Quantum de Finetti theorems for local measurements

Size: px
Start display at page:

Download "Quantum de Finetti theorems for local measurements"

Transcription

1 Quantum de Finetti theorems for local measurements methods to analyze SDP hierarchies Fernando Brandão (UCL) Aram Harrow (MIT) arxiv:

2 motivation/warmup nonlinear optimization --> convex optimization S n = {x 2 R n : kxk 2 =1} max x2s n nx i,j=1 M i,j x i x j = max x2s n M,xx T = max 2D(n) hm, i ha, Bi = nx A i,j B i,j i,j=1 D(n) = conv {xx T : x S n } = density matrices

3 a harder problem max x2s n X i 1,i 2,j 1,j 2 M i1 i 2,j 1 j 2 x i1 x i2 x j1 x j2 = max x2s n M,xx T xx T (A B) i1 i 2,j 1 j 2 = A i1,j 1 B i2,j 2 = max{hm, i : 2 SepSym(n, n)} SepSym(n,n) = conv {xx T xx T : x S n } Sep(n,n) = conv {xx T yy T : x,y S n } D(n 2 )

4 polynomial optimization D(n) n = conv {xx T : x S n } SepSym(n,n) = conv {xx T xx T : x S n } EASY HARD tensor norms 2->4 norm small-set expansion need to find relaxation!

5 k-extendable relaxation want σ SepSym(n,n) = conv {xx T xx T : x S n } relax to 2 D(n k ) i1...i k,j 1...j k = i (1)...i (k),j 0 (1)...j 0 (k) π,π S k ideally i1...i k,j 1...j k = x i1 x ik x j1 x jk recover ρ D(n 2 ) i1 i 2,j 1 j 2 = X i1 i 2 i 3...i k,j 1 j 2 i 3...i k i 3,...,i k why? 1. partial trace = quantum analogue of marginal distribution 2. using i x 2 i = 1 constraint

6 why should this work? physics explanation: monogamy of entanglement only separable states are infinitely sharable math explanation: = X i (x i x T i ) k = X i,j x i x T j x i x T 2(k 2) j hx i,x j i! X i x i x T i x i x T i as kà

7 run-time = n O(k) convergence rate dist(k-extendable, SepSym(n,n)) = f(k,n) =?? trace dist(ρ,σ) = max 0 M I hm,ρ-σi ~ n/k à n O(n) time [Brandão, Christandl, Yard; STOC 11] distance ~ (log(n)/k) 1/2 for M that are 1-LOCC à time n O(log(n)) Def of 1-LOCC M = i A i B i such that 0 A i I 0 B i i B i = I Pr[accept i] = ha i B i,ρi / Pr[i] ρ i Pr[i] = hi B i,ρi

8 our results 1. simpler proof of BCY 1-LOCC bound 2. extension to multipartite states 3. dimension-independent bounds if Alice is non-adaptive 4. extension to non-signaling distributions 5. explicit rounding scheme 6. (next talk) version without symmetry applications 1. optimal algorithm for degree- n poly optimization (assuming ETH) 2. optimal algorithm for approximating value of free games 3. hardness of entangled games 4. QMA = QMA with poly(n) unentangled Merlins & 1-LOCC measurements 5. pretty good tomography without independence assumptions 6. convergence of Lasserre 7. multipartite separability testing

9 proof sketch Further restrict to LO measurements ρ M = a,b Υ ab A a B b 0 Υ ab 1 a A a = I a Pr[a,b] = h½, A a B b i b b B b = I Goal: max a,b Pr[a,b] γ a,b exact solutions (ρ SepSym): Pr[a,b] = λ i q i (a) r i (b) Pr[accept a,b] = γ ab

10 Pr[a,b] = h½, A a B b i Goal: max a,b Pr[a,b] γ a,b exact solutions (ρ SepSym): Pr[a,b] = λ i q i (a) r i (b) rounding M = a,b Υ ab A a B b 0 Υ ab 1 a A a = I b B b = I relaxation Pr[a, b] = X b 2,...,b k p a,b,b2,...,b k p a,b1,...,b k = h,a a B b1 B bk i proof idea good approximation if Pr[a,b 1 ] ε Pr[a] Pr[b 1 ] otherwise H(a b 1 ) < H(a) ε 2

11 information theory [Raghavendra-Tan, SODA 12] log(n) I(a:b 1 b k ) = I(a:b 1 ) + I(a:b 2 b 1 ) + + I(a:b k b 1 b k-1 ) I(a:b j b 1 b j-1 ) log(n)/k for some j ρ Sep for this particular measurement Note: Brandão-Christandl-Yard based on quantum version of I(a:b c).

