Unit #5 - Implicit Differentiation, Related Rates Section 4.6

Size: px
Start display at page:

Download "Unit #5 - Implicit Differentiation, Related Rates Section 4.6"

Transcription

1 Unit #5 - Implicit Differentiation, Related Rates Section 4.6 Some material from Calculus, Single and MultiVariable by Hughes-Hallett, Gleason, McCallum et. al. Copyright 2005 by John Wiley & Sons, Inc. This material is used by permission of John Wiley & Sons, Inc. TEST PREPARATION PROBLEMS 3. (a) s(w = 60,h = 150) = 0.01(60) 0.25 (150) 0.75 = 1.19m 2 (b) We are asked for ds dw, given that h is constant with time, and = 0.5 kg/year. Taking d of both sides of the s formula, ds d5 ( ds = w 0.75dw ) (h 0.75 ) w=62,h=150 = 0.01 (0.25 (62) 0.75 (0.5) meters 2 /year 6. (a) The rate of change of the period is give by dt dl = 2π 9.8 ( 1 2 l 1/2 ) = π l ) (150) (a) (b) As l increases, the denominator gets larger, so the rate decreases. C = a q 1 +b so dc dq = aq 2 = a q 2 SinceC istheaveragecostpercellphone,itisindollars; q is#units. Theunitsof dc dq are therefore (dollars/unit). (An argument could be made that C is in dollars/unit too, so the derivative would be (dollars/unit) per unit: I would accept that as well based on the problem wording.) (b) Careful here: C is the average cost alrea, the rate of change of the average cost is dc dq. We are given = 100. Differentiating the original equation with respect to t 1

2 now, dc = a dq q 2 = a q The rate is negative (we were told a was a positive constant), so the average cost per unit is decreasing with time. 11. (a) F = Ar 2 +Br 3 so df = 2Ar 3 3Br 4 The units are N/m (assuming the force F is in Newtons, and r is in meters). (b) We are told that = k. Differentiating the original equation with respect to time, so df F = Ar 2 +Br 3 = 2Ar 3 3Br 4 = 2Ar 3 k 3Br 4 k The units would be in Newtons per unit time ( seconds usually) 21. The general relationship between depth and volume in a cylinical tank (with r = 3 is To find, we take d If dd = 0.2 ft/s, then of both sidesḋv V = π3 2 d = 9πd = 9π dd = 9π(0.2) 5.65 feet 3 /sec The fact that d = 4 at the time in question turns out to be irrelevant. 2

3 25. This is mostly a chain rule question, with some estimation of derivatives: dh = dh H y We are given that = 3000 ft/min (upwards, so positive rate). However, in the units of y (thousands of feet), we should write this as = 3 thousand feet/min. At 4,000 ft, dh H y = = 7 degrees/thousand feet. Therefore, 6 4 dh H y Note that you could also estimate dh = ( 7)(3) = 21 degrees/min using y = 2 and y = 4: you would get -4 instead of -7 degrees/thousand feet, and a corresponding decrease in the estimated rate of dh. 26. T = k 4 M = km 1/4. We are told k = 17.4 if units are seconds and kilograms for time and mass respectively. dt = M 3/4 dm Substituting M = 45 and dm =.1 we have ( ) dt 1 = (45) 3/4 (0.1) = The circulation time is increasing at a rate of seconds per month. 31. Let V be the snowball volume, and r be its radius. Taking d of both sides, For a sphere, V = 4 3 πr3 = 4 3 π(3r2 ) = 4πr2 When r = 15 cm and = 0.2 cm/hr, = 180π r=15, = cm3 /hr 32. (a) We only need to work with the area at first, given the change in radius. A = πr 2 da = π2r When r = 150 and = 0.1, da = π2(150)(0.1) = 30π 94m 2 /min 3

4 (b) V = πr 2 h The oil volume is constant, but r and h are changing with time, so If r = 150, h = 0.02, and = 0.1, d (V) = d ( πr 2 h ) [ 0 = π 2r ] h+r2 r 2 = 2rh = 2h r = 2(0.02) 150 (0.1) The thickness of the oil slick is decreasing by meters/minute. 33. The volume of the piece is constant, but as a cylinder the volume is V = πr 2 L, and both r and L are changing with time. 34. (a) When dl d V = d ( πr 2 L ) [ 0 = π 2rL = r2 2rL = 0.1 cm/s, r = 1 and L = 5 cm, = (1) 2(5) The radius is decreasing at 0.01 cm/s. dl = r 2L +r2 dl dl ] (0.1) = 0.01 cm/s 4

5 At all points, x 2 +y 2 = h 2, so 2x dx Solving for, +2y = 2h = 1 h [ x dx ] +y At the point of interest, dx = 100 miles/hr (negative, moving towards the gas station) = 80 miles/hr, (positive, away from station) x = 3, y = 4, and so h = = 5. = 1 [(3) ( 100)+(4)(80)] = 4 miles/hr 5 The distance between the truck and police car is growing at 4 miles/hr. 1. If the truck is only going 70 miles/hr, then 35. (a) = 1 [(3) ( 100)+(4)(70)] = 4 miles/hr 5 In this case, the distance between the truck and police car is shrinking at 4 miles/hr. x = z 2 and z is positive, so z = x (b) z = distance from camera to the train. It s actually easier to compute dz from the original Pythagorean equality than it is from part a, though: x = z 2 2x dx dz = 2z dz = x dx z Since dx = 0.8, and z = 1 gives x = 1.25, dz 0.75 = (0.8) 0.69 km/min 1 5

