Math 241 Homework 6 Solutions

Size: px
Start display at page:

Download "Math 241 Homework 6 Solutions"

Transcription

1 Math 241 Homework 6 s Section 3.7 (Pages ) Problem 2. Suppose that the radius r and surface area S = 4πr 2 of a sphere are differentiable functions of t. Write an equation that relates ds/ to /. S = 4πr 2 ds = 8πr Problem 3. The radius r and height h of a right circular cylinder are related to the cylinder s volume V by the formula V = πr 2 h. How is dv / related to dh/ if r is constant? How is dv / related to / if h is constant? (c) How is dv / related to / and dh/ if neither r nor h is constant? If r is a constant then we have V = πr 2 h dv = dh πr2 If h is a constant we have (c) If neither are constants we have V = πr 2 h dv = 2πr h dv = 2πr h + dh πr2 1

2 Problem 12. Suppose that the edge lengths x, y, and z of a closed rectangular box are changing at the following rates: dx = 1 m/sec, = 2 m/sec, = 1 m/sec. Find the rates at which the box s volume, surface area, and (c) diagonal length s = x 2 + y 2 + z 2 are changing at the instant when x = 4, y = 3, and z = 2. (c) Plugging in dx Plugging in dx Plugging in dx = 1, V = xyz dv = dx yz + x z + xy = 2, = 1, x = 4, y = 3, and z = 2 we have dv = 1(3)(2) + (4)( 2)(2) + (4)(3)(1) = 2m3 /sec S = 2xy + 2xz + 2yz ds = 2x + 2dx y + 2x ds = 1, = 2, + 2dx = 1, x = 4, y = 3, and z = 2 we have z + 2y + 2 z = 2(4)( 2) + 2(1)(3) + 2(4)(2) + 2(1)(2) + 2(3)(1) + 2( 2)(2) = 8 m/sec s = x 2 + y 2 + z 2 ds = 1 2 (x2 + y 2 + z 2 ) 1/2 (2x dx + 2y + 2z ) = 1, = 2, = 1, x = 4, y = 3, and z = 2 we have ds = 1 2 ( ) 1/2 (2(4)(1) + 2(3)(2) + 2(2)(1)) = 1 2 (29) 1/2 (24) = m/s 2

3 Find the rates at which the box s volume, surface area, and (c) diagonal length s = 2x 2 + y 2 + z 2 are changing at the instant when x = 4, y = 3, and z = A sliding ladder A 13-ft ladder is leaning against a house when its base starts to slide away (see accompanying figure). By the time the base is 12 ft from the house, the base is moving at the rate of 5 ft>sec. a. How fast is the top of the ladder sliding down the wall then? Problem 13. A 13-ft ladder is b. leaning At what rate against is the area of the a triangle house formed when by the ladder, its base starts to slide away (see wall, and ground changing then? figure). By the time the base is 12 ft from the house, the base is moving at the y m rate deep? of 5 ft/sec. c. At what rate is the angle u between the ladder and the ground changing then? y y(t) 0 13-ft ladder 24. Commercial air traffic Two commercial airplanes are flying at an altitude of 40,000 ft along straight-line courses that intersect at right angles. Plane A is approaching the intersection point at a speed of 442 knots (nautical miles per hour; a nautical mile is 2000 yd). Plane B is approaching the intersection at 481 knots. At what rate is the distance between the planes changing when A is 5 nautical miles from the intersection point and B is 12 nautical miles from the intersection point? How fast is the top of the ladder sliding down the wall then? 25. Flying a kite A girl flies a kite at a height of 300 ft, the wind carrying the kite horizontally away from her at a rate of 25 ft>sec. How fast must she let out the string when the kite is 500 ft away from her? 26. Boring a cylinder The mechanics at Lincoln Automotive are reboring a 6-in.-deep cylinder to fit a new piston. The machine they are using increases the cylinder s radius one-thousanh of an inch every 3 min. How rapidly is the cylinder volume increasing when the bore (diameter) is in.? u x(t) x Water level y a. At what rate is the water level changing when the water is 8 m deep? b. What is the radius r of the water s surface when the water is c. At what rate is the radius r changing when the water is 8 m deep? 30. A growing rainop Suppose that a op of mist is a perfect sphere and that, through condensation, the op picks up moisture at a rate proportional to its surface area. Show that under these circumstances the op s radius increases at a constant rate. 31. The radius of an inflating balloon A spherical balloon is inflated with helium at the rate of 100p ft 3 >min. How fast is the balloon s radius increasing at the instant the radius is 5 ft? How fast is the surface area increasing? 32. Hauling in a dinghy A dinghy is pulled toward a dock by a rope from the bow through a ring on the dock 6 ft above the bow. The rope is hauled in at the rate of 2 ft>sec. a. How fast is the boat approaching the dock when 10 ft of rope are out? At what rate is the area of the triangle formed by the ladder, wall, and ground changing then? (c) At what rate is the angle θ between the ladder and the ground changing then? From the pythagorean theorem we have x 2 + y 2 = x dx + 2y = 0 We are given that x = 12 and dx/ = 5. Using the pythagorean theorem we have Plugging these in we have y = = 25 = 5 2(12)(5) + 2(5) = 0 = 120 = 12 ft/sec 10 b. At what rate is the angle u changing at this instant (see the figure)? r 13 Ring at edge of dock u 6' Plugging in the information from we have A = 1 da xy 2 = 1 2 (dx y + x ) da = 1 2 (5(5) + (12)( 12)) = 59.5 ft2 /sec (c) cos θ = x dθ sin θ 13 = 1 dx 13 At the instant we want, we have from the picture that sin θ = 5/13. Plugging in we have 5 dθ 13 = 5 13 dθ = 1 radians/sec 3

