Linear Matrix Inequalities, Semidefinite Programming and Quantum Information Theory

Size: px
Start display at page:

Download "Linear Matrix Inequalities, Semidefinite Programming and Quantum Information Theory"

Transcription

1 Linear Matrix Inequalities, Semidefinite Programming and Quantum Information Theory Toulouse, January Antonio Acín (ICFO-The Institute of Photonic Sciences, Barcelona) Non-commutative polynomial optimisation problems in quantum information theory We consider optimisation problems with polynomial inequality constraints in non-commuting variables and present a hierarchy of semidefinite programming relaxations which generates a monotone sequence of lower bounds that converges to the optimal solution. We discuss several applications of the method to problems in quantum physics. 2. Guillaume Aubrun (Université Lyon 1) Dvoretzky s theorem and the complexity of entanglement detection The well-known Horodecki criterion asserts that a state ρ on C d C d is entangled if and only if there exists a positive map Φ : M d M d such that the operator (Φ I)(ρ) is not positive semidefinite. We show that that the number of such maps needed to detect all the robustly entangled states (i.e. states ρ which remain entangled even in the presence of randomizing noise) exceeds exp(cd 3 / log d). The proof is based on a study of the approximability of the set of states (resp. of separable states) by polytopes with few vertices or few faces, and ultimately relies on the Dvoretzky Milman theorem about the dimension of almost spherical sections of convex bodies. The result can be interpreted as a geometrical manifestation of the complexity of entanglement detection. 3. Howard Barnum (Leibniz Universität Hannover and University of New Mexico) Hyperbolicity Cones, Convex Analysis and Semidefinite Programming Hyperbolicity cones, associated to hyperbolic polynomials, are a broad class of cones that initially arose in the theory of partial differential equations. It includes most of the cones supporting efficient convex optimization algorithms, for example polyhedral, positive semidefinite matrix, symmetric, and homogeneous cones, and hyperbolicity itself directly supports efficient optimization. Generalizations of a conjecture of Lax state that such cones are spectrahedral (i.e. slices of the PSD cone), or at least are spectrahedral shadows, i.e. semidefinite representable. This review talk will cover important properties and examples of hyperbolicity cones, relaxations of them obtained by taking derivatives, and some of what is known about the generalized Lax conjectures. Hyperbolicity cones share many properties of an information-theoretic flavor with the cone of quantum states and effects (PSD Hermitian cone). If time permits I ll discuss an important subclass of these cones, those that are isometric and have full spectrum, shown by Bauschke, Güler, Lewis and Sendov to share even more such properties with the quantum one. 4. Sabine Burgdorf (CWI, Amsterdam) Conic optimization approach to quantum graph parameters The completely positive semidefinite cone is a new matrix cone, which consists of all the symmetric matrices (of a given size) that admit a Gram representation by positive semidefinite matrices of any size. This cone can be used to model quantum graph parameters or, more generally, to characterize the set of bipartite quantum correlations as projection of an affine section of it. We will give an overview of the known structure of the completely positive semidefinite cone and of its use to model quantum graph parameters. These parameters are analogs of classical graph parameters, like the chromatic and stability numbers of a graph, which arise naturally in the context of nonlocal games and the study of entanglement in zero-error communication. In particular, we will discuss a hierarchy of polyhedral inner approximations that can be used to express some quantum graph parameters by way of linear programs. We will also mention results about

2 the closure of the completely positive semidefinite cone and SDP-based outer approximations. This talk is based on joint work with Monique Laurent and Teresa Piovesan. 5. Matthias Christandl (University of Copenhagen) Membership in moment polytopes is in NP and conp We show that the problem of deciding membership in the moment polytope associated with a finite-dimensional unitary representation of a compact, connected Lie group is in NP and conp. This is the first non-trivial result on the computational complexity of this problem, which naively amounts to a quadratically-constrained program. Our result applies in particular to the Kronecker polytopes, and therefore to the problem of deciding positivity of the stretched Kronecker coefficients. In contrast, it has recently been shown that deciding positivity of a single Kronecker coefficient is NP-hard in general [Ikenmeyer, Mulmuley and Walter, arxiv: ]. We discuss the consequences of our work in the context of complexity theory and the quantum marginal problem. 6. Douglas Farenick (University of Regina) Spectra and variation of quantum random variables In this lecture I will discuss the study of essentially bounded matrix-valued (or quantum) random variables from the point of view of operator and measure theory. The Gelfand spectrum of such a quantum random variable coincides with the hypoconvex hull of its essential range. Moreover, a notion of operator-valued variance is introduced, leading to a formulation of the moment problem in the context of quantum probability spaces in terms of operator-theoretic properties involving semi- invariant subspaces and spectral theory. As an application of quantum variance, new measures of random and inherent quantum noise are introduced for measurements of quantum systems, modifying some recent ideas of Polterovich. This lecture is based on joint work with Sarah Plosker and Michael Kozdron. 7. Aram Harrow (MIT) SDP hierarchies for entangled states and games Many questions in quantum information can be expressed as polynomial optimization problems. For example: is a given quantum state entangled? Which nonlocal correlations can be achieved by local measurements of entangled states? In these talks I will explain what is known about the hardness of these problems. In some cases they are NP-complete and in some cases they are related to the Unique Games Conjecture. In recent work we can show that these computational hardness results can also be turned into unconditional no-go theorems for SDPs; i.e. showing that no small SDP can give a good approximation of certain quantum problems. I will describe how quantum and classical information theory can be used to prove approximation guarantees for SDP hierarchies in some cases of these problems. 8. Didier Henrion (LAAS - CNRS Toulouse) Invariant set approximations for polynomial dynamical systems with the Lasserre hierarchy We consider the dynamical system x t+1 = f(x t ), t = 0, 1,... with polynomial vector field f : R n R n and state x t R n. Given a compact semialgebraic set X of R n, its maximal invariant set X I is defined as the set of initial states x 0 in X such that x t+1 = f(x t ) remains in X for all t = 0, 1,.... The maximal invariant set can have a complicated geometry (think e.g. of the Mandelbrot or Julia fractal sets corresponding to n = 2 and f quadratic). We show that the Lasserre hierarchy of moment-sum-of-squares semidefinite programs can generate a family of semialgebraic outer approximations X k of X I converging in Lebesgue measure, that is, lim k volumex k = volumex I. Joint work with Milan Korda and Colin Jones (EPFL). 2