6 (c) The rotation rate will be in radians/min, or dθ. tan(θ) = x 0.5 = 2x d (tan(θ)) = d (2x) 1 dθ cos 2 (θ) = 2 dx dθ = 2 dx cos 2 (θ) At the moment we are interested in, z = 1 so θ arccos km/min. dθ = 2(0.8)cos2( π ) = 2(0.8)(0.5) 2 = 0.4 rad/min 3 ( ) 0.5 = π dx. and 1 3 = The distance between the spot of light to O is x. We are asked for how this changes with θ, or dx dθ. tan(θ) = x 2 ( x 2) so d dθ (tan(θ)) = d dθ 1 cos 2 (θ) = 1 dx 2 dθ dx dθ = 2 cos 2 (θ) 38. Both V and r of the balloon are changing with time, so V = 4 3 πr3 = 4π 3 ( 3r 2 ) = 4πr 2 When = 2 cm/s, and r = 10, = 4π(10) 2 (2) = 800π cm 3 /s 6

7 42. The pile of sand will always have a cross-section of a triangle, similar to the 1/2/ 3 triangle shown. V = 1 3 πr2 h but r/h = 1/ 3 so r = h 3 V = π ( ) h 2 h 3 3 Taking time derivatives, V = π 9 h3 = π ( 3h 2 ) 9 = π h2 3 Since we are adding sand at 0.1 cubic meters per hour, 0.1 = π h2 3 = 0.3 π h 2 meters/hr We are also asked for the rate at which the radius increases. Since r = h/ 3, = 1 3 = 0.3 3π h 2 = 0.1, so 44. 7

8 From this sketch, r/h = 8/10 = 4/5, so r = 4h/5. V = π 3 r2 h = π ( ) Taking d, = 16π ( 3h 2 ) 75 h 3 = 16π 75 h3 = 16π h2 25 The information in this problem is a little different from others, but we can infer that = rate in - rate out = h 2. Thus h 2 = 16π h2 25 Under what conditions will the tank overflow? Well, for that to happen, there must be water flowing into the tank when h = 10 (depth of the tank). That corresponds either to (or ) being positive when h = 10. When h = 10, = (10) 2 = 0.3 m 3 /min, so the tank is emptying. h=10 Also = ( (10) 2 25 ) < 0 indicating that if the tank were ever full, h=10 16π(10) 2 the water level would op, and not increase past full. 8

Mth 201 Related Rates Practice Problems

Mth 201 Related Rates Practice Problems Mth 201 Related Rates Practice Problems 1. A spherical snowball is melting. Its radius is decreasing at 0.2 centimeters per hour when the radius is 15cm. How fast is the volume decreasing at this time?

More information

Week #5 - Related Rates, Linear Approximation, and Taylor Polynomials Section 4.6

Week #5 - Related Rates, Linear Approximation, and Taylor Polynomials Section 4.6 Week #5 - Related Rates, Linear Approximation, and Taylor Polynomials Section 4.6 From Calculus, Single Variable by Hughes-Hallett, Gleason, McCallum et. al. Copyright 005 by John Wiley & Sons, Inc. This

More information

Week #8 - Optimization and Newton s Method Section 4.5

Week #8 - Optimization and Newton s Method Section 4.5 Week #8 - Optimization and Newton s Method Section 4.5 From Calculus, Single Variable by Hughes-Hallett, Gleason, McCallum et. al. Copyright 2005 by John Wiley & Sons, Inc. This material is used by permission

More information

DIFFERENTIATION RULES

DIFFERENTIATION RULES 3 DIFFERENTIATION RULES DIFFERENTIATION RULES If we are pumping air into a balloon, both the volume and the radius of the balloon are increasing and their rates of increase are related to each other. However,

More information

Calculus I - Lecture 14 - Related Rates

Calculus I - Lecture 14 - Related Rates Calculus I - Lecture 14 - Related Rates Lecture Notes: http://www.math.ksu.edu/ gerald/math220d/ Course Syllabus: http://www.math.ksu.edu/math220/spring-2014/indexs14.html Gerald Hoehn (based on notes

More information

APPLICATIONS OF DERIVATIVES UNIT PROBLEM SETS

APPLICATIONS OF DERIVATIVES UNIT PROBLEM SETS APPLICATIONS OF DERIVATIVES UNIT PROBLEM SETS PROBLEM SET #1 Related Rates ***Calculators Allowed*** 1. An oil tanker spills oil that spreads in a circular pattern whose radius increases at the rate of

More information

Guidelines for implicit differentiation

Guidelines for implicit differentiation Guidelines for implicit differentiation Given an equation with x s and y s scattered, to differentiate we use implicit differentiation. Some informal guidelines to differentiate an equation containing

More information

Section 3.8 Related Rates

Section 3.8 Related Rates Section 3.8 Related Rates Read and re-read the problem until you understand it. Draw and label a picture which gives the relevant information (if possible). Introduce notation. Assign a symbol to every

More information

Week #8 - Optimization and Newton s Method Section 4.5

Week #8 - Optimization and Newton s Method Section 4.5 Week #8 - Optimization and Newton s Method Section 4.5 From Calculus, Single Variable by Hughes-Hallett, Gleason, McCallum et. al. Copyright 2005 by John Wiley & Sons, Inc. This material is used by permission

More information

Unit #17 - Differential Equations Section 11.6

Unit #17 - Differential Equations Section 11.6 Unit #7 - Differential Equations Section.6 Some material from Calculus, Single and MultiVariable by Hughes-Hallett, Gleason, McCallum et. al. Copyright 005 by John Wiley & Sons, Inc. This material is used

More information

Related Rates. 2. List the relevant quantities in the problem and assign them appropriate variables. Then write down all the information given.