4 Problem 18. Water is flowing at the rate of 50 m 3 /min from a shallow concrete conical reservoir (vertex down) of base radius 45 m and height 6 m. How fast (centimeters per minute) is the water level falling when the water is 5 m deep? How fast is the radius of the water s surface changing then? minute. Answer in centimeters per Since there are two similar triangles we have r h = 45 6 r = 45r 6 = 15h 2 V = 1 3 πr2 h = 75πh3 4 dv = 225πh2 dh 4 We are given that dv / = 50 and h = 5. Plugging these in we have 50 = 225π 4 (25)dh dh m/min = 1.13 cm/min r = 15h 2 Plugging in our answer from we have = 15 2 dh 8.49 cm/min Problem 20. Suppose that a op of mist is a perfect sphere and that, through condensation, the op picks up moisture at a rate proportional to its surface area. Show that under these circumstances the op s radius increases at a constant rate. We have Assuming that dv V = 4 3 πr3 dv = 4πr2 = ka, where k is a constant we have 4πr 2 = 4kπr2 = k 4

5 Problem 24. Coffee is aining from 0 a conical filter into x(t) a cylinical coffeepot at the rate of 10 in 3 /min. How fast is the level in the pot rising when the coffee in the cone is 5 in. deep? How fast is the level in the cone falling then? s(t) 34. Making coffee Coffee is aining from a conical filter into a cylinical coffeepot at the rate of 10 in 3 >min. a. How fast is the level in the pot rising when the coffee in the cone is 5 in. deep? b. How fast is the level in the cone falling then? x 36. Moving along a parabola A particle move y = x 2 in the first quaant in such a way t (measured in meters) increases at a stea 10 the angle of inclination u of the line joining origin changing when x = 3 m? 37. Motion in the plane The coordinates of a p xy-plane are differentiable functions of tim -1 m>sec and > =-5 m>sec. How fast tance from the origin changing as it passes throu 38. Videotaping a moving car You are videot stand 132 ft from the track, following a ca 180 mi>h (264 ft>sec), as shown in the ac How fast will your camera angle u be chang right in front of you? A half second later? 6 Camera u 6 How fast is this level falling? 132 Car We are given that dv pot 6 How fast is this level rising? 35. Cardiac output In the late 1860s, Adolf Fick, a professor of physiology in the Faculty of Medicine in Würzberg, Germany, developed one of the methods we use today for measuring how much blood your heart pumps in a minute. Your cardiac output as you read this sentence is probably about 7 L>min. At rest it is likely to be a bit under 6 L>min. If you are a trained marathon runner running a marathon, your cardiac output can be as high as 30 L>min. V Your cardiac pot = πr 2 h = 9πh dv pot = 9π dh output can be calculated with the formula y = Q D, = 10. Plugging this in we have 10 = 9π dh dh = 10 9π in/min 39. A moving shadow A light shines from the high. A ball is opped from the same heigh away from the light. (See accompanying figu shadow of the ball moving along the gro (Assume the ball falls a distance s = 16t 2 ft i 50-ft pole Light 0 30 Ball at time t = 0 1/2 sec later From the picture we see that the radius is always half of the height, i.e. r = h/2 V cone = 1 3 πr2 h = πh3 12 dv cone = π dh 4 h2 We are given that dv cone = 10 and h = 5. Plugging this in we have 10 = 25π 4 dh dh = 8 5π in/min 5

6 Problem 26. A company can manufacture x items at a cost of c(x) thousand dollars, a sales revenue of r(x) thousand dollars, and a profit of p(x) = r(x) c(x) thousand dollars. Find dc/, /, and dp/ for the following values of x and dx/. r(x) = 9x, c(x) = x 3 6x x, and dx/ = 0.1 when x = 2 r(x) = 70x, c(x) = x 3 6x /x, and dx/ = 0.05 when x = 1.5 = 9dx = 9(0.1) = 0.9 dc = dx 3x2 12xdx + 15dx dp = 70dx = 3(2) 2 (0.1) 12(2)(0.1) + 15(0.1) = 0.3 = = 0.6 = 70(0.05) = 3.5 dc = dx 3x2 12xdx 45 dx x 2 dp = 3(1.5) 2 (0.05) 12(1.5)(0.05) 45 (1.5) 2 (0.05) = = 3.5 ( ) =

7 Problem 30. A man 6ft tall walks at the rate of 5 ft/sec towards a streetlight that is 16 ft above the ground. At what rate is the tip of his shadow moving? At what rate is the length of his shadow changing when he is 10ft from the base of the light? Using similar triangles we have that x + y y = 16 6 x = 16 6 y y = 5 3 y dx = 5 = = 3 The distance of the tip is x + y so the rate of the tip is dx + = 5 3 = 8 ft/sec The rate of the length of the shadow is / so it is 3 ft/sec 7

MCV4U1 Worksheet 4.7. dh / dt if neither r nor h is constant?

MCV4U1 Worksheet 4.7. dh / dt if neither r nor h is constant? MCV4U1 Worksheet 4.7 This worksheet serves as an additional exercise to complement the lesson and the examples given. Worksheets may take more than one day to complete. If you are stuck, read again the

More information

Days 3 & 4 Notes: Related Rates

Days 3 & 4 Notes: Related Rates AP Calculus Unit 4 Applications of the Derivative Part 1 Days 3 & 4 Notes: Related Rates Implicitly differentiate the following formulas with respect to time. State what each rate in the differential equation

More information

Implicit Differentiation and Related Rates

Implicit Differentiation and Related Rates Math 3A Discussion Notes Week 5 October 7 and October 9, 05 Because of the mierm, we re a little behind lecture, but this week s topics will help prepare you for the quiz. Implicit Differentiation and

More information

Math 131. Related Rates Larson Section 2.6

Math 131. Related Rates Larson Section 2.6 Math 131. Related Rates Larson Section 2.6 There are many natural situations when there are related variables that are changing with respect to time. For example, a spherical balloon is being inflated

More information

Related Rates Problems. of h.