12 open questions 1. Improve 1-LOCC to SEP would imply QMA = QMA with poly(n) Merlins and quasipolynomial-time algorithms for tensor problems 2. Better algorithms for small-set expansion / unique games 3. Make use of partial transpose symmetry 4. Understand quantum conditional mutual information 5. extension to entangled games that would yield NEXP MIP *. (see paper) 6. More counter-examples / integrality gaps.

quantum information and convex optimization Aram Harrow (MIT)

quantum information and convex optimization Aram Harrow (MIT) quantum information and convex optimization Aram Harrow (MIT) Simons Institute 25.9.2014 outline 1. quantum information, entanglement, tensors 2. optimization problems from quantum mechanics 3. SDP approaches

More information

QMA(2) workshop Tutorial 1. Bill Fefferman (QuICS)

QMA(2) workshop Tutorial 1. Bill Fefferman (QuICS) QMA(2) workshop Tutorial 1 Bill Fefferman (QuICS) Agenda I. Basics II. Known results III. Open questions/next tutorial overview I. Basics I.1 Classical Complexity Theory P Class of problems efficiently

More information

Nets vs hierarchies for hard optimization problems

Nets vs hierarchies for hard optimization problems Nets vs hierarchies for hard optimization problems Aram Harrow arxiv:1509.05065 (with Fernando Brandão) in preparation (with Anand Natarajan and Xiaodi Wu) QuiCS QMA(2) 1.8.2016 outline 1. separable states

More information

Detecting pure entanglement is easy, so detecting mixed entanglement is hard

Detecting pure entanglement is easy, so detecting mixed entanglement is hard A quantum e-meter Detecting pure entanglement is easy, so detecting mixed entanglement is hard Aram Harrow (University of Washington) and Ashley Montanaro (University of Cambridge) arxiv:1001.0017 Waterloo

More information

New Variants of the Quantum de Fine4 Theorem with Applica:ons

New Variants of the Quantum de Fine4 Theorem with Applica:ons New Variants of the Quantum de Fine4 Theorem with Applica:ons Fernando G.S.L. Brandão ETH Zürich Based on joint work with Aram Harrow Arxiv:1210.6367 Shanghai, 27/08/2012 Symmetric States ρ AB1...B n D(A

More information

Lecture 2: November 9

Lecture 2: November 9 Semidefinite programming and computational aspects of entanglement IHP Fall 017 Lecturer: Aram Harrow Lecture : November 9 Scribe: Anand (Notes available at http://webmitedu/aram/www/teaching/sdphtml)

More information

arxiv: v1 [quant-ph] 28 May 2011

arxiv: v1 [quant-ph] 28 May 2011 Detection of Multiparticle Entanglement: Quantifying the Search for Symmetric Extensions Fernando G.S.L. Brandão 1 and Matthias Christandl 2 1 Departamento de Física, Universidade Federal de Minas Gerais,

More information

Quantum entanglement, sum of squares, and the log rank conjecture.

Quantum entanglement, sum of squares, and the log rank conjecture. Proof, beliefs, and algorithms through the lens of sum-of-squares 1 Quantum entanglement, sum of squares, and the log rank conjecture. Note: These are very rough notes (essentially copied from the introduction

More information

approximation algorithms I

approximation algorithms I SUM-OF-SQUARES method and approximation algorithms I David Steurer Cornell Cargese Workshop, 201 meta-task encoded as low-degree polynomial in R x example: f(x) = i,j n w ij x i x j 2 given: functions

More information

arxiv: v6 [quant-ph] 4 Nov 2012

arxiv: v6 [quant-ph] 4 Nov 2012 Testing product states, quantum Merlin-Arthur games and tensor optimisation Aram W. Harrow and Ashley Montanaro arxiv:1001.0017v6 [quant-ph] 4 Nov 01 November 6, 01 Abstract We give a test that can distinguish

More information

AM with Multiple Merlins

AM with Multiple Merlins AM with Multiple Merlins Scott Aaronson Russell Impagliazzo Dana Moshkovitz Abstract We introduce and study a new model of interactive proofs: AM(k), or Arthur-Merlin with k non-communicating Merlins.

More information

Rounding Sum-of-Squares Relaxations

Rounding Sum-of-Squares Relaxations Rounding Sum-of-Squares Relaxations Boaz Barak Jonathan Kelner David Steurer June 10, 2014 Abstract We present a general approach to rounding semidefinite programming relaxations obtained by the Sum-of-Squares

More information

Quantum Data Hiding Challenges and Opportuni6es

Quantum Data Hiding Challenges and Opportuni6es Quantum Data Hiding Challenges and Opportuni6es Fernando G.S.L. Brandão Universidade Federal de Minas Gerais, Brazil Based on joint work with M. Christandl, A. Harrow, M. Horodecki, J. Yard PI, 02/11/2011

More information

6.896 Quantum Complexity Theory 30 October Lecture 17

6.896 Quantum Complexity Theory 30 October Lecture 17 6.896 Quantum Complexity Theory 30 October 2008 Lecturer: Scott Aaronson Lecture 17 Last time, on America s Most Wanted Complexity Classes: 1. QMA vs. QCMA; QMA(2). 2. IP: Class of languages L {0, 1} for

More information

Semidefinite Programming

Semidefinite Programming Semidefinite Programming Basics and SOS Fernando Mário de Oliveira Filho Campos do Jordão, 2 November 23 Available at: www.ime.usp.br/~fmario under talks Conic programming V is a real vector space h, i

More information

Explicit bounds on the entangled value of multiplayer XOR games. Joint work with Thomas Vidick (MIT)

