Using Predictions in Online Optimization: Looking Forward with an Eye on the Past

Size: px
Start display at page:

Download "Using Predictions in Online Optimization: Looking Forward with an Eye on the Past"

Transcription

1 Usng Predctons n Onlne Optmzton: Lookng Forwrd wth n Eye on the Pst Nngjun Chen Jont work wth Joshu Comden, Zhenhu Lu, Anshul Gndh, nd Adm Wermn 1

2 Predctons re crucl for decson mkng 2

3 Predctons re crucl for decson mkng The humn brn, t s beng ncresngly rgued n the scentfc lterture, s best vewed s n dvnced predcton mchne. 3

4 We know how to mke predctons 4

5 We know how to mke predctons But not how to desgn lgorthms to use predcton How should n lgorthm use predctons f errors re ndependent vs correlted 5

6 Ths pper: Onlne lgorthm desgn wth predctons n mnd 6

7 c " c " c ) c ( c * Predcton error c " (x " ) F x " Cost = c " x " 7

8 c ) c ( c * c ( c ( (x ( ) Predcton error F x " x ( β x ( x " : swtchng cost Cost = c " x " + β x ( x " + c ( x ( 8

9 c ) c * c ) Predcton error c ) (x ) ) F x " x ) x ( β x ) x ( Cost = c " x " + β x ( x " + c ( x ( + β x ) x ( + c ) x ) 9

10 Onlne convex optmzton usng predctons x ", y ", x (, y (, x ), y ) mn c x 8, y 8 8 convex onlne + β x 8 x 8<" swtchng cost e.g. onlne trckng cost c x 8, y 8 Gol: mnmze compettve dfference cost(alg) cost(opt) Gven predcton of y 8 t tme τ, y 8 A Tme Informton Avlble Decson 1 y " > y ( > y ) > x " 2 y " y ( " y ) " x ( 3 y " y ( y ) ( x ) 4 y " y ( y ) x * 10

11 Predcton nose model [Gn et l 2013] [Chen et l 2014] [Chen et l 2015] y 8 = y 8 A RSAT" f t s e(s) Relzton tht lgorthm s tryng to trck predcton error Predcton for tme t gven to lgorthm t tme τ 11

12 Predcton nose model [Gn et l 2013] [Chen et l 2014] [Chen et l 2015] y 8 = y 8 A RSAT" Per- step nose f t s e(s) 9

13 Predcton nose model [Gn et l 2013] [Chen et l 2014] [Chen et l 2015] y 8 = y 8 A Weghtng fctor RSAT" f t s e(s) How mportnt s the nose t tme t s for the predcton of t? σ f 0 ( + + f s ( ) t = s 13

14 Predcton nose model [Gn et l 2013] [Chen et l 2014] [Chen et l 2015] y 8 = y 8 A RSAT" f t s e(s) predcton error Predctons re refned s tme moves forwrd Predctons re more nosy s you look further hed Predcton errors cn be correlted Form of errors mtches mny clsscl models Predcton of wde- sense sttonry process usng Wener flter Predcton of lner dynmcl system usng Klmn flter 14

15 Lots of pplctons Dynmc cpcty mngement n dt centers [Gndh et l. 2012][Ln et l 2013] Power system generton/lod schedulng[lu et l. 2013] Portfolo mngement [Cover 1991][Boyd et l. 2012] Vdeo stremng [Sen et l. 2000][Lu et l. 2008] Network routng [Bnsl et l. 2003][Kodlm et l. 2003] Geogrphcl lod blncng [Hndmn et l. 2011] [Ln et l. 2012] Vsul speech generton [Km et l. 2015] 15

16 Lots of pplctons Dynmc cpcty mngement n dt centers [Gndh et l. 2012][Ln et l 2013] Power system generton/lod schedulng[lu et l. 2013] Portfolo mngement [Cover 1991][Boyd et l. 2012] Vdeo stremng [Sen et l. 2000][Lu et l. 2008] Network routng [Bnsl et l. 2003][Kodlm et l. 2003] Geogrphcl lod blncng [Hndmn et l. 2011] [Ln et l. 2012] Vsul speech generton [Km et l. 2015] 16

17 Lots of pplctons Dynmc cpcty mngement n dt centers [Gndh et l. 2012][Ln et l 2013] Power system generton/lod schedulng[lu et l. 2013] Portfolo mngement [Cover 1991][Boyd et l. 2012] Vdeo stremng [Sen et l. 2000][Lu et l. 2008] Network routng [Bnsl et l. 2003][Kodlm et l. 2003] Geogrphcl lod blncng [Hndmn et l. 2011] [Ln et l. 2012] Vsul speech generton [Km et l. 2015] 17

18 Lots of pplctons Dynmc cpcty mngement n dt centers [Gndh et l. 2012][Ln et l 2013] Power system generton/lod schedulng[lu et l. 2013] Portfolo mngement [Cover 1991][Boyd et l. 2012] Vdeo stremng [Sen et l. 2000][Lu et l. 2008] Network routng [Bnsl et l. 2003][Kodlm et l. 2003] Geogrphcl lod blncng [Hndmn et l. 2011] [Ln et l. 2012] Vsul speech generton [Km et l. 2015] 18

19 Lots of pplctons lots of lgorthms Most populr choce by fr: Recedng Horzon Control (RHC) [Morret l 1989][Myne1990][Rwlnget l 2000][Cmcho 2013] y 8T" 8, y 8T( 8,, y 8TX 8, y 8TXT" 8, y 8TXT( 8, 8TX x 8T", x 8T(,, x 8TX = rgmn 7 c(x 8, y 8 R ) + β x 8 x 8<" " RS8T" 19

20 Lots of pplctons lots of lgorthms Most populr choce by fr: Recedng Horzon Control (RHC) [Morret l 1989][Myne1990][Rwlnget l 2000][Cmcho 2013] y 8T" 8, y 8T( 8,, y 8TX 8, y 8TXT" 8, y 8TXT( 8, y 8T( 8T", y 8T) 8T",, y 8TXT" 8T", y 8TXT( 8T", y 8TXT) 8T", x 8T(, x 8T), x 8TXT" 20

21 Lots of pplctons lots of lgorthms Most populr choce by fr: Recedng Horzon Control (RHC) [Morret l 1989][Myne1990][Rwlnget l 2000][Cmcho 2013] y 8T" 8, y 8T( 8,, y 8TX 8, y 8TXT" 8, y 8TXT( 8, y 8T( 8T", y 8T) 8T",, y 8TXT" 8T", y 8TXT( 8T", y 8TXT) 8T", y 8T) 8T(, y 8T* 8T(,, y 8TXT( 8T(, y 8TXT) 8T(, y 8TXT* 8T(, x 8T), x 8T*, x 8TXT( 21

22 Lots of pplctons lots of lgorthms Most populr choce by fr: Recedng Horzon Control (RHC) [Morret l 1989][Myne1990][Rwlnget l 2000][Cmcho 2013] Recent suggeston: Avergng Fxed Horzon Control (AFHC) [Ln et l 2012] [Chen et l 2015] [Km et l 2015] 22

23 Avergng Fxed Horzon Control Fxed Horzon Control (FHC) y 8T" 8, y 8T( 8,, y 8TX 8, y 8TXT" 8TX, y 8TXT( 8TX, 8TX x 8T", x 8T(,, x 8TX = rgmn 7 c(x 8, y 8 R ) + β x 8 x 8<" " RS8T" 23

24 Avergng Fxed Horzon Control Fxed Horzon Control (FHC) y 8T" 8, y 8T( 8,, y 8TX 8, y 8TXT" 8TX, y 8TXT( 8TX, x 8T", x 8T(,, x 8TX x 8TXT", x 8TXT(,, x 8T(X 24

25 Avergng Fxed Horzon Control Averge choces of FHC lgorthms X x \6]^ = " x _ S" 6]^ w FHC lgorthms x " 8<(, x " 8<", x " " 8, x 8TX<( x ( 8<", x ( ( ( 8, x 8T*, x 8TX<" ",, x ) 8, x ) ) ) 8T*, x 8Tc, x 8TX x 8TX<" ( x 8TX,, x 8TXT" ),, x 8 X 25

