Exact algorithms: from Semidefinite to Hyperbolic programming

Size: px
Start display at page:

Download "Exact algorithms: from Semidefinite to Hyperbolic programming"

Transcription

1 Exact algorithms: from Semidefinite to Hyperbolic programming Simone Naldi and Daniel Plaumann PGMO Days 2017 Nov EDF Lab Paris Saclay

2 1 Polyhedra P = {x R n : i, l i (x) 0} Finite # linear inequalities : l i (x) 0, i = 1,..., m One can associate a diagonal matrix : A(x) = diag(l i (x)) f = l 1 (x)l 2 (x) l m (x) = det A(x) Feasibility Problem: Is P =? ( x R n s.t. l i (x) 0, i) Linear Programming (LP): Compute inf l(x) s.t. x P Solutions are rational Combinatorics of boundary active constraints l i = 0

3 2 Spectrahedra Start with a symmetric linear matrix : A(x) = A 0 + x 1 A x n A n Infinite # linear ineq. y T A(x)y 0 Finite # Non-linear inequalities : {Principal Minors of A(x)} 0 S = {x R n : A(x) 0} f = det A(x) Feasibility Problem (LMI): x R n s.t. A(x) 0 Semidefinite Progr. (SDP): Compute inf l(x) s.t. x S Irrational solutions - Algebraic degree = δ(size,var,rank) Combinatorics of boundary co-rank of A(x)

4 3 This talk: Hyperbolicity cones C(f, e) hyperbolicity cone Input data : a polynomial and a vector f R[x 1,..., x n ] d, e R n Finite # Non-linear inequalities : Coeff. of t f(te x) f hyperbolic w.r. to e Feasibility Problem? By definition e Int(C(f, e))!! Hyperbolic Progr. (HP): Compute inf l(x) s.t. x C(f, e) Algebraic degree =?(deg,n,mult) ( irrational solutions) Combinatorics of boundary multiplicity of x

5 4 Hyperbolic polynomials Definition of hyperbolic polynomial f R[x] d is hyperbolic w.r.t. e = (e 1,..., e n ) R n if f(e) 0 a R n t ch a (t) := f(t e a) has only real roots If such e exists, f is called a hyperbolic polynomial. Fundamental examples: General case (here d = 4) : (1) f = x 1 x d ch a (t) = i(te i a i ) (2) f = det A(x), A(x) sym. ch a (t) = det(ti d A(a)) R 3 P 2 Brändén (2010): hyperb. polynomials without determinantal representations

6 5 Cones and Multiplicity Hyperbolicity cone The hyperbolicity cone of f R[x] d (w.r.t. e) is C(f, e) = {a R n : ch a (t) = 0 t 0} Multiplicity: For a R n, we define mult(a) := multiplicity of 0 as root of ch a (t) = f(te a) Multiplicity set: For m d, Γ m = {a R n : mult(a) m} Remark: The set Γ m is real algebraic. Indeed, if ch a (t) = t d + g 1 (a)t d g d 1 (a)t + g d (a) then Γ m = {a : g i (a) = 0, i d m + 1}

7 6 Recap Cone Polynomial Optimization Boundary Hyperbolic HP Multiplicity f = det A(x) SDP Co-rank of A(x) f = l i (x) LP Active constraints Two different approaches: Interior approach (e.g. classical interior-point methods) Boundary approach (more suitable for algebraic methods) General goal: certification of information on the solution

8 7 Motivation in real algebraic geometry Generalized Lax conjecture Every hyperbolicity cone is a spectrahedron, that is A 1,..., A n such that C(f, e) = {x R n : A 1 x A n x n 0} Helton-Vinnikov, Lewis-Parrilo-Ramana True for n = 3, with the stronger result that f hyperbolic f = det(x 1 A 1 + x 2 A 2 + x 3 A 3 ) By Brändén s counterexamples, the Lax conjecture cannot be proved by proving that every hyperbolic polynomial admits a determinantal representation. Determinantal representations : Leykin, Netzer, Plaumann, Sinn, Sturmfels, Thom, Vinzant... with many different techniques Kummer (2015) Partial results towards Lax conjecture, for hyperbolic polynomials without real singularities.

9 8 This work: Algebraic approach to HP We prove that every hyperbolic programming problem is equivalent to linear optimization over some multiplicity locus. Moreover, computing max mult(x) over C(f, e) is equivalent to the computation of witness points on connected components of the multiplicity loci (classical problem in R.A.G.) All the reduced problems have simply exponential complexity with respect to the number n of variables. Representation of the solution: x i = q i (t)/q 0 (t), q(t) = 0 with q i Q[t]

10 9 A test on a hyperbolic quartic Optimizing random linear forms yields solutions of multiplicity 1 for 64% of the times multiplicity 2 for 36% of the times One can get rational solutions (multiplicity 2) : x 1 = 0 x 2 = 1/2 x 3 = 0 or irrational smooth boundary solutions (mult 1) : x 1 [ , ] x 2 [ , ] x 3 [ , ]

11 10 Renegar s derivative cones Based on the remark that f hyperbolic w.r. to e D e f = i e i f x i still hyperbolic This gives a nested sequence of convex hyperbolicity cones: C(f, e) C(D e f, e) C(D (d 1) e f, e) (the last one being a half-space), giving a sequence of lower bounds for the linear function to optimize: inf l(a) C(f,e) inf l(a) C(D e f,e) inf C(D (d 1) e f,e) l(a)

12 11 The quartic Quartic hyperbolic polynomial

13 11 The quartic + First derivative

14 12 Renegar s derivative cones (continued) Why is Renegar s method useful from an effective viewpoint? At each step of the relaxation, the degree of the polynomial decreses by 1 The multiplicity decreases: the solution becomes smoother at each step One of the C(D e (j) f, e) could be a section of the PSD cone (solution set of a LMI), in which case a lower bound can be computed by solving a single SDP: Sanyal (2013) : spectrahedral repr. for derivative cones of polyhedra Saunderson (2017) : spectrahedral repr. for first derivative of PSD cone