Explicit bounds on the entangled value of multiplayer XOR games. Joint work with Thomas Vidick (MIT) Explicit bounds on the entangled value of multiplayer XOR games Jop Briët Joint work with Thomas Vidick (MIT) Waterloo, 2012 Entanglement and nonlocal correlations [Bell64] Measurements on entangled quantum

More information

Hierarchies. 1. Lovasz-Schrijver (LS), LS+ 2. Sherali Adams 3. Lasserre 4. Mixed Hierarchy (recently used) Idea: P = conv(subset S of 0,1 n )

Hierarchies. 1. Lovasz-Schrijver (LS), LS+ 2. Sherali Adams 3. Lasserre 4. Mixed Hierarchy (recently used) Idea: P = conv(subset S of 0,1 n ) Hierarchies Today 1. Some more familiarity with Hierarchies 2. Examples of some basic upper and lower bounds 3. Survey of recent results (possible material for future talks) Hierarchies 1. Lovasz-Schrijver

More information

CS286.2 Lecture 8: A variant of QPCP for multiplayer entangled games

CS286.2 Lecture 8: A variant of QPCP for multiplayer entangled games CS286.2 Lecture 8: A variant of QPCP for multiplayer entangled games Scribe: Zeyu Guo In the first lecture, we saw three equivalent variants of the classical PCP theorems in terms of CSP, proof checking,

More information

The Lovász ϑ-function in Quantum Mechanics

The Lovász ϑ-function in Quantum Mechanics The Lovász ϑ-function in Quantum Mechanics Zero-error Quantum Information and Noncontextuality Simone Severini UCL Oxford Jan 2013 Simone Severini (UCL) Lovász ϑ-function in Quantum Mechanics Oxford Jan

More information

arxiv: v2 [quant-ph] 2 Apr 2011

arxiv: v2 [quant-ph] 2 Apr 2011 A Quasipolynomial-Time Algorithm for the Quantum Separability Problem Fernando G.S.L. Brandão Universidade Federal de Minas Gerais Matthias Christandl ETH Zurich Jon Yard Los Alamos National Laboratory

More information

An Approximation Algorithm for Approximation Rank

An Approximation Algorithm for Approximation Rank An Approximation Algorithm for Approximation Rank Troy Lee Columbia University Adi Shraibman Weizmann Institute Conventions Identify a communication function f : X Y { 1, +1} with the associated X-by-Y

More information

Classical and Quantum Channel Simulations

Classical and Quantum Channel Simulations Classical and Quantum Channel Simulations Mario Berta (based on joint work with Fernando Brandão, Matthias Christandl, Renato Renner, Joseph Renes, Stephanie Wehner, Mark Wilde) Outline Classical Shannon

More information

arxiv: v2 [quant-ph] 16 Nov 2008

arxiv: v2 [quant-ph] 16 Nov 2008 The Power of Unentanglement arxiv:0804.080v [quant-ph] 16 Nov 008 Scott Aaronson MIT Salman Beigi MIT Andrew Drucker MIT Peter Shor MIT Abstract Bill Fefferman University of Chicago The class QMA(k), introduced

More information

Squashed entanglement

Squashed entanglement Squashed Entanglement based on Squashed Entanglement - An Additive Entanglement Measure (M. Christandl, A. Winter, quant-ph/0308088), and A paradigm for entanglement theory based on quantum communication

More information

Lecture: Quantum Information

Lecture: Quantum Information Lecture: Quantum Information Transcribed by: Crystal Noel and Da An (Chi Chi) November 10, 016 1 Final Proect Information Find an issue related to class you are interested in and either: read some papers

More information

Distinguishing multi-partite states by local measurements

Distinguishing multi-partite states by local measurements Distinguishing multi-partite states by local measurements Guillaume Aubrun / Andreas Winter Université Claude Bernard Lyon 1 / Universitat Autònoma de Barcelona Cécilia Lancien UCBL1 / UAB Madrid OA and

More information

Cutting Planes for First Level RLT Relaxations of Mixed 0-1 Programs

Cutting Planes for First Level RLT Relaxations of Mixed 0-1 Programs Cutting Planes for First Level RLT Relaxations of Mixed 0-1 Programs 1 Cambridge, July 2013 1 Joint work with Franklin Djeumou Fomeni and Adam N. Letchford Outline 1. Introduction 2. Literature Review

More information

Quantum Marginal Problems

Quantum Marginal Problems Quantum Marginal Problems David Gross (Colgone) Joint with: Christandl, Doran, Lopes, Schilling, Walter Outline Overview: Marginal problems Overview: Entanglement Main Theme: Entanglement Polytopes Shortly:

More information

Quantum NP - Cont. Classical and Quantum Computation A.Yu Kitaev, A. Shen, M. N. Vyalyi 2002

Quantum NP - Cont. Classical and Quantum Computation A.Yu Kitaev, A. Shen, M. N. Vyalyi 2002 Quantum NP - Cont. Classical and Quantum Computation A.Yu Kitaev, A. Shen, M. N. Vyalyi 2002 1 QMA - the quantum analog to MA (and NP). Definition 1 QMA. The complexity class QMA is the class of all languages