Related Rates. 2. List the relevant quantities in the problem and assign them appropriate variables. Then write down all the information given. Calculus 1 Lia Vas Related Rates The most important reason for a non-mathematics major to learn mathematics is to be able to apply it to problems from other disciplines or real life. In this section, we

More information

A = 1 2 ab da dt = 1 da. We can find how fast the area is growing at 3 seconds by plugging everything into that differentiated equation: da

A = 1 2 ab da dt = 1 da. We can find how fast the area is growing at 3 seconds by plugging everything into that differentiated equation: da 1 Related Rates In most related rates problems, we have an equation that relates a bunch of quantities that are changing over time. For example, suppose we have a right triangle whose base and height are

More information

OPTIMATIZATION - MAXIMUM/MINIMUM PROBLEMS BC CALCULUS

OPTIMATIZATION - MAXIMUM/MINIMUM PROBLEMS BC CALCULUS 1 OPTIMATIZATION - MAXIMUM/MINIMUM PROBLEMS BC CALCULUS 1. Read each problem slowly and carefully. Read the problem at least three times before trying to solve it. Sometimes words can be ambiguous. It

More information

Related Rates Example 1 Example 2 Example 3 Example 4 Example 5. Related Rates. Tamara Kucherenko

Related Rates Example 1 Example 2 Example 3 Example 4 Example 5. Related Rates. Tamara Kucherenko Eample 1 Eample 2 Eample 3 Eample 4 Eample 5 Eample 1 Eample 2 Eample 3 Eample 4 Eample 5 In related rates problems we compute the rate of change of one quantity in terms of the rate of change of the other.

More information

Review Sheet for Second Midterm Mathematics 1300, Calculus 1

Review Sheet for Second Midterm Mathematics 1300, Calculus 1 Review Sheet for Second Midterm Mathematics 300, Calculus. For what values of is the graph of y = 5 5 both increasing and concave up? >. 2. Where does the tangent line to y = 2 through (0, ) intersect

More information

V = π 3 r2 h. dv dt = π [ r 2dh dt r2. dv 3 dt +2rhdr dt

V = π 3 r2 h. dv dt = π [ r 2dh dt r2. dv 3 dt +2rhdr dt 9 Related Rates Related rates is the phrase used to describe the situation when two or more related variables are changing with respect to time. The rate of change, as mentioned earlier, is another expression

More information

See animations and interactive applets of some of these at. Fall_2009/Math123/Notes

See animations and interactive applets of some of these at.   Fall_2009/Math123/Notes MA123, Chapter 7 Word Problems (pp. 125-153) Chapter s Goal: In this chapter we study the two main types of word problems in Calculus. Optimization Problems. i.e., max - min problems Related Rates See

More information

V = 4 3 πr3. d dt V = d ( 4 dv dt. = 4 3 π d dt r3 dv π 3r2 dv. dt = 4πr 2 dr

V = 4 3 πr3. d dt V = d ( 4 dv dt. = 4 3 π d dt r3 dv π 3r2 dv. dt = 4πr 2 dr 0.1 Related Rate In many phyical ituation we have a relationhip between multiple quantitie, and we know the rate at which one of the quantitie i changing. Oftentime we can ue thi relationhip a a convenient

More information

MATH 135 Calculus 1 Solutions/Answers for Exam 3 Practice Problems November 18, 2016

MATH 135 Calculus 1 Solutions/Answers for Exam 3 Practice Problems November 18, 2016 MATH 35 Calculus Solutions/Answers for Exam 3 Practice Problems November 8, 206 I. Find the indicated derivative(s) and simplify. (A) ( y = ln(x) x 7 4 ) x Solution: By the product rule and the derivative

More information

AP Calculus BC Chapter 4 AP Exam Problems. Answers

AP Calculus BC Chapter 4 AP Exam Problems. Answers AP Calculus BC Chapter 4 AP Exam Problems Answers. A 988 AB # 48%. D 998 AB #4 5%. E 998 BC # % 5. C 99 AB # % 6. B 998 AB #80 48% 7. C 99 AB #7 65% 8. C 998 AB # 69% 9. B 99 BC # 75% 0. C 998 BC # 80%.

More information

Copyright 2012 Pearson Education, Inc. Publishing as Prentice Hall.

Copyright 2012 Pearson Education, Inc. Publishing as Prentice Hall. Chapter 5 Review 95 (c) f( ) f ( 7) ( 7) 7 6 + ( 6 7) 7 6. 96 Chapter 5 Review Eercises (pp. 60 6). y y ( ) + ( )( ) + ( ) The first derivative has a zero at. 6 Critical point value: y 9 Endpoint values:

More information

A = 1 2 ab da dt = 1 da. We can find how fast the area is growing at 3 seconds by plugging everything into that differentiated equation: da

A = 1 2 ab da dt = 1 da. We can find how fast the area is growing at 3 seconds by plugging everything into that differentiated equation: da 1 Related Rates In most related rates problems, we have an equation that relates a bunch of quantities that are changing over time. For example, suppose we have a right triangle whose base and height are

More information

Second Midterm Exam Name: Practice Problems Septmber 28, 2015

Second Midterm Exam Name: Practice Problems Septmber 28, 2015 Math 110 4. Treibergs Second Midterm Exam Name: Practice Problems Septmber 8, 015 1. Use the limit definition of derivative to compute the derivative of f(x = 1 at x = a. 1 + x Inserting the function into