26 Algorthms Usng Nosy Predcton Most populr choce by fr: Recedng Horzon Control (RHC) [Morret l 1989][Myne1990][Rwlnget l 2000][Cmcho 2013] Recent suggeston: Avergng Fxed Horzon Control (AFHC) [Ln et l 2012] [Chen et l 2015] [Km et l 2015] Whch lgorthm s better? Uncler 26

27 AFHC nd RHC hve vstly dfferent behvor Emprclly AFHC s better n worst cse under perfect predctons RHC s better n stochstc cse when predcton errors re correlted 27

28 Ths pper: Onlne lgorthm desgn wth predctons n mnd How to desgn lgorthm optml for predcton nose? 28

29 Three key desgn choces 1. How fr to look- hed n mkng decsons? y 8T" 8, y 8T( 8,, y 8TX 8, y 8TXT" 8, y 8TXT( 8, Lookhed w steps 29

30 Three key desgn choces 1. How fr to look- hed n mkng decsons? 2. How mny ctons to commt? y 8T" 8, y 8T( 8,, y 8TX 8, y 8TXT" 8, y 8TXT( 8, 8TX x 8T", x 8T(,, x 8TX = rgmn 7 c(x 8, y 8 R ) + β x 8 x 8<" " RS8T" 30

31 Three key desgn choces 1. How fr to look- hed n mkng decsons? 2. How mny ctons to commt? y 8T" 8, y 8T( 8,, y 8TX 8, y 8TXT" 8, y 8TXT( 8, 8TX x 8T", x 8T(,, x 8TX = rgmn 7 c(x 8, y 8 R ) + β x 8 x 8<" " commts v steps RS8T" 31

32 Three key desgn choces 1. How fr to look- hed n mkng decsons? 2. How mny ctons to commt? 3. How to ggregte cton plns? x " 8<(, x " 8<", x " " 8, x 8TX<( x ( 8<", x ( ( ( 8, x 8T*, x 8TX<" x ) 8, x ) ) ) 8T*, x 8Tc, x 8TX x 8 = g(x 8 ", x 8 (, x 8 ) ) Key: commtment blnces swtchng cost nd predcton errors Our focus: wht s the optml commtment level gven the structure of predcton nose? 32

33 Commtted Horzon Control FHC wth lmted commtment v, for t k mod w y 8T" 8, y 8T( 8, y 8T 8, y 8TT" 8,, y 8TX 8, y 8TXT" 8, y 8TXT( 8, x 8T", x 8T(,, x 8T, x 8TT",, x 8TX = rgmn 7 c(x 8, y 8 R ) + β x 8 x 8<" " 8TX RS8T" x () = (, x 8T", x 8T(,, x 8T, ) 33

34 Commtted Horzon Control FHC wth lmted commtment v, for t k mod w y 8T" 8, y 8T( 8, y 8T 8, y 8TT" 8,, y 8TX 8, y 8TXT" 8, y 8TXT( 8, y 8TT" 8T, y 8T( 8T, y 8T(T" 8T, y 8TTX 8T, y 8TTXT" 8T, x 8TT", x 8TT(,, x 8T(, x 8T(T",, x 8TXT x () = (, x 8T", x 8T(,, x 8T, x 8TT", x 8TT(,, x 8T( ) 34

35 Commtted Horzon Control FHC wth lmted commtment v, for t k mod v y 8T" 8, y 8T( 8, y 8T 8, y 8TT" 8,, y 8TX 8, y 8TXT" 8, y 8TXT( 8, y 8TT" 8T, y 8T( 8T, y 8T(T" 8T, y 8TTX 8T, y 8TTXT" 8T, y 8T(T" 8T(, y 8T) 8T(,, y 8T(TX 8T, y 8T(TXT" 8T(, x 8T(T", x 8T(T(,, x 8T), x 8T)T",, x 8TXT( x () = (, x 8T", x 8T(,, x 8T, x 8TT", x 8TT(,, x 8T(, x 8T(T", x 8T(T(,, x 8T) ) 35

36 Commtted Horzon Control FHC wth lmted commtment v, for t k mod v y 8T" 8, y 8T( 8, y 8T 8, y 8TT" 8,, y 8TX 8, y 8TXT" 8, y 8TXT( 8, y 8TT" 8T, y 8T( 8T, y 8T(T" 8T, y 8TTX 8T, y 8TTXT" 8T, y 8T(T" 8T(, y 8T) 8T(,, y 8T(TX 8T, y 8T(TXT" 8T(, x 8T(T", x 8T(T(,, x 8T), x 8T)T",, x 8TXT( x () = (, x 8T", x 8T(,, x 8T, x 8TT", x 8TT(,, x 8T(, x 8T(T", x 8T(T(,, x 8T), ) 36

37 Commtted Horzon Control FHC wth lmted commtment v, for t k mod v y 8T" 8, y 8T( 8, y 8T 8, y 8TT" 8,, y 8TX 8, y 8TXT" 8, y 8TXT( 8, y 8TT" 8T, y 8T( 8T, y 8T(T" 8T, y 8TTX 8T, y 8TTXT" 8T, y 8T(T" 8T(, y 8T) 8T(,, y 8T(TX 8T, y 8T(TXT" 8T(, x 8T(T", x 8T(T(,, x 8T), x 8T)T",, x 8TXT( x (") " " " " " " " " " = (, x 8T", x 8T(,, x 8T, x 8TT", x 8TT(,, x 8T(, x 8T(T", x 8T(T(,, x 8T), ) x () = (, x 8T", x 8T( x () = (, x 8T", x 8T(,, x 8T,, x 8T, x 8TT", x 8TT", x 8TT(, x 8TT(,, x 8T(,, x 8T(, x 8T(T", x 8T(T", x 8T(T(,, x 8T), ), x 8T(T(,, x 8T), ) v FHC(v) lgorthms 37

38 Commtted Horzon Control FHC wth lmted commtment v, for t k mod v y 8T" 8, y 8T( 8, y 8T 8, y 8TT" 8,, y 8TX 8, y 8TXT" 8, y 8TXT( 8, y 8TT" 8T, y 8T( 8T, y 8T(T" 8T, y 8TTX 8T, y 8TTXT" 8T, y 8T(T" 8T(, y 8T) 8T(,, y 8T(TX 8T, y 8T(TXT" 8T(, x 8T(T", x 8T(T(,, x 8T), x 8T)T",, x 8TXT( x (") " " " " " " " " " = (, x 8T", x 8T(,, x 8T, x 8TT", x 8TT(,, x 8T(, x 8T(T", x 8T(T(,, x 8T), ) x () = (, x 8T", x 8T( x () = (, x 8T", x 8T(,, x 8T,, x 8T, x 8TT" x^]^ t = 1 v 7 x 8 S", x 8TT", x 8TT(, x 8TT(,, x 8T(,, x 8T(, x 8T(T", x 8T(T", x 8T(T(,, x 8T), ), x 8T(T(,, x 8T), ) v FHC(v) lgorthms 38

39 Commtted Horzon Control FHC wth lmted commtment v, for t k mod v y 8T" 8, y 8T( 8, y 8T 8, y 8TT" 8,, y 8TX 8, y 8TXT" 8, y 8TXT( 8, y 8TT" 8T, y 8T( 8T, y 8T(T" 8T, y 8TTX 8T, y 8TTXT" 8T, y 8T(T" 8T(, y 8T) 8T(,, y 8T(TX 8T, y 8T(TXT" 8T(, x 8T(T", x 8T(T(,, x 8T), x 8T)T",, x 8TXT( x (") " " " " " " " " " = (, x 8T", x 8T(,, x 8T, x 8TT", x 8TT(,, x 8T(, x 8T(T", x 8T(T(,, x 8T), ) x () = (, x 8T", x 8T( x () = (, x 8T", x 8T(,, x 8T,, x 8T, x 8TT", x 8TT" x^]^ t = 1 v 7 x 8 S", x 8TT(, x 8TT( v = 1 v = w,, x 8T(,, x 8T( RHC, AFHC, x 8T(T", x 8T(T", x 8T(T(,, x 8T), ), x 8T(T(,, x 8T), ) v FHC(v) lgorthms 39