15 13 Planar 3 ellipse Here I minimize a linear function l(x) over the 3-ellipse C(f, e) = {P R 2 : d(p, P 1 ) + d(p, P 2 ) + d(p, P 3 ) c} The boundary is given by f = 9x 8 72x 7 z + 36x 6 y 2 96x 6 yz... Deriv. x Mult. l(x ) deg(q(t)) Alg.Deg. of x 0 (0.750, 0.000, 0.250) (0.759, 0.018, 0.258) (0.797, 0.051, 0.250) (0.862, 0.116, 0.254) (0.981, 0.254, 0.273) (1.336, 0.762, 0.426) Still OK for 4 ellipse, becoming hard for 5 ellipse

16 14 Summary Hyperbolic polynomials (resp. HP) is a rich class of real polynomials, defining highly-structured optimization problems. It is important to develop an effective approach to hyperbolic polynomials, independent on their determinantal representability to hyperbolicity cones, independent on Lax conjecture Algebraic alternatives to interior-point methods for polynomial optimization Complexity of HP: polynomial in the number of variables with fixed degree? True for generic SDP

17 Thanks!

18 Thanks!

19 Thanks!

Symbolic computation in hyperbolic programming

Symbolic computation in hyperbolic programming Symbolic computation in hyperbolic programming Simone Naldi and Daniel Plaumann MEGA 2017 Nice, 14 June 2017 1 Polyhedra P = {x R n : i, l i (x) 0} Finite # linear inequalities : l i (x) 0, i = 1,...,

More information

HYPERBOLIC POLYNOMIALS, INTERLACERS AND SUMS OF SQUARES

HYPERBOLIC POLYNOMIALS, INTERLACERS AND SUMS OF SQUARES HYPERBOLIC POLYNOMIALS, INTERLACERS AND SUMS OF SQUARES DANIEL PLAUMANN Universität Konstanz joint work with Mario Kummer (U. Konstanz) Cynthia Vinzant (U. of Michigan) Out[121]= POLYNOMIAL OPTIMISATION

More information

SPECTRAHEDRA. Bernd Sturmfels UC Berkeley

SPECTRAHEDRA. Bernd Sturmfels UC Berkeley SPECTRAHEDRA Bernd Sturmfels UC Berkeley GAeL Lecture I on Convex Algebraic Geometry Coimbra, Portugal, Monday, June 7, 2010 Positive Semidefinite Matrices For a real symmetric n n-matrix A the following

More information

SPECTRAHEDRA. Bernd Sturmfels UC Berkeley

SPECTRAHEDRA. Bernd Sturmfels UC Berkeley SPECTRAHEDRA Bernd Sturmfels UC Berkeley Mathematics Colloquium, North Carolina State University February 5, 2010 Positive Semidefinite Matrices For a real symmetric n n-matrix A the following are equivalent:

More information

The Geometry of Semidefinite Programming. Bernd Sturmfels UC Berkeley

The Geometry of Semidefinite Programming. Bernd Sturmfels UC Berkeley The Geometry of Semidefinite Programming Bernd Sturmfels UC Berkeley Positive Semidefinite Matrices For a real symmetric n n-matrix A the following are equivalent: All n eigenvalues of A are positive real

More information

Semidefinite Programming

Semidefinite Programming Semidefinite Programming Notes by Bernd Sturmfels for the lecture on June 26, 208, in the IMPRS Ringvorlesung Introduction to Nonlinear Algebra The transition from linear algebra to nonlinear algebra has

More information

NOTES ON HYPERBOLICITY CONES

NOTES ON HYPERBOLICITY CONES NOTES ON HYPERBOLICITY CONES Petter Brändén (Stockholm) pbranden@math.su.se Berkeley, October 2010 1. Hyperbolic programming A hyperbolic program is an optimization problem of the form minimize c T x such

More information

Hyperbolic Polynomials and Generalized Clifford Algebras

Hyperbolic Polynomials and Generalized Clifford Algebras Discrete Comput Geom (2014) 51:802 814 DOI 10.1007/s00454-014-9598-1 Hyperbolic Polynomials and Generalized Clifford Algebras Tim Netzer Andreas Thom Received: 14 December 2012 / Revised: 8 January 2014

More information

QUARTIC SPECTRAHEDRA. Bernd Sturmfels UC Berkeley and MPI Bonn. Joint work with John Christian Ottem, Kristian Ranestad and Cynthia Vinzant

QUARTIC SPECTRAHEDRA. Bernd Sturmfels UC Berkeley and MPI Bonn. Joint work with John Christian Ottem, Kristian Ranestad and Cynthia Vinzant QUARTIC SPECTRAHEDRA Bernd Sturmfels UC Berkeley and MPI Bonn Joint work with John Christian Ottem, Kristian Ranestad and Cynthia Vinzant 1 / 20 Definition A spectrahedron of degree n in R 3 is a convex

More information

SPECTRA - a Maple library for solving linear matrix inequalities in exact arithmetic

SPECTRA - a Maple library for solving linear matrix inequalities in exact arithmetic SPECTRA - a Maple library for solving linear matrix inequalities in exact arithmetic Didier Henrion Simone Naldi Mohab Safey El Din Version 1.0 of November 5, 2016 Abstract This document briefly describes

More information

HYPERBOLICITY CONES AND IMAGINARY PROJECTIONS

HYPERBOLICITY CONES AND IMAGINARY PROJECTIONS HYPERBOLICITY CONES AND IMAGINARY PROJECTIONS THORSTEN JÖRGENS AND THORSTEN THEOBALD Abstract. Recently, the authors and de Wolff introduced the imaginary projection of a polynomial f C[z] as the projection

