Wave Incidence. Dr. Cruz-Pol. Normal Incidence. Ex.1. Light traveling in air encounters the water; another medium.

Size: px
Start display at page:

Download "Wave Incidence. Dr. Cruz-Pol. Normal Incidence. Ex.1. Light traveling in air encounters the water; another medium."

Transcription

1 D. Cu-Pol Ex.1. Light taveling in ai encountes the wate; anothe medium. Wave Incidence [Chapte 10 cont, Sadiku] D. Sanda Cu-Pol Electical and Compute Engineeing Dept. UPR-Maagüe Ex.1. Light encountes atmosphee, clouds, gound, oceans. Ex. 3. Wave encountes skin tissue, muscle mass and bones Cellphone adiation Adult 10 s old 5 s old* *Kid s skull is not et developed Ex. 4. Cance teatment Wave incidence Fo man applications, [such as fibe optics, line powe tansmission], it s necessa to know what happens to a wave when it meets a diffeent medium. How much is tansmitted? How much is eflected back? Nomal Incidence 1

2 D. Cu-Pol We will look at Vital Definition I. Nomal incidence Wave aives at 0 o fom nomal Standing waves II. Oblique incidence Wave aives at anothe angle Snell s Law and Citical angle Paallel o Pependicula polaiation Bewste angle Plane between mediainteface Plane of incidence- (what ou daw) H i Reflection at Nomal Incidence H i x Medium 1 e 1, s 1, µ 1 E t e 2, µ 2, s 2 Now in tems of equations E H H t Tansmitted wave =0 H i Tansmitted wave E t It s taveling along axis E H H t Tansmitted wave Nomal Incidence 2

3 D. Cu-Pol Sum to get TOTAL field Look at E fields At medium 1 and medium 2 Tangential components must be continuous at the inteface Define Reflection coefficient, G Tansmission coefficient, t Note: 1+ G= t Both ae dimensionless and ma be complex 0 G 1 Example: PE 10.8 A 5GH unifom plane wave s =10e -jb a x in fee space is incident nomall on a lage plane, lossless dielectic slab (>0) having e = 4e o and µ=µ o. Find: uthe eflected wave E s and Answe: uthe tansmitted wave E ts e jb1 x V/m, SEE ell/demos/eflect/eflect.html 6.67 e -jb2 x V/m whee b 2 = 2b 1 = 200 p/3 SEE os/eflect/eflect.html Toda we ll see 3 Cases and the Standing waves fom on each case 1. is pefect Conducto 2. is pefect Dielectic uh 2>h 1 3. is pefect Dielectic h 1>h 2 Nomal Incidence 3

4 D. Cu-Pol Case 1: Conducto(2) Medium 1: pefect dielectic, s 1 =0 : pefect conducto, s 2 = Find intinsic impedance Coef. Of eflex & tansmission & E1 field The EM field foms a Standing Wave on medium 1 2Eio E 1 sition.html Conducting mateial Case 2: Dielectic 2 h 2 >h 1 umedium 1: pefect dielectic s 1 =0 u: pefect dielectic s 2=0, h 2>h 1 Standing waves due to eflection Lossless Medium 1 E 1 o (1+ G ) 0 Lossless ***At eve half-wavelength, evething epeats! *** Case 3: Dielectic 2 h 1 >h 2 Standing waves due to eflection umedium 1 = pefect dielectic s 1 =0 = pefect dielectic s 2=0 h 1>h 2 Lossless Medium 1 E1 o (1+ G ) o (1- G ) 0 Lossless At eve half-wavelength, all em popeties epeat Nomal Incidence 4

5 D. Cu-Pol Standing Wave Ratio, s umeasues the amount of eflections, the moe eflections, the lage the standing wave that is fomed. uthe atio of E 1 max to E 1 min Ideall s=1 (0 db) No eflections Ex. Given a wave tavelling in F.S. and hitting dielectic Lossless dielectic at 10MH has e =16, nonmagnetic Find SWR on ai o Powe Flow in Medium 1 The net aveage powe densit flowing in lossless medium 1 Powe Flow in Tansmitted wave The net aveage powe densit flowing in lossless medium 2 Ei Et Ei Et Hi ak E ak H =0 Ht ak Tansmitted wave Hi ak E ak H =0 Ht ak Tansmitted wave Medium 1 Medium 1 Powe in Loss Media Ex. Antenna Radome whee A 10GH aicaft ada uses a naowbeam scanning antenna mounted on a gimbal behind a dielectic adome. Even though the adome shape is fa fom plana, it is appoximatel plana ove the naow extent of the ada beam. If the adome mateial is a lossless dielectic with µ =1 and e =9, choose its thickness d such that the adome appeas tanspaent to the ada beam. Mechanical integit equies d to be geate that 2.3 cm. Answe: l/2=.5cm, d=2.5cm Antenna with adome Antenna with no adome Nomal Incidence 5

School of Electrical and Computer Engineering, Cornell University. ECE 303: Electromagnetic Fields and Waves. Fall 2007

School of Electrical and Computer Engineering, Cornell University. ECE 303: Electromagnetic Fields and Waves. Fall 2007 School of Electical and Compute Engineeing, Conell Univesity ECE 303: Electomagnetic Fields and Waves Fall 007 Homewok 8 Due on Oct. 19, 007 by 5:00 PM Reading Assignments: i) Review the lectue notes.