40 Mn Result Theorem For c tht s α- Hölder contnuous n the second rgument nd fesble set F s bounded, Ecost CHC Ecost OPT 2TβD + 2GT v v 7 f s S" 40

41 Mn Result Theorem For c tht s α- Hölder contnuous n the second rgument nd fesble set F s bounded, Ecost CHC Ecost OPT 2TβD + 2GT v v 7 f s Compettve dfference S" 41

42 Mn Result Theorem For c tht s α- Hölder contnuous n the second rgument nd fesble set F s bounded, Ecost CHC Ecost OPT 2TβD + 2GT v v 7 f s S" Commtment level v? 42

43 Mn Result Theorem For c tht s α- Hölder contnuous n the second rgument nd fesble set F s bounded, Ecost CHC Ecost OPT 2TβD + 2GT v v 7 f s Due to swtchng cost S" 43

44 Mn Result Theorem x " x ( D, x ", x ( F For c tht s α- Hölder contnuous n the second rgument nd fesble set F s bounded, Ecost CHC Ecost OPT 2TβD + 2GT v v 7 f s Due to swtchng cost S" 44

45 Mn Result Theorem For c tht s α- Hölder contnuous n the second rgument nd fesble set F s bounded, Ecost CHC Ecost OPT 2TβD + 2GT v v 7 f s Due to swtchng cost S" Due to predcton error 45

46 Mn Result Theorem c x, y " c x, y ( G y " y ( s, x, y", y ( For c tht s α- Hölder contnuous n the second rgument nd fesble set F s bounded, Ecost CHC Ecost OPT 2TβD + 2GT v v 7 f s Due to swtchng cost S" Due to predcton error 46

47 Mn Result Theorem f ( E y8t y 8T 8 ( = σ ( 7 f s ( For c tht s α- Hölder contnuous n the second rgument nd fesble set F s bounded, Ecost CHC Ecost OPT 2TβD + 2GT v v 7 f s Due to swtchng cost RS" Predcton error k- steps wy S" Due to predcton error 47

48 Mn Result k Theorem For c tht s α- Hölder contnuous n the second rgument nd fesble set F s bounded, Ecost CHC Ecost OPT 2TβD + 2GT v v 7 f s Due to swtchng cost S" Due to predcton error 48

49 Mn Result Theorem For c tht s α- Hölder contnuous n the second rgument nd fesble set F s bounded, Ecost CHC Ecost OPT 2TβD + 2GT v v 7 f s S" Due to Due to swtchng cost predcton error Commtment level v? 49

50 Mn Result Theorem For c tht s α- Hölder contnuous n the second rgument nd fesble set F s bounded, Ecost CHC Ecost OPT 2TβD + 2GT v v 7 f s S" Due to Due to swtchng cost predcton error Commtment level v? Key: choose commtment level v to blnce these two terms 50

51 Mn Result Theorem For c tht s α- Hölder contnuous n the second rgument nd fesble set F s bounded, Ecost CHC Ecost OPT 2TβD + 2GT v v 7 f s 1, s = 0 e.g...d. nose f s = v 0, s > 0 = 2TβD v S" + 2GTσ s Decresng functon of v AFHC s best when nose s..d 51

52 ..d. predcton nose 1, s = 0 f s = x 0, s > 0 52

53 ..d. predcton nose 1, s = 0 f s = x 0, s > 0 Long rnge correlted 1, s L f s = x, L > w 0, s > L 53

54 ..d. predcton nose 1, s = 0 f s = x 0, s > 0 Long rnge correlted 1, s L f s = x, L > w 0, s > L Short rnge correlted 1, s L f s = x, L w 0, s > L 54

55 ..d. predcton nose 1, s = 0 f s = x 0, s > 0 Long rnge correlted 1, s L f s = x, L > w 0, s > L Short rnge correlted 1, s L f s = x, L w 0, s > L Exponentlly decyng f s = R, < 1 55

56 Optml commtment level depends on predcton nose structure..d. predcton nose 1, s = 0 f s = x 0, s > 0 Long rnge correlted 1, s L f s = x, L > w 0, s > L Short rnge correlted 1, s L f s = x, L w 0, s > L Exponentlly decyng f s = R, < 1 56

57 More detl: long- rnge correlted nose Theorem If predcton nose s long- rnge 1, s L correlted, f s = x, L > w 0, s > L AFHC s optml f { > α 2w "T }~ RHC s optml f { < ( }~ st( Reltve mportnce of predcton error nd swtchng cost CHC s optml wth v (1, w) o/w Intermedte v 2TβD α + 2 4GTσs = rgmn RHC v α + 2 Predcton error domnnt Swtchng cost domnnt s + 2)T (GTσ s v s ( α + 2 AFHC 57

58 More detl: short- rnge correlted nose Theorem If predcton nose s short- rnge 1, s L correlted, f s = x, L w 0, s > L 1 AFHC s optml f { }~ > H(L) RHC s optml f { < ( }~ st( CHC s optml wth v (1, w) o/w Intermedte α + 2 L + 1 s ( αl v = rgmn 2TβD v RHC Predcton error domnnt Swtchng cost domnnt + 2GTσ s L + 1 s/( 2GTσs v AFHC H(L) 58

59 More detl: exponentlly decyng nose Theorem If predcton nose s exponentlly decyng, f s = R, 0 < < 1 AFHC s optml f { }~ > (("< ) RHC s optml f { }~ < (("T ) CHC s optml wth v (1, w) o/w Intermedte Predcton error domnnt Swtchng cost domnnt v = rgmn 2TβD RHC + 2GTσ v 1 ( ( 1 ( GTσ v 1 ( ( AFHC 59

60 Mn Result Theorem For c tht s α- Hölder contnuous n the second rgument nd fesble set F s bounded, Ecost CHC Ecost OPT 2TβD + 2GT v v 7 f s We cn use predcton error structure to gude desgn of onlne lgorthm S" 60

61 Mn Result Theorem For c tht s α- Hölder contnuous n the second rgument nd fesble set F s bounded, Ecost CHC Ecost OPT 2TβD + 2GT v v 7 f s =: V Compettve dfference holds wth hgh probblty P(cost CHC cost OPT > V + u) > exp u( F(v) S" 61

62 Concluson Desgn of optml lgorthm depends on structure of predcton error Ths tlk: OCO wth predcton Commtment should be optml to predcton nose Future: cn we extend ths frmework to other onlne problems? 62

Definition of Tracking

Definition of Tracking Trckng Defnton of Trckng Trckng: Generte some conclusons bout the moton of the scene, objects, or the cmer, gven sequence of mges. Knowng ths moton, predct where thngs re gong to project n the net mge,

More information

Dennis Bricker, 2001 Dept of Industrial Engineering The University of Iowa. MDP: Taxi page 1

Dennis Bricker, 2001 Dept of Industrial Engineering The University of Iowa. MDP: Taxi page 1 Denns Brcker, 2001 Dept of Industrl Engneerng The Unversty of Iow MDP: Tx pge 1 A tx serves three djcent towns: A, B, nd C. Ech tme the tx dschrges pssenger, the drver must choose from three possble ctons:

More information

Partially Observable Systems. 1 Partially Observable Markov Decision Process (POMDP) Formalism

Partially Observable Systems. 1 Partially Observable Markov Decision Process (POMDP) Formalism CS294-40 Lernng for Rootcs nd Control Lecture 10-9/30/2008 Lecturer: Peter Aeel Prtlly Oservle Systems Scre: Dvd Nchum Lecture outlne POMDP formlsm Pont-sed vlue terton Glol methods: polytree, enumerton,