More information

Describing convex semialgebraic sets by linear matrix inequalities. Markus Schweighofer. Universität Konstanz

Describing convex semialgebraic sets by linear matrix inequalities. Markus Schweighofer. Universität Konstanz Describing convex semialgebraic sets by linear matrix inequalities Markus Schweighofer Universität Konstanz Convex algebraic geometry, optimization and applications American Institute of Mathematics, Palo

More information

The Algebraic Degree of Semidefinite Programming

The Algebraic Degree of Semidefinite Programming The Algebraic Degree ofsemidefinite Programming p. The Algebraic Degree of Semidefinite Programming BERND STURMFELS UNIVERSITY OF CALIFORNIA, BERKELEY joint work with and Jiawang Nie (IMA Minneapolis)

More information

Gram Spectrahedra. Lynn Chua UC Berkeley. joint work with Daniel Plaumann, Rainer Sinn, and Cynthia Vinzant

Gram Spectrahedra. Lynn Chua UC Berkeley. joint work with Daniel Plaumann, Rainer Sinn, and Cynthia Vinzant Gram Spectrahedra Lynn Chua UC Berkeley joint work with Daniel Plaumann, Rainer Sinn, and Cynthia Vinzant SIAM Conference on Applied Algebraic Geometry 017 1/17 Gram Matrices and Sums of Squares Let P

More information

Unbounded Convex Semialgebraic Sets as Spectrahedral Shadows

Unbounded Convex Semialgebraic Sets as Spectrahedral Shadows Unbounded Convex Semialgebraic Sets as Spectrahedral Shadows Shaowei Lin 9 Dec 2010 Abstract Recently, Helton and Nie [3] showed that a compact convex semialgebraic set S is a spectrahedral shadow if the

More information

Quartic Spectrahedra

Quartic Spectrahedra Quartic Spectrahedra arxiv:1311.3675v2 [math.oc] 7 Nov 2014 John Christian Ottem, Kristian Ranestad, Bernd Sturmfels and Cynthia Vinzant Abstract Quartic spectrahedra in 3-space form a semialgebraic set

More information

Exact algorithms for linear matrix inequalities

Exact algorithms for linear matrix inequalities 0 / 12 Exact algorithms for linear matrix inequalities Mohab Safey El Din (UPMC/CNRS/IUF/INRIA PolSys Team) Joint work with Didier Henrion, CNRS LAAS (Toulouse) Simone Naldi, Technische Universität Dortmund

More information

Quartic Spectrahedra

Quartic Spectrahedra Quartic Spectrahedra arxiv:1311.3675v1 [math.oc] 14 Nov 2013 John Christian Ottem, Kristian Ranestad, Bernd Sturmfels and Cynthia Vinzant Abstract Quartic spectrahedra in 3-space form a semialgebraic set

More information

Primal-Dual Symmetric Interior-Point Methods from SDP to Hyperbolic Cone Programming and Beyond

Primal-Dual Symmetric Interior-Point Methods from SDP to Hyperbolic Cone Programming and Beyond Primal-Dual Symmetric Interior-Point Methods from SDP to Hyperbolic Cone Programming and Beyond Tor Myklebust Levent Tunçel September 26, 2014 Convex Optimization in Conic Form (P) inf c, x A(x) = b, x

More information

Polynomial-sized semidefinite representations of derivative relaxations of spectrahedral cones

Polynomial-sized semidefinite representations of derivative relaxations of spectrahedral cones Polynomial-sized semidefinite representations of derivative relaxations of spectrahedral cones The MIT Faculty has made this article openly available. Please share how this access benefits you. Your story

More information

Positive semidefinite rank

Positive semidefinite rank 1/15 Positive semidefinite rank Hamza Fawzi (MIT, LIDS) Joint work with João Gouveia (Coimbra), Pablo Parrilo (MIT), Richard Robinson (Microsoft), James Saunderson (Monash), Rekha Thomas (UW) DIMACS Workshop

More information

Semidefinite programming and convex algebraic geometry

Semidefinite programming and convex algebraic geometry FoCM 2008 - SDP and convex AG p. 1/40 Semidefinite programming and convex algebraic geometry Pablo A. Parrilo www.mit.edu/~parrilo Laboratory for Information and Decision Systems Electrical Engineering

More information

LMI MODELLING 4. CONVEX LMI MODELLING. Didier HENRION. LAAS-CNRS Toulouse, FR Czech Tech Univ Prague, CZ. Universidad de Valladolid, SP March 2009

LMI MODELLING 4. CONVEX LMI MODELLING. Didier HENRION. LAAS-CNRS Toulouse, FR Czech Tech Univ Prague, CZ. Universidad de Valladolid, SP March 2009 LMI MODELLING 4. CONVEX LMI MODELLING Didier HENRION LAAS-CNRS Toulouse, FR Czech Tech Univ Prague, CZ Universidad de Valladolid, SP March 2009 Minors A minor of a matrix F is the determinant of a submatrix

More information

Convex algebraic geometry, optimization and applications

Convex algebraic geometry, optimization and applications Convex algebraic geometry, optimization and applications organized by William Helton and Jiawang Nie Workshop Summary We start with a little bit of terminology. A linear pencil is a function L : R g d

More information

CONVEX ALGEBRAIC GEOMETRY. Bernd Sturmfels UC Berkeley

CONVEX ALGEBRAIC GEOMETRY. Bernd Sturmfels UC Berkeley CONVEX ALGEBRAIC GEOMETRY Bernd Sturmfels UC Berkeley Multifocal Ellipses Given m points (u 1, v 1 ),...,(u m, v m )intheplaner 2,and aradiusd > 0, their m-ellipse is the convex algebraic curve { (x, y)