Related Rates Problems. of h. Basic Related Rates Problems 1. If V is the volume of a cube and x the length of an edge. Express dv What is dv in terms of dx. when x is 5 and dx = 2? 2. If V is the volume of a sphere and r is the radius.

More information

Math 103 Selected Homework Solutions, Section 3.9

Math 103 Selected Homework Solutions, Section 3.9 Math 103 Selected Homework Solutions, Section 3.9 9. Let s be the distance from the base of the light pole to the top of the man s shadow, and the distance from the light pole to the man. 15 s 6 s We know:

More information

6.2 Related Rates Name: Notes

6.2 Related Rates Name: Notes Calculus Write your questions and thoughts here! 6.2 Related Rates Name: Notes Guidelines to solving related rate problems 1. Draw a picture. 2. Make a list of all known and unknown rates and quantities.

More information

Chapter 3.4 Practice Problems

Chapter 3.4 Practice Problems EXPECTED SKILLS: Chapter.4 Practice Problems Be able to solve related rates problems. It may be helpful to remember the following strategy:. Read the problem carefully. 2. Draw a diagram, if possible,

More information

Implicit Differentiation and Related Rates

Implicit Differentiation and Related Rates Math 31A Discussion Session Week 5 Notes February 2 and 4, 2016 This week we re going to learn how to find tangent lines to curves which aren t necessarily graphs of functions, using an approach called

More information

MATH1910Chapter2TestReview

MATH1910Chapter2TestReview Class: Date: MATH1910Chapter2TestReview Multiple Choice Identify the choice that best completes the statement or answers the question. 1. Find the slope m of the line tangent to the graph of the function

More information

AP Calculus AB Semester 1 Practice Final

AP Calculus AB Semester 1 Practice Final Class: Date: AP Calculus AB Semester 1 Practice Final Multiple Choice Identify the choice that best completes the statement or answers the question. 1. Find the limit (if it exists). lim x x + 4 x a. 6

More information

Chapter 3.5: Related Rates

Chapter 3.5: Related Rates Expected Skills: Chapter.5: Related Rates Be able to solve related rates problems. It may be helpful to remember the following strategy:. Read the problem carefully. 2. Draw a diagram, if possible, representing

More information

DIFFERENTIATION RULES

DIFFERENTIATION RULES 3 DIFFERENTIATION RULES DIFFERENTIATION RULES If we are pumping air into a balloon, both the volume and the radius of the balloon are increasing and their rates of increase are related to each other. However,

More information

Math 2250, Spring 2017, Practice Sheet for Exam 2

Math 2250, Spring 2017, Practice Sheet for Exam 2 Math 2250, Spring 2017, Practice Sheet for Exam 2 (1) Find the derivative of the function f(x) = xx (x 2 4) 5 (x 1) 3 e xp x + e x (2) Solve for dy dx x 2 4y 2 =sin(xy) (3) Solve for dx dt given that e

More information

Guidelines for implicit differentiation

Guidelines for implicit differentiation Guidelines for implicit differentiation Given an equation with x s and y s scattered, to differentiate we use implicit differentiation. Some informal guidelines to differentiate an equation containing

More information

AP Calculus AB Chapter 4 Packet Implicit Differentiation. 4.5: Implicit Functions

AP Calculus AB Chapter 4 Packet Implicit Differentiation. 4.5: Implicit Functions 4.5: Implicit Functions We can employ implicit differentiation when an equation that defines a function is so complicated that we cannot use an explicit rule to find the derivative. EXAMPLE 1: Find dy

More information

Math 2413 t2rsu14. Name: 06/06/ Find the derivative of the following function using the limiting process.

Math 2413 t2rsu14. Name: 06/06/ Find the derivative of the following function using the limiting process. Name: 06/06/014 Math 413 trsu14 1. Find the derivative of the following function using the limiting process. f( x) = 4x + 5x. Find the derivative of the following function using the limiting process. f(

More information

AP Calculus Related Rates Worksheet

AP Calculus Related Rates Worksheet AP Calculus Related Rates Worksheet 1. A small balloon is released at a point 150 feet from an observer, who is on level ground. If the balloon goes straight up at a rate of 8 feet per second, how fast

More information

APPLICATIONS OF DERIVATIVES UNIT PROBLEM SETS

APPLICATIONS OF DERIVATIVES UNIT PROBLEM SETS APPLICATIONS OF DERIVATIVES UNIT PROBLEM SETS PROBLEM SET #1 Related Rates ***Calculators Allowed*** 1. An oil tanker spills oil that spreads in a circular pattern whose radius increases at the rate of

More information

Math 1131Q Section 10

Math 1131Q Section 10 Math 1131Q Section 10 Section 3.9 and 3.10 Oct 19, 2010 Find the derivative of ln 3 5 e 2 ln 3 5 e 2 = ln 3 + ln 5/2 + ln e 2 = 3 ln + ( 5 ) ln + 2 2 (ln 3 5 e 2 ) = 3 + 5 2 + 2 Find the derivative of

More information

APPLICATIONS OF DERIVATIVES

APPLICATIONS OF DERIVATIVES ALICATIONS OF DERIVATIVES 6 INTRODUCTION Derivatives have a wide range of applications in engineering, sciences, social sciences, economics and in many other disciplines In this chapter, we shall learn

More information

Solve for an unknown rate of change using related rates of change.