More information

Online Convex Optimization Using Predictions

Online Convex Optimization Using Predictions Online Convex Optimization Using Predictions Niangjun Chen Joint work with Anish Agarwal, Lachlan Andrew, Siddharth Barman, and Adam Wierman 1 c " c " (x " ) F x " 2 c ) c ) x ) F x " x ) β x ) x " 3 F

More information

In this Chapter. Chap. 3 Markov chains and hidden Markov models. Probabilistic Models. Example: CpG Islands

In this Chapter. Chap. 3 Markov chains and hidden Markov models. Probabilistic Models. Example: CpG Islands In ths Chpter Chp. 3 Mrov chns nd hdden Mrov models Bontellgence bortory School of Computer Sc. & Eng. Seoul Ntonl Unversty Seoul 5-74, Kore The probblstc model for sequence nlyss HMM (hdden Mrov model)

More information

Linear Classification, SVMs and Nearest Neighbors

Linear Classification, SVMs and Nearest Neighbors 1 CSE 473 Lecture 25 (Chapter 18) Lnear Classfcaton, SVMs and Nearest Neghbors CSE AI faculty + Chrs Bshop, Dan Klen, Stuart Russell, Andrew Moore Motvaton: Face Detecton How do we buld a classfer to dstngush

More information

Dynamic Power Management in a Mobile Multimedia System with Guaranteed Quality-of-Service

Dynamic Power Management in a Mobile Multimedia System with Guaranteed Quality-of-Service Dynmc Power Mngement n Moble Multmed System wth Gurnteed Qulty-of-Servce Qnru Qu, Qng Wu, nd Mssoud Pedrm Dept. of Electrcl Engneerng-Systems Unversty of Southern Clforn Los Angeles CA 90089 Outlne! Introducton

More information

Linear and Nonlinear Optimization

Linear and Nonlinear Optimization Lner nd Nonlner Optmzton Ynyu Ye Deprtment of Mngement Scence nd Engneerng Stnford Unversty Stnford, CA 9430, U.S.A. http://www.stnford.edu/~yyye http://www.stnford.edu/clss/msnde/ Ynyu Ye, Stnford, MS&E

More information

Variable time amplitude amplification and quantum algorithms for linear algebra. Andris Ambainis University of Latvia

Variable time amplitude amplification and quantum algorithms for linear algebra. Andris Ambainis University of Latvia Vrble tme mpltude mplfcton nd quntum lgorthms for lner lgebr Andrs Ambns Unversty of Ltv Tlk outlne. ew verson of mpltude mplfcton;. Quntum lgorthm for testng f A s sngulr; 3. Quntum lgorthm for solvng

More information

Remember: Project Proposals are due April 11.

Remember: Project Proposals are due April 11. Bonformtcs ecture Notes Announcements Remember: Project Proposls re due Aprl. Clss 22 Aprl 4, 2002 A. Hdden Mrov Models. Defntons Emple - Consder the emple we tled bout n clss lst tme wth the cons. However,

More information

Rank One Update And the Google Matrix by Al Bernstein Signal Science, LLC

Rank One Update And the Google Matrix by Al Bernstein Signal Science, LLC Introducton Rnk One Updte And the Google Mtrx y Al Bernsten Sgnl Scence, LLC www.sgnlscence.net here re two dfferent wys to perform mtrx multplctons. he frst uses dot product formulton nd the second uses

More information

Lossy Compression. Compromise accuracy of reconstruction for increased compression.

Lossy Compression. Compromise accuracy of reconstruction for increased compression. Lossy Compresson Compromse accuracy of reconstructon for ncreased compresson. The reconstructon s usually vsbly ndstngushable from the orgnal mage. Typcally, one can get up to 0:1 compresson wth almost

More information

Solution of Tutorial 5 Drive dynamics & control

Solution of Tutorial 5 Drive dynamics & control ELEC463 Unversty of New South Wles School of Electrcl Engneerng & elecommunctons ELEC463 Electrc Drve Systems Queston Motor Soluton of utorl 5 Drve dynmcs & control 500 rev/mn = 5.3 rd/s 750 rted 4.3 Nm

More information

DCDM BUSINESS SCHOOL NUMERICAL METHODS (COS 233-8) Solutions to Assignment 3. x f(x)

DCDM BUSINESS SCHOOL NUMERICAL METHODS (COS 233-8) Solutions to Assignment 3. x f(x) DCDM BUSINESS SCHOOL NUMEICAL METHODS (COS -8) Solutons to Assgnment Queston Consder the followng dt: 5 f() 8 7 5 () Set up dfference tble through fourth dfferences. (b) Wht s the mnmum degree tht n nterpoltng

More information

CHAPTER - 7. Firefly Algorithm based Strategic Bidding to Maximize Profit of IPPs in Competitive Electricity Market

CHAPTER - 7. Firefly Algorithm based Strategic Bidding to Maximize Profit of IPPs in Competitive Electricity Market CHAPTER - 7 Frefly Algorthm sed Strtegc Bddng to Mxmze Proft of IPPs n Compettve Electrcty Mrket 7. Introducton The renovton of electrc power systems plys mjor role on economc nd relle operton of power

More information

VQ widely used in coding speech, image, and video

VQ widely used in coding speech, image, and video at Scalar quantzers are specal cases of vector quantzers (VQ): they are constraned to look at one sample at a tme (memoryless) VQ does not have such constrant better RD perfomance expected Source codng

More information

18.7 Artificial Neural Networks

18.7 Artificial Neural Networks 310 18.7 Artfcl Neurl Networks Neuroscence hs hypotheszed tht mentl ctvty conssts prmrly of electrochemcl ctvty n networks of brn cells clled neurons Ths led McCulloch nd Ptts to devse ther mthemtcl model

More information

Demand. Demand and Comparative Statics. Graphically. Marshallian Demand. ECON 370: Microeconomic Theory Summer 2004 Rice University Stanley Gilbert

Demand. Demand and Comparative Statics. Graphically. Marshallian Demand. ECON 370: Microeconomic Theory Summer 2004 Rice University Stanley Gilbert Demnd Demnd nd Comrtve Sttcs ECON 370: Mcroeconomc Theory Summer 004 Rce Unversty Stnley Glbert Usng the tools we hve develoed u to ths ont, we cn now determne demnd for n ndvdul consumer We seek demnd

More information

Ensemble Methods: Boosting

Ensemble Methods: Boosting Ensemble Methods: Boostng Ncholas Ruozz Unversty of Texas at Dallas Based on the sldes of Vbhav Gogate and Rob Schapre Last Tme Varance reducton va baggng Generate new tranng data sets by samplng wth replacement

More information

An outside barrier option

An outside barrier option Chapter 24 An outsde barrer opton Barrer process: dy (t) Y (t) = dt+ 1 db 1 (t): Stock process: (t) S(t) = dt+ 2 db 1 (t) + 1 ; 2 2 db 2 (t) where 1 > 0 2 > 0 ;1

More information

Support Vector Machines. Vibhav Gogate The University of Texas at dallas

Support Vector Machines. Vibhav Gogate The University of Texas at dallas Support Vector Machnes Vbhav Gogate he Unversty of exas at dallas What We have Learned So Far? 1. Decson rees. Naïve Bayes 3. Lnear Regresson 4. Logstc Regresson 5. Perceptron 6. Neural networks 7. K-Nearest

More information

Module 3 LOSSY IMAGE COMPRESSION SYSTEMS. Version 2 ECE IIT, Kharagpur

Module 3 LOSSY IMAGE COMPRESSION SYSTEMS. Version 2 ECE IIT, Kharagpur Module 3 LOSSY IMAGE COMPRESSION SYSTEMS Verson ECE IIT, Kharagpur Lesson 6 Theory of Quantzaton Verson ECE IIT, Kharagpur Instructonal Objectves At the end of ths lesson, the students should be able to:

More information

UNIVERSITY OF IOANNINA DEPARTMENT OF ECONOMICS. M.Sc. in Economics MICROECONOMIC THEORY I. Problem Set II

UNIVERSITY OF IOANNINA DEPARTMENT OF ECONOMICS. M.Sc. in Economics MICROECONOMIC THEORY I. Problem Set II Mcroeconomc Theory I UNIVERSITY OF IOANNINA DEPARTMENT OF ECONOMICS MSc n Economcs MICROECONOMIC THEORY I Techng: A Lptns (Note: The number of ndctes exercse s dffculty level) ()True or flse? If V( y )

More information

Communication with AWGN Interference

Communication with AWGN Interference Communcaton wth AWG Interference m {m } {p(m } Modulator s {s } r=s+n Recever ˆm AWG n m s a dscrete random varable(rv whch takes m wth probablty p(m. Modulator maps each m nto a waveform sgnal s m=m

More information

What would be a reasonable choice of the quantization step Δ?