More information

arxiv:math/ v2 [math.oc] 25 May 2004

arxiv:math/ v2 [math.oc] 25 May 2004 arxiv:math/0304104v2 [math.oc] 25 May 2004 THE LAX CONJECTURE IS TRUE A.S. Lewis, P.A. Parrilo, and M.V. Ramana Key words: hyperbolic polynomial, Lax conjecture, hyperbolicity cone, semidefinite representable

More information

Solving rank-constrained semidefinite programs in exact arithmetic

Solving rank-constrained semidefinite programs in exact arithmetic Solving rank-constrained semidefinite programs in exact arithmetic Simone Naldi Technische Universität Dortmund Fakultät für Mathematik Vogelpothsweg 87, 44227 Dortmund Abstract We consider the problem

More information

Semi-definite representibility. For fun and profit

Semi-definite representibility. For fun and profit Semi-definite representation For fun and profit March 9, 2010 Introduction Any convex quadratic constraint x T C T Cx a + b T x Can be recast as the linear matrix inequality (LMI): ( ) In Cx (Cx) T a +

More information

6-1 The Positivstellensatz P. Parrilo and S. Lall, ECC

6-1 The Positivstellensatz P. Parrilo and S. Lall, ECC 6-1 The Positivstellensatz P. Parrilo and S. Lall, ECC 2003 2003.09.02.10 6. The Positivstellensatz Basic semialgebraic sets Semialgebraic sets Tarski-Seidenberg and quantifier elimination Feasibility

More information

Computational Problems Using Riemann Theta Functions in Sage

Computational Problems Using Riemann Theta Functions in Sage Computational Problems Using Riemann Theta Functions in Sage Chris Swierczewski University of Washington Department of Applied Mathematics cswiercz@uw.edu 2011 AMS Western Fall Sectional Salt Lake City,

More information

Representations of Positive Polynomials: Theory, Practice, and

Representations of Positive Polynomials: Theory, Practice, and Representations of Positive Polynomials: Theory, Practice, and Applications Dept. of Mathematics and Computer Science Emory University, Atlanta, GA Currently: National Science Foundation Temple University

More information

COURSE ON LMI PART I.2 GEOMETRY OF LMI SETS. Didier HENRION henrion

COURSE ON LMI PART I.2 GEOMETRY OF LMI SETS. Didier HENRION   henrion COURSE ON LMI PART I.2 GEOMETRY OF LMI SETS Didier HENRION www.laas.fr/ henrion October 2006 Geometry of LMI sets Given symmetric matrices F i we want to characterize the shape in R n of the LMI set F

More information

I.3. LMI DUALITY. Didier HENRION EECI Graduate School on Control Supélec - Spring 2010

I.3. LMI DUALITY. Didier HENRION EECI Graduate School on Control Supélec - Spring 2010 I.3. LMI DUALITY Didier HENRION henrion@laas.fr EECI Graduate School on Control Supélec - Spring 2010 Primal and dual For primal problem p = inf x g 0 (x) s.t. g i (x) 0 define Lagrangian L(x, z) = g 0

More information

SDP Relaxations for MAXCUT

SDP Relaxations for MAXCUT SDP Relaxations for MAXCUT from Random Hyperplanes to Sum-of-Squares Certificates CATS @ UMD March 3, 2017 Ahmed Abdelkader MAXCUT SDP SOS March 3, 2017 1 / 27 Overview 1 MAXCUT, Hardness and UGC 2 LP

More information

Semidefinite Programming Basics and Applications

Semidefinite Programming Basics and Applications Semidefinite Programming Basics and Applications Ray Pörn, principal lecturer Åbo Akademi University Novia University of Applied Sciences Content What is semidefinite programming (SDP)? How to represent

More information

d A 0 + m t k A k 0 whenever λ min (B k (x)) t k λ max (B k (x)) for k = 1, 2,..., m x n B n (k).

d A 0 + m t k A k 0 whenever λ min (B k (x)) t k λ max (B k (x)) for k = 1, 2,..., m x n B n (k). MATRIX CUBES PARAMETERIZED BY EIGENVALUES JIAWANG NIE AND BERND STURMFELS Abstract. An elimination problem in semidefinite programming is solved by means of tensor algebra. It concerns families of matrix

More information

Convex optimization. Javier Peña Carnegie Mellon University. Universidad de los Andes Bogotá, Colombia September 2014

Convex optimization. Javier Peña Carnegie Mellon University. Universidad de los Andes Bogotá, Colombia September 2014 Convex optimization Javier Peña Carnegie Mellon University Universidad de los Andes Bogotá, Colombia September 2014 1 / 41 Convex optimization Problem of the form where Q R n convex set: min x f(x) x Q,

More information

ALGEBRA: From Linear to Non-Linear. Bernd Sturmfels University of California at Berkeley

ALGEBRA: From Linear to Non-Linear. Bernd Sturmfels University of California at Berkeley ALGEBRA: From Linear to Non-Linear Bernd Sturmfels University of California at Berkeley John von Neumann Lecture, SIAM Annual Meeting, Pittsburgh, July 13, 2010 Undergraduate Linear Algebra All undergraduate

More information

Real Algebraic Geometry in Convex Optimization. Cynthia Vinzant

Real Algebraic Geometry in Convex Optimization. Cynthia Vinzant Real Algebraic Geometry in Convex Optimization by Cynthia Vinzant A dissertation submitted in partial satisfaction of the requirements for the degree of Doctor of Philosophy in Mathematics in the Graduate

More information

Lecture Note 5: Semidefinite Programming for Stability Analysis

Lecture Note 5: Semidefinite Programming for Stability Analysis ECE7850: Hybrid Systems:Theory and Applications Lecture Note 5: Semidefinite Programming for Stability Analysis Wei Zhang Assistant Professor Department of Electrical and Computer Engineering Ohio State