Solve for an unknown rate of change using related rates of change. Objectives: Solve for an unknown rate of change using related rates of change. 1. Draw a diagram. 2. Label your diagram, including units. If a quantity in the diagram is not changing, label it with a number.

More information

Implicit Differentiation

Implicit Differentiation Week 6. Implicit Differentiation Let s say we want to differentiate the equation of a circle: y 2 + x 2 =9 Using the techniques we know so far, we need to write the equation as a function of one variable

More information

4.1 Implicit Differentiation

4.1 Implicit Differentiation 4.1 Implicit Differentiation Learning Objectives A student will be able to: Find the derivative of variety of functions by using the technique of implicit differentiation. Consider the equation We want

More information

Related Rates. 2. List the relevant quantities in the problem and assign them appropriate variables. Then write down all the information given.

Related Rates. 2. List the relevant quantities in the problem and assign them appropriate variables. Then write down all the information given. Calculus 1 Lia Vas Related Rates The most important reason for a non-mathematics major to learn mathematics is to be able to apply it to problems from other disciplines or real life. In this section, we

More information

Calculus 437 Semester 1 Review Chapters 1, 2, and 3 January 2016

Calculus 437 Semester 1 Review Chapters 1, 2, and 3 January 2016 Name: Class: Date: Calculus 437 Semester 1 Review Chapters 1, 2, and 3 January 2016 Short Answer 1. Decide whether the following problem can be solved using precalculus, or whether calculus is required.

More information

d dx x = d dx (10,000 - p2 ) 1/2 dx [10,000 - p2 ] p' = dv = 0 dl dv V + n Things to remember: dt dt ; dy dt = 3

d dx x = d dx (10,000 - p2 ) 1/2 dx [10,000 - p2 ] p' = dv = 0 dl dv V + n Things to remember: dt dt ; dy dt = 3 45. x 0,000 " p 2 (0,000 - p 2 ) /2 d x d (0,000 - p2 ) /2 2 (0,000 - p2 ) -/2 d [0,000 - p2 ] 2(0,000 " p 2 ) 2 (!2pp') p' "p p # 0,000 " p 2 " 0,000 " p2 p 47. (L + m)(v + n) k (L + m)() + (V + n) dl

More information

V = π 3 r2 h. dv dt = π [ r 2dh dt r2. dv 3 dt +2rhdr dt

V = π 3 r2 h. dv dt = π [ r 2dh dt r2. dv 3 dt +2rhdr dt 9 Related Rates Related rates is the phrase used to describe the situation when two or more related variables are changing with respect to time. The rate of change, as mentioned earlier, is another expression

More information

Lecture 9. Section 3.4 Derivative as a Rate of Change Section 3.8 Rates of Change per Unit Time. Jiwen He

Lecture 9. Section 3.4 Derivative as a Rate of Change Section 3.8 Rates of Change per Unit Time. Jiwen He Review Section 3.4 Section 3.8 Lecture 9 Section 3.4 Derivative as a Rate of Change Section 3.8 Rates of Change per Unit Time Jiwen He Department of Mathematics, University of Houston jiwenhe@math.uh.edu

More information

a right triangle), we see that x 200 or equivalently x = 200 tan θ. The rate at which the ray of light moves along the shore is

a right triangle), we see that x 200 or equivalently x = 200 tan θ. The rate at which the ray of light moves along the shore is Example 1: A revolving beacon in a lighthouse makes one revolution every 15 seconds. The beacon is 00 ft from the nearest point P on a straight shoreline. Find the rate at which a ray from the light moves

More information

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. C) dc. D) dr dt = 2πdC dt

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. C) dc. D) dr dt = 2πdC dt MAC 3 Chapter Review Materials (Part III) Topics Include Related Rates, Differentials, and Linear Approximations MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers

More information

p144 Section 2.6: Related Rates Find a related rate Use related rates to solve real life problems

p144 Section 2.6: Related Rates Find a related rate Use related rates to solve real life problems 1 2 p144 Section 2.6: Related Rates Find a related rate Use related rates to solve real life problems Finding Related Rates We have used the chain rule to find dy/dx implicitly, but you can also use the

More information

p144 Section 2.6: Related Rates Find a related rate Use related rates to solve real life problems

p144 Section 2.6: Related Rates Find a related rate Use related rates to solve real life problems p144 Section 2.6: Related Rates Find a related rate Use related rates to solve real life problems Finding Related Rates We have used the chain rule to find dy/dx implicitly, but you can also use the chain

More information

4.6 Related Rates 8 b o lk0uct5ai FSHopfitcwkadr9ee MLBL1Cv.0 h ca5lrlx 8rzi8gThzt Zs9 2rJejsqeprTvCeVdy.w Solve each related rate problem.

4.6 Related Rates 8 b o lk0uct5ai FSHopfitcwkadr9ee MLBL1Cv.0 h ca5lrlx 8rzi8gThzt Zs9 2rJejsqeprTvCeVdy.w Solve each related rate problem. -- g 52P0l33e 5Ktu3tlaY tswobfrtcwsawrkeq mlzlzcd.u 2 7AklGlf lrbiegkhjtbsa 9rlewsSeIr2vPeVdW.L 2 7Mza5dWeI gwbimtmhn bimnff0ieneistuet SCDallJcrulsuTsG.k Calculus 4.6 Related Rates 8 b230593 o lk0uct5ai

More information

(a) At what rate is the circumference of the circle changing when the radius is 10 inches? =2inches per minute and we want to find. c =2 r.