What would be a reasonable choice of the quantization step Δ? CE 108 HOMEWORK 4 EXERCISE 1. Suppose you are samplng the output of a sensor at 10 KHz and quantze t wth a unform quantzer at 10 ts per sample. Assume that the margnal pdf of the sgnal s Gaussan wth mean

More information

Online Appendix to. Mandating Behavioral Conformity in Social Groups with Conformist Members

Online Appendix to. Mandating Behavioral Conformity in Social Groups with Conformist Members Onlne Appendx to Mndtng Behvorl Conformty n Socl Groups wth Conformst Members Peter Grzl Andrze Bnk (Correspondng uthor) Deprtment of Economcs, The Wllms School, Wshngton nd Lee Unversty, Lexngton, 4450

More information

MDL-Based Unsupervised Attribute Ranking

MDL-Based Unsupervised Attribute Ranking MDL-Based Unsupervsed Attrbute Rankng Zdravko Markov Computer Scence Department Central Connectcut State Unversty New Brtan, CT 06050, USA http://www.cs.ccsu.edu/~markov/ markovz@ccsu.edu MDL-Based Unsupervsed

More information

On-line Reinforcement Learning Using Incremental Kernel-Based Stochastic Factorization

On-line Reinforcement Learning Using Incremental Kernel-Based Stochastic Factorization On-lne Renforcement Lernng Usng Incrementl Kernel-Bsed Stochstc Fctorzton André M. S. Brreto School of Computer Scence McGll Unversty Montrel, Cnd msb@cs.mcgll.c Don Precup School of Computer Scence McGll

More information

International Journal of Pure and Applied Sciences and Technology

International Journal of Pure and Applied Sciences and Technology Int. J. Pure Appl. Sc. Technol., () (), pp. 44-49 Interntonl Journl of Pure nd Appled Scences nd Technolog ISSN 9-67 Avlle onlne t www.jopst.n Reserch Pper Numercl Soluton for Non-Lner Fredholm Integrl

More information

Lecture Notes on Linear Regression

Lecture Notes on Linear Regression Lecture Notes on Lnear Regresson Feng L fl@sdueducn Shandong Unversty, Chna Lnear Regresson Problem In regresson problem, we am at predct a contnuous target value gven an nput feature vector We assume

More information

Boostrapaggregating (Bagging)

Boostrapaggregating (Bagging) Boostrapaggregatng (Baggng) An ensemble meta-algorthm desgned to mprove the stablty and accuracy of machne learnng algorthms Can be used n both regresson and classfcaton Reduces varance and helps to avod

More information

Lecture 4: Piecewise Cubic Interpolation

Lecture 4: Piecewise Cubic Interpolation Lecture notes on Vrtonl nd Approxmte Methods n Appled Mthemtcs - A Perce UBC Lecture 4: Pecewse Cubc Interpolton Compled 6 August 7 In ths lecture we consder pecewse cubc nterpolton n whch cubc polynoml

More information

CONTEXTUAL MULTI-ARMED BANDIT ALGORITHMS FOR PERSONALIZED LEARNING ACTION SELECTION. Indu Manickam, Andrew S. Lan, and Richard G.

CONTEXTUAL MULTI-ARMED BANDIT ALGORITHMS FOR PERSONALIZED LEARNING ACTION SELECTION. Indu Manickam, Andrew S. Lan, and Richard G. CONTEXTUAL MULTI-ARMED BANDIT ALGORITHMS FOR PERSONALIZED LEARNING ACTION SELECTION Indu Mnckm, Andrew S. Ln, nd Rchrd G. Brnuk Rce Unversty ABSTRACT Optmzng the selecton of lernng resources nd prctce

More information

Principle Component Analysis

Principle Component Analysis Prncple Component Anlyss Jng Go SUNY Bufflo Why Dmensonlty Reducton? We hve too mny dmensons o reson bout or obtn nsghts from o vsulze oo much nose n the dt Need to reduce them to smller set of fctors

More information

Jean Fernand Nguema LAMETA UFR Sciences Economiques Montpellier. Abstract

Jean Fernand Nguema LAMETA UFR Sciences Economiques Montpellier. Abstract Stochstc domnnce on optml portfolo wth one rsk less nd two rsky ssets Jen Fernnd Nguem LAMETA UFR Scences Economques Montpeller Abstrct The pper provdes restrctons on the nvestor's utlty functon whch re

More information

3/6/00. Reading Assignments. Outline. Hidden Markov Models: Explanation and Model Learning

3/6/00. Reading Assignments. Outline. Hidden Markov Models: Explanation and Model Learning 3/6/ Hdden Mrkov Models: Explnton nd Model Lernng Brn C. Wllms 6.4/6.43 Sesson 2 9/3/ courtesy of JPL copyrght Brn Wllms, 2 Brn C. Wllms, copyrght 2 Redng Assgnments AIMA (Russell nd Norvg) Ch 5.-.3, 2.3

More information

Chemical Reaction Engineering

Chemical Reaction Engineering Lecture 20 hemcl Recton Engneerng (RE) s the feld tht studes the rtes nd mechnsms of chemcl rectons nd the desgn of the rectors n whch they tke plce. Lst Lecture Energy Blnce Fundmentls F 0 E 0 F E Q W

More information

Altitude Estimation for 3-D Tracking with Two 2-D Radars

Altitude Estimation for 3-D Tracking with Two 2-D Radars th Interntonl Conference on Informton Fuson Chcgo Illnos USA July -8 Alttude Estmton for -D Trckng wth Two -D Rdrs Yothn Rkvongth Jfeng Ru Sv Svnnthn nd Soontorn Orntr Deprtment of Electrcl Engneerng Unversty

More information

Model Fitting and Robust Regression Methods

Model Fitting and Robust Regression Methods Dertment o Comuter Engneerng Unverst o Clorn t Snt Cruz Model Fttng nd Robust Regresson Methods CMPE 64: Imge Anlss nd Comuter Vson H o Fttng lnes nd ellses to mge dt Dertment o Comuter Engneerng Unverst

More information

M/G/1/GD/ / System. ! Pollaczek-Khinchin (PK) Equation. ! Steady-state probabilities. ! Finding L, W q, W. ! π 0 = 1 ρ

M/G/1/GD/ / System. ! Pollaczek-Khinchin (PK) Equation. ! Steady-state probabilities. ! Finding L, W q, W. ! π 0 = 1 ρ M/G//GD/ / System! Pollcze-Khnchn (PK) Equton L q 2 2 λ σ s 2( + ρ ρ! Stedy-stte probbltes! π 0 ρ! Fndng L, q, ) 2 2 M/M/R/GD/K/K System! Drw the trnston dgrm! Derve the stedy-stte probbltes:! Fnd L,L

More information

Position and Speed Control. Industrial Electrical Engineering and Automation Lund University, Sweden

Position and Speed Control. Industrial Electrical Engineering and Automation Lund University, Sweden Poton nd Speed Control Lund Unverty, Seden Generc Structure R poer Reference Sh tte Voltge Current Control ytem M Speed Poton Ccde Control * θ Poton * Speed * control control - - he ytem contn to ntegrton.