3 9. Michael Kech (TU München) Semidefinite Programming in Quantum State Tomography Quantum state tomography is an integral task in quantum information science, its implementation, however, is expensive. Though, in many tomography tasks there is some prior information about the quantum state, allowing for a more resourceful tomography procedure. Most prominently, the quantum state is assumed to be pure, or more generally low-rank. Based on semidefinite programming, low-rank quantum states can be reconstructed from linear measurements using considerably less measurements than a full tomography would (This originates from the work of Recht, Fazel and Parillo in 2007.). To date, all approaches following this path were based on probabilistic measurements. I will present explicit constructions of measurements that allow for the reconstruction of low-rank quantum states via the same semidefinite programs, requiring a close to optimal number of measurements. 10. Cécilia Lancien (Universite Claude Bernard Lyon 1 & Universitat Autonoma de Barcelona) Relaxations of separability in multipartite quantum systems Certifying that a bipartite state is not separable can always be done by exhibiting an entanglement witness constructed from a positive map. In the multipartite case, the picture becomes more intricate. Indeed, even asserting that a state is not biseparable (i.e. a convex combination of states which are separable across a given bipartition) may be a delicate task. We show however that it is always possible to construct such a genuine multipartite entanglement witness by lifting entanglement witnesses which only reveal bipartite entanglement. In small dimensions, this approach is quite versatile since it allows for a formulation of the problem as a semi-definite program, and can therefore be solved efficiently. Nevertheless, as one could have expected, any state-independent construction is condemned to become weaker and weaker as the dimensions grow. We back up this affirmation by focussing on one specific positive map relaxation of separability, namely positivity under partial transposition. We thus prove that the set of states which have a positive partial transpose across every cut is much bigger than the set of biseparable states. This substantiates that a universal scheme can only detect a small fraction of genuinely multipartite entangled states. (arxiv: , joint work with O. Gühne, M. Huber and R. Sengupta) 11. Jean Bernard Lasserre (LAAS - CNRS Toulouse) The moment-lp and moment-sos approaches in polynomial optimization and some other applications In a first part we provide an introduction to the basics of the moment-lp and moment-sos approaches to global polynomial optimization. In particular, we describe the hierarchy of LP and semidenite programs to approximate the optimal value of such problems. In fact, the same methodology also applies to solve (or approximate) Generalized Moment Problems (GMP) whose data are described by basic semi-algebraic sets and polynomials (or even semi-algebraic functions). Indeed, Polynomial optimization is a particular (and even the simplest) instance of the GMP. In a second part, we describe how to use this methodology for solving several problems (outside optimization) viewed as particular instances of the GMP. This includes: Approximating compact basic semi-algebraic sets defined by quantiers. Computing convex polynomials underestimators of polynomials on a box. Bounds on measures satisfying some moment conditions. Approximating the volume of compact basic semi-algebraic sets. Approximating the Gaussian measure of non-compact basic semi-algebraic sets. Approximating the Lebesgue decomposition of a measure µ w.r.t. another measure ν, based only on the moments of µ and ν. 12. Alexander Müller-Hermes (University of Copenhagen) Some questions about positive maps arising in quantum information theory 3

4 We study some problems on positive maps between matrix algebras arising in quantum information theory. First we consider linear maps between matrix algebras that remain positive under tensor powers, i.e., under tensoring with n copies of themselves. Completely positive and completely co-positive maps are trivial examples of this kind. We show that for every positive integer n there exist non-trivial maps with this property and that for two-dimensional Hilbert spaces there is no non-trivial map for which this holds for all n. In general we show that an affirmative answer to the existence question of such non-trivial tensor-stable positive maps would imply the existence of NPPT bound entanglement. A possible approach to check that a given trace-preserving positive map is not tensor-stable positive is to show that some Renyi-divergence evaluated at some pair of quantum states increases under the action of the map. Motivated by this we study the contraction of Renyi-divergences and similar distance measures under positive maps. By using some recent results from entanglement theory and the SDP for finding a completely positive extension by Heinosaari et al. we show that in two-dimensions any tracepreserving positive map restricted to the span of two quantum states extends to a quantum channel. Therefore, any Renyi-divergence (and some similar distance measures) must contract under the action of such a map. 13. David Reeb (Leibniz University Hannover) Extending Quantum Operations For a given set of input-output pairs of quantum states or observables, we ask whether there exists a physical (i.e. completely positive) operation connecting them. This question - as well as approximations and variations thereof - can be formulated as a semidefinite program. The SDP duality connects the problem in a quantitative way to a natural notion of complete positivity on a subspace that we define, even though the Choi matrix is not available in this context. Although strong duality holds always, the optima are not always attained in the problems considered here. The SDP duality is also used to prove versions of Aveson s extension theorem in finite dimensions, and to provide a counterexample to a conjecture by Alberti and Uhlmann. [talk based on: J. Math. Phys. 53, (2012), arxiv: ] 14. Daniel Reitzner & Michal Sedlak (Institute of Physics, Slovak Academy of Sciences) Incompatibility of quantum testers Every protocol that manipulates information can be described by a sequence of consecutive operations. For quantum systems such sequences are called quantum circuits. They contain many details that do not affect the output of the protocol which makes them cumbersome for optimization of various tasks. On the other hand, quantum combs parametrize only input-output relations of the protocol and, hence, allow us to handle just the relevant parameters. In this contribution, we introduce the quantum comb framework and after briefly mentioning some of its applications we will address the problem of quantum tester incompatibility. Quantum testers are specific types of quantum combs that perform measurements on channels (state transformations). We will focus on the question of whether two testers can be obtained from a single one by postprocessing. This question can be cast as a semi-definite program. This formulation together with the numerical solution offers valuable insight for the analytical approach in the case of incompatibility of factorized qubit testers with two outcomes. 15. Peter Wittek (ICFO-The Institute of Photonic Sciences, Barcelona) Towards Solving Bilevel Optimization Problems in Quantum Information Theory In bilevel optimization, an optimization problem is nested within another. The simplest case is when the nested, lower level problem has an identical objective function, but with the opposite sign as the higher level problem this is a case of min-max optimization. In the more general case, the lower level objective is unrelated to the higher level objective, and either can be nonconvex. Problems of the simpler and the generic type naturally arise in quantum information theory. Examples include bilevel SDPs, but also bilevel polynomial optimization problems that can relaxed as SDPs. The former case is relatively straightforward, we give an example problem of this by simulating POVMs with projective measurements. The latter problem may ask for the generalization of the relaxation of bilevel polynomial optimization problem of commuting 4