(a) At what rate is the circumference of the circle changing when the radius is 10 inches? =2inches per minute and we want to find. c =2 r. 3.11 Related Rates Problem 1 The radius of a circle is increasing at a rate of 2 inches per minute. (a) At what rate is the circumference of the circle changing when the radius is 10 inches? We know: dr

More information

Section 3.8 Related Rates

Section 3.8 Related Rates Section 3.8 Related Rates Read and re-read the problem until you understand it. Draw and label a picture which gives the relevant information (if possible). Introduce notation. Assign a symbol to every

More information

1 The Derivative and Differrentiability

1 The Derivative and Differrentiability 1 The Derivative and Differrentiability 1.1 Derivatives and rate of change Exercise 1 Find the equation of the tangent line to f (x) = x 2 at the point (1, 1). Exercise 2 Suppose that a ball is dropped

More information

Section MWF 12 1pm SR 117

Section MWF 12 1pm SR 117 Math 1431 Section 12485 MWF 12 1pm SR 117 Dr. Melahat Almus almus@math.uh.edu http://www.math.uh.edu/~almus COURSE WEBSITE: http://www.math.uh.edu/~almus/1431_sp16.html Visit my website regularly for announcements

More information

Almost all of the questions involving Related Rates will require one of the following relationships to link together the various changing rates:

Almost all of the questions involving Related Rates will require one of the following relationships to link together the various changing rates: Related Rates All quantities that we meet in every-day life change with time, this is especially true in scientific investigations. Related Rate problems are those in which an equation epresses some relationship

More information

Related Rates. MATH 151 Calculus for Management. J. Robert Buchanan. Department of Mathematics. J. Robert Buchanan Related Rates

Related Rates. MATH 151 Calculus for Management. J. Robert Buchanan. Department of Mathematics. J. Robert Buchanan Related Rates Related Rates MATH 151 Calculus for Management J. Robert Buchanan Department of Mathematics 2014 Related Rates Problems Another common application of the derivative involved situations in which two or

More information

2.6 Related Rates. The Derivative as a Rate of Change. = ft related rates 175

2.6 Related Rates. The Derivative as a Rate of Change. = ft related rates 175 2.6 related rates 175 2.6 Related Rates Throughout the next several tions we ll look at a variety of applications of derivatives. Probably no single application will be of interest or use to everyone,

More information

Math 125: Exam 3 Review

Math 125: Exam 3 Review Math 125: Exam 3 Review Since we re using calculators, to keep the playing field level between all students, I will ask that you refrain from using certain features of your calculator, including graphing.

More information

FINALS WEEK! MATH 34A TA: Jerry Luo Drop-in Session: TBA LAST UPDATED: 6:54PM, 12 December 2017

FINALS WEEK! MATH 34A TA: Jerry Luo Drop-in Session: TBA LAST UPDATED: 6:54PM, 12 December 2017 FINALS WEEK! MATH 34A TA: Jerry Luo jerryluo8@math.ucsb.edu Drop-in Session: TBA LAST UPDATED: 6:54PM, 12 December 2017 On this worksheet are selected problems from homeworks 9 and 10 which were less done.

More information

Name Date Class. Logarithmic/Exponential Differentiation and Related Rates Review AP Calculus. Find dy. dx. 1. y 4 x. y 6. 3e x.

Name Date Class. Logarithmic/Exponential Differentiation and Related Rates Review AP Calculus. Find dy. dx. 1. y 4 x. y 6. 3e x. Name Date Class Find dy d. Logarithmic/Eponential Differentiation and Related Rates Review AP Calculus 1. y 4. 1 y ln. y ln 1 4. y log9 1 5. e y 6. y log 7. y e 8. e y e 4 1 1 9. y e e 10. 1 y ln 1 e 11.

More information

Review Questions, Exam 3

Review Questions, Exam 3 Review Questions, Exam. A child is flying a kite. If the kite is 90 feet above the child s hand level and the wind is blowing it on a horizontal course at 5 feet per second, how fast is the child paying

More information

MAC 2311 Review

MAC 2311 Review Name: Class: Date: MAC 2311 Review 2.6-2.9 Numeric Response 1. Calculate y. xy 4 +x 2 y =2x +3y 2. Calculate y. cos xy =x 6 y 3. The position function of a particle is given by s =t 3 10.5t 2 2t,t 0 When

More information

See animations and interactive applets of some of these at. Fall_2009/Math123/Notes

See animations and interactive applets of some of these at.   Fall_2009/Math123/Notes MA123, Chapter 7 Word Problems (pp. 125-153) Chapter s Goal: In this chapter we study the two main types of word problems in Calculus. Optimization Problems. i.e., max - min problems Related Rates See

More information

Calculus I (Math 241) (In Progress)

Calculus I (Math 241) (In Progress) Calculus I (Math 241) (In Progress) The following is a collection of Calculus I (Math 241) problems. Students may expect that their final exam is comprised, more or less, of one problem from each section,

More information

Applications of Derivatives

Applications of Derivatives Applications of Derivatives Big Ideas Connecting the graphs of f, f, f Differentiability Continuity Continuity Differentiability Critical values Mean Value Theorem for Derivatives: Hypothesis: If f is

More information

Sample Questions Exam II, FS2009 Paulette Saab Calculators are neither needed nor allowed.