More information

Tutorial: Device-independent random number generation. Roger Colbeck University of York

Tutorial: Device-independent random number generation. Roger Colbeck University of York Tutorial: Device-independent random number generation Roger Colbeck University of York Outline Brief motivation of random number generation Discuss what we mean by a random number Discuss some ways of

More information

Quantum Physics of Information Workshop Shanghai Jiao Tong University Institute of Natural Sciences August 2012

Quantum Physics of Information Workshop Shanghai Jiao Tong University Institute of Natural Sciences August 2012 Quantum Physics of Information Workshop Shanghai Jiao Tong University Institute of Natural Sciences 27-28 August 2012 Welcome! Since the proximity in time and space of AQIS2012, "The 12th Asian Quantum

More information

Exponential Quantum Speed-ups are Generic

Exponential Quantum Speed-ups are Generic Exponential Quantum Speed-ups are Generic Fernando GSL Brandão 1 and Michał Horodecki 2 1 Universidade Federal de Minas Gerais, Brazil 2 University of Gdansk, Poland The Role of Fourier Transform in Quantum

More information

Local Algorithms for 1D Quantum Systems

Local Algorithms for 1D Quantum Systems Local Algorithms for 1D Quantum Systems I. Arad, Z. Landau, U. Vazirani, T. Vidick I. Arad, Z. Landau, U. Vazirani, T. Vidick () Local Algorithms for 1D Quantum Systems 1 / 14 Many-body physics Are physical

More information

Distinguishing multi-partite states by local measurements

Distinguishing multi-partite states by local measurements Distinguishing multi-partite states by local measurements arxiv[quant-ph]:1206.2884 Ecole Polytechnique Paris / University of Bristol Cécilia Lancien / Andreas Winter AQIS 12 August 24 th 2012 Cécilia

More information

Approximation & Complexity

Approximation & Complexity Summer school on semidefinite optimization Approximation & Complexity David Steurer Cornell University Part 1 September 6, 2012 Overview Part 1 Unique Games Conjecture & Basic SDP Part 2 SDP Hierarchies:

More information

Unique Games Conjecture & Polynomial Optimization. David Steurer

Unique Games Conjecture & Polynomial Optimization. David Steurer Unique Games Conjecture & Polynomial Optimization David Steurer Newton Institute, Cambridge, July 2013 overview Proof Complexity Approximability Polynomial Optimization Quantum Information computational

More information

Limita&ons for Quantum PCPs

Limita&ons for Quantum PCPs Limita&ons for Quantum PCPs Fernando G.S.L. Brandão University College London Based on joint work arxiv:1310.0017 with Aram Harrow MIT Simons InsHtute, Berkeley, February 2014 Constraint Sa&sfac&on Problems

More information

10.34: Numerical Methods Applied to Chemical Engineering. Lecture 2: More basics of linear algebra Matrix norms, Condition number

10.34: Numerical Methods Applied to Chemical Engineering. Lecture 2: More basics of linear algebra Matrix norms, Condition number 10.34: Numerical Methods Applied to Chemical Engineering Lecture 2: More basics of linear algebra Matrix norms, Condition number 1 Recap Numerical error Operations Properties Scalars, vectors, and matrices

More information

Mutual Information in Conformal Field Theories in Higher Dimensions

Mutual Information in Conformal Field Theories in Higher Dimensions Mutual Information in Conformal Field Theories in Higher Dimensions John Cardy University of Oxford Conference on Mathematical Statistical Physics Kyoto 2013 arxiv:1304.7985; J. Phys. : Math. Theor. 46

More information

Sum-of-Squares Method, Tensor Decomposition, Dictionary Learning

Sum-of-Squares Method, Tensor Decomposition, Dictionary Learning Sum-of-Squares Method, Tensor Decomposition, Dictionary Learning David Steurer Cornell Approximation Algorithms and Hardness, Banff, August 2014 for many problems (e.g., all UG-hard ones): better guarantees

More information

Entanglement Polytopes

Entanglement Polytopes Entanglement Polytopes Detecting Genuine Multi-Particle Entanglement by Single-Particle Measurements Michael Walter joint work with Matthias Christandl, Brent Doran (ETH Zürich), and David Gross (Univ.

More information

Equivariant semidefinite lifts and sum of squares hierarchies

Equivariant semidefinite lifts and sum of squares hierarchies Equivariant semidefinite lifts and sum of squares hierarchies Pablo A. Parrilo Laboratory for Information and Decision Systems Electrical Engineering and Computer Science Massachusetts Institute of Technology

More information

Chapter 11. Taylor Series. Josef Leydold Mathematical Methods WS 2018/19 11 Taylor Series 1 / 27

Chapter 11. Taylor Series. Josef Leydold Mathematical Methods WS 2018/19 11 Taylor Series 1 / 27 Chapter 11 Taylor Series Josef Leydold Mathematical Methods WS 2018/19 11 Taylor Series 1 / 27 First-Order Approximation We want to approximate function f by some simple function. Best possible approximation