More information

Equivariant semidefinite lifts and sum of squares hierarchies

Equivariant semidefinite lifts and sum of squares hierarchies Equivariant semidefinite lifts and sum of squares hierarchies Pablo A. Parrilo Laboratory for Information and Decision Systems Electrical Engineering and Computer Science Massachusetts Institute of Technology

More information

Convex algebraic geometry, optimization and applications

Convex algebraic geometry, optimization and applications Convex algebraic geometry, optimization and applications The American Institute of Mathematics The following compilation of participant contributions is only intended as a lead-in to the AIM workshop Convex

More information

An E cient A ne-scaling Algorithm for Hyperbolic Programming

An E cient A ne-scaling Algorithm for Hyperbolic Programming An E cient A ne-scaling Algorithm for Hyperbolic Programming Jim Renegar joint work with Mutiara Sondjaja 1 Euclidean space A homogeneous polynomial p : E!R is hyperbolic if there is a vector e 2E such

More information

4. Algebra and Duality

4. Algebra and Duality 4-1 Algebra and Duality P. Parrilo and S. Lall, CDC 2003 2003.12.07.01 4. Algebra and Duality Example: non-convex polynomial optimization Weak duality and duality gap The dual is not intrinsic The cone

More information

DEGREES PhD: Doktor der Naturwissenschaften (summa cum laude) May 2014; Advisor: Claus Scheiderer Diploma Degree in Mathematics (grade 1.

DEGREES PhD: Doktor der Naturwissenschaften (summa cum laude) May 2014; Advisor: Claus Scheiderer Diploma Degree in Mathematics (grade 1. CURRENT STATUS Juniorprofessur Discrete Geometry at Freie Universität Berlin (working group of Günter Ziegler) Acting head of the working group Discrete Geometry at FU Berlin (since July 2018) PREVIOUS

More information

ALGEBRAIC DEGREE OF POLYNOMIAL OPTIMIZATION. 1. Introduction. f 0 (x)

ALGEBRAIC DEGREE OF POLYNOMIAL OPTIMIZATION. 1. Introduction. f 0 (x) ALGEBRAIC DEGREE OF POLYNOMIAL OPTIMIZATION JIAWANG NIE AND KRISTIAN RANESTAD Abstract. Consider the polynomial optimization problem whose objective and constraints are all described by multivariate polynomials.

More information

arxiv:math/ v1 [math.oc] 11 Jun 2003

arxiv:math/ v1 [math.oc] 11 Jun 2003 February 1, 2008 arxiv:math/0306180v1 [math.oc] 11 Jun 2003 LINEAR MATRIX INEQUALITY REPRESENTATION OF SETS J. William Helton and Victor Vinnikov Mathematics Dept. UCSD Ben Gurion Univ. of the Negev La

More information

Voronoi Cells of Varieties

Voronoi Cells of Varieties Voronoi Cells of Varieties arxiv:1811.08395v1 [math.ag] 20 Nov 2018 Diego Cifuentes, Kristian Ranestad, Bernd Sturmfels and Madeleine Weinstein Abstract Every real algebraic variety determines a Voronoi

More information

Robust and Optimal Control, Spring 2015

Robust and Optimal Control, Spring 2015 Robust and Optimal Control, Spring 2015 Instructor: Prof. Masayuki Fujita (S5-303B) G. Sum of Squares (SOS) G.1 SOS Program: SOS/PSD and SDP G.2 Duality, valid ineqalities and Cone G.3 Feasibility/Optimization

More information

Rational Sums of Squares and Applications

Rational Sums of Squares and Applications f ΣR[X] 2 " f ΣQ[X] 2 Rational Sums of Squares and Applications Christopher Hillar (MSRI & Berkeley) A 2008 study found that adding a picture of a brain scan to a scientific argument about human nature

More information

SEMIDEFINITE PROGRAM BASICS. Contents

SEMIDEFINITE PROGRAM BASICS. Contents SEMIDEFINITE PROGRAM BASICS BRIAN AXELROD Abstract. A introduction to the basics of Semidefinite programs. Contents 1. Definitions and Preliminaries 1 1.1. Linear Algebra 1 1.2. Convex Analysis (on R n

More information

arxiv: v1 [math.oc] 9 Sep 2015

arxiv: v1 [math.oc] 9 Sep 2015 CONTAINMENT PROBLEMS FOR PROJECTIONS OF POLYHEDRA AND SPECTRAHEDRA arxiv:1509.02735v1 [math.oc] 9 Sep 2015 KAI KELLNER Abstract. Spectrahedra are affine sections of the cone of positive semidefinite matrices

More information

Semidefinite representation of convex sets and convex hulls

Semidefinite representation of convex sets and convex hulls Semidefinite representation of convex sets and convex hulls J. William Helton 1 and Jiawang Nie 2 1 Department of Mathematics, University of California, 9500 Gilman Drive, La Jolla, CA 92093. helton@math.ucsd.edu

More information

d + x u1 y v p 1 (x, y) = det

d + x u1 y v p 1 (x, y) = det SEMIDEFINITE REPRESENTATION OF THE K-ELLIPSE JIAWANG NIE, PABLO A. PARRILO, AND BERND STURMFELS Abstract. The k-ellipse is the plane algebraic curve consisting of all points whose sum of distances from

More information

Optimization over Polynomials with Sums of Squares and Moment Matrices

Optimization over Polynomials with Sums of Squares and Moment Matrices Optimization over Polynomials with Sums of Squares and Moment Matrices Monique Laurent Centrum Wiskunde & Informatica (CWI), Amsterdam and University of Tilburg Positivity, Valuations and Quadratic Forms

More information

Semidefinite Programming

Semidefinite Programming Semidefinite Programming Basics and SOS Fernando Mário de Oliveira Filho Campos do Jordão, 2 November 23 Available at: www.ime.usp.br/~fmario under talks Conic programming V is a real vector space h, i

More information

The Pythagoras numbers of projective varieties.