5 variables to noncommuting operators, which in turn requires the generalization of the Navascués- Pironio-Acín (NPA) hierarchy to more general measures. A possible application of this approach would be finding more noise-tolerant measurement settings in randomness extraction. In this talk, we report on work in progress towards a generic solution. 5

On the closure of the completely positive semidefinite cone and linear approximations to quantum colorings

On the closure of the completely positive semidefinite cone and linear approximations to quantum colorings Electronic Journal of Linear Algebra Volume 32 Volume 32 (2017) Article 2 2017 On the closure of the completely positive semidefinite cone and linear approximations to quantum colorings Sabine Burgdorf

More information

Towards Solving Bilevel Optimization Problems in Quantum Information Theory

Towards Solving Bilevel Optimization Problems in Quantum Information Theory Towards Solving Bilevel Optimization Problems in Quantum Information Theory ICFO-The Institute of Photonic Sciences and University of Borås 22 January 2016 Workshop on Linear Matrix Inequalities, Semidefinite

More information

Semidefinite Programming

Semidefinite Programming Semidefinite Programming Notes by Bernd Sturmfels for the lecture on June 26, 208, in the IMPRS Ringvorlesung Introduction to Nonlinear Algebra The transition from linear algebra to nonlinear algebra has

More information

Convex sets, conic matrix factorizations and conic rank lower bounds

Convex sets, conic matrix factorizations and conic rank lower bounds Convex sets, conic matrix factorizations and conic rank lower bounds Pablo A. Parrilo Laboratory for Information and Decision Systems Electrical Engineering and Computer Science Massachusetts Institute

More information

Lower bounds on the size of semidefinite relaxations. David Steurer Cornell

Lower bounds on the size of semidefinite relaxations. David Steurer Cornell Lower bounds on the size of semidefinite relaxations David Steurer Cornell James R. Lee Washington Prasad Raghavendra Berkeley Institute for Advanced Study, November 2015 overview of results unconditional

More information

Distinguishing multi-partite states by local measurements

Distinguishing multi-partite states by local measurements Distinguishing multi-partite states by local measurements Guillaume Aubrun / Andreas Winter Université Claude Bernard Lyon 1 / Universitat Autònoma de Barcelona Cécilia Lancien UCBL1 / UAB Madrid OA and

More information

Random Matrix Theory in Quantum Information

Random Matrix Theory in Quantum Information Random Matrix Theory in Quantum Information Some generic aspects of entanglement Université Claude Bernard Lyon 1 & Universitat Autònoma de Barcelona Cécilia Lancien BMC & BAMC 2015 - Cambridge Cécilia

More information

6-1 The Positivstellensatz P. Parrilo and S. Lall, ECC

6-1 The Positivstellensatz P. Parrilo and S. Lall, ECC 6-1 The Positivstellensatz P. Parrilo and S. Lall, ECC 2003 2003.09.02.10 6. The Positivstellensatz Basic semialgebraic sets Semialgebraic sets Tarski-Seidenberg and quantifier elimination Feasibility

More information

Quantum entanglement and its detection with few measurements

Quantum entanglement and its detection with few measurements Quantum entanglement and its detection with few measurements Géza Tóth ICFO, Barcelona Universidad Complutense, 21 November 2007 1 / 32 Outline 1 Introduction 2 Bipartite quantum entanglement 3 Many-body

More information

9. Interpretations, Lifting, SOS and Moments

9. Interpretations, Lifting, SOS and Moments 9-1 Interpretations, Lifting, SOS and Moments P. Parrilo and S. Lall, CDC 2003 2003.12.07.04 9. Interpretations, Lifting, SOS and Moments Polynomial nonnegativity Sum of squares (SOS) decomposition Eample

More information

Convex Optimization & Parsimony of L p-balls representation

Convex Optimization & Parsimony of L p-balls representation Convex Optimization & Parsimony of L p -balls representation LAAS-CNRS and Institute of Mathematics, Toulouse, France IMA, January 2016 Motivation Unit balls associated with nonnegative homogeneous polynomials

More information

LMI MODELLING 4. CONVEX LMI MODELLING. Didier HENRION. LAAS-CNRS Toulouse, FR Czech Tech Univ Prague, CZ. Universidad de Valladolid, SP March 2009

LMI MODELLING 4. CONVEX LMI MODELLING. Didier HENRION. LAAS-CNRS Toulouse, FR Czech Tech Univ Prague, CZ. Universidad de Valladolid, SP March 2009 LMI MODELLING 4. CONVEX LMI MODELLING Didier HENRION LAAS-CNRS Toulouse, FR Czech Tech Univ Prague, CZ Universidad de Valladolid, SP March 2009 Minors A minor of a matrix F is the determinant of a submatrix

More information

Convergence rates of moment-sum-of-squares hierarchies for volume approximation of semialgebraic sets

Convergence rates of moment-sum-of-squares hierarchies for volume approximation of semialgebraic sets Convergence rates of moment-sum-of-squares hierarchies for volume approximation of semialgebraic sets Milan Korda 1, Didier Henrion,3,4 Draft of December 1, 016 Abstract Moment-sum-of-squares hierarchies

More information

Genuine three-partite entangled states with a hidden variable model

Genuine three-partite entangled states with a hidden variable model Genuine three-partite entangled states with a hidden variable model Géza Tóth 1,2 and Antonio Acín 3 1 Max-Planck Institute for Quantum Optics, Garching, Germany 2 Research Institute for Solid State Physics

