Conference. Ormberg, H and Larsen K. (998) Coupled analysis of floater motion and mooring dynamics for a turret-moored ship. Applied Ocean Research (), JA. (98) Low frequency second order wave exciting forces on floating structures. Dissertation, Delft University of Technology. Rienecker MM and Fenton JD. (98) A Fourier approximation method for steady water waves. Journal of Fluid Mechanics 4, Sen D. () Time-Domain Simulation of Motions of Large Structures in Nonlinear Waves. st International Conference on Offshore Mechanics and Arctic Engineering. Oslo, Norway. Sen, D and Srinivasan N. (7) Long Duration Simulation of Wave-Structure Interactions in a Numerical Wave Tank. th International symposium on practical design of ships and other floating structures. ABS, Houston. Tahar A, Halkyard J, and Irani M. (6) Comparison of time and frequency domain analysis with full scale data for the Horn Mountain Spar during hurricane Isidore. 5 th International Conference on Offshore Mechanics and Arctic Engineering. Van Oortmerssen G. (976) The motions of a moored ship in waves, Publication No.5, Netherlands ship model basin, Wageningen, The Netherlands. Wichers JEW. (979) Slowly oscillating mooring forces in single point mooring systems. nd International Conference on Behaviour of Offshore Structure. Yang M, Teng B, Ning D and Shi Z. () Coupled dynamic analysis for wave interaction with a truss spar and its mooring line/riser system in time domain. Ocean Engineering 39, Zhang F, Yang JM, Li RP, and Chen G. (8) Coupling effects for cell-truss spar platform: comparison of frequency and time domain analyses with model tests. Journal of Hydrodynamics,

Hull-tether-riser dynamics of deep water tension leg platforms

Hull-tether-riser dynamics of deep water tension leg platforms Fluid Structure Interaction V 15 Hull-tether-riser dynamics of deep water tension leg platforms R. Jayalekshmi 1, R. Sundaravadivelu & V. G. Idichandy 1 Department of Civil Engineering, NSS College of

More information

Seakeeping Models in the Frequency Domain

Seakeeping Models in the Frequency Domain Seakeeping Models in the Frequency Domain (Module 6) Dr Tristan Perez Centre for Complex Dynamic Systems and Control (CDSC) Prof. Thor I Fossen Department of Engineering Cybernetics 18/09/2007 One-day

More information

INFLUENCE OF TETHER LENGTH IN THE RESPONSE BEHAVIOR OF SQUARE TENSION LEG PLATFORM IN REGULAR WAVES

INFLUENCE OF TETHER LENGTH IN THE RESPONSE BEHAVIOR OF SQUARE TENSION LEG PLATFORM IN REGULAR WAVES INFLUENCE OF TETHER LENGTH IN THE RESPONSE BEHAVIOR OF SQUARE TENSION LEG PLATFOR IN REGULAR WAVES 1 Amr R. El-gamal, 2 Ashraf Essa, 1 Faculty of Engineering, Benha Univ., Egypt, 2 Associated prof., National

More information

Effect of Tethers Tension Force in the Behavior of a Tension Leg Platform Subjected to Hydrodynamic Force Amr R. El-Gamal, Ashraf Essa, Ayman Ismail

Effect of Tethers Tension Force in the Behavior of a Tension Leg Platform Subjected to Hydrodynamic Force Amr R. El-Gamal, Ashraf Essa, Ayman Ismail Vol:7, No:1, 13 Effect of Tethers Tension Force in the Behavior of a Tension Leg Platform Subjected to Hydrodynamic Force Amr R. El-Gamal, Ashraf Essa, Ayman Ismail International Science Index, Bioengineering

More information

HEAVE DAMPING EFFECTS DUE TO CIRCULAR PLATES ATTACHED AT KEEL TO SPAR HULL

HEAVE DAMPING EFFECTS DUE TO CIRCULAR PLATES ATTACHED AT KEEL TO SPAR HULL HEAVE DAMPING EFFECTS DUE TO CIRCULAR PLATES ATTACHED AT KEEL TO SPAR HULL P.Uma 1 1 M.TECH Civil Engineering Dadi Institute of Engineering and Technology College Abstract Single point Anchor Reservoir

More information

Simplified formulas of heave added mass coefficients at high frequency for various two-dimensional bodies in a finite water depth

Simplified formulas of heave added mass coefficients at high frequency for various two-dimensional bodies in a finite water depth csnak, 2015 Int. J. Nav. Archit. Ocean Eng. (2015) 7:115~127 http://dx.doi.org/10.1515/ijnaoe-2015-0009 pissn: 2092-6782, eissn: 2092-6790 Simplified formulas of heave added mass coefficients at high frequency

More information

1 POTENTIAL FLOW THEORY Formulation of the seakeeping problem

1 POTENTIAL FLOW THEORY Formulation of the seakeeping problem 1 POTENTIAL FLOW THEORY Formulation of the seakeeping problem Objective of the Chapter: Formulation of the potential flow around the hull of a ship advancing and oscillationg in waves Results of the Chapter:

More information

TRUNCATED MODEL TESTS FOR MOORING LINES OF A SEMI-SUBMERSIBLE PLATFORM AND ITS EQUIVALENT COMPENSATED METHOD

TRUNCATED MODEL TESTS FOR MOORING LINES OF A SEMI-SUBMERSIBLE PLATFORM AND ITS EQUIVALENT COMPENSATED METHOD Journal of Marine Science and Technology, Vol., No., pp. 5-36 (4) 5 DOI:.69/JMST-3-8- TRUNCATED MODEL TESTS FOR MOORING LINES OF A SEMI-SUBMERSIBLE PLATFORM AND ITS EQUIVALENT COMPENSATED METHOD Dong-Sheng