The Pythagoras numbers of projective varieties. The Pythagoras numbers of projective varieties. Grigoriy Blekherman (Georgia Tech, USA) Rainer Sinn (FU Berlin, Germany) Gregory G. Smith (Queen s University, Canada) Mauricio Velasco (Universidad de los

More information

Lower bounds on the size of semidefinite relaxations. David Steurer Cornell

Lower bounds on the size of semidefinite relaxations. David Steurer Cornell Lower bounds on the size of semidefinite relaxations David Steurer Cornell James R. Lee Washington Prasad Raghavendra Berkeley Institute for Advanced Study, November 2015 overview of results unconditional

More information

Semidefinite Representation of the k-ellipse

Semidefinite Representation of the k-ellipse arxiv:math/0702005v1 [math.ag] 31 Jan 2007 Semidefinite Representation of the k-ellipse Jiawang Nie Pablo A. Parrilo Bernd Sturmfels February 2, 2008 Abstract The k-ellipse is the plane algebraic curve

More information

Lecture 2: Stable Polynomials

Lecture 2: Stable Polynomials Math 270: Geometry of Polynomials Fall 2015 Lecture 2: Stable Polynomials Lecturer: Nikhil Srivastava September 8 Disclaimer: These notes have not been subjected to the usual scrutiny reserved for formal

More information

Power and limitations of convex formulations via linear and semidefinite programming lifts. Hamza Fawzi

Power and limitations of convex formulations via linear and semidefinite programming lifts. Hamza Fawzi Power and limitations of convex formulations via linear and semidefinite programming lifts by Hamza Fawzi Submitted to the Department of Electrical Engineering and Computer Science in partial fulfillment

More information

CONTAINMENT PROBLEMS FOR POLYTOPES AND SPECTRAHEDRA

CONTAINMENT PROBLEMS FOR POLYTOPES AND SPECTRAHEDRA CONTAINMENT PROBLEMS FOR POLYTOPES AND SPECTRAHEDRA KAI KELLNER, THORSTEN THEOBALD, AND CHRISTIAN TRABANDT Abstract. We study the computational question whether a given polytope or spectrahedron S A (as

More information

Open Problems in Algebraic Statistics

Open Problems in Algebraic Statistics Open Problems inalgebraic Statistics p. Open Problems in Algebraic Statistics BERND STURMFELS UNIVERSITY OF CALIFORNIA, BERKELEY and TECHNISCHE UNIVERSITÄT BERLIN Advertisement Oberwolfach Seminar Algebraic

More information

Convex Optimization. (EE227A: UC Berkeley) Lecture 28. Suvrit Sra. (Algebra + Optimization) 02 May, 2013

Convex Optimization. (EE227A: UC Berkeley) Lecture 28. Suvrit Sra. (Algebra + Optimization) 02 May, 2013 Convex Optimization (EE227A: UC Berkeley) Lecture 28 (Algebra + Optimization) 02 May, 2013 Suvrit Sra Admin Poster presentation on 10th May mandatory HW, Midterm, Quiz to be reweighted Project final report

More information

Example: feasibility. Interpretation as formal proof. Example: linear inequalities and Farkas lemma

Example: feasibility. Interpretation as formal proof. Example: linear inequalities and Farkas lemma 4-1 Algebra and Duality P. Parrilo and S. Lall 2006.06.07.01 4. Algebra and Duality Example: non-convex polynomial optimization Weak duality and duality gap The dual is not intrinsic The cone of valid

More information

CSC Linear Programming and Combinatorial Optimization Lecture 10: Semidefinite Programming

CSC Linear Programming and Combinatorial Optimization Lecture 10: Semidefinite Programming CSC2411 - Linear Programming and Combinatorial Optimization Lecture 10: Semidefinite Programming Notes taken by Mike Jamieson March 28, 2005 Summary: In this lecture, we introduce semidefinite programming

More information

Hyperbolicity Cones of Elementary Symmetric Polynomials. Masterarbeit

Hyperbolicity Cones of Elementary Symmetric Polynomials. Masterarbeit Hyperbolicity Cones of Elementary Symmetric Polynomials Masterarbeit vorgelegt von Helena Bergold an der Fachbereich Mathematik und Statistik Betreuer: Prof. Dr. Markus Schweighofer Konstanz, 2018 Erklärung

More information

arxiv: v3 [math.ag] 2 May 2018

arxiv: v3 [math.ag] 2 May 2018 GRAM SPECTRAHEDRA LYNN CHUA, DANIEL PLAUMANN, RAINER SINN, AND CYNTHIA VINZANT arxiv:1608.0034v3 [math.ag] May 018 Abstract. Representations of nonnegative polynomials as sums of squares are central to

More information

The moment-lp and moment-sos approaches

The moment-lp and moment-sos approaches The moment-lp and moment-sos approaches LAAS-CNRS and Institute of Mathematics, Toulouse, France CIRM, November 2013 Semidefinite Programming Why polynomial optimization? LP- and SDP- CERTIFICATES of POSITIVITY

More information

This document is downloaded from DR-NTU, Nanyang Technological University Library, Singapore.