More information

Final Report on the Newton Institute Programme Polynomial Optimisation

Final Report on the Newton Institute Programme Polynomial Optimisation Final Report on the Newton Institute Programme Polynomial Optimisation July 15th to August 19th 2013 1 Committees The organising committee consisted of: Adam N. Letchford (Department of Management Science,

More information

Non-commutative polynomial optimization

Non-commutative polynomial optimization Non-commutative polynomial optimization S. Pironio 1, M. Navascuès 2, A. Acín 3 1 Laboratoire d Information Quantique (Brussels) 2 Department of Mathematics (Bristol) 3 ICFO-The Institute of Photonic Sciences

More information

Semidefinite programming and convex algebraic geometry

Semidefinite programming and convex algebraic geometry FoCM 2008 - SDP and convex AG p. 1/40 Semidefinite programming and convex algebraic geometry Pablo A. Parrilo www.mit.edu/~parrilo Laboratory for Information and Decision Systems Electrical Engineering

More information

Convex computation of the region of attraction for polynomial control systems

Convex computation of the region of attraction for polynomial control systems Convex computation of the region of attraction for polynomial control systems Didier Henrion LAAS-CNRS Toulouse & CTU Prague Milan Korda EPFL Lausanne Region of Attraction (ROA) ẋ = f (x,u), x(t) X, u(t)

More information

arxiv: v1 [math.gr] 23 Oct 2009

arxiv: v1 [math.gr] 23 Oct 2009 NONVANISHING OF KRONECKER COEFFICIENTS FOR RECTANGULAR SHAPES arxiv:0910.4512v1 [math.gr] 23 Oct 2009 PETER BÜRGISSER, MATTHIAS CHRISTANDL, AND CHRISTIAN IKENMEYER Abstract. We prove that for any partition

More information

The moment-lp and moment-sos approaches

The moment-lp and moment-sos approaches The moment-lp and moment-sos approaches LAAS-CNRS and Institute of Mathematics, Toulouse, France CIRM, November 2013 Semidefinite Programming Why polynomial optimization? LP- and SDP- CERTIFICATES of POSITIVITY

More information

SDP Relaxations for MAXCUT

SDP Relaxations for MAXCUT SDP Relaxations for MAXCUT from Random Hyperplanes to Sum-of-Squares Certificates CATS @ UMD March 3, 2017 Ahmed Abdelkader MAXCUT SDP SOS March 3, 2017 1 / 27 Overview 1 MAXCUT, Hardness and UGC 2 LP

More information

arxiv: v2 [quant-ph] 21 Oct 2013

arxiv: v2 [quant-ph] 21 Oct 2013 Genuine hidden quantum nonlocality Flavien Hirsch, 1 Marco Túlio Quintino, 1 Joseph Bowles, 1 and Nicolas Brunner 1, 1 Département de Physique Théorique, Université de Genève, 111 Genève, Switzerland H.H.

More information

HYPERBOLIC POLYNOMIALS, INTERLACERS AND SUMS OF SQUARES

HYPERBOLIC POLYNOMIALS, INTERLACERS AND SUMS OF SQUARES HYPERBOLIC POLYNOMIALS, INTERLACERS AND SUMS OF SQUARES DANIEL PLAUMANN Universität Konstanz joint work with Mario Kummer (U. Konstanz) Cynthia Vinzant (U. of Michigan) Out[121]= POLYNOMIAL OPTIMISATION

More information

A geometric view on quantum incompatibility

A geometric view on quantum incompatibility A geometric view on quantum incompatibility Anna Jenčová Mathematical Institute, Slovak Academy of Sciences, Bratislava, Slovakia Genoa, June 2018 Outline Introduction GPT: basic definitions and examples

More information

arxiv: v1 [quant-ph] 4 Jul 2013

arxiv: v1 [quant-ph] 4 Jul 2013 GEOMETRY FOR SEPARABLE STATES AND CONSTRUCTION OF ENTANGLED STATES WITH POSITIVE PARTIAL TRANSPOSES KIL-CHAN HA AND SEUNG-HYEOK KYE arxiv:1307.1362v1 [quant-ph] 4 Jul 2013 Abstract. We construct faces

More information

Analysis and synthesis: a complexity perspective

Analysis and synthesis: a complexity perspective Analysis and synthesis: a complexity perspective Pablo A. Parrilo ETH ZürichZ control.ee.ethz.ch/~parrilo Outline System analysis/design Formal and informal methods SOS/SDP techniques and applications

More information

Global Optimization with Polynomials

Global Optimization with Polynomials Global Optimization with Polynomials Geoffrey Schiebinger, Stephen Kemmerling Math 301, 2010/2011 March 16, 2011 Geoffrey Schiebinger, Stephen Kemmerling (Math Global 301, 2010/2011) Optimization with

More information

SPECTRA - a Maple library for solving linear matrix inequalities in exact arithmetic

SPECTRA - a Maple library for solving linear matrix inequalities in exact arithmetic SPECTRA - a Maple library for solving linear matrix inequalities in exact arithmetic Didier Henrion Simone Naldi Mohab Safey El Din Version 1.0 of November 5, 2016 Abstract This document briefly describes

More information

Representations of Positive Polynomials: Theory, Practice, and

Representations of Positive Polynomials: Theory, Practice, and Representations of Positive Polynomials: Theory, Practice, and Applications Dept. of Mathematics and Computer Science Emory University, Atlanta, GA Currently: National Science Foundation Temple University

More information

Advanced SDPs Lecture 6: March 16, 2017

Advanced SDPs Lecture 6: March 16, 2017 Advanced SDPs Lecture 6: March 16, 2017 Lecturers: Nikhil Bansal and Daniel Dadush Scribe: Daniel Dadush 6.1 Notation Let N = {0, 1,... } denote the set of non-negative integers. For α N n, define the

More information

Approximate Optimal Designs for Multivariate Polynomial Regression

Approximate Optimal Designs for Multivariate Polynomial Regression Approximate Optimal Designs for Multivariate Polynomial Regression Fabrice Gamboa Collaboration with: Yohan de Castro, Didier Henrion, Roxana Hess, Jean-Bernard Lasserre Universität Potsdam 16th of February