More information

On the complexity of stoquastic Hamiltonians

On the complexity of stoquastic Hamiltonians On the complexity of stoquastic Hamiltonians Ian Kivlichan December 11, 2015 Abstract Stoquastic Hamiltonians, those for which all off-diagonal matrix elements in the standard basis are real and non-positive,

More information

Maximal Entanglement A New Measure of Entanglement

Maximal Entanglement A New Measure of Entanglement 1 Maximal Entanglement A New Measure of Entanglement Salman Beigi School of Mathematics, Institute for Research in Fundamental Sciences IPM, Tehran, Iran arxiv:1405.50v1 [quant-ph] 11 May 014 Abstract

More information

It from Qubit Summer School

It from Qubit Summer School It from Qubit Summer School July 27 th, 2016 Tensor Networks Guifre Vidal NSERC Wednesday 27 th 9AM ecture Tensor Networks 2:30PM Problem session 5PM Focus ecture MARKUS HAURU MERA: a tensor network for

More information

1) The line has a slope of ) The line passes through (2, 11) and. 6) r(x) = x + 4. From memory match each equation with its graph.

1) The line has a slope of ) The line passes through (2, 11) and. 6) r(x) = x + 4. From memory match each equation with its graph. Review Test 2 Math 1314 Name Write an equation of the line satisfying the given conditions. Write the answer in standard form. 1) The line has a slope of - 2 7 and contains the point (3, 1). Use the point-slope

More information

1 Determinants. 1.1 Determinant

1 Determinants. 1.1 Determinant 1 Determinants [SB], Chapter 9, p.188-196. [SB], Chapter 26, p.719-739. Bellow w ll study the central question: which additional conditions must satisfy a quadratic matrix A to be invertible, that is to

More information

Tsuyoshi Ito (McGill U) Hirotada Kobayashi (NII & JST) Keiji Matsumoto (NII & JST)

Tsuyoshi Ito (McGill U) Hirotada Kobayashi (NII & JST) Keiji Matsumoto (NII & JST) Tsuyoshi Ito (McGill U) Hirotada Kobayashi (NII & JST) Keiji Matsumoto (NII & JST) arxiv:0810.0693 QIP 2009, January 12 16, 2009 Interactive proof [Babai 1985] [Goldwasser, Micali, Rackoff 1989] erifier:

More information

CSC Linear Programming and Combinatorial Optimization Lecture 10: Semidefinite Programming

CSC Linear Programming and Combinatorial Optimization Lecture 10: Semidefinite Programming CSC2411 - Linear Programming and Combinatorial Optimization Lecture 10: Semidefinite Programming Notes taken by Mike Jamieson March 28, 2005 Summary: In this lecture, we introduce semidefinite programming

More information

Lecture 3: Semidefinite Programming

Lecture 3: Semidefinite Programming Lecture 3: Semidefinite Programming Lecture Outline Part I: Semidefinite programming, examples, canonical form, and duality Part II: Strong Duality Failure Examples Part III: Conditions for strong duality

More information

linear programming and approximate constraint satisfaction

linear programming and approximate constraint satisfaction linear programming and approximate constraint satisfaction Siu On Chan MSR New England James R. Lee University of Washington Prasad Raghavendra UC Berkeley David Steurer Cornell results MAIN THEOREM: Any

More information

Quantum state discrimination with post-measurement information!

Quantum state discrimination with post-measurement information! Quantum state discrimination with post-measurement information! DEEPTHI GOPAL, CALTECH! STEPHANIE WEHNER, NATIONAL UNIVERSITY OF SINGAPORE! Quantum states! A state is a mathematical object describing the

More information

Linear Algebra March 16, 2019

Linear Algebra March 16, 2019 Linear Algebra March 16, 2019 2 Contents 0.1 Notation................................ 4 1 Systems of linear equations, and matrices 5 1.1 Systems of linear equations..................... 5 1.2 Augmented

More information

arxiv: v1 [quant-ph] 12 May 2012

arxiv: v1 [quant-ph] 12 May 2012 Multi-Prover Quantum Merlin-Arthur Proof Systems with Small Gap Attila Pereszlényi Centre for Quantum Technologies, National University of Singapore May, 0 arxiv:05.76v [quant-ph] May 0 Abstract This paper

More information

6.896 Quantum Complexity Theory September 9, Lecture 2

6.896 Quantum Complexity Theory September 9, Lecture 2 6.96 Quantum Complexity Theory September 9, 00 Lecturer: Scott Aaronson Lecture Quick Recap The central object of study in our class is BQP, which stands for Bounded error, Quantum, Polynomial time. Informally

More information

Quantum Symmetries in Free Probability Theory. Roland Speicher Queen s University Kingston, Canada

Quantum Symmetries in Free Probability Theory. Roland Speicher Queen s University Kingston, Canada Quantum Symmetries in Free Probability Theory Roland Speicher Queen s University Kingston, Canada Quantum Groups are generalizations of groups G (actually, of C(G)) are supposed to describe non-classical