Sample Questions Exam II, FS2009 Paulette Saab Calculators are neither needed nor allowed. Sample Questions Exam II, FS2009 Paulette Saab Calculators are neither needed nor allowed. Part A: (SHORT ANSWER QUESTIONS) Do the following problems. Write the answer in the space provided. Only the answers

More information

with dt. with 2. If x = u, find an equation relating du dt

with dt. with 2. If x = u, find an equation relating du dt MATH 2250 Royal Section 3.10: Related Rates EXPANDED VERSION In this section, we consider two (or more) dependent variables that depend on a third variable (the independent variable). Usually, the independent

More information

AP Calculus Free-Response Questions 1969-present AB

AP Calculus Free-Response Questions 1969-present AB AP Calculus Free-Response Questions 1969-present AB 1969 1. Consider the following functions defined for all x: f 1 (x) = x, f (x) = xcos x, f 3 (x) = 3e x, f 4 (x) = x - x. Answer the following questions

More information

4.6 Related Rates Notes RELATED RATES PROBLEMS --- IT S AS EASY AS 1 2-3!

4.6 Related Rates Notes RELATED RATES PROBLEMS --- IT S AS EASY AS 1 2-3! 4.6 Related Rates Notes RELATED RATES PROBLEMS --- IT S AS EASY AS 1 2-3! 1) Draw a picture. Label all variables and constant values. Identify the given rate of change, the rate to be found, and when to

More information

Chapter 8: Radical Functions

Chapter 8: Radical Functions Chapter 8: Radical Functions Chapter 8 Overview: Types and Traits of Radical Functions Vocabulary:. Radical (Irrational) Function an epression whose general equation contains a root of a variable and possibly

More information

x f(x)

x f(x) 1. Name three different reasons that a function can fail to be differential at a point. Give an example for each reason, and explain why your examples are valid. 2. Given the following table of values,

More information

Calculus I - Lecture 14 - Related Rates

Calculus I - Lecture 14 - Related Rates Calculus I - Lecture 14 - Related Rates Lecture Notes: http://www.math.ksu.edu/ gerald/math220d/ Course Syllabus: http://www.math.ksu.edu/math220/spring-2014/indexs14.html Gerald Hoehn (based on notes

More information

x f(x)

x f(x) 1. Name three different reasons that a function can fail to be differentiable at a point. Give an example for each reason, and explain why your examples are valid. 2. Given the following table of values,

More information

Related Rates STEP 1 STEP 2:

Related Rates STEP 1 STEP 2: Related Rates You can use derivative analysis to determine how two related quantities also have rates of change which are related together. I ll lead off with this example. 3 Ex) A spherical ball is being

More information

Solution: It could be discontinuous, or have a vertical tangent like y = x 1/3, or have a corner like y = x.

Solution: It could be discontinuous, or have a vertical tangent like y = x 1/3, or have a corner like y = x. 1. Name three different reasons that a function can fail to be differentiable at a point. Give an example for each reason, and explain why your examples are valid. It could be discontinuous, or have a

More information

All work must be shown in this course for full credit. Unsupported answers may receive NO credit.

All work must be shown in this course for full credit. Unsupported answers may receive NO credit. AP Calculus.5 Worksheet All work must be shown in this course for full credit. Unsupported answers may receive NO credit. 1. Consider the function y = sin x. a) Find the equation of the tangent line when

More information

Implicit Differentiation

Implicit Differentiation Implicit Differentiation Much of our algebraic study of mathematics has dealt with functions. In pre-calculus, we talked about two different types of equations that relate x and y explicit and implicit.

More information

Math 147 Exam II Practice Problems

Math 147 Exam II Practice Problems Math 147 Exam II Practice Problems This review should not be used as your sole source for preparation for the exam. You should also re-work all examples given in lecture, all homework problems, all lab

More information

A = 1 2 ab da dt = 1 da. We can find how fast the area is growing at 3 seconds by plugging everything into that differentiated equation: da

A = 1 2 ab da dt = 1 da. We can find how fast the area is growing at 3 seconds by plugging everything into that differentiated equation: da 1 Related Rates In most related rates problems, we have an equation that relates a bunch of quantities that are changing over time. For example, suppose we have a right triangle whose base and height are

More information

UNIT 2 SIMPLE APPLICATION OF DIFFERENTIAL CALCULUS

UNIT 2 SIMPLE APPLICATION OF DIFFERENTIAL CALCULUS Calculus UNIT 2 SIMPLE APPLICATION OF DIFFERENTIAL CALCULUS Structure 2.0 Introduction 2.1 Objectives 2.2 Rate of Change of Quantities 2.3 Increasing and Decreasing Function 2.4 Maima and Minima of Functions

More information

APPLICATION OF DERIVATIVES

APPLICATION OF DERIVATIVES 94 APPLICATION OF DERIVATIVES Chapter 6 With the Calculus as a key, Mathematics can be successfully applied to the explanation of the course of Nature. WHITEHEAD 6. Introduction In Chapter 5, we have learnt

More information

Due: Wed Oct :30 AM MDT. Question Instructions Make sure you have easy access to all three of these documents.

Due: Wed Oct :30 AM MDT. Question Instructions Make sure you have easy access to all three of these documents. Related Rates II: Guided (10862409) Due: Wed Oct 4 2017 07:30 AM MDT Question 1 2 3 4 5 6 Instructions Make sure you have easy access to all three of these documents. Today's Notes and Learning Goals Tips

More information

AP Calculus BC Chapter 4 AP Exam Problems A) 4 B) 2 C) 1 D) 0 E) 2 A) 9 B) 12 C) 14 D) 21 E) 40

AP Calculus BC Chapter 4 AP Exam Problems A) 4 B) 2 C) 1 D) 0 E) 2 A) 9 B) 12 C) 14 D) 21 E) 40 Extreme Values in an Interval AP Calculus BC 1. The absolute maximum value of x = f ( x) x x 1 on the closed interval, 4 occurs at A) 4 B) C) 1 D) 0 E). The maximum acceleration attained on the interval

More information

MATH 10550, EXAM 2 SOLUTIONS. 1. Find an equation for the tangent line to. f(x) = sin x cos x. 2 which is the slope of the tangent line at