More information

Strong duality in Lasserre s hierarchy for polynomial optimization

Strong duality in Lasserre s hierarchy for polynomial optimization Strong duality in Lasserre s hierarchy for polynomial optimization arxiv:1405.7334v1 [math.oc] 28 May 2014 Cédric Josz 1,2, Didier Henrion 3,4,5 Draft of January 24, 2018 Abstract A polynomial optimization

More information

Tropical decomposition of symmetric tensors

Tropical decomposition of symmetric tensors Tropical decomposition of symmetric tensors Melody Chan University of California, Berkeley mtchan@math.berkeley.edu December 11, 008 1 Introduction In [], Comon et al. give an algorithm for decomposing

More information

Computational Algebraic Topology Topic B Lecture III: Quantum Realizability

Computational Algebraic Topology Topic B Lecture III: Quantum Realizability Computational Algebraic Topology Topic B Lecture III: Quantum Realizability Samson Abramsky Department of Computer Science The University of Oxford Samson Abramsky (Department of Computer ScienceThe Computational

More information

Introduction to entanglement theory & Detection of multipartite entanglement close to symmetric Dicke states

Introduction to entanglement theory & Detection of multipartite entanglement close to symmetric Dicke states Introduction to entanglement theory & Detection of multipartite entanglement close to symmetric Dicke states G. Tóth 1,2,3 Collaboration: Entanglement th.: G. Vitagliano 1, I. Apellaniz 1, I.L. Egusquiza

More information

QMA(2) workshop Tutorial 1. Bill Fefferman (QuICS)

QMA(2) workshop Tutorial 1. Bill Fefferman (QuICS) QMA(2) workshop Tutorial 1 Bill Fefferman (QuICS) Agenda I. Basics II. Known results III. Open questions/next tutorial overview I. Basics I.1 Classical Complexity Theory P Class of problems efficiently

More information

Maximal vectors in Hilbert space and quantum entanglement

Maximal vectors in Hilbert space and quantum entanglement Maximal vectors in Hilbert space and quantum entanglement William Arveson arveson@math.berkeley.edu UC Berkeley Summer 2008 arxiv:0712.4163 arxiv:0801.2531 arxiv:0804.1140 Overview Quantum Information

More information

Linear conic formulations for two-party correlations and values of nonlocal games

Linear conic formulations for two-party correlations and values of nonlocal games Linear conic formulations for two-party correlations and values of nonlocal games Jamie Sikora 1 and Antonios Varvitsiotis 1,2 1 Centre for Quantum Technologies, National University of Singapore, and MajuLab,

More information

Quantum Marginal Problems

Quantum Marginal Problems Quantum Marginal Problems David Gross (Colgone) Joint with: Christandl, Doran, Lopes, Schilling, Walter Outline Overview: Marginal problems Overview: Entanglement Main Theme: Entanglement Polytopes Shortly:

More information

COURSE ON LMI PART I.2 GEOMETRY OF LMI SETS. Didier HENRION henrion

COURSE ON LMI PART I.2 GEOMETRY OF LMI SETS. Didier HENRION   henrion COURSE ON LMI PART I.2 GEOMETRY OF LMI SETS Didier HENRION www.laas.fr/ henrion October 2006 Geometry of LMI sets Given symmetric matrices F i we want to characterize the shape in R n of the LMI set F

More information

Semidefinite programming lifts and sparse sums-of-squares

Semidefinite programming lifts and sparse sums-of-squares 1/15 Semidefinite programming lifts and sparse sums-of-squares Hamza Fawzi (MIT, LIDS) Joint work with James Saunderson (UW) and Pablo Parrilo (MIT) Cornell ORIE, October 2015 Linear optimization 2/15

More information

Robust and Optimal Control, Spring 2015

Robust and Optimal Control, Spring 2015 Robust and Optimal Control, Spring 2015 Instructor: Prof. Masayuki Fujita (S5-303B) G. Sum of Squares (SOS) G.1 SOS Program: SOS/PSD and SDP G.2 Duality, valid ineqalities and Cone G.3 Feasibility/Optimization

More information

Lecture 2: November 9

Lecture 2: November 9 Semidefinite programming and computational aspects of entanglement IHP Fall 017 Lecturer: Aram Harrow Lecture : November 9 Scribe: Anand (Notes available at http://webmitedu/aram/www/teaching/sdphtml)

More information

Equivariant semidefinite lifts and sum of squares hierarchies

Equivariant semidefinite lifts and sum of squares hierarchies Equivariant semidefinite lifts and sum of squares hierarchies Pablo A. Parrilo Laboratory for Information and Decision Systems Electrical Engineering and Computer Science Massachusetts Institute of Technology

More information

Positive semidefinite rank

Positive semidefinite rank 1/15 Positive semidefinite rank Hamza Fawzi (MIT, LIDS) Joint work with João Gouveia (Coimbra), Pablo Parrilo (MIT), Richard Robinson (Microsoft), James Saunderson (Monash), Rekha Thomas (UW) DIMACS Workshop

More information

MIT Algebraic techniques and semidefinite optimization February 14, Lecture 3

MIT Algebraic techniques and semidefinite optimization February 14, Lecture 3 MI 6.97 Algebraic techniques and semidefinite optimization February 4, 6 Lecture 3 Lecturer: Pablo A. Parrilo Scribe: Pablo A. Parrilo In this lecture, we will discuss one of the most important applications

More information

Unbounded Convex Semialgebraic Sets as Spectrahedral Shadows

Unbounded Convex Semialgebraic Sets as Spectrahedral Shadows Unbounded Convex Semialgebraic Sets as Spectrahedral Shadows Shaowei Lin 9 Dec 2010 Abstract Recently, Helton and Nie [3] showed that a compact convex semialgebraic set S is a spectrahedral shadow if the

More information

Application of Structural Physical Approximation to Partial Transpose in Teleportation. Satyabrata Adhikari Delhi Technological University (DTU)

Application of Structural Physical Approximation to Partial Transpose in Teleportation. Satyabrata Adhikari Delhi Technological University (DTU) Application of Structural Physical Approximation to Partial Transpose in Teleportation Satyabrata Adhikari Delhi Technological University (DTU) Singlet fraction and its usefulness in Teleportation Singlet