More information

Study on Motions of a Floating Body under Composite External Loads

Study on Motions of a Floating Body under Composite External Loads 137 Study on Motions of a Floating Body under Composite External Loads by Kunihiro Ikegami*, Member Masami Matsuura*, Member Summary In the field of marine engineering, various types of floating bodies

More information

Effect of Tethers Tension Force on the Behavior of Triangular Tension Leg Platform

Effect of Tethers Tension Force on the Behavior of Triangular Tension Leg Platform American Journal of Civil Engineering and Architecture,, Vol., No. 3, 7- Available online at http://pubs.sciepub.com/ajcea//3/3 Science and Education Publishing DOI:.9/ajcea--3-3 Effect of Tethers Tension

More information

DYNAMIC CHARACTERISTICS OF OFFSHORE TENSION LEG PLATFORMS UNDER HYDRODYNAMIC FORCES

DYNAMIC CHARACTERISTICS OF OFFSHORE TENSION LEG PLATFORMS UNDER HYDRODYNAMIC FORCES International Journal of Civil Engineering (IJCE) ISSN(P): 2278-9987; ISSN(E): 2278-9995 Vol. 3, Issue 1, Jan 214, 7-16 IASET DYNAMIC CHARACTERISTICS OF OFFSHORE TENSION LEG PLATFORMS UNDER HYDRODYNAMIC

More information

TIME-DOMAIN SIMULATION OF THE WAVE-

TIME-DOMAIN SIMULATION OF THE WAVE- Chinese-German Joint ymposium on Hydraulic and Ocean Engineering, August 4-3, 8, Darmstadt TIME-DOMAIN IMULATION OF THE WAVE- CURRENT DIFFRACTION FROM 3D BOD Abstract: Zhen Liu, ing Gou and Bin Teng tate

More information

Viscous Damping of Vessels Moored in Close Proximity of Another Object

Viscous Damping of Vessels Moored in Close Proximity of Another Object Proceedings of The Fifteenth (5) International Offshore and Polar Engineering Conference Seoul, Korea, June 9 4, 5 Copyright 5 by The International Society of Offshore and Polar Engineers ISBN -885-4-8

More information

A numerical investigation of second-order difference-frequency forces and motions of a moored ship in shallow water

A numerical investigation of second-order difference-frequency forces and motions of a moored ship in shallow water J. Ocean Eng. Mar. Energy (205) :57 79 DOI 0.007/s40722-05-004-6 RESEARCH ARTICLE A numerical investigation of second-order difference-frequency forces and motions of a moored ship in shallow water Jikun

More information

International Journal of Scientific & Engineering Research Volume 9, Issue 2, February ISSN

International Journal of Scientific & Engineering Research Volume 9, Issue 2, February ISSN International Journal of Scientific & Engineering Research Volume 9, Issue, February-8 48 Structural Response of a Standalone FPSO by Swell Wave in Offshore Nigeria Abam Tamunopekere Joshua*, Akaawase

More information

Proceedings of the ASME th International Conference on Ocean, Offshore and Arctic Engineering OMAE2013 June 9-14, 2013, Nantes, France

Proceedings of the ASME th International Conference on Ocean, Offshore and Arctic Engineering OMAE2013 June 9-14, 2013, Nantes, France Proceedings of the ASME 2011 32th International Conference on Ocean, Offshore and Arctic Engineering OMAE2013 June 9-14, 2013, Nantes, France OMAE2013-10124 APPLYING STRIP THEORY BASED LINEAR SEAKEEPING

More information

Dynamics and Control of the GyroPTO Wave Energy Point Absorber under Sea Waves

Dynamics and Control of the GyroPTO Wave Energy Point Absorber under Sea Waves Available online at www.sciencedirect.com ScienceDirect Procedia Engineering 99 (7) 88 8 X International Conference on Structural Dynamics, EURODYN 7 Dynamics and Control of the GyroPTO Wave Energy Point

More information

Floating substructure flexibility of large-volume 10MW offshore wind turbine platforms in dynamic calculations

Floating substructure flexibility of large-volume 10MW offshore wind turbine platforms in dynamic calculations Journal of Physics: Conference Series PAPER OPEN ACCESS Floating substructure flexibility of large-volume 10MW offshore wind turbine platforms in dynamic calculations To cite this article: Michael Borg

More information

Overview of BV R&D activities in Marine Hydrodynamics

Overview of BV R&D activities in Marine Hydrodynamics Overview of BV R&D activities in Marine Hydrodynamics Special attention to hydro-structure interactions Šime Malenica Bureau Veritas Marine & Offshore Division Research Department Harbin, 29th of June

More information

On the evaluation quadratic forces on stationary bodies

On the evaluation quadratic forces on stationary bodies On the evaluation quadratic forces on stationary bodies Chang-Ho Lee AMIT Inc., Chestnut Hill MA, USA June 9, 006 Abstract. Conservation of momentum is applied to finite fluid volume surrounding a body

More information

Response of square tension leg platforms to hydrodynamic forces

Response of square tension leg platforms to hydrodynamic forces Ocean Systems Engineering, Vol., No. (01) 000-000 1 Response of square tension leg platforms to hydrodynamic forces A.M. Abou-Rayan 1, Ayman A. Seleemah* and Amr R. El-gamal 1 1 Civil Engineering Tec.