More information

Days 3 & 4 Notes: Related Rates

Days 3 & 4 Notes: Related Rates AP Calculus Unit 4 Applications of the Derivative Part 1 Days 3 & 4 Notes: Related Rates Implicitly differentiate the following formulas with respect to time. State what each rate in the differential equation

More information

2.6 Related Rates. The Derivative as a Rate of Change. = ft related rates 175

2.6 Related Rates. The Derivative as a Rate of Change. = ft related rates 175 2.6 related rates 175 2.6 Related Rates Throughout the next several tions we ll look at a variety of applications of derivatives. Probably no single application will be of interest or use to everyone,

More information

Math 131. Related Rates Larson Section 2.6

Math 131. Related Rates Larson Section 2.6 Math 131. Related Rates Larson Section 2.6 There are many natural situations when there are related variables that are changing with respect to time. For example, a spherical balloon is being inflated

More information

Math 103 Selected Homework Solutions, Section 3.9

Math 103 Selected Homework Solutions, Section 3.9 Math 103 Selected Homework Solutions, Section 3.9 9. Let s be the distance from the base of the light pole to the top of the man s shadow, and the distance from the light pole to the man. 15 s 6 s We know:

More information

Apply & Practice 3.5 Set 1: P #3-18 (mult. of 3); 19 #21 write explicit #27-33 (mult. of 3) point #39-40 eqn tang line from graph

Apply & Practice 3.5 Set 1: P #3-18 (mult. of 3); 19 #21 write explicit #27-33 (mult. of 3) point #39-40 eqn tang line from graph Ch 0 Homework Complete Solutions V Part : S. Stirling Calculus: Earl Transcendental Functions, 4e Larson WATCH for the product rule and the chain rule. If the order that our terms are in differ from the

More information

Unit #17 - Differential Equations Section 11.5

Unit #17 - Differential Equations Section 11.5 Unit #17 - Differential Equations Section 11.5 Some material from Calculus, Single and MultiVariable by Hughes-Hallett, Gleason, McCallum et. al. Copyright 2005 by John Wiley & Sons, Inc. This material

More information

Math 147 Exam II Practice Problems

Math 147 Exam II Practice Problems Math 147 Exam II Practice Problems This review should not be used as your sole source for preparation for the exam. You should also re-work all examples given in lecture, all homework problems, all lab

More information

Math 101 Fall 2006 Exam 1 Solutions Instructor: S. Cautis/M. Simpson/R. Stong Thursday, October 5, 2006

Math 101 Fall 2006 Exam 1 Solutions Instructor: S. Cautis/M. Simpson/R. Stong Thursday, October 5, 2006 Math 101 Fall 2006 Exam 1 Solutions Instructor: S. Cautis/M. Simpson/R. Stong Thursday, October 5, 2006 Instructions: This is a closed book, closed notes exam. Use of calculators is not permitted. You

More information

4.1 & 4.2 Student Notes Using the First and Second Derivatives. for all x in D, where D is the domain of f. The number f()

4.1 & 4.2 Student Notes Using the First and Second Derivatives. for all x in D, where D is the domain of f. The number f() 4.1 & 4. Student Notes Using the First and Second Derivatives Definition A function f has an absolute maximum (or global maximum) at c if f ( c) f ( x) for all x in D, where D is the domain of f. The number

More information

Solutions to review problems MAT 125, Fall 2004

Solutions to review problems MAT 125, Fall 2004 Solutions to review problems MAT 125, Fall 200 1. For each of the following functions, find the absolute maimum and minimum values for f() in the given intervals. Also state the value where they occur.

More information

Stewart - Calculus 8e Chapter 2 Form A. 1. Differentiate. 2. Find the limit. 3. Differentiate.

Stewart - Calculus 8e Chapter 2 Form A. 1. Differentiate. 2. Find the limit. 3. Differentiate. Stewart - Calculus 8e Chapter 2 Form A Multivariable Calculus 8th Edition Stewart TEST BANK Full clear download at: https://testbankreal.com/download/multivariable-calculus-8th-editionstewart-test-bank/

More information

dx dt = x 2 x = 120

dx dt = x 2 x = 120 Solutions to Review Questions, Exam. A child is flying a kite. If the kite is 90 feet above the child s hand level and the wind is blowing it on a horizontal course at 5 feet per second, how fast is the

More information

CHAPTER 3: DERIVATIVES

CHAPTER 3: DERIVATIVES (Exercises for Section 3.1: Derivatives, Tangent Lines, and Rates of Change) E.3.1 CHAPTER 3: DERIVATIVES SECTION 3.1: DERIVATIVES, TANGENT LINES, and RATES OF CHANGE In these Exercises, use a version

More information

AP Calculus AB Semester 2 Practice Final

AP Calculus AB Semester 2 Practice Final lass: ate: I: P alculus Semester Practice Final Multiple hoice Identify the choice that best completes the statement or answers the question. Find the constants a and b such that the function f( x) = Ï

More information

AP Calculus Related Rates Worksheet

AP Calculus Related Rates Worksheet AP Calculus Related Rates Worksheet 1. A small balloon is released at a point 150 feet from an observer, who is on level ground. If the balloon goes straight up at a rate of 8 feet per second, how fast

More information

Review for the Final Exam

Review for the Final Exam Math 171 Review for the Final Exam 1 Find the limits (4 points each) (a) lim 4x 2 3; x x (b) lim ( x 2 x x 1 )x ; (c) lim( 1 1 ); x 1 ln x x 1 sin (x 2) (d) lim x 2 x 2 4 Solutions (a) The limit lim 4x