More information

Lecture Note 5: Semidefinite Programming for Stability Analysis

Lecture Note 5: Semidefinite Programming for Stability Analysis ECE7850: Hybrid Systems:Theory and Applications Lecture Note 5: Semidefinite Programming for Stability Analysis Wei Zhang Assistant Professor Department of Electrical and Computer Engineering Ohio State

More information

Quantum Correlations: From Bell inequalities to Tsirelson s theorem

Quantum Correlations: From Bell inequalities to Tsirelson s theorem Quantum Correlations: From Bell inequalities to Tsirelson s theorem David Avis April, 7 Abstract The cut polytope and its relatives are good models of the correlations that can be obtained between events

More information

Estimating entanglement in a class of N-qudit states

Estimating entanglement in a class of N-qudit states Estimating entanglement in a class of N-qudit states Sumiyoshi Abe 1,2,3 1 Physics Division, College of Information Science and Engineering, Huaqiao University, Xiamen 361021, China 2 Department of Physical

More information

V&V MURI Overview Caltech, October 2008

V&V MURI Overview Caltech, October 2008 V&V MURI Overview Caltech, October 2008 Pablo A. Parrilo Laboratory for Information and Decision Systems Massachusetts Institute of Technology Goals!! Specification, design, and certification!! Coherent

More information

The Strong Largeur d Arborescence

The Strong Largeur d Arborescence The Strong Largeur d Arborescence Rik Steenkamp (5887321) November 12, 2013 Master Thesis Supervisor: prof.dr. Monique Laurent Local Supervisor: prof.dr. Alexander Schrijver KdV Institute for Mathematics

More information

Semidefinite Programming Basics and Applications

Semidefinite Programming Basics and Applications Semidefinite Programming Basics and Applications Ray Pörn, principal lecturer Åbo Akademi University Novia University of Applied Sciences Content What is semidefinite programming (SDP)? How to represent

More information

ENTANGLED STATES ARISING FROM INDECOMPOSABLE POSITIVE LINEAR MAPS. 1. Introduction

ENTANGLED STATES ARISING FROM INDECOMPOSABLE POSITIVE LINEAR MAPS. 1. Introduction Trends in Mathematics Information Center for Mathematical Sciences Volume 6, Number 2, December, 2003, Pages 83 91 ENTANGLED STATES ARISING FROM INDECOMPOSABLE POSITIVE LINEAR MAPS SEUNG-HYEOK KYE Abstract.

More information

Quantification of Gaussian quantum steering. Gerardo Adesso

Quantification of Gaussian quantum steering. Gerardo Adesso Quantification of Gaussian quantum steering Gerardo Adesso Outline Quantum steering Continuous variable systems Gaussian entanglement Gaussian steering Applications Steering timeline EPR paradox (1935)

More information

Quantum de Finetti theorems for local measurements

Quantum de Finetti theorems for local measurements Quantum de Finetti theorems for local measurements methods to analyze SDP hierarchies Fernando Brandão (UCL) Aram Harrow (MIT) arxiv:1210.6367 motivation/warmup nonlinear optimization --> convex optimization

More information

Semidefinite programming strong converse bounds for quantum channel capacities

Semidefinite programming strong converse bounds for quantum channel capacities Semidefinite programming strong converse bounds for quantum channel capacities Xin Wang UTS: Centre for Quantum Software and Information Joint work with Wei Xie, Runyao Duan (UTS:QSI) QIP 2017, Microsoft

More information

Quantum Bilinear Optimisation

Quantum Bilinear Optimisation Quantum Bilinear Optimisation ariv:1506.08810 Mario Berta (IQIM Caltech), Omar Fawzi (ENS Lyon), Volkher Scholz (Ghent University) March 7th, 2016 Louisiana State University Quantum Bilinear Optimisation

More information

Semidefinite and Second Order Cone Programming Seminar Fall 2001 Lecture 5

Semidefinite and Second Order Cone Programming Seminar Fall 2001 Lecture 5 Semidefinite and Second Order Cone Programming Seminar Fall 2001 Lecture 5 Instructor: Farid Alizadeh Scribe: Anton Riabov 10/08/2001 1 Overview We continue studying the maximum eigenvalue SDP, and generalize

More information

CS286.2 Lecture 15: Tsirelson s characterization of XOR games

CS286.2 Lecture 15: Tsirelson s characterization of XOR games CS86. Lecture 5: Tsirelson s characterization of XOR games Scribe: Zeyu Guo We first recall the notion of quantum multi-player games: a quantum k-player game involves a verifier V and k players P,...,

More information

Structure of Unital Maps and the Asymptotic Quantum Birkhoff Conjecture. Peter Shor MIT Cambridge, MA Joint work with Anand Oza and Dimiter Ostrev

Structure of Unital Maps and the Asymptotic Quantum Birkhoff Conjecture. Peter Shor MIT Cambridge, MA Joint work with Anand Oza and Dimiter Ostrev Structure of Unital Maps and the Asymptotic Quantum Birkhoff Conjecture Peter Shor MIT Cambridge, MA Joint work with Anand Oza and Dimiter Ostrev The Superposition Principle (Physicists): If a quantum

More information

Free probability and quantum information

Free probability and quantum information Free probability and quantum information Benoît Collins WPI-AIMR, Tohoku University & University of Ottawa Tokyo, Nov 8, 2013 Overview Overview Plan: 1. Quantum Information theory: the additivity problem

More information

Entanglement Polytopes

Entanglement Polytopes Entanglement Polytopes Detecting Genuine Multi-Particle Entanglement by Single-Particle Measurements Michael Walter joint work with Matthias Christandl, Brent Doran (ETH Zürich), and David Gross (Univ.