More information

Branch Flow Model. Computing + Math Sciences Electrical Engineering

Branch Flow Model. Computing + Math Sciences Electrical Engineering Branch Flow Model Masoud Farivar Steven Low Computing + Math Sciences Electrical Engineering Arpil 014 TPS paper Farivar and Low Branch flow model: relaxations and convexification IEEE Trans. Power Systems,

More information

Rank-one and Quantum XOR Games

Rank-one and Quantum XOR Games Rank-one and Quantum XOR Games T. Cooney 1 M. Junge 2 C. Palazuelos 3 D. Pérez García 1 and O. Regev 4 T. Vidick 5 1 Universidad Complutense de Madrid 2 University of Illinois at Urbana Champaign 3 Instituto

More information

Semidefinite programming strong converse bounds for quantum channel capacities

Semidefinite programming strong converse bounds for quantum channel capacities Semidefinite programming strong converse bounds for quantum channel capacities Xin Wang UTS: Centre for Quantum Software and Information Joint work with Runyao Duan and Wei Xie arxiv:1610.06381 & 1601.06888

More information

Lecture 26: QIP and QMIP

Lecture 26: QIP and QMIP Quantum Computation (CMU 15-859BB, Fall 2015) Lecture 26: QIP and QMIP December 9, 2015 Lecturer: John Wright Scribe: Kumail Jaffer 1 Introduction Recall QMA and QMA(2), the quantum analogues of MA and

More information

Norms and Perturbation theory for linear systems

Norms and Perturbation theory for linear systems CHAPTER 7 Norms and Perturbation theory for linear systems Exercise 7.7: Consistency of sum norm? Observe that the sum norm is a matrix norm. This follows since it is equal to the l -norm of the vector

More information

CS286.2 Lecture 13: Quantum de Finetti Theorems

CS286.2 Lecture 13: Quantum de Finetti Theorems CS86. Lecture 13: Quantum de Finetti Theorems Scribe: Thom Bohdanowicz Before stating a quantum de Finetti theorem for density operators, we should define permutation invariance for quantum states. Let

More information

Matrix compositions. Emanuele Munarini. Dipartimento di Matematica Politecnico di Milano

Matrix compositions. Emanuele Munarini. Dipartimento di Matematica Politecnico di Milano Matrix compositions Emanuele Munarini Dipartimento di Matematica Politecnico di Milano emanuelemunarini@polimiit Joint work with Maddalena Poneti and Simone Rinaldi FPSAC 26 San Diego Motivation: L-convex

More information

Fundamental rate-loss tradeoff for optical quantum key distribution

Fundamental rate-loss tradeoff for optical quantum key distribution Fundamental rate-loss tradeoff for optical quantum key distribution Masahiro Takeoka (NICT) Saikat Guha (BBN) Mark M. Wilde (LSU) Quantum Krispy Kreme Seminar @LSU January 30, 2015 Outline Motivation Main

More information

Locality NIMS. The Principle of. Made Simpler but Harder. Man-Duen Choi.

Locality NIMS. The Principle of. Made Simpler but Harder. Man-Duen Choi. The Principle of Locality Made Simpler but Harder by Man-Duen Choi choi@math.toronto.edu Mathematical Aspects in Current Quantum Information Theory, Feb 2016 NIMS National Institute For Mathematical Sciences

More information

The Power of Unentanglement (Extended Abstract)

The Power of Unentanglement (Extended Abstract) The Power of Unentanglement Extended Abstract) Scott Aaronson MIT Salman Beigi MIT Andrew Drucker MIT Bill Fefferman University of Chicago Peter Shor MIT Abstract The class QMAk), introduced by Kobayashi

More information

Multivariable Calculus

Multivariable Calculus 2 Multivariable Calculus 2.1 Limits and Continuity Problem 2.1.1 (Fa94) Let the function f : R n R n satisfy the following two conditions: (i) f (K ) is compact whenever K is a compact subset of R n. (ii)

More information

Introduction to Quantitative Techniques for MSc Programmes SCHOOL OF ECONOMICS, MATHEMATICS AND STATISTICS MALET STREET LONDON WC1E 7HX

Introduction to Quantitative Techniques for MSc Programmes SCHOOL OF ECONOMICS, MATHEMATICS AND STATISTICS MALET STREET LONDON WC1E 7HX Introduction to Quantitative Techniques for MSc Programmes SCHOOL OF ECONOMICS, MATHEMATICS AND STATISTICS MALET STREET LONDON WC1E 7HX September 2007 MSc Sep Intro QT 1 Who are these course for? The September

More information

arxiv: v2 [math.oc] 30 Sep 2015

arxiv: v2 [math.oc] 30 Sep 2015 Symmetry, Integrability and Geometry: Methods and Applications Moments and Legendre Fourier Series for Measures Supported on Curves Jean B. LASSERRE SIGMA 11 (215), 77, 1 pages arxiv:158.6884v2 [math.oc]

More information

Hamiltonian simulation and solving linear systems

Hamiltonian simulation and solving linear systems Hamiltonian simulation and solving linear systems Robin Kothari Center for Theoretical Physics MIT Quantum Optimization Workshop Fields Institute October 28, 2014 Ask not what you can do for quantum computing