This document is downloaded from DR-NTU, Nanyang Technological University Library, Singapore. This document is downloaded from DR-NTU, Nanyang Technological University Library, Singapore. Title Products of positive forms, linear matrix inequalities, and Hilbert 17th problem for ternary forms. Author(s)

More information

Lagrange Duality. Daniel P. Palomar. Hong Kong University of Science and Technology (HKUST)

Lagrange Duality. Daniel P. Palomar. Hong Kong University of Science and Technology (HKUST) Lagrange Duality Daniel P. Palomar Hong Kong University of Science and Technology (HKUST) ELEC5470 - Convex Optimization Fall 2017-18, HKUST, Hong Kong Outline of Lecture Lagrangian Dual function Dual

More information

Trigonometric Polynomials and Quartic Hyperbolic Ternary Forms

Trigonometric Polynomials and Quartic Hyperbolic Ternary Forms International Journal of Algebra, Vol. 5, 2011, no. 4, 159-166 Trigonometric Polynomials and Quartic Hyperbolic Ternary Forms Seiji Kitamura Graduate School of Science and Technology Hirosaki University,

More information

Rank-one Generated Spectral Cones Defined by Two Homogeneous Linear Matrix Inequalities

Rank-one Generated Spectral Cones Defined by Two Homogeneous Linear Matrix Inequalities Rank-one Generated Spectral Cones Defined by Two Homogeneous Linear Matrix Inequalities C.J. Argue Joint work with Fatma Kılınç-Karzan October 22, 2017 INFORMS Annual Meeting Houston, Texas C. Argue, F.

More information

HYPERBOLIC PROGRAMS, AND THEIR DERIVATIVE RELAXATIONS

HYPERBOLIC PROGRAMS, AND THEIR DERIVATIVE RELAXATIONS HYPERBOLIC PROGRAMS, AND THEIR DERIVATIVE RELAXATIONS JAMES RENEGAR Abstract. We study the algebraic and facial structures of hyperbolic programs, and examine natural relaxations of hyperbolic programs,

More information

ORF 523 Lecture 9 Spring 2016, Princeton University Instructor: A.A. Ahmadi Scribe: G. Hall Thursday, March 10, 2016

ORF 523 Lecture 9 Spring 2016, Princeton University Instructor: A.A. Ahmadi Scribe: G. Hall Thursday, March 10, 2016 ORF 523 Lecture 9 Spring 2016, Princeton University Instructor: A.A. Ahmadi Scribe: G. Hall Thursday, March 10, 2016 When in doubt on the accuracy of these notes, please cross check with the instructor

More information

Exact algorithms for linear matrix inequalities

Exact algorithms for linear matrix inequalities Exact algorithms for linear matrix inequalities Didier Henrion Simone Naldi Mohab Safey El Din arxiv:1508.03715v3 [math.oc] 19 Sep 2016 September 20, 2016 Abstract Let A(x) = A 0 + x 1 A 1 + + x n A n

More information

Semidefinite programming lifts and sparse sums-of-squares

Semidefinite programming lifts and sparse sums-of-squares 1/15 Semidefinite programming lifts and sparse sums-of-squares Hamza Fawzi (MIT, LIDS) Joint work with James Saunderson (UW) and Pablo Parrilo (MIT) Cornell ORIE, October 2015 Linear optimization 2/15

More information

Hilbert s 17th Problem to Semidefinite Programming & Convex Algebraic Geometry

Hilbert s 17th Problem to Semidefinite Programming & Convex Algebraic Geometry Hilbert s 17th Problem to Semidefinite Programming & Convex Algebraic Geometry Rekha R. Thomas University of Washington, Seattle References Monique Laurent, Sums of squares, moment matrices and optimization

More information

Exact algorithms for semidefinite programs with degenerate feasible set

Exact algorithms for semidefinite programs with degenerate feasible set Exact algorithms for semidefinite programs with degenerate feasible set Didier Henrion Simone Naldi Mohab Safey El Din 2018 Abstract Let A 0,..., A n be m m symmetric matrices with entries in Q, and let

More information

Advanced SDPs Lecture 6: March 16, 2017

Advanced SDPs Lecture 6: March 16, 2017 Advanced SDPs Lecture 6: March 16, 2017 Lecturers: Nikhil Bansal and Daniel Dadush Scribe: Daniel Dadush 6.1 Notation Let N = {0, 1,... } denote the set of non-negative integers. For α N n, define the

More information

A positive definite polynomial Hessian that does not factor

A positive definite polynomial Hessian that does not factor A positive definite polynomial Hessian that does not factor The MIT Faculty has made this article openly available Please share how this access benefits you Your story matters Citation As Published Publisher

More information

EE/ACM Applications of Convex Optimization in Signal Processing and Communications Lecture 17

EE/ACM Applications of Convex Optimization in Signal Processing and Communications Lecture 17 EE/ACM 150 - Applications of Convex Optimization in Signal Processing and Communications Lecture 17 Andre Tkacenko Signal Processing Research Group Jet Propulsion Laboratory May 29, 2012 Andre Tkacenko

More information

An inverse numerical range problem for determinantal representations

An inverse numerical range problem for determinantal representations An inverse numerical range problem for determinantal representations Mao-Ting Chien Soochow University, Taiwan Based on joint work with Hiroshi Nakazato WONRA June 13-18, 2018, Munich Outline 1. Introduction

More information

Non-commutative polynomial optimization

Non-commutative polynomial optimization Non-commutative polynomial optimization S. Pironio 1, M. Navascuès 2, A. Acín 3 1 Laboratoire d Information Quantique (Brussels) 2 Department of Mathematics (Bristol) 3 ICFO-The Institute of Photonic Sciences

More information

12. Interior-point methods

12. Interior-point methods 12. Interior-point methods Convex Optimization Boyd & Vandenberghe inequality constrained minimization logarithmic barrier function and central path barrier method feasibility and phase I methods complexity