More information

Solutions to Math 41 Final Exam December 10, 2012

Solutions to Math 41 Final Exam December 10, 2012 Solutions to Math 4 Final Exam December,. ( points) Find each of the following limits, with justification. If there is an infinite limit, then explain whether it is or. x ln(t + ) dt (a) lim x x (5 points)

More information

d dx x = d dx (10,000 - p2 ) 1/2 dx [10,000 - p2 ] p' = dv = 0 dl dv V + n Things to remember: dt dt ; dy dt = 3

d dx x = d dx (10,000 - p2 ) 1/2 dx [10,000 - p2 ] p' = dv = 0 dl dv V + n Things to remember: dt dt ; dy dt = 3 45. x 0,000 " p 2 (0,000 - p 2 ) /2 d x d (0,000 - p2 ) /2 2 (0,000 - p2 ) -/2 d [0,000 - p2 ] 2(0,000 " p 2 ) 2 (!2pp') p' "p p # 0,000 " p 2 " 0,000 " p2 p 47. (L + m)(v + n) k (L + m)() + (V + n) dl

More information

Chapter 3.4 Practice Problems

Chapter 3.4 Practice Problems EXPECTED SKILLS: Chapter.4 Practice Problems Be able to solve related rates problems. It may be helpful to remember the following strategy:. Read the problem carefully. 2. Draw a diagram, if possible,

More information

Related Rates. MATH 151 Calculus for Management. J. Robert Buchanan. Department of Mathematics. J. Robert Buchanan Related Rates

Related Rates. MATH 151 Calculus for Management. J. Robert Buchanan. Department of Mathematics. J. Robert Buchanan Related Rates Related Rates MATH 151 Calculus for Management J. Robert Buchanan Department of Mathematics 2014 Related Rates Problems Another common application of the derivative involved situations in which two or

More information

4.1 Implicit Differentiation

4.1 Implicit Differentiation 4.1 Implicit Differentiation Learning Objectives A student will be able to: Find the derivative of variety of functions by using the technique of implicit differentiation. Consider the equation We want

More information

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. B) = 2t + 1; D) = 2 - t;

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. B) = 2t + 1; D) = 2 - t; Eam Name MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Calculate the derivative of the function. Then find the value of the derivative as specified.

More information

Calculus I Homework: Rates of Change in the Natural and Social Sciences Page 1

Calculus I Homework: Rates of Change in the Natural and Social Sciences Page 1 Calculus I Homework: Rates of Change in the Natural and Social Sciences Page 1 Questions Example If a ball is thrown vertically upward with a velocity of 80 ft/s, then its height after t seconds is s 80t

More information

( ) 7 ( 5x 5 + 3) 9 b) y = x x

( ) 7 ( 5x 5 + 3) 9 b) y = x x New York City College of Technology, CUNY Mathematics Department Fall 0 MAT 75 Final Eam Review Problems Revised by Professor Kostadinov, Fall 0, Fall 0, Fall 00. Evaluate the following its, if they eist:

More information

Math Exam 02 Review

Math Exam 02 Review Math 10350 Exam 02 Review 1. A differentiable function g(t) is such that g(2) = 2, g (2) = 1, g (2) = 1/2. (a) If p(t) = g(t)e t2 find p (2) and p (2). (Ans: p (2) = 7e 4 ; p (2) = 28.5e 4 ) (b) If f(t)

More information

2.8 Linear Approximation and Differentials

2.8 Linear Approximation and Differentials 2.8 Linear Approximation Contemporary Calculus 1 2.8 Linear Approximation and Differentials Newton's method used tangent lines to "point toward" a root of the function. In this section we examine and use

More information

MATH 280 Multivariate Calculus Fall Integration over a curve

MATH 280 Multivariate Calculus Fall Integration over a curve dr dr y MATH 28 Multivariate Calculus Fall 211 Integration over a curve Given a curve C in the plane or in space, we can (conceptually) break it into small pieces each of which has a length ds. In some

More information

1 The Derivative and Differrentiability

1 The Derivative and Differrentiability 1 The Derivative and Differrentiability 1.1 Derivatives and rate of change Exercise 1 Find the equation of the tangent line to f (x) = x 2 at the point (1, 1). Exercise 2 Suppose that a ball is dropped

More information

Calculus Applications of Differentiation. Norhafizah Md Sarif Faculty of Industrial Science & Technology

Calculus Applications of Differentiation. Norhafizah Md Sarif Faculty of Industrial Science & Technology Calculus Applications of Differentiation By Norhafizah Md Sarif Faculty of Industrial Science & Technology norhafizah@ump.edu.my Description Aims This chapter is aimed to : 1. introduce the concept of

More information

Practice Exam 1 Solutions

Practice Exam 1 Solutions Practice Exam 1 Solutions 1a. Let S be the region bounded by y = x 3, y = 1, and x. Find the area of S. What is the volume of the solid obtained by rotating S about the line y = 1? Area A = Volume 1 1

More information

Chapter 8: Radical Functions

Chapter 8: Radical Functions Chapter 8: Radical Functions Chapter 8 Overview: Types and Traits of Radical Functions Vocabulary:. Radical (Irrational) Function an epression whose general equation contains a root of a variable and possibly

More information

Related Rates In each related rate problem there can be variations in the details. The problems, however, have the same general structure.