More information

Lecture 2 Date:

Lecture 2 Date: Lectue 2 Date: 5.1.217 Definition of Some TL Paametes Examples of Tansmission Lines Tansmission Lines (contd.) Fo a lossless tansmission line the second ode diffeential equation fo phasos ae: LC 2 d I

More information

Fields and Waves I Spring 2005 Homework 8. Due: 3 May 2005

Fields and Waves I Spring 2005 Homework 8. Due: 3 May 2005 Fields and Waves I Sping 005 Homewok 8 Tansmission Lines Due: 3 May 005. Multiple Choice (6) a) The SWR (standing wave atio): a) is a measue of the match between the souce impedance and line impedance

More information

11) A thin, uniform rod of mass M is supported by two vertical strings, as shown below.

11) A thin, uniform rod of mass M is supported by two vertical strings, as shown below. Fall 2007 Qualifie Pat II 12 minute questions 11) A thin, unifom od of mass M is suppoted by two vetical stings, as shown below. Find the tension in the emaining sting immediately afte one of the stings

More information

Class XII - Physics Wave Optics Chapter-wise Problems. Chapter 10

Class XII - Physics Wave Optics Chapter-wise Problems. Chapter 10 Class XII - Physics Wave Optics Chapte-wise Poblems Answes Chapte (c) (a) 3 (a) 4 (c) 5 (d) 6 (a), (b), (d) 7 (b), (d) 8 (a), (b) 9 (a), (b) Yes Spheical Spheical with huge adius as compaed to the eath

More information

2.5 The Quarter-Wave Transformer

2.5 The Quarter-Wave Transformer /3/5 _5 The Quate Wave Tansfome /.5 The Quate-Wave Tansfome Reading Assignment: pp. 73-76 By now you ve noticed that a quate-wave length of tansmission line ( λ 4, β π ) appeas often in micowave engineeing

More information

EKT 345 MICROWAVE ENGINEERING CHAPTER 2: PLANAR TRANSMISSION LINES

EKT 345 MICROWAVE ENGINEERING CHAPTER 2: PLANAR TRANSMISSION LINES EKT 345 MICROWAVE ENGINEERING CHAPTER : PLANAR TRANSMISSION LINES 1 Tansmission Lines A device used to tansfe enegy fom one point to anothe point efficiently Efficiently minimum loss, eflection and close

More information

EKT 356 MICROWAVE COMMUNICATIONS CHAPTER 2: PLANAR TRANSMISSION LINES

EKT 356 MICROWAVE COMMUNICATIONS CHAPTER 2: PLANAR TRANSMISSION LINES EKT 356 MICROWAVE COMMUNICATIONS CHAPTER : PLANAR TRANSMISSION LINES 1 Tansmission Lines A device used to tansfe enegy fom one point to anothe point efficiently Efficiently minimum loss, eflection and

More information

Maxwell s eqns. r D = ρ ext r B = 0 r r B D = dt r r D r H = + j dt

Maxwell s eqns. r D = ρ ext r B = 0 r r B D = dt r r D r H = + j dt D = ρext B = 0 B D = dt D H = + dt j Bounday conditions of EM wave Tangential components of the: - E and H fields (fom Gauss theoem) Nomal components of - D and B fields (fom Stoke s theoem) ( 2 ) (1)

More information

School of Electrical and Computer Engineering, Cornell University. ECE 303: Electromagnetic Fields and Waves. Fall 2007

School of Electrical and Computer Engineering, Cornell University. ECE 303: Electromagnetic Fields and Waves. Fall 2007 School of Electical and Compute Engineeing, Conell Univesity ECE 33: Electomagnetic Fields and Waves Fall 7 Homewok 6 Due on Oct. 5, 7 by 5: PM Reading Assignments: i) Review the lectue notes. ii) Review

More information

Waves and Polarization in General

Waves and Polarization in General Waves and Polaization in Geneal Wave means a distubance in a medium that tavels. Fo light, the medium is the electomagnetic field, which can exist in vacuum. The tavel pat defines a diection. The distubance

More information

Physics 4A Chapter 8: Dynamics II Motion in a Plane

Physics 4A Chapter 8: Dynamics II Motion in a Plane Physics 4A Chapte 8: Dynamics II Motion in a Plane Conceptual Questions and Example Poblems fom Chapte 8 Conceptual Question 8.5 The figue below shows two balls of equal mass moving in vetical cicles.

More information

Physics 207 Lecture 5. Lecture 5

Physics 207 Lecture 5. Lecture 5 Lectue 5 Goals: Addess sstems with multiple acceleations in 2- dimensions (including linea, pojectile and cicula motion) Discen diffeent efeence fames and undestand how the elate to paticle motion in stationa

More information

Black Body Radiation and Radiometric Parameters:

Black Body Radiation and Radiometric Parameters: Black Body Radiation and Radiometic Paametes: All mateials absob and emit adiation to some extent. A blackbody is an idealization of how mateials emit and absob adiation. It can be used as a efeence fo

More information

Applications of radars: Sensing of clouds and precipitation.

Applications of radars: Sensing of clouds and precipitation. Lectue 1 Applications of adas: Sensing of clouds and pecipitation. Ojectives: 1. aticle ackscatteing and ada equation.. Sensing of pecipitation and clouds with adas (weathe adas, space adas: TMM and CloudSat).

