Waves and Polarization in General

Size: px
Start display at page:

Download "Waves and Polarization in General"

Transcription

1 Waves and Polaization in Geneal Wave means a distubance in a medium that tavels. Fo light, the medium is the electomagnetic field, which can exist in vacuum. The tavel pat defines a diection. The distubance can also have a diection (o none). The diection of tavel and the diection of distubance don t have to be the same. Fo example, conside a Slinky sping. If I have a Slinky stetched out in the z diection, I can launch waves down it by wiggling it in the x diection. I can also wiggle it in the y diection. The wave is tavelling in z, but the distubance is in the x o y diection. I could also wiggle the end of the sping in the z diection. That will make density waves tavel down the sping. These diffeent wiggles ae diffeent polaizations. Thee ae two tansvese polaizations and one longitudinal polaization.

2 Waves and Polaization (2) Of couse, I could wiggle the Slinky, o a ope, stetched in the z diection, in a plane at any angle tansvese to the z diection, and still geneate a wave that would tavel down the ope. I m not limited to x and y diections. The tansvese polaization is a vecto, it has diection as well as magnitude. I can epesent that vecto by its x and y components. Of couse, I could have chosen a diffeent coodinate system, with x and y axes that ae otated elative to the x and y axes (but with the same z axis). Then I would wite the vecto with numbes fo its x and y components that ae diffeent fom the numbes fo the x and y components, even though they epesent the same physical vecto. This concept that we can decompose the polaization of the same physical wave into diffeent components when we use diffeent coodinate systems is essential to undestand what happens with polaizing filtes.

3 Polaizing Filtes Imagine I have a ope to launch waves down, and at some distance away the ope goes though a fictionless slot just baely big enough fo the ope. If I wiggle the ope paallel to the slot, the ope is fee to slide in the slot, and the wave gets though. If I wiggle the ope pependicula to the slot, the ope can t wiggle in the slot, so the wave doesn t get though (it will eflect back to me o get absobed).

4 Polaizing Filtes (2) If I wiggle the ope at 45, what happens? The ope slides in the diection that the slot allows, so a wave does come out the othe side, but at lowe amplitude Also the polaization is paallel to the slot athe than to the initial 45 diection. The same thing happens with light and polaizing filtes. The amount of light that gets though the filte depends on how paallel the polaization of the light is to the filte. If the polaization is paallel, it nealy all gets though. If the polaization is at ight angles, none gets though. But what about the geneal case, whee the angle between the light polaization and the filte is abitay?

5 Polaizing Filtes (3) To get a quantitative answe, the tick is to expess the incoming polaization vecto in a coodinate system lined up with the axis of the filte. If a vecto points in the x diection in one coodinate system, and anothe coodinate system is otated aound the z axis by angle θ, what ae the components of the same physical vecto in the new coodinate system? y y θ x θ V x The x component in the otated system is x = V cosθ = x cosθ The y component in the otated system is y = V sinθ = xsinθ

6 Polaizing Filtes (4) The electic field component in the wave field that is paallel to the filte axis is tansmitted, and the electic field component that is pependicula to the filte axis is not tansmitted. The tansmitted electic field stength is just cosθ times the oiginal field stength, whee θ is the angle between the oiginal field diection and the filte axis. Now cosθ is a function that can be positive o negative, and that s sensible when we ae talking about electic field vectos. The electic field that is positive in one coodinate system can be negative in anothe coodinate system. But the intensity of light can t be negative! The intensity (powe) of light tuns out to depend on the squae of the electic field. So the light intensity getting though the filte is popotional to cos 2 θ. This is often called Malus Law.

7 Two Polaizing Filtes If I stat with unpolaized light, what intensity will get though an ideal polaizing filte The value of cos 2 θ, aveaged ove all θ, is 1/2, so half the light will get though (with a eal filte, it will be somewhat less than half, because thee is some absoption of the ight polaization too). What if I have a second filte downsteam of the fist? Remembe, the light that gets though the fist filte is completely polaized. If the second filte is paallel to the fist, whateve gets though the fist slot will get though the second filte. If the second filte is at ight angles to the fist filte, nothing that gets though the fist filte will get though the second. If the angle is in between, a faction will get though. The faction will be in fact cos 2 θ. What happens if I have two filtes, cossed at ight angles so no light gets though, and I put anothe filte between?