More information

WAMIT-MOSES Hydrodynamic Analysis Comparison Study. JRME, July 2000

WAMIT-MOSES Hydrodynamic Analysis Comparison Study. JRME, July 2000 - Hydrodynamic Analysis Comparison Study - Hydrodynamic Analysis Comparison Study JRME, Prepared by Hull Engineering Department J. Ray McDermott Engineering, LLC 1 - Hydrodynamic Analysis Comparison Study

More information

NUMERICAL SIMULATION OF FREE STANDING HYBRID RISERS. A Thesis TIANCONG HOU

NUMERICAL SIMULATION OF FREE STANDING HYBRID RISERS. A Thesis TIANCONG HOU NUMERICAL SIMULATION OF FREE STANDING HYBRID RISERS A Thesis by TIANCONG HOU Submitted to the Office of Graduate and Professional Studies of Texas A&M University in partial fulfillment of the requirements

More information

1. Froude Krylov Excitation Force

1. Froude Krylov Excitation Force .016 Hydrodynamics eading #8.016 Hydrodynamics Prof. A.H. Techet 1. Froude Krylov Ecitation Force Ultimately, if we assume the body to be sufficiently small as not to affect the pressure field due to an

More information

Effect of nonlinear Froude-Krylov and restoring forces on a hinged

Effect of nonlinear Froude-Krylov and restoring forces on a hinged Effect of nonlinear Froude-Krylov and restoring forces on a hinged multibody WEC Øyvind Y. Rogne (Aker Solutions & CeSOS) Torgeir Moan (CeSOS) Svein Ersdal (Aker Solutions) How the WEC works N buoys hinged

More information

NUMERICAL INVESTIGATION OF DAMPING EFFECTS ON COUPLED HEAVE AND PITCH MOTION OF AN INNOVATIVE DEEP DRAFT MULTI-SPAR

NUMERICAL INVESTIGATION OF DAMPING EFFECTS ON COUPLED HEAVE AND PITCH MOTION OF AN INNOVATIVE DEEP DRAFT MULTI-SPAR Journal of Marine Science and Technology, Vol. 9, No., pp. - () NUMERICAL INVESTIGATION OF DAMPING EFFECTS ON COUPLED HEAVE AND PITCH MOTION OF AN INNOVATIVE DEEP DRAFT MULTI-SPAR Bin-Bin Li*, Jin-Ping

More information

Seakeeping characteristics of intact and damaged ship in the Adriatic Sea

Seakeeping characteristics of intact and damaged ship in the Adriatic Sea Towards Green Marine Technology and Transport Guedes Soares, Dejhalla & Pavleti (Eds) 2015 Taylor & Francis Group, London, ISBN 978-1-138-02887-6 Seakeeping characteristics of intact and damaged ship in

More information

OTG-13. Prediction of air gap for column stabilised units. Won Ho Lee 01 February Ungraded. 01 February 2017 SAFER, SMARTER, GREENER

OTG-13. Prediction of air gap for column stabilised units. Won Ho Lee 01 February Ungraded. 01 February 2017 SAFER, SMARTER, GREENER OTG-13 Prediction of air gap for column stabilised units Won Ho Lee 1 SAFER, SMARTER, GREENER Contents Air gap design requirements Purpose of OTG-13 OTG-13 vs. OTG-14 Contributions to air gap Linear analysis

More information

Renewable Energy: Ocean Wave-Energy Conversion

Renewable Energy: Ocean Wave-Energy Conversion Renewable Energy: Ocean Wave-Energy Conversion India Institute of Science Bangalore, India 17 June 2011 David R. B. Kraemer, Ph.D. University of Wisconsin Platteville USA B.S.: My background Mechanical

More information

Mooring Model for Barge Tows in Lock Chamber

Mooring Model for Barge Tows in Lock Chamber Mooring Model for Barge Tows in Lock Chamber by Richard L. Stockstill BACKGROUND: Extensive research has been conducted in the area of modeling mooring systems in sea environments where the forcing function

More information

Hydrodynamic Forces on Floating Bodies

Hydrodynamic Forces on Floating Bodies Hydrodynamic Forces on Floating Bodies 13.42 Lecture Notes; c A.H. Techet 1. Forces on Large Structures For discussion in this section we will be considering bodies that are quite large compared to the

More information

Hydrodynamic analysis and modelling of ships

Hydrodynamic analysis and modelling of ships Hydrodynamic analysis and modelling of ships Wave loading Harry B. Bingham Section for Coastal, Maritime & Structural Eng. Department of Mechanical Engineering Technical University of Denmark DANSIS møde

More information

The use of a floating quay for container terminals. 1. Introduction

The use of a floating quay for container terminals. 1. Introduction The use of a floating quay for container terminals. M. van der Wel M.vanderWel@student.tudelft.nl Ir. J.G. de Gijt J.G.deGijt@tudelft.nl Public Works Rotterdam/TU Delft Ir. D. Dudok van Heel D.DudokvanHeel@gw.rotterdam.nl

More information

Time domain assessment of nonlinear coupled ship motions and sloshing in free surface tanks

Time domain assessment of nonlinear coupled ship motions and sloshing in free surface tanks Time domain assessment of nonlinear coupled ship motions and sloshing in free surface tanks 1 outline 1.Motivation & state-of-the-art 2.Simulation approach 1.SHIXDOF: nonlinear ship motion TD 6DOF 2.AQUAgpusph:

More information

EVALUATION OF THE EFFECT OF CONTACT BETWEEN RISERS AND GUIDE FRAMES ON OFFSHORE SPAR PLATFORM MOTIONS. A Dissertation BON-JUN KOO

EVALUATION OF THE EFFECT OF CONTACT BETWEEN RISERS AND GUIDE FRAMES ON OFFSHORE SPAR PLATFORM MOTIONS. A Dissertation BON-JUN KOO EVALUATION OF THE EFFECT OF CONTACT BETWEEN RISERS AND GUIDE FRAMES ON OFFSHORE SPAR PLATFORM MOTIONS A Dissertation by BON-JUN KOO Submitted to the Office of Graduate Studies of Texas A&M University in

More information

NONLINEAR BEHAVIOR OF A SINGLE- POINT MOORING SYSTEM FOR FLOATING OFFSHORE WIND TURBINE

NONLINEAR BEHAVIOR OF A SINGLE- POINT MOORING SYSTEM FOR FLOATING OFFSHORE WIND TURBINE NONLINEAR BEHAVIOR OF A SINGLE- POINT MOORING SYSTEM FOR FLOATING OFFSHORE WIND TURBINE Ma Chong, Iijima Kazuhiro, Masahiko Fujikubo Dept. of Naval Architecture and Ocean Engineering OSAKA UNIVERSITY RESEARCH