MATH 10550, EXAM 2 SOLUTIONS. 1. Find an equation for the tangent line to. f(x) = sin x cos x. 2 which is the slope of the tangent line at MATH 100, EXAM SOLUTIONS 1. Find an equation for the tangent line to at the point ( π 4, 0). f(x) = sin x cos x f (x) = cos(x) + sin(x) Thus, f ( π 4 ) = which is the slope of the tangent line at ( π 4,

More information

Derivatives and Rates of Change

Derivatives and Rates of Change Sec.1 Derivatives and Rates of Change A. Slope of Secant Functions rise Recall: Slope = m = = run Slope of the Secant Line to a Function: Examples: y y = y1. From this we are able to derive: x x x1 m y

More information

AP Calculus AB Chapter 2 Test Review #1

AP Calculus AB Chapter 2 Test Review #1 AP Calculus AB Chapter Test Review # Open-Ended Practice Problems:. Nicole just loves drinking chocolate milk out of her special cone cup which has a radius of inches and a height of 8 inches. Nicole pours

More information

Math Exam 02 Review

Math Exam 02 Review Math 10350 Exam 02 Review 1. A differentiable function g(t) is such that g(2) = 2, g (2) = 1, g (2) = 1/2. (a) If p(t) = g(t)e t2 find p (2) and p (2). (Ans: p (2) = 7e 4 ; p (2) = 28.5e 4 ) (b) If f(t)

More information

Table of Contents Related Rate Word Problems

Table of Contents Related Rate Word Problems 00 D.W.MacLean: Related Rate Word Problems -1 Table of Contents Related Rate Word Problems General Strategy 003 Doug MacLean Expanding Balloon A Sand Pile Docking AirCraft Carrier Sliding Ladder Moving

More information

APPLICATIONS OF DERIVATIVES OBJECTIVES. The approimate increase in the area of a square plane when each side epands from c m to.0 cm is () 0.00 sq. cm () 0.006 sq. cm () 0.06 sq. cm () None. If y log then

More information

AP Calculus AB Semester 2 Practice Final

AP Calculus AB Semester 2 Practice Final lass: ate: I: P alculus Semester Practice Final Multiple hoice Identify the choice that best completes the statement or answers the question. Find the constants a and b such that the function f( x) = Ï

More information

Science One Math. October 18, 2018

Science One Math. October 18, 2018 Science One Math October 18, 2018 Today A few more examples of related rates problems A general discussion about mathematical modelling A simple growth model Related Rates Problems Problems where two or

More information

MATH 135 Calculus 1 Solutions/Answers for Exam 3 Practice Problems November 18, 2016

MATH 135 Calculus 1 Solutions/Answers for Exam 3 Practice Problems November 18, 2016 MATH 35 Calculus Solutions/Answers for Exam 3 Practice Problems November 8, 206 I. Find the indicated derivative(s) and simplify. (A) ( y = ln(x) x 7 4 ) x Solution: By the product rule and the derivative

More information

AP Calculus. Applications of Derivatives. Table of Contents

AP Calculus. Applications of Derivatives.   Table of Contents AP Calculus 2015 11 03 www.njctl.org Table of Contents click on the topic to go to that section Related Rates Linear Motion Linear Approximation & Differentials L'Hopital's Rule Horizontal Tangents 1 Related

More information

Math 1201 Review Chapter 2

Math 1201 Review Chapter 2 Math 01 Review hapter 2 Multiple hoice Identify the choice that best completes the statement or answers the question. 1. etermine tan Q and tan R. P Q 16 R a. tan Q = 0.428571; tan R = 0.75 c. tan Q =

More information

MATH 150/GRACEY EXAM 2 PRACTICE/CHAPTER 2. MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

MATH 150/GRACEY EXAM 2 PRACTICE/CHAPTER 2. MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. MATH 0/GRACEY EXAM PRACTICE/CHAPTER Name MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Find the indicated derivative. ) Find if = 8 sin. A) = 8

More information

Calculus I 5. Applications of differentiation

Calculus I 5. Applications of differentiation 2301107 Calculus I 5. Applications of differentiation Chapter 5:Applications of differentiation C05-2 Outline 5.1. Extreme values 5.2. Curvature and Inflection point 5.3. Curve sketching 5.4. Related rate

More information

Section 4.1: Related Rates

Section 4.1: Related Rates 1 Section 4.1: Related Rates Practice HW from Stewart Textbook (not to hand in) p. 67 # 1-19 odd, 3, 5, 9 In a related rates problem, we want to compute the rate of change of one quantity in terms of the

More information

MAT 210 TEST 2 REVIEW (Ch 12 and 13)

MAT 210 TEST 2 REVIEW (Ch 12 and 13) Class: Date: MAT 0 TEST REVIEW (Ch and ) Multiple Choice Identify the choice that best completes the statement or answers the question.. The population P is currently 0,000 and growing at a rate of 7,000

More information

Review Sheet for Second Midterm Mathematics 1300, Calculus 1

Review Sheet for Second Midterm Mathematics 1300, Calculus 1 Review Sheet for Second Midterm Mathematics 300, Calculus. For what values of is the graph of y = 5 5 both increasing and concave up? >. 2. Where does the tangent line to y = 2 through (0, ) intersect

More information

WeBWorK demonstration assignment

WeBWorK demonstration assignment WeBWorK demonstration assignment The main purpose of this WeBWorK set is to familiarize yourself with WeBWorK. Here are some hints on how to use WeBWorK effectively: After first logging into WeBWorK change

More information

Free Response Questions Compiled by Kaye Autrey for face-to-face student instruction in the AP Calculus classroom

Free Response Questions Compiled by Kaye Autrey for face-to-face student instruction in the AP Calculus classroom Free Response Questions 1969-010 Compiled by Kaye Autrey for face-to-face student instruction in the AP Calculus classroom 1 AP Calculus Free-Response Questions 1969 AB 1 Consider the following functions