More information

Chapter 22: Electric Fields. 22-1: What is physics? General physics II (22102) Dr. Iyad SAADEDDIN. 22-2: The Electric Field (E)

Chapter 22: Electric Fields. 22-1: What is physics? General physics II (22102) Dr. Iyad SAADEDDIN. 22-2: The Electric Field (E) Geneal physics II (10) D. Iyad D. Iyad Chapte : lectic Fields In this chapte we will cove The lectic Field lectic Field Lines -: The lectic Field () lectic field exists in a egion of space suounding a

More information

Algebra-based Physics II

Algebra-based Physics II lgebabased Physics II Chapte 19 Electic potential enegy & The Electic potential Why enegy is stoed in an electic field? How to descibe an field fom enegetic point of view? Class Website: Natual way of

More information

Electromagnetic Waves

Electromagnetic Waves Chapte 32 Electomagnetic Waves PowePoint Lectues fo Univesity Physics, Twelfth Edition Hugh D. Young and Roge A. Feedman Lectues by James Pazun Modified P. Lam 8_11_2008 Topics fo Chapte 32 Maxwell s equations

More information

SAMPLE PAPER I. Time Allowed : 3 hours Maximum Marks : 70

SAMPLE PAPER I. Time Allowed : 3 hours Maximum Marks : 70 SAMPL PAPR I Time Allowed : 3 hous Maximum Maks : 70 Note : Attempt All questions. Maks allotted to each question ae indicated against it. 1. The magnetic field lines fom closed cuves. Why? 1 2. What is

More information

University Physics (PHY 2326)

University Physics (PHY 2326) Chapte Univesity Physics (PHY 6) Lectue lectostatics lectic field (cont.) Conductos in electostatic euilibium The oscilloscope lectic flux and Gauss s law /6/5 Discuss a techniue intoduced by Kal F. Gauss

More information

Flux. Area Vector. Flux of Electric Field. Gauss s Law

Flux. Area Vector. Flux of Electric Field. Gauss s Law Gauss s Law Flux Flux in Physics is used to two distinct ways. The fist meaning is the ate of flow, such as the amount of wate flowing in a ive, i.e. volume pe unit aea pe unit time. O, fo light, it is

More information

Conventional Paper-I (a) Explain the concept of gradient. Determine the gradient of the given field: ( )

Conventional Paper-I (a) Explain the concept of gradient. Determine the gradient of the given field: ( ) EE-Conventional Pape-I IES-013 www.gatefoum.com Conventional Pape-I-013 1. (a) Eplain the concept of gadient. Detemine the gadient of the given field: V ρzsin φ+ z cos φ+ρ What is polaization? In a dielectic

More information

Electromagnetic scattering. Graduate Course Electrical Engineering (Communications) 1 st Semester, Sharif University of Technology

Electromagnetic scattering. Graduate Course Electrical Engineering (Communications) 1 st Semester, Sharif University of Technology Electomagnetic scatteing Gaduate Couse Electical Engineeing (Communications) 1 st Semeste, 1390-1391 Shaif Univesity of Technology Geneal infomation Infomation about the instucto: Instucto: Behzad Rejaei

More information

TRAVELING WAVES. Chapter Simple Wave Motion. Waves in which the disturbance is parallel to the direction of propagation are called the

TRAVELING WAVES. Chapter Simple Wave Motion. Waves in which the disturbance is parallel to the direction of propagation are called the Chapte 15 RAVELING WAVES 15.1 Simple Wave Motion Wave in which the ditubance i pependicula to the diection of popagation ae called the tanvee wave. Wave in which the ditubance i paallel to the diection

More information

Gauss s Law Simulation Activities

Gauss s Law Simulation Activities Gauss s Law Simulation Activities Name: Backgound: The electic field aound a point chage is found by: = kq/ 2 If thee ae multiple chages, the net field at any point is the vecto sum of the fields. Fo a

More information

17.1 Electric Potential Energy. Equipotential Lines. PE = energy associated with an arrangement of objects that exert forces on each other

17.1 Electric Potential Energy. Equipotential Lines. PE = energy associated with an arrangement of objects that exert forces on each other Electic Potential Enegy, PE Units: Joules Electic Potential, Units: olts 17.1 Electic Potential Enegy Electic foce is a consevative foce and so we can assign an electic potential enegy (PE) to the system

More information

PHYS 1444 Lecture #5

PHYS 1444 Lecture #5 Shot eview Chapte 24 PHYS 1444 Lectue #5 Tuesday June 19, 212 D. Andew Bandt Capacitos and Capacitance 1 Coulom s Law The Fomula QQ Q Q F 1 2 1 2 Fomula 2 2 F k A vecto quantity. Newtons Diection of electic

More information

DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING

DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING EE 630 ELECTROMAGNETIC THEORY UNIT-I ELECTROSTATICS I PART A. Mention an two souces of electomagnetic fields (o) What ae the souces of vaious tpes of

More information

Circular Motion & Torque Test Review. The period is the amount of time it takes for an object to travel around a circular path once.

Circular Motion & Torque Test Review. The period is the amount of time it takes for an object to travel around a circular path once. Honos Physics Fall, 2016 Cicula Motion & Toque Test Review Name: M. Leonad Instuctions: Complete the following woksheet. SHOW ALL OF YOUR WORK ON A SEPARATE SHEET OF PAPER. 1. Detemine whethe each statement

More information

Galilean Transformation vs E&M y. Historical Perspective. Chapter 2 Lecture 2 PHYS Special Relativity. Sep. 1, y K K O.