More information

LINEAR REGRESSION ANALYSIS. MODULE VIII Lecture Indicator Variables

LINEAR REGRESSION ANALYSIS. MODULE VIII Lecture Indicator Variables LINEAR REGRESSION ANALYSIS MODULE VIII Lecture - 7 Indcator Varables Dr. Shalabh Department of Maematcs and Statstcs Indan Insttute of Technology Kanpur Indcator varables versus quanttatve explanatory

More information

Improving Anytime Point-Based Value Iteration Using Principled Point Selections

Improving Anytime Point-Based Value Iteration Using Principled Point Selections In In Proceedngs of the Twenteth Interntonl Jont Conference on Artfcl Intellgence (IJCAI-7) Improvng Anytme Pont-Bsed Vlue Iterton Usng Prncpled Pont Selectons Mchel R. Jmes, Mchel E. Smples, nd Dmtr A.

More information

Dynamic Power Management in a Mobile Multimedia System with Guaranteed Quality-of-Service

Dynamic Power Management in a Mobile Multimedia System with Guaranteed Quality-of-Service Dynmc Power Mngement n Moble Multmed System wth Gurnteed Qulty-of-Servce Abstrct In ths pper we ddress the problem of dynmc power mngement n dstrbuted multmed system wth requred qulty of servce (QoS).

More information

Pyramid Algorithms for Barycentric Rational Interpolation

Pyramid Algorithms for Barycentric Rational Interpolation Pyrmd Algorthms for Brycentrc Rtonl Interpolton K Hormnn Scott Schefer Astrct We present new perspectve on the Floter Hormnn nterpolnt. Ths nterpolnt s rtonl of degree (n, d), reproduces polynomls of degree

More information

We consider a finite-state, finite-action, infinite-horizon, discounted reward Markov decision process and

We consider a finite-state, finite-action, infinite-horizon, discounted reward Markov decision process and MANAGEMENT SCIENCE Vol. 53, No. 2, Februry 2007, pp. 308 322 ssn 0025-1909 essn 1526-5501 07 5302 0308 nforms do 10.1287/mnsc.1060.0614 2007 INFORMS Bs nd Vrnce Approxmton n Vlue Functon Estmtes She Mnnor

More information

Machine Learning Support Vector Machines SVM

Machine Learning Support Vector Machines SVM Mchne Lernng Support Vector Mchnes SVM Lesson 6 Dt Clssfcton problem rnng set:, D,,, : nput dt smple {,, K}: clss or lbel of nput rget: Construct functon f : X Y f, D Predcton of clss for n unknon nput

More information

Support vector machines for regression

Support vector machines for regression S 75 Mchne ernng ecture 5 Support vector mchnes for regresson Mos Huskrecht mos@cs.ptt.edu 539 Sennott Squre S 75 Mchne ernng he decson oundr: ˆ he decson: Support vector mchnes ˆ α SV ˆ sgn αˆ SV!!: Decson

More information

PROBLEM SET 7 GENERAL EQUILIBRIUM

PROBLEM SET 7 GENERAL EQUILIBRIUM PROBLEM SET 7 GENERAL EQUILIBRIUM Queston a Defnton: An Arrow-Debreu Compettve Equlbrum s a vector of prces {p t } and allocatons {c t, c 2 t } whch satsfes ( Gven {p t }, c t maxmzes βt ln c t subject

More information

Bi-level models for OD matrix estimation

Bi-level models for OD matrix estimation TNK084 Trffc Theory seres Vol.4, number. My 2008 B-level models for OD mtrx estmton Hn Zhng, Quyng Meng Abstrct- Ths pper ntroduces two types of O/D mtrx estmton model: ME2 nd Grdent. ME2 s mxmum-entropy

More information

Lecture 10 Support Vector Machines II

Lecture 10 Support Vector Machines II Lecture 10 Support Vector Machnes II 22 February 2016 Taylor B. Arnold Yale Statstcs STAT 365/665 1/28 Notes: Problem 3 s posted and due ths upcomng Frday There was an early bug n the fake-test data; fxed

More information

Outline. Communication. Bellman Ford Algorithm. Bellman Ford Example. Bellman Ford Shortest Path [1]

Outline. Communication. Bellman Ford Algorithm. Bellman Ford Example. Bellman Ford Shortest Path [1] DYNAMIC SHORTEST PATH SEARCH AND SYNCHRONIZED TASK SWITCHING Jay Wagenpfel, Adran Trachte 2 Outlne Shortest Communcaton Path Searchng Bellmann Ford algorthm Algorthm for dynamc case Modfcatons to our algorthm

More information

523 P a g e. is measured through p. should be slower for lesser values of p and faster for greater values of p. If we set p*

523 P a g e. is measured through p. should be slower for lesser values of p and faster for greater values of p. If we set p* R. Smpth Kumr, R. Kruthk, R. Rdhkrshnn / Interntonl Journl of Engneerng Reserch nd Applctons (IJERA) ISSN: 48-96 www.jer.com Vol., Issue 4, July-August 0, pp.5-58 Constructon Of Mxed Smplng Plns Indexed

More information

The Dynamic Multi-Task Supply Chain Principal-Agent Analysis

The Dynamic Multi-Task Supply Chain Principal-Agent Analysis J. Servce Scence & Mngement 009 : 9- do:0.46/jssm.009.409 Publshed Onlne December 009 www.scp.org/journl/jssm) 9 he Dynmc Mult-sk Supply Chn Prncpl-Agent Anlyss Shnlng LI Chunhu WANG Dol ZHU Mngement School

More information

Cramer-Rao Lower Bound for a Nonlinear Filtering Problem with Multiplicative Measurement Errors and Forcing Noise

Cramer-Rao Lower Bound for a Nonlinear Filtering Problem with Multiplicative Measurement Errors and Forcing Noise Preprnts of the 9th World Congress he Interntonl Federton of Automtc Control Crmer-Ro Lower Bound for Nonlner Flterng Problem wth Multplctve Mesurement Errors Forcng Nose Stepnov О.А. Vslyev V.А. Concern

More information

Randomness and Computation

Randomness and Computation Randomness and Computaton or, Randomzed Algorthms Mary Cryan School of Informatcs Unversty of Ednburgh RC 208/9) Lecture 0 slde Balls n Bns m balls, n bns, and balls thrown unformly at random nto bns usually

More information

Applied Statistics Qualifier Examination

Applied Statistics Qualifier Examination Appled Sttstcs Qulfer Exmnton Qul_june_8 Fll 8 Instructons: () The exmnton contns 4 Questons. You re to nswer 3 out of 4 of them. () You my use ny books nd clss notes tht you mght fnd helpful n solvng

More information

Portfolios with Trading Constraints and Payout Restrictions

Portfolios with Trading Constraints and Payout Restrictions Portfolos wth Tradng Constrants and Payout Restrctons John R. Brge Northwestern Unversty (ont wor wth Chrs Donohue Xaodong Xu and Gongyun Zhao) 1 General Problem (Very) long-term nvestor (eample: unversty

More information

Nice plotting of proteins II

Nice plotting of proteins II Nce plottng of protens II Fnal remark regardng effcency: It s possble to wrte the Newton representaton n a way that can be computed effcently, usng smlar bracketng that we made for the frst representaton

More information

CHI-SQUARE DIVERGENCE AND MINIMIZATION PROBLEM

CHI-SQUARE DIVERGENCE AND MINIMIZATION PROBLEM CHI-SQUARE DIVERGENCE AND MINIMIZATION PROBLEM PRANESH KUMAR AND INDER JEET TANEJA Abstrct The mnmum dcrmnton nformton prncple for the Kullbck-Lebler cross-entropy well known n the lterture In th pper

More information

Generalized Linear Methods

Generalized Linear Methods Generalzed Lnear Methods 1 Introducton In the Ensemble Methods the general dea s that usng a combnaton of several weak learner one could make a better learner. More formally, assume that we have a set

More information

Chemical Reaction Engineering

Chemical Reaction Engineering Lecture 20 hemcl Recton Engneerng (RE) s the feld tht studes the rtes nd mechnsms of chemcl rectons nd the desgn of the rectors n whch they tke plce. Lst Lecture Energy Blnce Fundmentls F E F E + Q! 0