More information

Optimization on linear matrix inequalities for polynomial systems control

Optimization on linear matrix inequalities for polynomial systems control arxiv:1309.3112v1 [math.oc] 12 Sep 2013 Optimization on linear matrix inequalities for polynomial systems control Didier Henrion 1,2 Draft lecture notes of September 13, 2013 1 LAAS-CNRS, Univ. Toulouse,

More information

An Introduction to Linear Matrix Inequalities. Raktim Bhattacharya Aerospace Engineering, Texas A&M University

An Introduction to Linear Matrix Inequalities. Raktim Bhattacharya Aerospace Engineering, Texas A&M University An Introduction to Linear Matrix Inequalities Raktim Bhattacharya Aerospace Engineering, Texas A&M University Linear Matrix Inequalities What are they? Inequalities involving matrix variables Matrix variables

More information

arxiv: v2 [math.ag] 3 Dec 2016

arxiv: v2 [math.ag] 3 Dec 2016 DO SUMS OF SQUARES DREAM OF FREE RESOLUTIONS? GRIGORIY BLEKHERMAN, RAINER SINN, AND MAURICIO VELASCO arxiv:1607.03551v2 [math.ag] 3 Dec 2016 ABSTRACT. For a real projective variety X, the cone Σ X of sums

More information

Convex Optimization. (EE227A: UC Berkeley) Lecture 6. Suvrit Sra. (Conic optimization) 07 Feb, 2013

Convex Optimization. (EE227A: UC Berkeley) Lecture 6. Suvrit Sra. (Conic optimization) 07 Feb, 2013 Convex Optimization (EE227A: UC Berkeley) Lecture 6 (Conic optimization) 07 Feb, 2013 Suvrit Sra Organizational Info Quiz coming up on 19th Feb. Project teams by 19th Feb Good if you can mix your research

More information

Analysis and synthesis: a complexity perspective

Analysis and synthesis: a complexity perspective Analysis and synthesis: a complexity perspective Pablo A. Parrilo ETH ZürichZ control.ee.ethz.ch/~parrilo Outline System analysis/design Formal and informal methods SOS/SDP techniques and applications

More information

9. Interpretations, Lifting, SOS and Moments

9. Interpretations, Lifting, SOS and Moments 9-1 Interpretations, Lifting, SOS and Moments P. Parrilo and S. Lall, CDC 2003 2003.12.07.04 9. Interpretations, Lifting, SOS and Moments Polynomial nonnegativity Sum of squares (SOS) decomposition Eample

More information

Acyclic Semidefinite Approximations of Quadratically Constrained Quadratic Programs

Acyclic Semidefinite Approximations of Quadratically Constrained Quadratic Programs Acyclic Semidefinite Approximations of Quadratically Constrained Quadratic Programs Raphael Louca & Eilyan Bitar School of Electrical and Computer Engineering American Control Conference (ACC) Chicago,

More information

(a) II and III (b) I (c) I and III (d) I and II and III (e) None are true.

(a) II and III (b) I (c) I and III (d) I and II and III (e) None are true. 1 Which of the following statements is always true? I The null space of an m n matrix is a subspace of R m II If the set B = {v 1,, v n } spans a vector space V and dimv = n, then B is a basis for V III

More information

Computing Rational Points in Convex Semi-algebraic Sets and Sums-of-Squares Decompositions

Computing Rational Points in Convex Semi-algebraic Sets and Sums-of-Squares Decompositions Computing Rational Points in Convex Semi-algebraic Sets and Sums-of-Squares Decompositions Mohab Safey El Din 1 Lihong Zhi 2 1 University Pierre et Marie Curie, Paris 6, France INRIA Paris-Rocquencourt,

More information

ELE539A: Optimization of Communication Systems Lecture 15: Semidefinite Programming, Detection and Estimation Applications

ELE539A: Optimization of Communication Systems Lecture 15: Semidefinite Programming, Detection and Estimation Applications ELE539A: Optimization of Communication Systems Lecture 15: Semidefinite Programming, Detection and Estimation Applications Professor M. Chiang Electrical Engineering Department, Princeton University March

More information

arxiv: v3 [math.oc] 29 Dec 2011

arxiv: v3 [math.oc] 29 Dec 2011 THE CENTRAL CURVE IN LINEAR PROGRAMMING arxiv:1012.3978v3 [math.oc] 29 Dec 2011 Abstract. The central curve of a linear program is an algebraic curve specified by linear and quadratic constraints arising

More information

Linear and non-linear programming

Linear and non-linear programming Linear and non-linear programming Benjamin Recht March 11, 2005 The Gameplan Constrained Optimization Convexity Duality Applications/Taxonomy 1 Constrained Optimization minimize f(x) subject to g j (x)

More information

Convex sets, matrix factorizations and positive semidefinite rank

Convex sets, matrix factorizations and positive semidefinite rank Convex sets, matrix factorizations and positive semidefinite rank Pablo A. Parrilo Laboratory for Information and Decision Systems Electrical Engineering and Computer Science Massachusetts Institute of

More information

Lecture 1. 1 Conic programming. MA 796S: Convex Optimization and Interior Point Methods October 8, Consider the conic program. min.

Lecture 1. 1 Conic programming. MA 796S: Convex Optimization and Interior Point Methods October 8, Consider the conic program. min. MA 796S: Convex Optimization and Interior Point Methods October 8, 2007 Lecture 1 Lecturer: Kartik Sivaramakrishnan Scribe: Kartik Sivaramakrishnan 1 Conic programming Consider the conic program min s.t.

More information

MIT Algebraic techniques and semidefinite optimization February 14, Lecture 3

MIT Algebraic techniques and semidefinite optimization February 14, Lecture 3 MI 6.97 Algebraic techniques and semidefinite optimization February 4, 6 Lecture 3 Lecturer: Pablo A. Parrilo Scribe: Pablo A. Parrilo In this lecture, we will discuss one of the most important applications

More information