Galilean Transformation vs E&M y. Historical Perspective. Chapter 2 Lecture 2 PHYS Special Relativity. Sep. 1, y K K O. PHYS-2402 Chapte 2 Lectue 2 Special Relativity 1. Basic Ideas Sep. 1, 2016 Galilean Tansfomation vs E&M y K O z z y K In 1873, Maxwell fomulated Equations of Electomagnetism. v Maxwell s equations descibe

More information

Sources of the Magnetic Field. Moving charges currents Ampere s Law Gauss Law in magnetism Magnetic materials

Sources of the Magnetic Field. Moving charges currents Ampere s Law Gauss Law in magnetism Magnetic materials Souces of the Magnetic Field Moving chages cuents Ampee s Law Gauss Law in magnetism Magnetic mateials Biot-Savat Law ˆ ˆ θ ds P db out I db db db db ds ˆ 1 I P db in db db ds sinθ db μ 4 π 0 Ids ˆ B μ0i

More information

ECE 3318 Applied Electricity and Magnetism. Spring Prof. David R. Jackson Dept. Of ECE. Notes 20 Dielectrics

ECE 3318 Applied Electricity and Magnetism. Spring Prof. David R. Jackson Dept. Of ECE. Notes 20 Dielectrics ECE 3318 Applied Electicity and Magnetism Sping 218 Pof. David R. Jackson Dept. Of ECE Notes 2 Dielectics 1 Dielectics Single H 2 O molecule: H H Wate ε= εε O 2 Dielectics (cont.) H H Wate ε= εε O Vecto

More information

Chapter 5. Uniform Circular Motion. a c =v 2 /r

Chapter 5. Uniform Circular Motion. a c =v 2 /r Chapte 5 Unifom Cicula Motion a c =v 2 / Unifom cicula motion: Motion in a cicula path with constant speed s v 1) Speed and peiod Peiod, T: time fo one evolution Speed is elated to peiod: Path fo one evolution:

More information

Review Notes on Maxwell's Equations

Review Notes on Maxwell's Equations ELEC344 Micowave Engineeing, Sping 2002 Handout #1 Kevin Chen Review Notes on Maxwell's Equations Review of Vecto Poducts and the Opeato The del, gad o nabla opeato is a vecto, and can be pat of a scala

More information

ev dm e evd 2 m e 1 2 ev2 B) e 2 0 dm e D) m e

ev dm e evd 2 m e 1 2 ev2 B) e 2 0 dm e D) m e . A paallel-plate capacito has sepaation d. The potential diffeence between the plates is V. If an electon with chage e and mass m e is eleased fom est fom the negative plate, its speed when it eaches

More information

ELECTROSTATICS::BHSEC MCQ 1. A. B. C. D.

ELECTROSTATICS::BHSEC MCQ 1. A. B. C. D. ELETROSTATIS::BHSE 9-4 MQ. A moving electic chage poduces A. electic field only. B. magnetic field only.. both electic field and magnetic field. D. neithe of these two fields.. both electic field and magnetic

More information

Electromagnetism Physics 15b

Electromagnetism Physics 15b lectomagnetism Physics 15b Lectue #20 Dielectics lectic Dipoles Pucell 10.1 10.6 What We Did Last Time Plane wave solutions of Maxwell s equations = 0 sin(k ωt) B = B 0 sin(k ωt) ω = kc, 0 = B, 0 ˆk =

More information

NAVAL POSTGRADUATE SCHOOL THESIS

NAVAL POSTGRADUATE SCHOOL THESIS NAVAL POSTGRADUATE SCHOOL MONTEREY, CALIFORNIA THESIS SCATTERING FROM MULTI-LAYERED METAMATERIALS USING WAVE MATRICES by Umit Cotuk Septembe 5 Thesis Adviso: Second Reade: David Jenn Michael A. Mogan Appoved

More information

Fields and Waves I Spring 2005 Homework 4. Due 8 March 2005

Fields and Waves I Spring 2005 Homework 4. Due 8 March 2005 Homewok 4 Due 8 Mach 005. Inceasing the Beakdown Voltage: This fist question is a mini design poject. You fist step is to find a commecial cable (coaxial o two wie line) fo which you have the following

More information

Chapter 3 Optical Systems with Annular Pupils

Chapter 3 Optical Systems with Annular Pupils Chapte 3 Optical Systems with Annula Pupils 3 INTRODUCTION In this chapte, we discuss the imaging popeties of a system with an annula pupil in a manne simila to those fo a system with a cicula pupil The

More information

High-Impedance Surfaces with Graphene Patches as Absorbing. Electromagnetic Materials in Microwaves and Optics London, United Kingdom

High-Impedance Surfaces with Graphene Patches as Absorbing. Electromagnetic Materials in Microwaves and Optics London, United Kingdom Hih-Impedance Sufaces with Gaphene Patches as Absobin Stuctues at Micowaves A. B. Yakovlev, G. W. Hanson, and A. Mafi Thid Intenational Coness on Advanced Electomanetic Mateials in Micowaves and Optics

More information

= 4 3 π( m) 3 (5480 kg m 3 ) = kg.