8 Electomagnetic Waves and Polaization Light is an electomagnetic wave. The electic and magnetic fields of the wave ae always at ight angles to the diection of popagation, and to each othe. The diection of the electic field is the polaization diection. One paticula wave solution to Maxwell s Equations is E = E 0 x ˆ cos( kz ωt) B = E 0 y c ˆ cos kz ωt ( ) ω k = c The solution above is linealy polaized in the x diection. The convention is that the polaization diection is the diection of the electic field. A wave moving in the z diection linealy polaized in the y diection would look like E = E 0 y ˆ cos( kz ωt) B = E 0 x c ˆ cos kz ωt ( ) ω k = c We can supepose both of these fields to get a wave polaized at +45 : E = E 0 ( x ˆ + y ˆ )cos( kz ωt) B = E 0 ( y ˆ x ˆ )cos( kz ωt) c A wave polaized at -45 is physically totally diffeent but looks vey simila mathematically: E = E 0 ( x ˆ y ˆ )cos( kz ωt) B = E 0 ( y ˆ + x ˆ )cos( kz ωt) c

9 Polaization and Speed of Light Fo vacuum, o ai, o wate, o glass, the speed of light is the same fo any polaization (although it may depend on fequency o wavelength). If a mateial has some intenal stuctue that makes the electical popeties diffeent in some diections, the speed of light can be diffeent fo diffeent polaizations. This is called dichoism. Many cystals ae like this. Quatz is an example. It has the same chemical makeup as glass (silicon dioxide), but glass has andom bond diections and oientation, while quatz is vey egula. If the polaization of light is paallel to some diections, the speed of light is diffeent. Mateials that ae stetched can also have this popety. Fo instance, tanspaency plastic is stetched duing manufactuing, so the speed of light is diffeent fo polaization paallel and at ight angles to the stetch axis. Watch what happens when I put this tanspaency between two cossed polaizes!

10 Polaization and Speed of Light (2) The stetching means the fast and slow polaization axes ae paallel and pependicula to the vetical axis, 90 degees apat. When the tanspaency is vetical o hoizontal, the light that gets though the fist polaize is aligned with eithe the fast o slow axis, and popagates at whateve speed that implies. The light gets blocked by the second polaize. When the tanspaency is at 45 degees, we can decompose it into components paallel to the fast axis, and paallel to the slow axis. The two components will have equal amplitudes. Initially, they ae in phase with each othe. But they tavel at diffeent speeds, so they get out of phase. Even though the amplitudes of the two 45-degee components ae still the same, because they got out of phase, they no longe add up to the oiginal light with the oiginal polaization. Since some of the light has the wong polaization, it gets though the second polaize.

11 Cicula Polaization Going back to ou stetched ope analogy, we aen t limited to shaking the end of the ope back and foth in a single plane. We could also move the end in a cicle. That would poduce a helical wave tavelling down the stetched ope. The motion would not be confined to a single plane. This is cicula polaization (the kind of polaization we have been talking about befoe is linea polaization). The motion of the end of the ope would be descibed as x = Rcos ±2πft y = Rsin ±2πft ( ) = Rcos ( ±ωt) = Rcos( ωt) ( ) = Rsin ( ±ωt) = ±Rsin( ωt) The fequency in cycles pe second is f, the fequency in adians pe second is ω. The plus-minus signs ae because we could be going clockwise o counteclockwise. The distubance would tavel down the ope in the z diection as waves. The displacement at othe points is ( ) = Rcos( kz ωt) ( ) = ±Rsin( kz ωt) x z y z Basically, we have waves in both x and y, out of phase in time and space.

12 Cicula Polaization of Light We can also make ciculaly-polaized light. To do that, we add x and y linea polaizations, but we also make them out of phase in time. A ight-cicula polaized wave looks like E = E 0 [ x ˆ cos( kz ωt) + y ˆ sin( kz ωt) ] B = E 0 y ˆ cos( kz ωt) x ˆ sin( kz ωt) c [ ] The electic field at a given point in space otates in diection at constant magnitude. The magnetic field otates the same diection but is always 90 away. A left-cicula wave looks like E = E 0 [ x ˆ cos( kz ωt) y ˆ sin( kz ωt )] B = E 0 y ˆ cos( kz ωt)+ x ˆ sin( kz ωt) c [ ] This sounds petty delicate, but some systems do it natually (some micowave antennas, some atomic tansitions).