More information

Different quantum f-divergences and the reversibility of quantum operations

Different quantum f-divergences and the reversibility of quantum operations Different quantum f-divergences and the reversibility of quantum operations Fumio Hiai Tohoku University 2016, September (at Budapest) Joint work with Milán Mosonyi 1 1 F.H. and M. Mosonyi, Different quantum

More information

SPECTRAHEDRA. Bernd Sturmfels UC Berkeley

SPECTRAHEDRA. Bernd Sturmfels UC Berkeley SPECTRAHEDRA Bernd Sturmfels UC Berkeley GAeL Lecture I on Convex Algebraic Geometry Coimbra, Portugal, Monday, June 7, 2010 Positive Semidefinite Matrices For a real symmetric n n-matrix A the following

More information

arxiv: v1 [quant-ph] 25 Oct 2011

arxiv: v1 [quant-ph] 25 Oct 2011 Deriving quantum theory from its local structure and reversibility arxiv:1110.548v1 [quant-ph] 5 Oct 011 Gonzalo de la Torre, 1 Lluís Masanes, 1 Anthony J. Short, and Markus P. Müller 3 1 ICFO-Institut

More information

Lecture 4: Polynomial Optimization

Lecture 4: Polynomial Optimization CS369H: Hierarchies of Integer Programming Relaxations Spring 2016-2017 Lecture 4: Polynomial Optimization Professor Moses Charikar Scribes: Mona Azadkia 1 Introduction Non-negativity over the hypercube.

More information

Conic approach to quantum graph parameters using linear optimization over the completely positive semidefinite cone

Conic approach to quantum graph parameters using linear optimization over the completely positive semidefinite cone Conic approach to quantum graph parameters using linear optimization over the completely positive semidefinite cone Monique Laurent 1,2 and Teresa Piovesan 1 1 Centrum Wiskunde & Informatica (CWI), Amsterdam,

More information

Lagrange Duality. Daniel P. Palomar. Hong Kong University of Science and Technology (HKUST)

Lagrange Duality. Daniel P. Palomar. Hong Kong University of Science and Technology (HKUST) Lagrange Duality Daniel P. Palomar Hong Kong University of Science and Technology (HKUST) ELEC5470 - Convex Optimization Fall 2017-18, HKUST, Hong Kong Outline of Lecture Lagrangian Dual function Dual

More information

Symbolic computation in hyperbolic programming

Symbolic computation in hyperbolic programming Symbolic computation in hyperbolic programming Simone Naldi and Daniel Plaumann MEGA 2017 Nice, 14 June 2017 1 Polyhedra P = {x R n : i, l i (x) 0} Finite # linear inequalities : l i (x) 0, i = 1,...,

More information

Optimization over Nonnegative Polynomials: Algorithms and Applications. Amir Ali Ahmadi Princeton, ORFE

Optimization over Nonnegative Polynomials: Algorithms and Applications. Amir Ali Ahmadi Princeton, ORFE Optimization over Nonnegative Polynomials: Algorithms and Applications Amir Ali Ahmadi Princeton, ORFE INFORMS Optimization Society Conference (Tutorial Talk) Princeton University March 17, 2016 1 Optimization

More information

FINDING DECOMPOSITIONS OF A CLASS OF SEPARABLE STATES

FINDING DECOMPOSITIONS OF A CLASS OF SEPARABLE STATES FINDING DECOMPOSITIONS OF A CLASS OF SEPARABLE STATES ERIK ALFSEN AND FRED SHULTZ Abstract. We consider the class of separable states which admit a decomposition i A i B i with the B i s having independent

More information

The tilde map can be rephased as we please; i.e.,

The tilde map can be rephased as we please; i.e., To: C. Fuchs, K. Manne, J. Renes, and R. Schack From: C. M. Caves Subject: Linear dynamics that preserves maximal information is Hamiltonian 200 January 7; modified 200 June 23 to include the relation

More information

approximation algorithms I

approximation algorithms I SUM-OF-SQUARES method and approximation algorithms I David Steurer Cornell Cargese Workshop, 201 meta-task encoded as low-degree polynomial in R x example: f(x) = i,j n w ij x i x j 2 given: functions

More information

Tensor network simulations of strongly correlated quantum systems

Tensor network simulations of strongly correlated quantum systems CENTRE FOR QUANTUM TECHNOLOGIES NATIONAL UNIVERSITY OF SINGAPORE AND CLARENDON LABORATORY UNIVERSITY OF OXFORD Tensor network simulations of strongly correlated quantum systems Stephen Clark LXXT[[[GSQPEFS\EGYOEGXMZMXMIWUYERXYQGSYVWI

More information

Convex sets, matrix factorizations and positive semidefinite rank

Convex sets, matrix factorizations and positive semidefinite rank Convex sets, matrix factorizations and positive semidefinite rank Pablo A. Parrilo Laboratory for Information and Decision Systems Electrical Engineering and Computer Science Massachusetts Institute of

More information

Exact algorithms: from Semidefinite to Hyperbolic programming

Exact algorithms: from Semidefinite to Hyperbolic programming Exact algorithms: from Semidefinite to Hyperbolic programming Simone Naldi and Daniel Plaumann PGMO Days 2017 Nov 14 2017 - EDF Lab Paris Saclay 1 Polyhedra P = {x R n : i, l i (x) 0} Finite # linear inequalities

More information

2. Introduction to quantum mechanics

2. Introduction to quantum mechanics 2. Introduction to quantum mechanics 2.1 Linear algebra Dirac notation Complex conjugate Vector/ket Dual vector/bra Inner product/bracket Tensor product Complex conj. matrix Transpose of matrix Hermitian

More information

An Algebraic and Geometric Perspective on Exponential Families

An Algebraic and Geometric Perspective on Exponential Families An Algebraic and Geometric Perspective on Exponential Families Caroline Uhler (IST Austria) Based on two papers: with Mateusz Micha lek, Bernd Sturmfels, and Piotr Zwiernik, and with Liam Solus and Ruriko

More information

arxiv: v1 [quant-ph] 11 Aug 2014

arxiv: v1 [quant-ph] 11 Aug 2014 arxiv:1408.2340v1 [quant-ph] 11 Aug 2014 QUANTUM CHANNELS WITH POLYTOPIC IMAGES AND IMAGE ADDITIVITY MOTOHISA FUKUDA, ION NECHITA, AND MICHAEL M. WOLF Abstract. We study quantum channels with respect to