Related Rates In each related rate problem there can be variations in the details. The problems, however, have the same general structure. Lab 6 Math 111 Spring 019 Related Rates In each related rate problem there can be variations in the details. The problems, however, have the same general structure. I. Relating Quantities: Independent

More information

Implicit Differentiation

Implicit Differentiation Week 6. Implicit Differentiation Let s say we want to differentiate the equation of a circle: y 2 + x 2 =9 Using the techniques we know so far, we need to write the equation as a function of one variable

More information

( ) 9 b) y = x x c) y = (sin x) 7 x d) y = ( x ) cos x

( ) 9 b) y = x x c) y = (sin x) 7 x d) y = ( x ) cos x NYC College of Technology, CUNY Mathematics Department Spring 05 MAT 75 Final Eam Review Problems Revised by Professor Africk Spring 05, Prof. Kostadinov, Fall 0, Fall 0, Fall 0, Fall 0, Fall 00 # Evaluate

More information

Chapter 3: Derivatives and Graphing

Chapter 3: Derivatives and Graphing Chapter 3: Derivatives and Graphing 127 Chapter 3 Overview: Derivatives and Graphs There are two main contexts for derivatives: graphing and motion. In this chapter, we will consider the graphical applications

More information

Math3A Exam #02 Solution Fall 2017

Math3A Exam #02 Solution Fall 2017 Math3A Exam #02 Solution Fall 2017 1. Use the limit definition of the derivative to find f (x) given f ( x) x. 3 2. Use the local linear approximation for f x x at x0 8 to approximate 3 8.1 and write your

More information

Week #16 - Differential Equations (Euler s Method) Section 11.3

Week #16 - Differential Equations (Euler s Method) Section 11.3 Week #16 - Differential Equations (Euler s Method) Section 11.3 From Calculus, Single Variable by Hughes-Hallett, Gleason, McCallum et. al. Copyright 2005 by John Wiley & Sons, Inc. This material is used

More information

Basic Differential Equations

Basic Differential Equations Unit #15 - Differential Equations Some problems and solutions selected or adapted from Hughes-Hallett Calculus. Basic Differential Equations 1. Show that y = x + sin(x) π satisfies the initial value problem

More information

Solutions to Tutorial Sheet 10 Topics: Applications: Optimization + Modelling

Solutions to Tutorial Sheet 10 Topics: Applications: Optimization + Modelling The University of Sydney School of Mathematics and Statistics Solutions to Tutorial Sheet 10 Topics: Applications: Optimization + Modelling MATH1111: Introduction to Calculus Semester 1, 2012 Web Page:

More information

4.6 Related Rates 8 b o lk0uct5ai FSHopfitcwkadr9ee MLBL1Cv.0 h ca5lrlx 8rzi8gThzt Zs9 2rJejsqeprTvCeVdy.w Solve each related rate problem.

4.6 Related Rates 8 b o lk0uct5ai FSHopfitcwkadr9ee MLBL1Cv.0 h ca5lrlx 8rzi8gThzt Zs9 2rJejsqeprTvCeVdy.w Solve each related rate problem. -- g 52P0l33e 5Ktu3tlaY tswobfrtcwsawrkeq mlzlzcd.u 2 7AklGlf lrbiegkhjtbsa 9rlewsSeIr2vPeVdW.L 2 7Mza5dWeI gwbimtmhn bimnff0ieneistuet SCDallJcrulsuTsG.k Calculus 4.6 Related Rates 8 b230593 o lk0uct5ai

More information

Unit #13 - Integration to Find Areas and Volumes, Volumes of Revolution

Unit #13 - Integration to Find Areas and Volumes, Volumes of Revolution Unit #1 - Integration to Find Areas and Volumes, Volumes of Revolution Some problems and solutions selected or adapted from Hughes-Hallett Calculus. Areas In Questions #1-8, find the area of one strip

More information

Implicit Differentiation and Related Rates

Implicit Differentiation and Related Rates Math 3A Discussion Notes Week 5 October 7 and October 9, 05 Because of the mierm, we re a little behind lecture, but this week s topics will help prepare you for the quiz. Implicit Differentiation and

More information

Due: Wed Oct :30 AM MDT. Question Instructions Make sure you have easy access to all three of these documents.

Due: Wed Oct :30 AM MDT. Question Instructions Make sure you have easy access to all three of these documents. Related Rates II: Guided (10862409) Due: Wed Oct 4 2017 07:30 AM MDT Question 1 2 3 4 5 6 Instructions Make sure you have easy access to all three of these documents. Today's Notes and Learning Goals Tips

More information

Math 2250 Final Exam Practice Problem Solutions. f(x) = ln x x. 1 x. lim. lim. x x = lim. = lim 2

Math 2250 Final Exam Practice Problem Solutions. f(x) = ln x x. 1 x. lim. lim. x x = lim. = lim 2 Math 5 Final Eam Practice Problem Solutions. What are the domain and range of the function f() = ln? Answer: is only defined for, and ln is only defined for >. Hence, the domain of the function is >. Notice

More information

Solve for an unknown rate of change using related rates of change.

Solve for an unknown rate of change using related rates of change. Objectives: Solve for an unknown rate of change using related rates of change. 1. Draw a diagram. 2. Label your diagram, including units. If a quantity in the diagram is not changing, label it with a number.