More information

#12 Algebra 2 Notes Using Trig in Real Life

#12 Algebra 2 Notes Using Trig in Real Life #12 Algebra 2 Notes 13.1 Using Trig in Real Life #12 Algebra 2 Notes: 13.1 using Trig in Real Life Angle of Elevation Angle of Elevation means you are looking upward and is usually measured from the ground

More information

MCB4UW Handout 4.11 Related Rates of Change

MCB4UW Handout 4.11 Related Rates of Change MCB4UW Handout 4. Related Rate of Change. Water flow into a rectangular pool whoe dimenion are m long, 8 m wide, and 0 m deep. If water i entering the pool at the rate of cubic metre per econd (hint: thi

More information

( n ) n + 1 n. ( n ) n. f f ' f '' f ''' y ( u ) = ue au. n! ( 7 + x )

( n ) n + 1 n. ( n ) n. f f ' f '' f ''' y ( u ) = ue au. n! ( 7 + x ) Homework 7; Due: Friday, May 20, 1:00pm 1 Fill in the blanks. The figure shows graphs of f, f ', f '', and f '''. Identify each curve. Answer a, b, c, or d. f f ' f '' f ''' 2 y ( u ) = ue au Let. Find

More information

Exam 2 MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

Exam 2 MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Exam 2 MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Provide an appropriate response. 1) Find dy/dx by implicit differentiation. x3 + y3 = 5 A)

More information

AP Calculus Chapter 4 Testbank (Mr. Surowski)

AP Calculus Chapter 4 Testbank (Mr. Surowski) AP Calculus Chapter 4 Testbank (Mr. Surowski) Part I. Multiple-Choice Questions 1. Let f(x) = x 3 + 3x 2 45x + 4. Then the local extrema of f are (A) a local minimum of 179 at x = 5 and a local maximum

More information

Review for the Final Exam

Review for the Final Exam Calculus Lia Vas. Integrals. Evaluate the following integrals. (a) ( x 4 x 2 ) dx (b) (2 3 x + x2 4 ) dx (c) (3x + 5) 6 dx (d) x 2 dx x 3 + (e) x 9x 2 dx (f) x dx x 2 (g) xe x2 + dx (h) 2 3x+ dx (i) x

More information

Math 113/114 Lecture 22

Math 113/114 Lecture 22 Math 113/114 Lecture 22 Xi Chen 1 1 University of Alberta October 31, 2014 Outline 1 2 (Application of Implicit Differentiation) Given a word problem about related rates, we need to do: interpret the problem

More information

( f + g ) (3) = ( fg ) (3) = g(x) = x 7 cos x. s = 200t 10t 2. sin x cos x cos2x. lim. f (x) = 7 x 5. y = 1+ 4sin x, (0,1) f (x) = x 2 g(x)

( f + g ) (3) = ( fg ) (3) = g(x) = x 7 cos x. s = 200t 10t 2. sin x cos x cos2x. lim. f (x) = 7 x 5. y = 1+ 4sin x, (0,1) f (x) = x 2 g(x) Stewart - Calculus ET 6e Chapter Form A 1. If f ( ) =, g() =, f () =, g () = 6, find the following numbers. ( f + g ) () = ( fg ) () = ( f / g) () = f f g ( ) =. Find the points on the curve y = + 1 +

More information

Handout 4.11 Solutions. Let x represent the depth of the water at any time Let V represent the volume of the pool at any time

Handout 4.11 Solutions. Let x represent the depth of the water at any time Let V represent the volume of the pool at any time MCBUW Handout 4. Solution. Label 0m m 8m Let repreent the depth of the water at any time Let V repreent the volume of the pool at any time V 96 96 96 The level of the water i riing at the rate of m. a).

More information

Downloaded from APPLICATION OF TRIGONOMETRY

Downloaded from   APPLICATION OF TRIGONOMETRY MULTIPLE CHOICE QUESTIONS APPLICATION OF TRIGONOMETRY Write the correct answer for each of the following : 1. Write the altitude of the sun is at 60 o, then the height of the vertical tower that will cost

More information

3.8 Exponential Growth and Decay

3.8 Exponential Growth and Decay 3.8 Exponential Growth and Decay Suppose the rate of change of y with respect to t is proportional to y itself. So there is some constant k such that dy dt = ky The only solution to this equation is an

More information

U of U Math Online. Young-Seon Lee. WeBWorK set 1. due 1/21/03 at 11:00 AM. 6 4 and is perpendicular to the line 5x 3y 4 can

U of U Math Online. Young-Seon Lee. WeBWorK set 1. due 1/21/03 at 11:00 AM. 6 4 and is perpendicular to the line 5x 3y 4 can U of U Math 0-6 Online WeBWorK set. due //03 at :00 AM. The main purpose of this WeBWorK set is to familiarize yourself with WeBWorK. Here are some hints on how to use WeBWorK effectively: After first

More information

Second Midterm Exam Name: Practice Problems Septmber 28, 2015

Second Midterm Exam Name: Practice Problems Septmber 28, 2015 Math 110 4. Treibergs Second Midterm Exam Name: Practice Problems Septmber 8, 015 1. Use the limit definition of derivative to compute the derivative of f(x = 1 at x = a. 1 + x Inserting the function into

More information

Optimization: Other Applications

Optimization: Other Applications Optimization: Other Applications MATH 151 Calculus for Management J. Robert Buchanan Department of Mathematics Fall 2018 Objectives After completing this section, we will be able to: use the concepts of

More information

Assignment 6. Name MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

Assignment 6. Name MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Assinment 6 Name MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Round your answer, if appropriate. 1) A man 6 ft tall walks at a rate of 3 ft/sec

More information