More information

Dynamic behavior of offshore spar platforms under regular sea waves

Dynamic behavior of offshore spar platforms under regular sea waves Dynamic behavior of offshore spar platforms under regular sea waves A.K. Agarwal, A.K. Jain * Department of Civil Engineering, Indian Institute of Technology, Hauz Khas, New Delhi-110016, India Received

More information

COUPLED ANALYSIS OF THE MOTION AND MOORING LOADS OF A SPAR CONSTITUTION. A Thesis CHENGXI LI MASTER OF SCIENCE. Major Subject: Ocean Engineering

COUPLED ANALYSIS OF THE MOTION AND MOORING LOADS OF A SPAR CONSTITUTION. A Thesis CHENGXI LI MASTER OF SCIENCE. Major Subject: Ocean Engineering COUPLED ANALYSIS OF THE MOTION AND MOORING LOADS OF A SPAR CONSTITUTION A Thesis by CHENGXI LI Submitted to the Office of Graduate Studies of Texas A&M University in partial fulfillment of the requirements

More information

Hydrodynamic Interaction of Three Floating Structures

Hydrodynamic Interaction of Three Floating Structures Hydrodynamic Interaction of Three Floating Structures Muhammad Farid Abdul Halim, a, and Jaswar Koto, a,b,* a) Department of Aeronautical, Automotive and Ocean Engineering, Faculty of Mechanical Engineering,

More information

Influence of yaw-roll coupling on the behavior of a FPSO: an experimental and numerical investigation

Influence of yaw-roll coupling on the behavior of a FPSO: an experimental and numerical investigation Influence of yaw-roll coupling on the behavior of a FPSO: an experimental and numerical investigation Claudio Lugni a,b, Marilena Greco a,b, Odd Magnus Faltinsen b a CNR-INSEAN, The Italian Ship Model

More information

PARAMETRIC EXCITATION OF A DWSC. A Thesis CHANDAN LAKHOTIA

PARAMETRIC EXCITATION OF A DWSC. A Thesis CHANDAN LAKHOTIA PARAMETRIC EXCITATION OF A DWSC A Thesis by CHANDAN LAKHOTIA Submitted to the Office of Graduate Studies of Texas A&M University in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE

More information

Prediction of Semi-Submersible s Motion Response by Using Diffraction Potential Theory and Heave Viscous Damping Correction

Prediction of Semi-Submersible s Motion Response by Using Diffraction Potential Theory and Heave Viscous Damping Correction Jurnal Teknologi Full paper Prediction of Semi-Submersible s Motion Response by Using Diffraction Potential Theory and Heave Viscous Damping Correction C. L. Siow a, Jaswar Koto a,b*, Hassan Abby c, N.

More information

Available online at Procedia Engineering 2 (2010) Procedia Engineering 4 (2010) ISAB-2010.

Available online at   Procedia Engineering 2 (2010) Procedia Engineering 4 (2010) ISAB-2010. Available online at www.sciencedirect.com Procedia Engineering (010) 000 000 Procedia Engineering 4 (010) 99 105 ISAB-010 Procedia Engineering www.elsevier.com/locate/procedia www.elsevier.com/locate/procedia

More information

The effects of second-order hydrodynamics on a semisubmersible floating offshore wind turbine

The effects of second-order hydrodynamics on a semisubmersible floating offshore wind turbine Journal of Physics: Conference Series OPEN ACCESS The effects of second-order hydrodynamics on a semisubmersible floating offshore wind turbine To cite this article: I Bayati et al 2014 J. Phys.: Conf.

More information

Evaluation of Hydrodynamic Performance of a Damaged Ship in Waves

Evaluation of Hydrodynamic Performance of a Damaged Ship in Waves Evaluation of Hydrodynamic Performance of a Damaged Ship in Waves Sa Young Hong, Seok-Kyu Cho, Byoung Wan Kim, Gyeong Jung Lee, Ki-Sup Kim Maritime and Ocean Engineering Research Institute/KORDI, Daejeon,

More information

Analytical Predictions of the Air Gap Response of Floating Structures

Analytical Predictions of the Air Gap Response of Floating Structures Lance Manuel Department of Civil Engineering, University of Texas at Austin, Austin, TX 78712 e-mail: lmanuel@mail.utexas.edu Bert Sweetman Steven R. Winterstein Department of Civil and Environmental Engineering,

More information

Semi-Submersible Heave Response Study Using Diffraction Potential Theory with Viscous Damping Correction

Semi-Submersible Heave Response Study Using Diffraction Potential Theory with Viscous Damping Correction Semi-Submersible Heave Response Study Using Diffraction Potential Theory with Viscous Damping Correction a) Mechanical Engineering, Universiti Teknologi Malaysia b) Ocean and Aerospace Research Institute,

More information

SIMPLIFICATION BY MATHEMATIC MODEL TO SOLVE THE EXPERIMENTAL OF SLOSHING EFFECT ON THE FPSO VESSEL

SIMPLIFICATION BY MATHEMATIC MODEL TO SOLVE THE EXPERIMENTAL OF SLOSHING EFFECT ON THE FPSO VESSEL European International Journal of Science and Technology Vol. 3 No. 5 June, 2014 SIMPLIFICATION BY MATHEMATIC MODEL TO SOLVE THE EXPERIMENTAL OF SLOSHING EFFECT ON THE FPSO VESSEL LuhutTumpalParulianSinaga

More information

Prediction of Wave and Wind induced Dynamic Response in Time Domain using RM Bridge