More information

Categorical quantum channels

Categorical quantum channels Attacking the quantum version of with category theory Ian T. Durham Department of Physics Saint Anselm College 19 March 2010 Acknowledgements Some of this work has been the result of some preliminary collaboration

More information

Lecture 4: Postulates of quantum mechanics

Lecture 4: Postulates of quantum mechanics Lecture 4: Postulates of quantum mechanics Rajat Mittal IIT Kanpur The postulates of quantum mechanics provide us the mathematical formalism over which the physical theory is developed. For people studying

More information

Compression and entanglement, entanglement transformations

Compression and entanglement, entanglement transformations PHYSICS 491: Symmetry and Quantum Information April 27, 2017 Compression and entanglement, entanglement transformations Lecture 8 Michael Walter, Stanford University These lecture notes are not proof-read

More information

Convex computation of the region of attraction for polynomial control systems

Convex computation of the region of attraction for polynomial control systems Convex computation of the region of attraction for polynomial control systems Didier Henrion LAAS-CNRS Toulouse & CTU Prague Milan Korda EPFL Lausanne Region of Attraction (ROA) ẋ = f (x,u), x(t) X, u(t)

More information

Remarks on the Additivity Conjectures for Quantum Channels

Remarks on the Additivity Conjectures for Quantum Channels Contemporary Mathematics Remarks on the Additivity Conjectures for Quantum Channels Christopher King Abstract. In this article we present the statements of the additivity conjectures for quantum channels,

More information

Fourier analysis of boolean functions in quantum computation

Fourier analysis of boolean functions in quantum computation Fourier analysis of boolean functions in quantum computation Ashley Montanaro Centre for Quantum Information and Foundations, Department of Applied Mathematics and Theoretical Physics, University of Cambridge

More information

3 Symmetry Protected Topological Phase

3 Symmetry Protected Topological Phase Physics 3b Lecture 16 Caltech, 05/30/18 3 Symmetry Protected Topological Phase 3.1 Breakdown of noninteracting SPT phases with interaction Building on our previous discussion of the Majorana chain and

More information

Quantum entanglement and symmetry

Quantum entanglement and symmetry Journal of Physics: Conference Series Quantum entanglement and symmetry To cite this article: D Chrucisi and A Kossaowsi 2007 J. Phys.: Conf. Ser. 87 012008 View the article online for updates and enhancements.

More information

A new approximation hierarchy for polynomial conic optimization

A new approximation hierarchy for polynomial conic optimization A new approximation hierarchy for polynomial conic optimization Peter J.C. Dickinson Janez Povh July 11, 2018 Abstract In this paper we consider polynomial conic optimization problems, where the feasible

More information

The convex algebraic geometry of linear inverse problems

The convex algebraic geometry of linear inverse problems The convex algebraic geometry of linear inverse problems The MIT Faculty has made this article openly available. Please share how this access benefits you. Your story matters. Citation As Published Publisher

More information

Matrix Mathematics. Theory, Facts, and Formulas with Application to Linear Systems Theory. Dennis S. Bernstein

Matrix Mathematics. Theory, Facts, and Formulas with Application to Linear Systems Theory. Dennis S. Bernstein Matrix Mathematics Theory, Facts, and Formulas with Application to Linear Systems Theory Dennis S. Bernstein PRINCETON UNIVERSITY PRESS PRINCETON AND OXFORD Contents Special Symbols xv Conventions, Notation,

More information

Convex Optimization. (EE227A: UC Berkeley) Lecture 28. Suvrit Sra. (Algebra + Optimization) 02 May, 2013

Convex Optimization. (EE227A: UC Berkeley) Lecture 28. Suvrit Sra. (Algebra + Optimization) 02 May, 2013 Convex Optimization (EE227A: UC Berkeley) Lecture 28 (Algebra + Optimization) 02 May, 2013 Suvrit Sra Admin Poster presentation on 10th May mandatory HW, Midterm, Quiz to be reweighted Project final report

More information

Is the world more classical or more quantum?

Is the world more classical or more quantum? Is the world more classical or more quantum? A. Lovas, A. Andai BUTE, Department of Analysis XXVI International Fall Workshop on Geometry and Physics Braga, 4-7 September 2017 A. Lovas, A. Andai Is the

More information

Minimum volume semialgebraic sets for robust estimation

Minimum volume semialgebraic sets for robust estimation Minimum volume semialgebraic sets for robust estimation Fabrizio Dabbene 1, Didier Henrion 2,3,4 October 31, 2018 arxiv:1210.3183v1 [math.oc] 11 Oct 2012 Abstract Motivated by problems of uncertainty propagation

More information

Entanglement detection close to multi-qubit Dicke states in photonic experiments (review)

Entanglement detection close to multi-qubit Dicke states in photonic experiments (review) Entanglement detection close to multi-qubit Dicke states in photonic experiments (review) G. Tóth 1,2,3 1 Theoretical Physics, University of the Basque Country UPV/EHU, Bilbao, Spain 2, Bilbao, Spain 3

More information

The convex algebraic geometry of rank minimization

The convex algebraic geometry of rank minimization The convex algebraic geometry of rank minimization Pablo A. Parrilo Laboratory for Information and Decision Systems Massachusetts Institute of Technology International Symposium on Mathematical Programming

More information

CS286.2 Lecture 13: Quantum de Finetti Theorems

CS286.2 Lecture 13: Quantum de Finetti Theorems CS86. Lecture 13: Quantum de Finetti Theorems Scribe: Thom Bohdanowicz Before stating a quantum de Finetti theorem for density operators, we should define permutation invariance for quantum states. Let

More information

Global Optimization of Polynomials

Global Optimization of Polynomials Semidefinite Programming Lecture 9 OR 637 Spring 2008 April 9, 2008 Scribe: Dennis Leventhal Global Optimization of Polynomials Recall we were considering the problem min z R n p(z) where p(z) is a degree

More information

arxiv:quant-ph/ v2 17 Jun 1996

arxiv:quant-ph/ v2 17 Jun 1996 Separability Criterion for Density Matrices arxiv:quant-ph/9604005v2 17 Jun 1996 Asher Peres Department of Physics, Technion Israel Institute of Technology, 32000 Haifa, Israel Abstract A quantum system

More information