More information

Practice 10a. imathesis.com By Carlos Sotuyo

Practice 10a. imathesis.com By Carlos Sotuyo Practice 10a imathesis.com By Carlos Sotuyo Suggested solutions for exercises 7C from number 6 to 16, page 110 of Pure Mathematics 1 by Hugh Neil and Douglas Qualing. 6. y = 5 + 1 5 S 1 800 S. The derivative

More information

AP Calculus AB Semester 1 Practice Final

AP Calculus AB Semester 1 Practice Final Class: Date: AP Calculus AB Semester 1 Practice Final Multiple Choice Identify the choice that best completes the statement or answers the question. 1. Find the limit (if it exists). lim x x + 4 x a. 6

More information

Math 210 Midterm #2 Review

Math 210 Midterm #2 Review Math 210 Mierm #2 Review Related Rates In general, the approach to a related rates problem is to first determine which quantities in the problem you care about or have relevant information about. Then

More information

Related Rates. da dt = 2πrdr dt. da, so = 2. I want to find. = 2π 3 2 = 12π

Related Rates. da dt = 2πrdr dt. da, so = 2. I want to find. = 2π 3 2 = 12π Related Rates 9-22-2008 Related rates problems deal with situations in which several things are changing at rates which are related. The way in which the rates are related often arises from geometry, for

More information

Exam Review Sheets Combined

Exam Review Sheets Combined Exam Review Sheets Combined Fall 2008 1 Fall 2007 Exam 1 1. For each part, if the statement is always true, circle the printed capital T. If the statement is sometimes false, circle the printed capital

More information

Math 241 Homework 6 Solutions

Math 241 Homework 6 Solutions Math 241 Homework 6 s Section 3.7 (Pages 161-163) Problem 2. Suppose that the radius r and surface area S = 4πr 2 of a sphere are differentiable functions of t. Write an equation that relates ds/ to /.

More information

2) s - 6t - t 2, [0,6]

2) s - 6t - t 2, [0,6] For - 4) Give the positions s = f(t) of a bo moving on a coordinate line, with s in meters and t in seconds (a) Find the bo's displacement and average velocity for the given time interval (b) Fine the

More information

Unit #24 - Lagrange Multipliers Section 15.3

Unit #24 - Lagrange Multipliers Section 15.3 Unit #24 - Lagrange Multipliers Section 1.3 Some material from Calculus, Single and MultiVariable by Hughes-Hallett, Gleason, McCallum et. al. Copyright 200 by John Wiley & Sons, Inc. This material is

More information

MCV4U1 Worksheet 4.7. dh / dt if neither r nor h is constant?

MCV4U1 Worksheet 4.7. dh / dt if neither r nor h is constant? MCV4U1 Worksheet 4.7 This worksheet serves as an additional exercise to complement the lesson and the examples given. Worksheets may take more than one day to complete. If you are stuck, read again the

More information

CHAPTER 3 Applications of Differentiation

CHAPTER 3 Applications of Differentiation CHAPTER Applications of Differentiation Section. Etrema on an Interval.............. 0 Section. Rolle s Theorem and the Mean Value Theorem. 07 Section. Increasing and Decreasing Functions and the First

More information

Exponential, Logarithmic &Trigonometric Derivatives

Exponential, Logarithmic &Trigonometric Derivatives 1 U n i t 9 12CV Date: Name: Exponential, Logarithmic &Trigonometric Derivatives Tentative TEST date Big idea/learning Goals The world s population experiences exponential growth the rate of growth becomes

More information

Review Test 2. MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. D) ds dt = 4t3 sec 2 t -

Review Test 2. MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. D) ds dt = 4t3 sec 2 t - Review Test MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Find the derivative. ) = 7 + 0 sec ) A) = - 7 + 0 tan B) = - 7-0 csc C) = 7-0 sec tan

More information

Week #1 The Exponential and Logarithm Functions Section 1.2

Week #1 The Exponential and Logarithm Functions Section 1.2 Week #1 The Exponential and Logarithm Functions Section 1.2 From Calculus, Single Variable by Hughes-Hallett, Gleason, McCallum et. al. Copyright 2005 by John Wiley & Sons, Inc. This material is used by

More information

All work must be shown in this course for full credit. Unsupported answers may receive NO credit.

All work must be shown in this course for full credit. Unsupported answers may receive NO credit. AP Calculus.5 Worksheet All work must be shown in this course for full credit. Unsupported answers may receive NO credit. 1. Consider the function y = sin x. a) Find the equation of the tangent line when

More information

MATH 280 Multivariate Calculus Fall Integrating a vector field over a surface

MATH 280 Multivariate Calculus Fall Integrating a vector field over a surface MATH 280 Multivariate Calculus Fall 2011 Definition Integrating a vector field over a surface We are given a vector field F in space and an oriented surface in the domain of F as shown in the figure below

More information

Solution: It could be discontinuous, or have a vertical tangent like y = x 1/3, or have a corner like y = x.

Solution: It could be discontinuous, or have a vertical tangent like y = x 1/3, or have a corner like y = x. 1. Name three different reasons that a function can fail to be differentiable at a point. Give an example for each reason, and explain why your examples are valid. It could be discontinuous, or have a

More information

( ) ( ). ( ) " d#. ( ) " cos (%) " d%

( ) ( ). ( )  d#. ( )  cos (%)  d% Math 22 Fall 2008 Solutions to Homework #6 Problems from Pages 404-407 (Section 76) 6 We will use the technique of Separation of Variables to solve the differential equation: dy d" = ey # sin 2 (") y #

More information

AP Calculus AB Chapter 4 Packet Implicit Differentiation. 4.5: Implicit Functions

AP Calculus AB Chapter 4 Packet Implicit Differentiation. 4.5: Implicit Functions 4.5: Implicit Functions We can employ implicit differentiation when an equation that defines a function is so complicated that we cannot use an explicit rule to find the derivative. EXAMPLE 1: Find dy

More information

Week #1 The Exponential and Logarithm Functions Section 1.3

Week #1 The Exponential and Logarithm Functions Section 1.3 Week #1 The Exponential and Logarithm Functions Section 1.3 From Calculus, Single Variable by Hughes-Hallett, Gleason, McCallum et. al. Copyright 2005 by John Wiley & Sons, Inc. This material is used by

More information

Chapter 4 Overview: Derivatives as Rate of Change

Chapter 4 Overview: Derivatives as Rate of Change Chapter 4 Overview: Derivatives as Rate of Change Most of last year s derivative work (and the first two chapters) concentrated on tangent lines and extremes the geometric applications of the derivatives.