Prediction of Wave and Wind induced Dynamic Response in Time Domain using RM Bridge Prediction of Wave and Wind induced Dynamic Response in Time Domain using RM Bridge Johann Stampler, Jörg Sello, Mitja Papinutti Bentley Systems Austria, Graz, Austria Arne Bruer, Mathias Marley TDA AS,

More information

A Preliminary Analysis on the Statistics of about One-Year Air Gap Measurement for a Semi-submersible in South China Sea

A Preliminary Analysis on the Statistics of about One-Year Air Gap Measurement for a Semi-submersible in South China Sea Proceedings of the Twenty-sixth (2016) International Ocean and Polar Engineering Conference Rhodes, Greece, June 26-July 1, 2016 Copyright 2016 by the International Society of Offshore and Polar Engineers

More information

Design, Construction & Operation of LNG/LPG Ships, November, Glasgow, UK

Design, Construction & Operation of LNG/LPG Ships, November, Glasgow, UK Design, Construction & Operation of LNG/LPG Ships, 29-3 November, Glasgow, UK SLOSHING AND SWIRLING IN MEMBRANE LNG TANKS AND THEIR COUPLING EFFECTS WITH SHIP MOTION M Arai and G M Karuka, Yokohama National

More information

ROLL MOTION OF A RORO-SHIP IN IRREGULAR FOLLOWING WAVES

ROLL MOTION OF A RORO-SHIP IN IRREGULAR FOLLOWING WAVES 38 Journal of Marine Science and Technology, Vol. 9, o. 1, pp. 38-44 (2001) ROLL MOTIO OF A RORO-SHIP I IRREGULAR FOLLOWIG WAVES Jianbo Hua* and Wei-Hui Wang** Keywords: roll motion, parametric excitation,

More information

Trajectory Tracking of a Near-Surface Torpedo using Numerical Methods

Trajectory Tracking of a Near-Surface Torpedo using Numerical Methods ISSN (Print) : 2347-671 An ISO 3297: 27 Certified Organization Vol.4, Special Issue 12, September 215 Trajectory Tracking of a Near-Surface Torpedo using Numerical Methods Anties K. Martin, Anubhav C.A.,

More information

EXPERIMENTAL STUDY OF MOTIONS OF TWO FLOATING OFFSHORE STRUCTURES IN WAVES

EXPERIMENTAL STUDY OF MOTIONS OF TWO FLOATING OFFSHORE STRUCTURES IN WAVES Brodogradnja/Shipbuilding/Open access Volume 67 Number 2, 2016 Hassan Abyn M. Rafiqul Islam Adi Maimun Amin Mahmoudi Jaswar Kato http://dx.doi.org/10.21278/brod67201 ISSN 0007-215X eissn 1845-5859 EXPERIMENTAL

More information

Analysis of the DeepCwind model tests and a first attempt to simulate a semi-submersible floating wind platform with anysim

Analysis of the DeepCwind model tests and a first attempt to simulate a semi-submersible floating wind platform with anysim Analysis of the DeepCwind model tests and a first attempt to simulate a semi-submersible floating wind platform with anysim Final report Report No. : 24602-MSG-1 Date : 20th March 2012 M A R I N P.O. Box

More information

A STUDY ON INFLUENCE OF HEAVE PLATE ON DYNAMIC RESPONSE OF FLOATING OFFSHORE WIND TURBINE SYSTEM

A STUDY ON INFLUENCE OF HEAVE PLATE ON DYNAMIC RESPONSE OF FLOATING OFFSHORE WIND TURBINE SYSTEM A STUDY ON INFLUENCE OF HEAVE PLATE ON DYNAMIC RESPONSE OF FLOATING OFFSHORE WIND TURBINE SYSTEM Takeshi Ishihara, Muhammad Bilal Waris & Hiroyuki Sukegawa Professor, Department of Civil Engineering, School

More information

Experimental investigation of nonlinear dynamic tension In mooring lines

Experimental investigation of nonlinear dynamic tension In mooring lines J Mar Sci Technol (2012) 17:181-186 DOI 10.1007/S00773-012-0160-7 ORIGINAL ARTICLE Experimental investigation of nonlinear dynamic tension In mooring lines Su-xia Zhang You-gang Tang Xi-jun Liu Received:

More information

Development of formulas allowing to predict hydrodynamic responses of inland vessels operated within the range of navigation 0.6 Hs 2.

Development of formulas allowing to predict hydrodynamic responses of inland vessels operated within the range of navigation 0.6 Hs 2. Gian Carlo Matheus Torres 6 th EMship cycle: October 2015 February 2017 Master Thesis Development of formulas allowing to predict hydrodynamic responses of inland vessels operated within the range of navigation

More information

EXPERIMENTAL STUDY ON HYDRODYNAMIC PERFORMANCE OF A NEW TYPE OF DEEP DRAFT MULTI-COLUMN FDPSO

EXPERIMENTAL STUDY ON HYDRODYNAMIC PERFORMANCE OF A NEW TYPE OF DEEP DRAFT MULTI-COLUMN FDPSO Journal of Marine Science and Technology, Vol. 5, No. 3, pp. 39-3 (17) 39 DOI: 1.6119/JMST-17-15-1 EXPERIMENTAL STUDY ON HYDRODYNAMIC PERFORMANCE OF A NEW TYPE OF DEEP DRAFT MULTI-COLUMN FDPSO Jia-Yang

More information

Semi-Displacement Vessel Including Applications to Calm-Water Broaching

Semi-Displacement Vessel Including Applications to Calm-Water Broaching Potential-Flow Predictions of a Semi-Displacement Vessel Including pplications to Calm-Water roaching CeSOS Conference 29-May-2013 abak Ommani www.cesos.ntnu.no 29-May-2013, CeSOS Conference CeSOS Centre

More information

Notes for the Students by Marilena Greco:

Notes for the Students by Marilena Greco: Notes for the Students by Marilena Greco: In the following you find topics proposed by MARINTEK, by DNV GL and by SINTEF Fisheries and Aquaculture, for possible Project and Master Theses on hydrodynamic