= 4 3 π( m) 3 (5480 kg m 3 ) = kg. CHAPTER 11 THE GRAVITATIONAL FIELD Newton s Law of Gavitation m 1 m A foce of attaction occus between two masses given by Newton s Law of Gavitation Inetial mass and gavitational mass Gavitational potential

More information

The geometric construction of Ewald sphere and Bragg condition:

The geometric construction of Ewald sphere and Bragg condition: The geometic constuction of Ewald sphee and Bagg condition: The constuction of Ewald sphee must be done such that the Bagg condition is satisfied. This can be done as follows: i) Daw a wave vecto k in

More information

Graphs of Sine and Cosine Functions

Graphs of Sine and Cosine Functions Gaphs of Sine and Cosine Functions In pevious sections, we defined the tigonometic o cicula functions in tems of the movement of a point aound the cicumfeence of a unit cicle, o the angle fomed by the

More information

Rotational Motion. Lecture 6. Chapter 4. Physics I. Course website:

Rotational Motion. Lecture 6. Chapter 4. Physics I. Course website: Lectue 6 Chapte 4 Physics I Rotational Motion Couse website: http://faculty.uml.edu/andiy_danylov/teaching/physicsi Today we ae going to discuss: Chapte 4: Unifom Cicula Motion: Section 4.4 Nonunifom Cicula

More information

ECE 6340 Intermediate EM Waves. Fall Prof. David R. Jackson Dept. of ECE. Notes 4

ECE 6340 Intermediate EM Waves. Fall Prof. David R. Jackson Dept. of ECE. Notes 4 ECE 6340 Intemediate EM Waves Fall 016 Pof. David R. Jackson Dept. of ECE Notes 4 1 Debye Model This model explains molecula effects. y We conside an electic field applied in the x diection. Molecule:

More information

Voltage ( = Electric Potential )

Voltage ( = Electric Potential ) V-1 of 10 Voltage ( = lectic Potential ) An electic chage altes the space aound it. Thoughout the space aound evey chage is a vecto thing called the electic field. Also filling the space aound evey chage

More information

PHYS Summer Professor Caillault Homework Solutions. Chapter 5

PHYS Summer Professor Caillault Homework Solutions. Chapter 5 PHYS 1111 - Summe 2007 - Pofesso Caillault Homewok Solutions Chapte 5 7. Pictue the Poblem: The ball is acceleated hoizontally fom est to 98 mi/h ove a distance of 1.7 m. Stategy: Use equation 2-12 to

More information

Sensor and Simulation Notes. Note 525. Oct Lens Design for a Prolate-Spheroidal Impulse radiating Antenna (IRA)

Sensor and Simulation Notes. Note 525. Oct Lens Design for a Prolate-Spheroidal Impulse radiating Antenna (IRA) Senso and Simulation Notes Note 55 Oct 7 Lens Design fo a Polate-Spheoidal Impulse adiating Antenna (IRA) Sehat Altunc, Cal E. Baum, Chistos G. Chistodoulou and Edl Schamiloglu Univesity of New Mexico

More information

1) Emits radiation at the maximum intensity possible for every wavelength. 2) Completely absorbs all incident radiation (hence the term black ).

1) Emits radiation at the maximum intensity possible for every wavelength. 2) Completely absorbs all incident radiation (hence the term black ). Radiation laws Blackbody adiation Planck s Law Any substance (solid, liquid o gas) emits adiation accoding to its absolute tempeatue, measued in units of Kelvin (K = o C + 73.5). The efficiency at which

More information

Inverse Square Law and Polarization

Inverse Square Law and Polarization Invese Squae Law and Polaization Objectives: To show that light intensity is invesely popotional to the squae of the distance fom a point light souce and to show that the intensity of the light tansmitted

More information

B. Spherical Wave Propagation

B. Spherical Wave Propagation 11/8/007 Spheical Wave Popagation notes 1/1 B. Spheical Wave Popagation Evey antenna launches a spheical wave, thus its powe density educes as a function of 1, whee is the distance fom the antenna. We

More information

EM-2. 1 Coulomb s law, electric field, potential field, superposition q. Electric field of a point charge (1)

EM-2. 1 Coulomb s law, electric field, potential field, superposition q. Electric field of a point charge (1) EM- Coulomb s law, electic field, potential field, supeposition q ' Electic field of a point chage ( ') E( ) kq, whee k / 4 () ' Foce of q on a test chage e at position is ee( ) Electic potential O kq

More information

Physics 11 Chapter 4: Forces and Newton s Laws of Motion. Problem Solving

Physics 11 Chapter 4: Forces and Newton s Laws of Motion. Problem Solving Physics 11 Chapte 4: Foces and Newton s Laws of Motion Thee is nothing eithe good o bad, but thinking makes it so. William Shakespeae It s not what happens to you that detemines how fa you will go in life;

More information

Quiz 6--Work, Gravitation, Circular Motion, Torque. (60 pts available, 50 points possible)

Quiz 6--Work, Gravitation, Circular Motion, Torque. (60 pts available, 50 points possible) Name: Class: Date: ID: A Quiz 6--Wok, Gavitation, Cicula Motion, Toque. (60 pts available, 50 points possible) Multiple Choice, 2 point each Identify the choice that best completes the statement o answes

More information

2. Electrostatics. Dr. Rakhesh Singh Kshetrimayum 8/11/ Electromagnetic Field Theory by R. S. Kshetrimayum

2. Electrostatics. Dr. Rakhesh Singh Kshetrimayum 8/11/ Electromagnetic Field Theory by R. S. Kshetrimayum 2. Electostatics D. Rakhesh Singh Kshetimayum 1 2.1 Intoduction In this chapte, we will study how to find the electostatic fields fo vaious cases? fo symmetic known chage distibution fo un-symmetic known

More information

MCV4U Final Exam Review. 1. Consider the function f (x) Find: f) lim. a) lim. c) lim. d) lim. 3. Consider the function: 4. Evaluate. lim. 5. Evaluate.