More information

Solubilities and Thermodynamic Properties of SO 2 in Ionic

Solubilities and Thermodynamic Properties of SO 2 in Ionic Solubltes nd Therodync Propertes of SO n Ionc Lquds Men Jn, Yucu Hou, b Weze Wu, *, Shuhng Ren nd Shdong Tn, L Xo, nd Zhgng Le Stte Key Lbortory of Checl Resource Engneerng, Beng Unversty of Checl Technology,

More information

Katholieke Universiteit Leuven Department of Computer Science

Katholieke Universiteit Leuven Department of Computer Science Updte Rules for Weghted Non-negtve FH*G Fctorzton Peter Peers Phlp Dutré Report CW 440, Aprl 006 Ktholeke Unverstet Leuven Deprtment of Computer Scence Celestjnenln 00A B-3001 Heverlee (Belgum) Updte Rules

More information

Department of Statistics University of Toronto STA305H1S / 1004 HS Design and Analysis of Experiments Term Test - Winter Solution

Department of Statistics University of Toronto STA305H1S / 1004 HS Design and Analysis of Experiments Term Test - Winter Solution Department of Statstcs Unversty of Toronto STA35HS / HS Desgn and Analyss of Experments Term Test - Wnter - Soluton February, Last Name: Frst Name: Student Number: Instructons: Tme: hours. Ads: a non-programmable

More information

Statistical analysis using matlab. HY 439 Presented by: George Fortetsanakis

Statistical analysis using matlab. HY 439 Presented by: George Fortetsanakis Statstcal analyss usng matlab HY 439 Presented by: George Fortetsanaks Roadmap Probablty dstrbutons Statstcal estmaton Fttng data to probablty dstrbutons Contnuous dstrbutons Contnuous random varable X

More information

CS 468 Lecture 16: Isometry Invariance and Spectral Techniques

CS 468 Lecture 16: Isometry Invariance and Spectral Techniques CS 468 Lecture 16: Isometry Invarance and Spectral Technques Justn Solomon Scrbe: Evan Gawlk Introducton. In geometry processng, t s often desrable to characterze the shape of an object n a manner that

More information

Statistics and Probability Letters

Statistics and Probability Letters Sttstcs nd Probblty Letters 79 (2009) 105 111 Contents lsts vlble t ScenceDrect Sttstcs nd Probblty Letters journl homepge: www.elsever.com/locte/stpro Lmtng behvour of movng verge processes under ϕ-mxng

More information

Review of linear algebra. Nuno Vasconcelos UCSD

Review of linear algebra. Nuno Vasconcelos UCSD Revew of lner lgebr Nuno Vsconcelos UCSD Vector spces Defnton: vector spce s set H where ddton nd sclr multplcton re defned nd stsf: ) +( + ) (+ )+ 5) λ H 2) + + H 6) 3) H, + 7) λ(λ ) (λλ ) 4) H, - + 8)

More information

Optimal nuclear spin environment

Optimal nuclear spin environment Optml nucler spn envronment for rdcl pr-bsed mgnetc compss Mr Procopo Thorsten Rtz UNIVERITY OF CLIFORNI, IRVINE Rdcl Pr bsed Mgnetorecepton n Brds The use of mgnetc compss by mgrtory brd ws frst demonstrted

More information

Constructing Free Energy Approximations and GBP Algorithms

Constructing Free Energy Approximations and GBP Algorithms 3710 Advnced Topcs n A ecture 15 Brnslv Kveton kveton@cs.ptt.edu 5802 ennott qure onstructng Free Energy Approxtons nd BP Algorths ontent Why? Belef propgton (BP) Fctor grphs egon-sed free energy pproxtons

More information

2E Pattern Recognition Solutions to Introduction to Pattern Recognition, Chapter 2: Bayesian pattern classification

2E Pattern Recognition Solutions to Introduction to Pattern Recognition, Chapter 2: Bayesian pattern classification E395 - Pattern Recognton Solutons to Introducton to Pattern Recognton, Chapter : Bayesan pattern classfcaton Preface Ths document s a soluton manual for selected exercses from Introducton to Pattern Recognton

More information

Amiri s Supply Chain Model. System Engineering b Department of Mathematics and Statistics c Odette School of Business

Amiri s Supply Chain Model. System Engineering b Department of Mathematics and Statistics c Odette School of Business Amr s Supply Chan Model by S. Ashtab a,, R.J. Caron b E. Selvarajah c a Department of Industral Manufacturng System Engneerng b Department of Mathematcs Statstcs c Odette School of Busness Unversty of

More information

The Gaussian classifier. Nuno Vasconcelos ECE Department, UCSD

The Gaussian classifier. Nuno Vasconcelos ECE Department, UCSD he Gaussan classfer Nuno Vasconcelos ECE Department, UCSD Bayesan decson theory recall that we have state of the world X observatons g decson functon L[g,y] loss of predctng y wth g Bayes decson rule s

More information

Hidden Markov Models

Hidden Markov Models Hdden Markov Models Namrata Vaswan, Iowa State Unversty Aprl 24, 204 Hdden Markov Model Defntons and Examples Defntons:. A hdden Markov model (HMM) refers to a set of hdden states X 0, X,..., X t,...,

More information

PERFORMANCE OF OPPORTUNISTIC SPECTRUM ACCESS WITH SENSING ERROR IN COGNITIVE RADIO AD HOC NETWORKS

PERFORMANCE OF OPPORTUNISTIC SPECTRUM ACCESS WITH SENSING ERROR IN COGNITIVE RADIO AD HOC NETWORKS Journl of Engneerng Scence nd Technology Vol. 7, No. 2 (202) 42-55 School of Engneerng, Tylor s Unversty PERFORMANCE OF OPPORTUNISTIC SPECTRUM ACCESS WITH SENSING ERROR IN COGNITIVE RADIO AD HOC NETWORKS

More information

SVMs for regression Non-parametric/instance based classification method

SVMs for regression Non-parametric/instance based classification method S 75 Mchne ernng ecture Mos Huskrecht mos@cs.ptt.edu 539 Sennott Squre SVMs for regresson Non-prmetrc/nstnce sed cssfcton method S 75 Mchne ernng Soft-mrgn SVM Aos some fet on crossng the seprtng hperpne

More information

Online Learning Algorithms for Stochastic Water-Filling

Online Learning Algorithms for Stochastic Water-Filling Onlne Lernng Algorthms for Stochstc Wter-Fllng Y G nd Bhskr Krshnmchr Mng Hseh Deprtment of Electrcl Engneerng Unversty of Southern Clforn Los Angeles, CA 90089, USA Eml: {yg, bkrshn}@usc.edu Abstrct Wter-fllng

More information

Non-Linear Data for Neural Networks Training and Testing

Non-Linear Data for Neural Networks Training and Testing Proceedngs of the 4th WSEAS Int Conf on Informton Securty, Communctons nd Computers, Tenerfe, Spn, December 6-8, 005 (pp466-47) Non-Lner Dt for Neurl Networks Trnng nd Testng ABDEL LATIF ABU-DALHOUM MOHAMMED

More information

Trade-offs in Optimization of GMDH-Type Neural Networks for Modelling of A Complex Process

Trade-offs in Optimization of GMDH-Type Neural Networks for Modelling of A Complex Process Proceedngs of the 6th WSEAS Int. Conf. on Systems Theory & Scentfc Computton, Elound, Greece, August -3, 006 (pp48-5) Trde-offs n Optmzton of GDH-Type Neurl Networs for odellng of A Complex Process N.