More information

Investigation of Drill Bit Heave Response to Drill Rig Heave Excitation

Investigation of Drill Bit Heave Response to Drill Rig Heave Excitation Investigation of Drill Bit Heave Response to Drill Rig Heave Excitation Liqing Huang, Galin V. Tahchiev and Yusong Cao MARINTEK USA Inc 263 Augusta Drive, Suite 2, Houston, Texas, 7757, USA ABSTRACT Managing

More information

Classification of offshore structures

Classification of offshore structures Classification: Internal Status: Draft Classification of offshore structures A classification in degree of non-linearities and importance of dynamics. Sverre Haver, StatoilHydro, January 8 A first classification

More information

Simple Estimation of Wave Added Resistance from Experiments in Transient and Irregular Water Waves

Simple Estimation of Wave Added Resistance from Experiments in Transient and Irregular Water Waves Simple Estimation of Wave Added Resistance from Experiments in Transient and Irregular Water Waves by Tsugukiyo Hirayama*, Member Xuefeng Wang*, Member Summary Experiments in transient water waves are

More information

ANALYSIS OF THE AXIAL BEHAVIOR OF A DRILLING RISER WITH A SUSPENDED MASS

ANALYSIS OF THE AXIAL BEHAVIOR OF A DRILLING RISER WITH A SUSPENDED MASS Copyright 2013 by ABCM ANALYSIS OF THE AXIAL BEHAVIOR OF A DRILLING RISER WITH A SUSPENDED MASS Marcelo Anunciação Jaculli José Ricardo Pelaquim Mendes Celso Kazuyuki Morooka Dept. of Petroleum Engineering

More information

Proceedings of the ASME nd International Conference on Ocean, Offshore and Arctic Engineering OMAE2013 June 9-14, 2013, Nantes, France

Proceedings of the ASME nd International Conference on Ocean, Offshore and Arctic Engineering OMAE2013 June 9-14, 2013, Nantes, France Proceedings of the ASME 2013 32nd International Conference on Ocean, Offshore and Arctic Engineering OMAE2013 June 9-14, 2013, Nantes, France OMAE2013-11405 SECOND-ORDER RANDOM WAVE KINEMATICS AND RESULTING

More information

Wave Energy Converter Modeling in the Time Domain: A Design Guide

Wave Energy Converter Modeling in the Time Domain: A Design Guide Wave Energy Converter Modeling in the Time Domain: A Design Guide Bret Bosma, Ted K.A. Brekken, H. Tuba Özkan-Haller, Solomon C. Yim Oregon State University Corvallis, OR USA Abstract As the ocean wave

More information

Min-Guk Seo, Dong-Min Park, Jae-Hoon Lee, Kyong-Hwan Kim, Yonghwan Kim

Min-Guk Seo, Dong-Min Park, Jae-Hoon Lee, Kyong-Hwan Kim, Yonghwan Kim International Research Exchange Meeting of Ship and Ocean Engineering in Osaka, December 1-, Osaka, Japan Comparative Study on Added Resistance Computation Min-Guk Seo, Dong-Min Park, Jae-Hoon Lee, Kyong-Hwan

More information

- inertia forces due to the virtual mass of the tanker

- inertia forces due to the virtual mass of the tanker OTC 7444 Investigation Into Scale Effects on Motions and Mooring Forces of a Turret-Moored Tanker Johan Wichers and Albert Dercksen, Maritime Research Inst. Netherlands Copyright 1994, Offshore Technology

More information

Coupled Heave-Pitch Motions and Froude Krylov Excitation Forces

Coupled Heave-Pitch Motions and Froude Krylov Excitation Forces Coupled Heave-Pitch Motions and Froude Krylov Excitation Forces 13.42 Lecture Notes; Spring 2004; c A.H. Techet 1. Coupled Equation of Motion in Heave and Pitch Once we have set up the simple equation

More information

Application of the open source code Nemoh for modelling of added mass and damping in ship motion simulations

Application of the open source code Nemoh for modelling of added mass and damping in ship motion simulations DEGREE PROJECT IN MECHANICAL ENGINEERING, SECOND CYCLE, 30 CREDITS STOCKHOLM, SWEDEN 2018 Application of the open source code Nemoh for modelling of added mass and damping in ship motion simulations EMIL

More information

Dynamic response analysis of floating offshore wind turbine with different types of heave plates and mooring systems by using a fully nonlinear model

Dynamic response analysis of floating offshore wind turbine with different types of heave plates and mooring systems by using a fully nonlinear model Coupled Systems Mechanics, Vol. 1, No. 3 (212) 247-268 247 DOI: http://dx.doi.org/1.12989/csm.212.1.3.247 Dynamic response analysis of floating offshore wind turbine with different types of heave plates

More information

A MULTI-BODY ALGORITHM FOR WAVE ENERGY CONVERTERS EMPLOYING NONLINEAR JOINT REPRESENTATION

A MULTI-BODY ALGORITHM FOR WAVE ENERGY CONVERTERS EMPLOYING NONLINEAR JOINT REPRESENTATION Proceedings of the ASME 2014 33rd International Conference on Ocean, Offshore and Arctic Engineering OMAE2014 June 8-13, 2014, San Francisco, California, USA OMAE2014-23864 A MULTI-BODY ALGORITHM FOR WAVE

More information

NUMERICAL ANALYSIS OF A FLOATING HARBOR SYSTEM AND COMPARISON WITH EXPERIMENTAL RESULTS. A Thesis HEONYONG KANG

NUMERICAL ANALYSIS OF A FLOATING HARBOR SYSTEM AND COMPARISON WITH EXPERIMENTAL RESULTS. A Thesis HEONYONG KANG NUMERICAL ANALYSIS OF A FLOATING HARBOR SYSTEM AND COMPARISON WITH EXPERIMENTAL RESULTS A Thesis by HEONYONG KANG Submitted to the Office of Graduate Studies of Texas A&M University in partial fulfillment