MCV4U Final Exam Review. 1. Consider the function f (x) Find: f) lim. a) lim. c) lim. d) lim. 3. Consider the function: 4. Evaluate. lim. 5. Evaluate. MCVU Final Eam Review Answe (o Solution) Pactice Questions Conside the function f () defined b the following gaph Find a) f ( ) c) f ( ) f ( ) d) f ( ) Evaluate the following its a) ( ) c) sin d) π / π

More information

Chapter 3: Wave propagation fundamentals: From energy point of view, energy partitioning at interfaces

Chapter 3: Wave propagation fundamentals: From energy point of view, energy partitioning at interfaces Chapte 3: Wave popagation fundamentals: Fom enegy point of view, enegy patitioning at intefaces Befoe pusuing futhe on discussing specific topics in seismic exploation to a vaiety of applications, it is

More information

Doppler Radar (Fig. 3.1) A simplified block diagram 10/29-11/11/2013 METR

Doppler Radar (Fig. 3.1) A simplified block diagram 10/29-11/11/2013 METR Review Dopple Rada (Fig. 3.1) A simplified block diagam 10/9-11/11/013 METR 5004 1 A ( θϕ, ) exp ψt c i Ei = j π f t + j E A ( θϕ, ) = exp jπ f t + jψt c 4π Vi = Aiexp jπ ft j + jψt λ jq(t) ψ e Complex

More information

AP Physics Electric Potential Energy

AP Physics Electric Potential Energy AP Physics lectic Potential negy Review of some vital peviously coveed mateial. The impotance of the ealie concepts will be made clea as we poceed. Wok takes place when a foce acts ove a distance. W F

More information

Electrostatics (Electric Charges and Field) #2 2010

Electrostatics (Electric Charges and Field) #2 2010 Electic Field: The concept of electic field explains the action at a distance foce between two chaged paticles. Evey chage poduces a field aound it so that any othe chaged paticle expeiences a foce when

More information

Relative motion (Translating axes)

Relative motion (Translating axes) Relative motion (Tanslating axes) Paticle to be studied This topic Moving obseve (Refeence) Fome study Obseve (no motion) bsolute motion Relative motion If motion of the efeence is known, absolute motion

More information

5. Plane Electromagnetic Waves

5. Plane Electromagnetic Waves 5. Plane lectomagnetic Waves Pof. Rakhesh Singh 1 5.1 Intoduction lectomagnetic Waves Plane waves Poynting vecto Plane waves in vaious media Polaiation Lossless medium Lossy conducting medium Good conducto

More information

Uniform Circular Motion

Uniform Circular Motion Unifom Cicula Motion Intoduction Ealie we defined acceleation as being the change in velocity with time: a = v t Until now we have only talked about changes in the magnitude of the acceleation: the speeding

More information

The Great Wave Hokusai. LO: Recognize physical principles associated with terms in sonar equation.

The Great Wave Hokusai. LO: Recognize physical principles associated with terms in sonar equation. Sona Equation: The Wave Equation The Geat Wave Hokusai LO: Recognize hysical inciles associated with tems in sona equation. the Punchline If density too high to esolve individual oganisms, then: E[enegy

More information

Electric field generated by an electric dipole

Electric field generated by an electric dipole Electic field geneated by an electic dipole ( x) 2 (22-7) We will detemine the electic field E geneated by the electic dipole shown in the figue using the pinciple of supeposition. The positive chage geneates

More information

Elementary Statistics and Inference. Elementary Statistics and Inference. 11. Regression (cont.) 22S:025 or 7P:025. Lecture 14.

Elementary Statistics and Inference. Elementary Statistics and Inference. 11. Regression (cont.) 22S:025 or 7P:025. Lecture 14. Elementay tatistics and Infeence :05 o 7P:05 Lectue 14 1 Elementay tatistics and Infeence :05 o 7P:05 Chapte 10 (cont.) D. Two Regession Lines uppose two vaiables, and ae obtained on 100 students, with

More information

Describing Circular motion

Describing Circular motion Unifom Cicula Motion Descibing Cicula motion In ode to undestand cicula motion, we fist need to discuss how to subtact vectos. The easiest way to explain subtacting vectos is to descibe it as adding a

More information

Motion in Two Dimensions

Motion in Two Dimensions SOLUTIONS TO PROBLEMS Motion in Two Dimensions Section 3.1 The Position, Velocity, and Acceleation Vectos P3.1 x( m) 0!3 000!1 70!4 70 m y( m)!3 600 0 1 70! 330 m (a) Net displacement x + y 4.87 km at

More information

Current Errata for Electromagnetic Waves

Current Errata for Electromagnetic Waves Cuent Eata fo Electomagnetic Waves Uman S. Inan and Aziz S. Inan August 8, 007 Peface Coections Page xiii: the section on Recommended Couse Content should have no section numbe. Chapte Coections Page 56:

More information

b) (5) What is the magnitude of the force on the 6.0-kg block due to the contact with the 12.0-kg block?

b) (5) What is the magnitude of the force on the 6.0-kg block due to the contact with the 12.0-kg block? Geneal Physics I Exam 2 - Chs. 4,5,6 - Foces, Cicula Motion, Enegy Oct. 13, 2010 Name Rec. Inst. Rec. Time Fo full cedit, make you wok clea to the gade. Show fomulas used, essential steps, and esults with

More information

Force and Work: Reminder

Force and Work: Reminder Electic Potential Foce and Wok: Reminde Displacement d a: initial point b: final point Reminde fom Mechanics: Foce F if thee is a foce acting on an object (e.g. electic foce), this foce may do some wok

More information

Chapter 5 Force and Motion

Chapter 5 Force and Motion Chapte 5 Foce and Motion In Chaptes 2 and 4 we have studied kinematics, i.e., we descibed the motion of objects using paametes such as the position vecto, velocity, and acceleation without any insights

More information

Chapter 5 Force and Motion

Chapter 5 Force and Motion Chapte 5 Foce and Motion In chaptes 2 and 4 we have studied kinematics i.e. descibed the motion of objects using paametes such as the position vecto, velocity and acceleation without any insights as to

More information

A new force Magnetic force. Today. Force Fields: A disturbance of space. The correspondence of a loop of current and magnet.