More information

Approximation norms and duality for communication complexity lower bounds

Approximation norms and duality for communication complexity lower bounds Approximation norms and duality for communication complexity lower bounds Troy Lee Columbia University Adi Shraibman Weizmann Institute From min to max The cost of a best algorithm is naturally phrased

More information

arxiv: v3 [quant-ph] 5 Jun 2015

arxiv: v3 [quant-ph] 5 Jun 2015 Entanglement and swap of quantum states in two qubits Takaya Ikuto and Satoshi Ishizaka Graduate School of Integrated Arts and Sciences, Hiroshima University, Higashihiroshima, 739-8521, Japan (Dated:

More information

Sum-of-Squares and Spectral Algorithms

Sum-of-Squares and Spectral Algorithms Sum-of-Squares and Spectral Algorithms Tselil Schramm June 23, 2017 Workshop on SoS @ STOC 2017 Spectral algorithms as a tool for analyzing SoS. SoS Semidefinite Programs Spectral Algorithms SoS suggests

More information

Convex Optimization & Parsimony of L p-balls representation

Convex Optimization & Parsimony of L p-balls representation Convex Optimization & Parsimony of L p -balls representation LAAS-CNRS and Institute of Mathematics, Toulouse, France IMA, January 2016 Motivation Unit balls associated with nonnegative homogeneous polynomials

More information

Maximal vectors in Hilbert space and quantum entanglement

Maximal vectors in Hilbert space and quantum entanglement Maximal vectors in Hilbert space and quantum entanglement William Arveson arveson@math.berkeley.edu UC Berkeley Summer 2008 arxiv:0712.4163 arxiv:0801.2531 arxiv:0804.1140 Overview Quantum Information

More information

Quantum Computing Lecture 8. Quantum Automata and Complexity

Quantum Computing Lecture 8. Quantum Automata and Complexity Quantum Computing Lecture 8 Quantum Automata and Complexity Maris Ozols Computational models and complexity Shor s algorithm solves, in polynomial time, a problem for which no classical polynomial time

More information

Majority is incompressible by AC 0 [p] circuits

Majority is incompressible by AC 0 [p] circuits Majority is incompressible by AC 0 [p] circuits Igor Carboni Oliveira Columbia University Joint work with Rahul Santhanam (Univ. Edinburgh) 1 Part 1 Background, Examples, and Motivation 2 Basic Definitions

More information

Primal-Dual Geometry of Level Sets and their Explanatory Value of the Practical Performance of Interior-Point Methods for Conic Optimization

Primal-Dual Geometry of Level Sets and their Explanatory Value of the Practical Performance of Interior-Point Methods for Conic Optimization Primal-Dual Geometry of Level Sets and their Explanatory Value of the Practical Performance of Interior-Point Methods for Conic Optimization Robert M. Freund M.I.T. June, 2010 from papers in SIOPT, Mathematics

More information

Linear Matrix Inequalities, Semidefinite Programming and Quantum Information Theory

Linear Matrix Inequalities, Semidefinite Programming and Quantum Information Theory Linear Matrix Inequalities, Semidefinite Programming and Quantum Information Theory Toulouse, 18-22 January 2015 1. Antonio Acín (ICFO-The Institute of Photonic Sciences, Barcelona) Non-commutative polynomial

More information

Direct product theorem for discrepancy

Direct product theorem for discrepancy Direct product theorem for discrepancy Troy Lee Rutgers University Joint work with: Robert Špalek Direct product theorems Knowing how to compute f, how can you compute f f f? Obvious upper bounds: If can

More information

Globally convergent algorithms for PARAFAC with semi-definite programming

Globally convergent algorithms for PARAFAC with semi-definite programming Globally convergent algorithms for PARAFAC with semi-definite programming Lek-Heng Lim 6th ERCIM Workshop on Matrix Computations and Statistics Copenhagen, Denmark April 1 3, 2005 Thanks: Vin de Silva,

More information

Steering and Entropic Uncertainty Relations

Steering and Entropic Uncertainty Relations Steering and Entropic Uncertainty Relations Ana C. S. Costa, Roope Uola, Otfried Gühne Department of Physics, University of Siegen - Germany September 5, 2017 na C. S. Costa, Roope Uola, Otfried Gühne

More information

A Quantum Interior Point Method for LPs and SDPs

A Quantum Interior Point Method for LPs and SDPs A Quantum Interior Point Method for LPs and SDPs Iordanis Kerenidis 1 Anupam Prakash 1 1 CNRS, IRIF, Université Paris Diderot, Paris, France. September 26, 2018 Semi Definite Programs A Semidefinite Program

More information

CS/Ph120 Homework 4 Solutions

CS/Ph120 Homework 4 Solutions CS/Ph10 Homework 4 Solutions November 3, 016 Problem 1: Robustness of GHZ and W states, part Solution: Due to Bolton Bailey a For the GHZ state, we have T r N GHZ N GHZ N = 1 0 N 1 0 N 1 + 1 N 1 1 N 1