More information

Convexity preserving interpolation by splines of arbitrary degree

Convexity preserving interpolation by splines of arbitrary degree Computer Scence Journal of Moldova, vol.18, no.1(52), 2010 Convexty preservng nterpolaton by splnes of arbtrary degree Igor Verlan Abstract In the present paper an algorthm of C 2 nterpolaton of dscrete

More information

Multi-dimensional Central Limit Argument

Multi-dimensional Central Limit Argument Mult-dmensonal Central Lmt Argument Outlne t as Consder d random proceses t, t,. Defne the sum process t t t t () t (); t () t are d to (), t () t 0 () t tme () t () t t t As, ( t) becomes a Gaussan random

More information

Smart Motorways HADECS 3 and what it means for your drivers

Smart Motorways HADECS 3 and what it means for your drivers Vehcle Rentl Smrt Motorwys HADECS 3 nd wht t mens for your drvers Vehcle Rentl Smrt Motorwys HADECS 3 nd wht t mens for your drvers You my hve seen some news rtcles bout the ntroducton of Hghwys Englnd

More information

Chapter 7 Channel Capacity and Coding

Chapter 7 Channel Capacity and Coding Chapter 7 Channel Capacty and Codng Contents 7. Channel models and channel capacty 7.. Channel models Bnary symmetrc channel Dscrete memoryless channels Dscrete-nput, contnuous-output channel Waveform

More information

Online Stochastic Matching: New Algorithms with Better Bounds

Online Stochastic Matching: New Algorithms with Better Bounds Onlne Stochstc Mtchng: New Algorthms wth Better Bounds Ptrck Jllet Xn Lu My 202; revsed Jnury 203, June 203 Abstrct We consder vrnts of the onlne stochstc bprtte mtchng problem motvted by Internet dvertsng

More information

Tokyo Institute of Technology Periodic Sequencing Control over Multi Communication Channels with Packet Losses

Tokyo Institute of Technology Periodic Sequencing Control over Multi Communication Channels with Packet Losses oyo Insttute of echnology Fujta Laboratory oyo Insttute of echnology erodc Sequencng Control over Mult Communcaton Channels wth acet Losses FL6-7- /8/6 zwrman Gusrald oyo Insttute of echnology Fujta Laboratory

More information

Feature Selection: Part 1

Feature Selection: Part 1 CSE 546: Machne Learnng Lecture 5 Feature Selecton: Part 1 Instructor: Sham Kakade 1 Regresson n the hgh dmensonal settng How do we learn when the number of features d s greater than the sample sze n?

More information

Joint Energy Management and Resource Allocation in Rechargable Sensor Networks

Joint Energy Management and Resource Allocation in Rechargable Sensor Networks Jont Energy Management and Resource Allocaton n Rechargable Sensor Networks Ren-Shou Lu, Prasun Snha and C. Emre Koksal Department of CSE and ECE The Oho State Unversty Envronmental Energy Harvestng Many

More information

A New Markov Chain Based Acceptance Sampling Policy via the Minimum Angle Method

A New Markov Chain Based Acceptance Sampling Policy via the Minimum Angle Method Irnn Journl of Opertons Reserch Vol. 3, No., 202, pp. 04- A New Mrkov Chn Bsed Acceptnce Smplng Polcy v the Mnmum Angle Method M. S. Fllh Nezhd * We develop n optmzton model bsed on Mrkovn pproch to determne

More information

Department of Computer Science Artificial Intelligence Research Laboratory. Iowa State University MACHINE LEARNING

Department of Computer Science Artificial Intelligence Research Laboratory. Iowa State University MACHINE LEARNING MACHINE LEANING Vasant Honavar Bonformatcs and Computatonal Bology rogram Center for Computatonal Intellgence, Learnng, & Dscovery Iowa State Unversty honavar@cs.astate.edu www.cs.astate.edu/~honavar/

More information

Modeling Labor Supply through Duality and the Slutsky Equation

Modeling Labor Supply through Duality and the Slutsky Equation Interntonl Journl of Economc Scences nd Appled Reserch 3 : 111-1 Modelng Lor Supply through Dulty nd the Slutsky Equton Ivn Ivnov 1 nd Jul Dorev Astrct In the present pper n nlyss of the neo-clsscl optmzton

More information

Strong Markov property: Same assertion holds for stopping times τ.

Strong Markov property: Same assertion holds for stopping times τ. Brownan moton Let X ={X t : t R + } be a real-valued stochastc process: a famlty of real random varables all defned on the same probablty space. Defne F t = nformaton avalable by observng the process up

More information

Section 5.4 Fundamental Theorem of Calculus 2 Lectures. Dr. Abdulla Eid. College of Science. MATHS 101: Calculus 1

Section 5.4 Fundamental Theorem of Calculus 2 Lectures. Dr. Abdulla Eid. College of Science. MATHS 101: Calculus 1 Section 5.4 Fundmentl Theorem of Clculus 2 Lectures College of Science MATHS : Clculus (University of Bhrin) Integrls / 24 Definite Integrl Recll: The integrl is used to find re under the curve over n

More information

1.1. Linear Constant Coefficient Equations. Remark: A differential equation is an equation

1.1. Linear Constant Coefficient Equations. Remark: A differential equation is an equation 1 1.1. Liner Constnt Coefficient Equtions Section Objective(s): Overview of Differentil Equtions. Liner Differentil Equtions. Solving Liner Differentil Equtions. The Initil Vlue Problem. 1.1.1. Overview

More information

The solution of transport problems by the method of structural optimization

The solution of transport problems by the method of structural optimization Scentfc Journls Mrtme Unversty of Szczecn Zeszyty Nukowe Akdem Morsk w Szczecne 2013, 34(106) pp. 59 64 2013, 34(106) s. 59 64 ISSN 1733-8670 The soluton of trnsport problems by the method of structurl

More information

Predictive Analytics : QM901.1x Prof U Dinesh Kumar, IIMB. All Rights Reserved, Indian Institute of Management Bangalore

Predictive Analytics : QM901.1x Prof U Dinesh Kumar, IIMB. All Rights Reserved, Indian Institute of Management Bangalore Sesson Outlne Introducton to classfcaton problems and dscrete choce models. Introducton to Logstcs Regresson. Logstc functon and Logt functon. Maxmum Lkelhood Estmator (MLE) for estmaton of LR parameters.

More information

Exponentials - Grade 10 [CAPS] *

Exponentials - Grade 10 [CAPS] * OpenStx-CNX module: m859 Exponentils - Grde 0 [CAPS] * Free High School Science Texts Project Bsed on Exponentils by Rory Adms Free High School Science Texts Project Mrk Horner Hether Willims This work

More information

CS434a/541a: Pattern Recognition Prof. Olga Veksler. Lecture 9

CS434a/541a: Pattern Recognition Prof. Olga Veksler. Lecture 9 CS434/541: Pttern Recognton Prof. Olg Veksler Lecture 9 Announcements Fnl project proposl due Nov. 1 1-2 prgrph descrpton Lte Penlt: s 1 pont off for ech d lte Assgnment 3 due November 10 Dt for fnl project

More information

Audio De-noising Analysis Using Diagonal and Non-Diagonal Estimation Techniques

Audio De-noising Analysis Using Diagonal and Non-Diagonal Estimation Techniques Audo De-nosng Anlyss Usng Dgonl nd Non-Dgonl Estmton Technques Sugt R. Pwr 1, Vshl U. Gdero 2, nd Rhul N. Jdhv 3 1 AISSMS, IOIT, Pune, Ind Eml: sugtpwr@gml.com 2 Govt Polytechnque, Pune, Ind Eml: vshl.gdero@gml.com

More information

APPLICATION OF MULTI OBJECTIVE FUZZY LINEAR PROGRAMMING IN SUPPLY PRODUCTION PLANNING PROBLEM

APPLICATION OF MULTI OBJECTIVE FUZZY LINEAR PROGRAMMING IN SUPPLY PRODUCTION PLANNING PROBLEM APPLICATION OF MULTI OBJECTIVE FUZZY LINEAR PROGRAMMING 37 Jurnl Teknolog, 40(D) Jun. 2004: 37 48 Unverst Teknolog Mlys APPLICATION OF MULTI OBJECTIVE FUZZY LINEAR PROGRAMMING IN SUPPLY PRODUCTION PLANNING

More information