More information

EFFECT OF FLAP TYPE WAVE ENERGY CONVERTERS ON THE RESPONSE OF A SEMI-SUBMERSIBLE WIND TURBINE IN OPERATIONAL CONDITIONS

EFFECT OF FLAP TYPE WAVE ENERGY CONVERTERS ON THE RESPONSE OF A SEMI-SUBMERSIBLE WIND TURBINE IN OPERATIONAL CONDITIONS Proceedings of the ASME 214 33rd International Conference on Ocean, Offshore and Arctic Engineering OMAE214 June 8-13, 214, San Francisco, California, USA OMAE214-2465 EFFECT OF FLAP TYPE WAVE ENERGY CONVERTERS

More information

INVESTIGATION OF SEAKEEPING CHARACTERISTICS OF HIGH-SPEED CATAMARANS IN WAVES

INVESTIGATION OF SEAKEEPING CHARACTERISTICS OF HIGH-SPEED CATAMARANS IN WAVES Journal of Marine Science and Technology, Vol. 12, No. 1, pp. 7-15 (2004) 7 INVESTIGATION OF SEAKEEPING CHARACTERISTICS OF HIGH-SPEED CATAMARANS IN WAVES Chih-Chung Fang* and Hoi-Sang Chan** Key words:

More information

Hull loads and response, hydroelasticity

Hull loads and response, hydroelasticity Transactions on the Built Environment vol 1, 1993 WIT Press, www.witpress.com, ISSN 1743-3509 Hull loads and response, hydroelasticity effects on fast monohulls E. Jullumstr0 & J.V. Aarsnes Division of

More information

The Performance of Heaving Bodies

The Performance of Heaving Bodies The Performance of Heaving Bodies P. Persad 1 & The Caribbean region has been identified as a favourable A. Singh 2 area for the exploitation of wave energy. A cost effective approach to the development

More information

ITTC Recommended Procedures and Guidelines

ITTC Recommended Procedures and Guidelines Page 1 of 9 CONTENTS Model Test Experiments... 2 1. PURPOSE OF PROCEDURE... 2 2. PARAMETERS... 2 2.1 Model Parameters... 3 2.2 Environmental Parameters... 3 2.3 Operation of Thrusters... 3 2.3.1 Thruster-Current

More information

MODELLING RECURRENCE MOTION OF A LARGE VOLUME SEMI- SUBMERSIBLE

MODELLING RECURRENCE MOTION OF A LARGE VOLUME SEMI- SUBMERSIBLE Jurnal Mekanikal December 2012, No 35, 13-27 MODELLING RECURRENCE MOTION OF A LARGE VOLUME SEMI- SUBMERSIBLE Agoes Priyanto *, Adi Maimun and Dwi Putra Rishandi Faculty of Mechanical Engineering, Universiti

More information

COUPLED HYDRODYNAMIC AND STRUCTURAL BEHAVIOR OF SPAR BUOY FLOATING WIND TURBINES USING FAST

COUPLED HYDRODYNAMIC AND STRUCTURAL BEHAVIOR OF SPAR BUOY FLOATING WIND TURBINES USING FAST 8 th GRACM International Congress on Computational Mechanics Volos, 1 July 15 July 015 COUPLED HYDRODYNAMIC AND TRUCTURAL BEHAVIOR O PAR BUOY LOATING WIND TURBINE UING AT Evaggelos G. Karageorgopoulos

More information

Published in: Proceedings of the Twentieth (2010) International Offshore and Polar Engineering Conference

Published in: Proceedings of the Twentieth (2010) International Offshore and Polar Engineering Conference Aalborg Universitet Performance Evaluation of an Axysimmetric Floating OWC Alves, M. A.; Costa, I. R.; Sarmento, A. J.; Chozas, Julia Fernandez Published in: Proceedings of the Twentieth (010) International

More information

Methodology for sloshing induced slamming loads and response. Olav Rognebakke Det Norske Veritas AS

Methodology for sloshing induced slamming loads and response. Olav Rognebakke Det Norske Veritas AS Methodology for sloshing induced slamming loads and response Olav Rognebakke Det Norske Veritas AS Post doc. CeSOS 2005-2006 1 Presentation overview Physics of sloshing and motivation Sloshing in rectangular

More information

OMAE HIGH FREQUENCY LOADING AND RESPONSE OF OFFSHORE STRUCTURES IN STEEP WAVES

OMAE HIGH FREQUENCY LOADING AND RESPONSE OF OFFSHORE STRUCTURES IN STEEP WAVES Proceedings of the ASME 11 3th International Conference on Ocean, Offshore and Arctic Engineering OMAE11 June 19-24, 11, Rotterdam, The Netherlands OMAE11-51 HIGH FREQUENCY LOADING AND RESPONSE OF OFFSHORE

More information

DREDGING DYNAMICS AND VIBRATION MEASURES

DREDGING DYNAMICS AND VIBRATION MEASURES DREDGING DYNAMICS AND VIBRATION MEASURES C R Barik, K Vijayan, Department of Ocean Engineering and Naval Architecture, IIT Kharagpur, India ABSTRACT The demands for dredging have found a profound increase

More information

( ) Chapter 3: Free Vibration of the Breakwater. 3.1 Introduction

( ) Chapter 3: Free Vibration of the Breakwater. 3.1 Introduction Chapter : Free Vibration of the Breakwater. Introduction Before conducting forcing analyses on the breakwater, a free vibration study is necessary. This chapter will describe the analysis conducted to

More information

Theoretical Review on Prediction of Motion Response using Diffraction Potential and Morison