A new force Magnetic force. Today. Force Fields: A disturbance of space. The correspondence of a loop of current and magnet. Today A new foce Magnetic foce Announcements HW#6 and HW#7 ae both due Wednesday Mach 18th. Thanks to my being WAY behind schedule, you 2nd exam will be a take-home exam! Stay tuned fo details Even if

More information

PHYS 1444 Section 501 Lecture #7

PHYS 1444 Section 501 Lecture #7 PHYS 1444 Section 51 Lectue #7 Wednesday, Feb. 8, 26 Equi-potential Lines and Sufaces Electic Potential Due to Electic Dipole E detemined fom V Electostatic Potential Enegy of a System of Chages Capacitos

More information

Chapter 2: Basic Physics and Math Supplements

Chapter 2: Basic Physics and Math Supplements Chapte 2: Basic Physics and Math Supplements Decembe 1, 215 1 Supplement 2.1: Centipetal Acceleation This supplement expands on a topic addessed on page 19 of the textbook. Ou task hee is to calculate

More information

Permittivity of Human Skin in the Millimetre Wave Band

Permittivity of Human Skin in the Millimetre Wave Band Pemittivity of Human Skin in the Millimete Wave Band C. M. Alabaste, Canfield Univesity. E-mail: c.m.alabaste@mcs.canfield.ac.uk Abstact: The complex pemittivity of a human skin sample is measued ove the

More information

Physics 11 Chapter 20: Electric Fields and Forces

Physics 11 Chapter 20: Electric Fields and Forces Physics Chapte 0: Electic Fields and Foces Yesteday is not ous to ecove, but tomoow is ous to win o lose. Lyndon B. Johnson When I am anxious it is because I am living in the futue. When I am depessed

More information

? this lecture. ? next lecture. What we have learned so far. a Q E F = q E a. F = q v B a. a Q in motion B. db/dt E. de/dt B.

? this lecture. ? next lecture. What we have learned so far. a Q E F = q E a. F = q v B a. a Q in motion B. db/dt E. de/dt B. PHY 249 Lectue Notes Chapte 32: Page 1 of 12 What we have leaned so fa a a F q a a in motion F q v a a d/ Ae thee othe "static" chages that can make -field? this lectue d/? next lectue da dl Cuve Cuve

More information

Ch 13 Universal Gravitation

Ch 13 Universal Gravitation Ch 13 Univesal Gavitation Ch 13 Univesal Gavitation Why do celestial objects move the way they do? Keple (1561-1630) Tycho Bahe s assistant, analyzed celestial motion mathematically Galileo (1564-1642)

More information

Potential Energy. The change U in the potential energy. is defined to equal to the negative of the work. done by a conservative force

Potential Energy. The change U in the potential energy. is defined to equal to the negative of the work. done by a conservative force Potential negy The change U in the potential enegy is defined to equal to the negative of the wok done by a consevative foce duing the shift fom an initial to a final state. U = U U = W F c = F c d Potential

More information

Lab #0. Tutorial Exercises on Work and Fields

Lab #0. Tutorial Exercises on Work and Fields Lab #0 Tutoial Execises on Wok and Fields This is not a typical lab, and no pe-lab o lab epot is equied. The following execises will emind you about the concept of wok (fom 1130 o anothe intoductoy mechanics

More information

Gauss Law. Physics 231 Lecture 2-1

Gauss Law. Physics 231 Lecture 2-1 Gauss Law Physics 31 Lectue -1 lectic Field Lines The numbe of field lines, also known as lines of foce, ae elated to stength of the electic field Moe appopiately it is the numbe of field lines cossing

More information

ANTENNAS. Vector and Scalar Potentials. Maxwell's Equations. D = εe. For a linear, homogeneous, isotropic medium µ and ε are contant.

ANTENNAS. Vector and Scalar Potentials. Maxwell's Equations. D = εe. For a linear, homogeneous, isotropic medium µ and ε are contant. ANTNNAS Vecto and Scala Potentials Maxwell's quations jωb J + jωd D ρ B (M) (M) (M3) (M4) D ε B Fo a linea, homogeneous, isotopic medium and ε ae contant. Since B, thee exists a vecto A such that B A and

More information

Experiment I Voltage Variation and Control

Experiment I Voltage Variation and Control ELE303 Electicity Netwoks Expeiment I oltage aiation and ontol Objective To demonstate that the voltage diffeence between the sending end of a tansmission line and the load o eceiving end depends mainly

More information

DEVIL PHYSICS THE BADDEST CLASS ON CAMPUS IB PHYSICS

DEVIL PHYSICS THE BADDEST CLASS ON CAMPUS IB PHYSICS DEVIL PHYSICS THE BADDEST CLASS ON CAMPUS IB PHYSICS TSOKOS LESSON 10-1 DESCRIBING FIELDS Essential Idea: Electic chages and masses each influence the space aound them and that influence can be epesented