More information

6-1 The Positivstellensatz P. Parrilo and S. Lall, ECC

6-1 The Positivstellensatz P. Parrilo and S. Lall, ECC 6-1 The Positivstellensatz P. Parrilo and S. Lall, ECC 2003 2003.09.02.10 6. The Positivstellensatz Basic semialgebraic sets Semialgebraic sets Tarski-Seidenberg and quantifier elimination Feasibility

More information

(Quantum?) Processes and Correlations with no definite causal order

(Quantum?) Processes and Correlations with no definite causal order (Quantum?) Processes and Correlations with no definite causal order Cyril Branciard Institut Néel - Grenoble, France!! Workshop on Quantum Nonlocality, Causal Structures and Device-Independent Quantum

More information

Fourier analysis of boolean functions in quantum computation

Fourier analysis of boolean functions in quantum computation Fourier analysis of boolean functions in quantum computation Ashley Montanaro Centre for Quantum Information and Foundations, Department of Applied Mathematics and Theoretical Physics, University of Cambridge

More information

The Geometry of the Quantum Hall Effect

The Geometry of the Quantum Hall Effect The Geometry of the Quantum Hall Effect Dam Thanh Son (University of Chicago) Refs: Carlos Hoyos, DTS arxiv:1109.2651 DTS, M.Wingate cond-mat/0509786 Plan Review of quantum Hall physics Summary of results

More information

Optimization in Wireless Communication

Optimization in Wireless Communication Zhi-Quan (Tom) Luo Department of Electrical and Computer Engineering University of Minnesota 200 Union Street SE Minneapolis, MN 55455 2007 NSF Workshop Challenges Optimization problems from wireless applications

More information

Basis Expansion and Nonlinear SVM. Kai Yu

Basis Expansion and Nonlinear SVM. Kai Yu Basis Expansion and Nonlinear SVM Kai Yu Linear Classifiers f(x) =w > x + b z(x) = sign(f(x)) Help to learn more general cases, e.g., nonlinear models 8/7/12 2 Nonlinear Classifiers via Basis Expansion

More information

Quantum Bilinear Optimisation

Quantum Bilinear Optimisation Quantum Bilinear Optimisation ariv:1506.08810 Mario Berta (IQIM Caltech), Omar Fawzi (ENS Lyon), Volkher Scholz (Ghent University) March 7th, 2016 Louisiana State University Quantum Bilinear Optimisation

More information

Why is Deep Learning so effective?

Why is Deep Learning so effective? Ma191b Winter 2017 Geometry of Neuroscience The unreasonable effectiveness of deep learning This lecture is based entirely on the paper: Reference: Henry W. Lin and Max Tegmark, Why does deep and cheap

More information

Lecture 22: Hyperplane Rounding for Max-Cut SDP

Lecture 22: Hyperplane Rounding for Max-Cut SDP CSCI-B609: A Theorist s Toolkit, Fall 016 Nov 17 Lecture : Hyperplane Rounding for Max-Cut SDP Lecturer: Yuan Zhou Scribe: Adithya Vadapalli 1 Introduction In the previous lectures we had seen the max-cut

More information

Complexity-Theoretic Foundations of Quantum Supremacy Experiments

Complexity-Theoretic Foundations of Quantum Supremacy Experiments Complexity-Theoretic Foundations of Quantum Supremacy Experiments Scott Aaronson, Lijie Chen UT Austin, Tsinghua University MIT July 7, 2017 Scott Aaronson, Lijie Chen (UT Austin, Tsinghua University Complexity-Theoretic

More information

Quantification of Gaussian quantum steering. Gerardo Adesso

Quantification of Gaussian quantum steering. Gerardo Adesso Quantification of Gaussian quantum steering Gerardo Adesso Outline Quantum steering Continuous variable systems Gaussian entanglement Gaussian steering Applications Steering timeline EPR paradox (1935)

More information

1. Projective geometry

1. Projective geometry 1. Projective geometry Homogeneous representation of points and lines in D space D projective space Points at infinity and the line at infinity Conics and dual conics Projective transformation Hierarchy

More information

arxiv: v1 [quant-ph] 3 Jan 2008

arxiv: v1 [quant-ph] 3 Jan 2008 A paradigm for entanglement theory based on quantum communication Jonathan Oppenheim 1 1 Department of Applied Mathematics and Theoretical Physics, University of Cambridge U.K. arxiv:0801.0458v1 [quant-ph]

More information

On a Block Matrix Inequality quantifying the Monogamy of the Negativity of Entanglement

On a Block Matrix Inequality quantifying the Monogamy of the Negativity of Entanglement On a Block Matrix Inequality quantifying the Monogamy of the Negativity of Entanglement Koenraad M.R. Audenaert Department of Mathematics, Royal Holloway University of London, Egham TW0 0EX, United Kingdom

More information

Circuit Lower Bounds for Nondeterministic Quasi-Polytime: An Easy Witness Lemma for NP and NQP

Circuit Lower Bounds for Nondeterministic Quasi-Polytime: An Easy Witness Lemma for NP and NQP Electronic Colloquium on Computational Complexity, Report No. 188 (2017) Circuit Lower Bounds for Nondeterministic Quasi-Polytime: An Easy Witness Lemma for NP and NQP Cody D. Murray MIT R. Ryan Williams

More information