Theoretical Review on Prediction of Motion Response using Diffraction Potential and Morison Theoretical Review on Prediction of Motion Response using Diffraction Potential and Morison C.L.Siow, a, J. Koto, a,b,*, H.Yasukawa, c A.Matsuda, d D.Terada, d, C. Guedes Soares, e a) Department of Aeronautics,

More information

A NUMERICAL IDENTIFICATION OF EXCITATION FORCE AND NONLINEAR RESTORING CHARACTERISTICS OF SHIP ROLL MOTION

A NUMERICAL IDENTIFICATION OF EXCITATION FORCE AND NONLINEAR RESTORING CHARACTERISTICS OF SHIP ROLL MOTION ournal of Marine Science and Technology Vol. 5 No. 4 pp. 475-481 (017 475 DOI: 10.6119/MST-017-0418-1 A NUMERICAL IDENTIFICATION OF EXCITATION FORCE AND NONNEAR RESTORING CHARACTERISTICS OF SHIP ROLL MOTION

More information

ASSESSMENT OF STRESS CONCENTRATIONS IN LARGE CONTAINER SHIPS USING BEAM HYDROELASTIC MODEL

ASSESSMENT OF STRESS CONCENTRATIONS IN LARGE CONTAINER SHIPS USING BEAM HYDROELASTIC MODEL ASSESSMENT OF STRESS CONCENTRATIONS IN LARGE CONTAINER SHIPS USING BEAM HYDROELASTIC MODEL Ivo Senjanović, Nikola Vladimir Faculty of Mechanical Engineering and Naval Architecture, University of Zagreb,

More information

A Fully Coupled Model of Non-linear Wave in a Harbor

A Fully Coupled Model of Non-linear Wave in a Harbor Copyright 2013 Tech Science Press CMES, vol.91, no.4, pp.289-312, 2013 A Fully Coupled Model of Non-linear Wave in a Harbor Daguo Wang 1 Abstract: A 2-D time-domain numerical coupled model for non-linear

More information

Effect of Liquid Viscosity on Sloshing in A Rectangular Tank

Effect of Liquid Viscosity on Sloshing in A Rectangular Tank International Journal of Research in Engineering and Science (IJRES) ISSN (Online): 2320-9364, ISSN (Print): 2320-9356 Volume 5 Issue 8 ǁ August. 2017 ǁ PP. 32-39 Effect of Liquid Viscosity on Sloshing

More information

D6.4 - Validated numerical simulation of hydrodynamic interaction between devices for different compact array layouts

D6.4 - Validated numerical simulation of hydrodynamic interaction between devices for different compact array layouts Ref. Ares(2018)1189372-02/03/2018 D6.4 - Validated numerical simulation of hydrodynamic interaction between devices for different compact array layouts DATE: March 2018 PROJECT COORDINATOR: WavEC Offshore

More information

Proceedings of OMAE'02 21 st International Conference on Offshore Mechanics and Arctic Engineering June 23-27, 2002, Oslo, Norway

Proceedings of OMAE'02 21 st International Conference on Offshore Mechanics and Arctic Engineering June 23-27, 2002, Oslo, Norway Proceedings of OMAE'02 21 st International Conference on Offshore Mechanics and Arctic Engineering June 23-27, 2002, Oslo, Norway OMAE 2002-28435 ESTIMATION OF EXTREME RESPONSE AND FATIGUE DAMAGE FOR COLLIDING

More information

Chenyu Luan - CeSOS 1. Chenyu Luan a,b,c, Valentin Chabaud a,d, Erin E. Bachynski b,c,d, Zhen Gao b,c,d and Torgeir Moan a,b,c,d

Chenyu Luan - CeSOS 1. Chenyu Luan a,b,c, Valentin Chabaud a,d, Erin E. Bachynski b,c,d, Zhen Gao b,c,d and Torgeir Moan a,b,c,d Validation of a time-domain numerical approach for determining forces and moments in floaters by using measured data of a semi-submersible wind turbine model test Chenyu Luan a,b,c, Valentin Chabaud a,d,

More information

Dynamics of Ocean Structures Prof. Dr. Srinivasan Chandrasekaran Department of Ocean Engineering Indian Institute of Technology, Madras

Dynamics of Ocean Structures Prof. Dr. Srinivasan Chandrasekaran Department of Ocean Engineering Indian Institute of Technology, Madras Dynamics of Ocean Structures Prof. Dr. Srinivasan Chandrasekaran Department of Ocean Engineering Indian Institute of Technology, Madras Module - 01 Lecture - 09 Characteristics of Single Degree - of -

More information

OCEAN WAVES AND OSCILLATING SYSTEMS

OCEAN WAVES AND OSCILLATING SYSTEMS OCEAN WAVES AND OSCILLATING SYSTEMS LINEAR INTERACTIONS INCLUDING WAVE-ENERGY EXTRACTION JOHANNES FALNES Department of Physics Norwegian University of Science and Technology NTNU CAMBRIDGE UNIVERSITY PRESS

More information

MODELLING THE INTERACTION BETWEEN WATER WAVES AND THE OSCILLATING WATER COLUMN WAVE ENERGY DEVICE. Utku Şentürk, Aydoğan Özdamar

MODELLING THE INTERACTION BETWEEN WATER WAVES AND THE OSCILLATING WATER COLUMN WAVE ENERGY DEVICE. Utku Şentürk, Aydoğan Özdamar Mathematical and Computational Applications, Vol. 16, No. 3, pp. 630-640, 2011. Association for Scientific Research MODELLING THE INTERACTION BETWEEN WATER WAVES AND THE OSCILLATING WATER COLUMN WAVE ENERGY

More information

Time and frequency domain coupled analysis of deepwater floating production systems

Time and frequency domain coupled analysis of deepwater floating production systems Applied Ocean Research 28 (2006) 371 385 www.elsevier.com/locate/apor Time and frequency domain coupled analysis of deepwater floating production systems Y.M. Low a,, R.S. Langley b a Nanyang Technological

More information