More information

3. Magnetostatic fields

3. Magnetostatic fields 3. Magnetostatic fields D. Rakhesh Singh Kshetimayum 1 Electomagnetic Field Theoy by R. S. Kshetimayum 3.1 Intoduction to electic cuents Electic cuents Ohm s law Kichoff s law Joule s law Bounday conditions

More information

Chapter 2 Classical propagation

Chapter 2 Classical propagation Chapte Classical popagation Model: Light: electomagnetic wave Atom and molecule: classical dipole oscillato n. / / t c nz i z t z k i e e c i n k e t z Two popagation paametes: n. Popagation of light in

More information

University of Illinois at Chicago Department of Physics. Electricity & Magnetism Qualifying Examination

University of Illinois at Chicago Department of Physics. Electricity & Magnetism Qualifying Examination E&M poblems Univesity of Illinois at Chicago Depatment of Physics Electicity & Magnetism Qualifying Examination Januay 3, 6 9. am : pm Full cedit can be achieved fom completely coect answes to 4 questions.

More information

Chapter 5. Applying Newton s Laws. Newton s Laws. r r. 1 st Law: An object at rest or traveling in uniform. 2 nd Law:

Chapter 5. Applying Newton s Laws. Newton s Laws. r r. 1 st Law: An object at rest or traveling in uniform. 2 nd Law: Chapte 5 Applying Newton s Laws Newton s Laws st Law: An object at est o taveling in unifom motion will emain at est o taveling in unifom motion unless and until an extenal foce is applied net ma nd Law:

More information

CHAPTER 25 ELECTRIC POTENTIAL

CHAPTER 25 ELECTRIC POTENTIAL CHPTE 5 ELECTIC POTENTIL Potential Diffeence and Electic Potential Conside a chaged paticle of chage in a egion of an electic field E. This filed exets an electic foce on the paticle given by F=E. When

More information

AVS fiziks. Institute for NET/JRF, GATE, IIT-JAM, JEST, TIFR and GRE in PHYSICAL SCIENCES

AVS fiziks. Institute for NET/JRF, GATE, IIT-JAM, JEST, TIFR and GRE in PHYSICAL SCIENCES ELECTROMAGNETIC THEORY SOLUTIONS GATE- Q. An insulating sphee of adius a aies a hage density a os ; a. The leading ode tem fo the eleti field at a distane d, fa away fom the hage distibution, is popotional

More information

SEE LAST PAGE FOR SOME POTENTIALLY USEFUL FORMULAE AND CONSTANTS

SEE LAST PAGE FOR SOME POTENTIALLY USEFUL FORMULAE AND CONSTANTS Cicle instucto: Moow o Yethiaj Name: MEMORIL UNIVERSITY OF NEWFOUNDLND DEPRTMENT OF PHYSICS ND PHYSICL OCENOGRPHY Final Eam Phsics 5 Winte 3:-5: pil, INSTRUCTIONS:. Do all SIX (6) questions in section

More information

The nature of electromagnetic radiation.

The nature of electromagnetic radiation. Lectue 3 The natue of electomagnetic adiation. Objectives: 1. Basic intoduction to the electomagnetic field: Definitions Dual natue of electomagnetic adiation lectomagnetic spectum. Main adiometic quantities:

More information

Dynamics of Rotational Motion

Dynamics of Rotational Motion Dynamics of Rotational Motion Toque: the otational analogue of foce Toque = foce x moment am τ = l moment am = pependicula distance though which the foce acts a.k.a. leve am l l l l τ = l = sin φ = tan

More information

Chapter Sixteen: Electric Charge and Electric Fields

Chapter Sixteen: Electric Charge and Electric Fields Chapte Sixteen: Electic Chage and Electic Fields Key Tems Chage Conducto The fundamental electical popety to which the mutual attactions o epulsions between electons and potons ae attibuted. Any mateial

More information

From last times. MTE1 results. Quiz 1. GAUSS LAW for any closed surface. What is the Electric Flux? How to calculate Electric Flux?

From last times. MTE1 results. Quiz 1. GAUSS LAW for any closed surface. What is the Electric Flux? How to calculate Electric Flux? om last times MTE1 esults Mean 75% = 90/120 Electic chages and foce Electic ield and was to calculate it Motion of chages in E-field Gauss Law Toda: Moe on Gauss law and conductos in electostatic equilibium

More information

1. Show that the volume of the solid shown can be represented by the polynomial 6x x.

1. Show that the volume of the solid shown can be represented by the polynomial 6x x. 7.3 Dividing Polynomials by Monomials Focus on Afte this lesson, you will be able to divide a polynomial by a monomial Mateials algeba tiles When you ae buying a fish tank, the size of the tank depends

More information

Faraday s Law. Faraday s Law. Faraday s Experiments. Faraday s Experiments. Magnetic Flux. Chapter 31. Law of Induction (emf( emf) Faraday s Law

Faraday s Law. Faraday s Law. Faraday s Experiments. Faraday s Experiments. Magnetic Flux. Chapter 31. Law of Induction (emf( emf) Faraday s Law Faaday s Law Faaday s Epeiments Chapte 3 Law of nduction (emf( emf) Faaday s Law Magnetic Flu Lenz s Law Geneatos nduced Electic fields Michael Faaday discoeed induction in 83 Moing the magnet induces

More information