More information

Review Problems for Test 2

Review Problems for Test 2 Review Problems for Test 2 Math 6-03/06 0 0/ 2007 These problems are provided to help you study. The fact that a problem occurs here does not mean that there will be a similar problem on the test. And

More information

U of U Math Online. Young-Seon Lee. WeBWorK set 1. due 1/21/03 at 11:00 AM. 6 4 and is perpendicular to the line 5x 3y 4 can

U of U Math Online. Young-Seon Lee. WeBWorK set 1. due 1/21/03 at 11:00 AM. 6 4 and is perpendicular to the line 5x 3y 4 can U of U Math 0-6 Online WeBWorK set. due //03 at :00 AM. The main purpose of this WeBWorK set is to familiarize yourself with WeBWorK. Here are some hints on how to use WeBWorK effectively: After first

More information

SOLUTIONS FOR PRACTICE FINAL EXAM

SOLUTIONS FOR PRACTICE FINAL EXAM SOLUTIONS FOR PRACTICE FINAL EXAM ANDREW J. BLUMBERG. Solutions () Short answer questions: (a) State the mean value theorem. Proof. The mean value theorem says that if f is continuous on (a, b) and differentiable

More information

Calculus I Sample Final exam

Calculus I Sample Final exam Calculus I Sample Final exam Solutions [] Compute the following integrals: a) b) 4 x ln x) Substituting u = ln x, 4 x ln x) = ln 4 ln u du = u ln 4 ln = ln ln 4 Taking common denominator, using properties

More information

MAT 137 Tutorial #6 Related rates June 12-13, 2017

MAT 137 Tutorial #6 Related rates June 12-13, 2017 MAT 137 Tutorial #6 Related rates June 12-13, 2017 1. If a (spherical) snowball melts so that its surface area decreases at a rate of 1cm 2 /min, find the rate at which the diameter decreases when the

More information

CHAPTER 3 Applications of Differentiation

CHAPTER 3 Applications of Differentiation CHAPTER Applications of Differentiation Section. Etrema on an Interval.............. Section. Rolle s Theorem and the Mean Value Theorem. 7 Section. Increasing and Decreasing Functions and the First Derivative

More information

( f + g ) (3) = ( fg ) (3) = g(x) = x 7 cos x. s = 200t 10t 2. sin x cos x cos2x. lim. f (x) = 7 x 5. y = 1+ 4sin x, (0,1) f (x) = x 2 g(x)

( f + g ) (3) = ( fg ) (3) = g(x) = x 7 cos x. s = 200t 10t 2. sin x cos x cos2x. lim. f (x) = 7 x 5. y = 1+ 4sin x, (0,1) f (x) = x 2 g(x) Stewart - Calculus ET 6e Chapter Form A 1. If f ( ) =, g() =, f () =, g () = 6, find the following numbers. ( f + g ) () = ( fg ) () = ( f / g) () = f f g ( ) =. Find the points on the curve y = + 1 +

More information

RELATED RATE PROBLEMS

RELATED RATE PROBLEMS MA123, Chapter 7a: Related Rates Word Problems (pp. 140-149, Gootman) Chapter Goals: In this Chapter we learn a general strategy on how to approach related rates problems, one of the main types of word

More information

Functions of Several Variables: Chain Rules

Functions of Several Variables: Chain Rules Functions of Several Variables: Chain Rules Calculus III Josh Engwer TTU 29 September 2014 Josh Engwer (TTU) Functions of Several Variables: Chain Rules 29 September 2014 1 / 30 PART I PART I: MULTIVARIABLE

More information

AP Calculus BC Chapter 4 AP Exam Problems A) 4 B) 2 C) 1 D) 0 E) 2 A) 9 B) 12 C) 14 D) 21 E) 40

AP Calculus BC Chapter 4 AP Exam Problems A) 4 B) 2 C) 1 D) 0 E) 2 A) 9 B) 12 C) 14 D) 21 E) 40 Extreme Values in an Interval AP Calculus BC 1. The absolute maximum value of x = f ( x) x x 1 on the closed interval, 4 occurs at A) 4 B) C) 1 D) 0 E). The maximum acceleration attained on the interval

More information

MATH1013 Calculus I. Derivatives II (Chap. 3) 1

MATH1013 Calculus I. Derivatives II (Chap. 3) 1 MATH1013 Calculus I Derivatives II (Chap. 3) 1 Edmund Y. M. Chiang Department of Mathematics Hong Kong University of Science & Technology October 16, 2013 2013 1 Based on Briggs, Cochran and Gillett: Calculus

More information

Chapter 5. Section 5.1. Section ( x ) ( y ) 7. ( x ) ( y ) (0, 3 + 5) and (0, 3 5)

Chapter 5. Section 5.1. Section ( x ) ( y ) 7. ( x ) ( y ) (0, 3 + 5) and (0, 3 5) 9 Chapter Section.. 0. ( x ) ( y ). ( x 7 ) + ( y+ ) = 9 7. ( x ) ( y ) 8 + + 0 = 8 + 8 = 9.. (0, + ) and (0, ). (.60786, 7.6887). (-.07,.8) 7. 9.87 miles Section. 70 0 -.. 00. 0 7. 9.. 8 9.. miles 7.

More information