13 Linea To Cicula Filte We can make a device that will tun linealy polaized light to cicula polaized light and back again. Get a dichoic mateial with fast and slow axes that ae 90 degees apat (in diection). Aange it so the fast and slow axes ae at +/- 45 degees elative to the linea polaization. Make the laye just the ight thickness such that the fast and slow waves will be 90 degees out of phase in time and space. The light that comes out will be ciculaly polaized. What happens if we make the laye thick enough that the slow wave is exactly 360 degees out of phase with the fast wave? What happens if we make the laye thick enough that the slow wave is exactly 270 degees out of phase with the fast wave? What happens if we make the laye thick enough that the slow wave is exactly 180 degees out of phase with the fast wave?

14 Cicula to Linea Polaization If we add ight-cicula and left-cicula light, we get E = E 0 B = E 0 c This obviously educes to x ˆ cos( kz ωt)+ y ˆ sin( kz ωt) + x ˆ cos( kz ωt) y ˆ sin( kz ωt) y ˆ cos( kz ωt) x ˆ sin( kz ωt) + y ˆ cos( kz ωt) + x ˆ sin( kz ωt) E = E 0 2x ˆ cos( kz ωt) + 0 B = E 0 c 2 y ˆ cos ( kz ωt ) + 0 [ ] [ ] which is just linealy polaized in the x diection. If we subtact left-cicula fom ight-cicula, we get E = E y ˆ sin( kz ωt) B = E 0 c 0 2 x ˆ sin ( kz ωt ) [ ] [ ] which is linealy polaized in the y diection (and out of phase with the oiginal, but nomally you don t see the phase of light)

15 Cicula Dichoism (Optical Activity) Thee ae some mateials whee the speed of light is diffeent fo left and ight hand cicula polaizations. This is called optical activity o cicula dichoism. These mateials will otate the polaization of linealy polaized light. Fo this to happen, the mateial has to have a helical stuctue of its own that is left o ight handed. Many molecules come in left-handed and ight-handed foms. It is not necessay fo the mateial to be cystalline, even a liquid can show the effect. Nomal chemisty will poduce both foms in equal amounts and the effect will cancel. But biological pocesses based on enzymes often make only one fom o the othe, so optical activity is common. Sugas ae a good example.

16 Faaday Effect and Cicula Polaization The Faaday Effect is due to the fact that magnetic fields can cause the speed of light to be diffeent fo left-cicula and ight-cicula polaized light in some mateials. The electons in the mateial want to obit the field lines in one diection and not the othe due to the v B Loentz foce. One cicula polaization makes the electons go the ight way, the othe makes them go the wong way, so the dag the electons exet on the light is diffeent fo the two cicula polaizations. We can wite the oiginal linea polaization as an equal mix of left and ight cicula polaizations. The left and ight polaizations get out of phase as they tavel though the mateial. When we add the two cicula polaizations up again, the elative phase shift causes the sum to be linealy polaized light with a diffeent polaization diection. The highe the magnetic field, the lage the velocity diffeence, so the lage the polaization otation.

17

18 Cicula Polaization and Complex Exponentials With cicula polaization, we ae constantly dealing with x and y diections, and with phases. Complex exponentials can make the mathematical book-keeping easie. Fist ecall that e iθ = cosθ +isinθ i 2 = 1 Now conside the following expession ( x ˆ ±iˆ y )e iθ = ( x ˆ ±iˆ y )( cosθ +isinθ) = [ x ˆ cosθ m y ˆ sinθ]+i x ˆ sinθ ± y ˆ cosθ [ ] The eal pat of this looks simila to cicula polaization. (the imaginay pat is to, with a 90-degee phase shift) Just like cos( kz ωt) is the eal pat of exp[ i( kz ωt) ], left and ight-cicula polaizations ae the eal pat of [ ] ( x ˆ ± iˆ y )exp i( kz ωt)

19 Cicula Polaization and Complex Exponentials (2) If we add a phase φ to ight-cicula light, we get [ ( )] = ˆ ( x ˆ iˆ y )exp i kz ωt + φ ( x iˆ y )exp[ i( kz ωt) ]e iφ Add the opposite phase-shift to left-cicula light ( x ˆ + iˆ y )exp[ i( kz ωt) ]e iφ then add these togethe we get [ x ˆ ( e iφ + e iφ ) iˆ y ( e iφ e iφ )]exp i( kz ωt) = [ 2x ˆ cosφ + 2y ˆ sin φ]exp[ i( kz ωt) ] [ ] Now if we take the eal pat of this, we get [ 2x ˆ cosφ + 2y ˆ sinφ]cos kz ωt ( ) So if we add left and ight cicula polaizations with a phase shifts of +φ and φ, we otate the linea polaization by angle 2φ.

Physics 2B Chapter 22 Notes - Magnetic Field Spring 2018

Physics 2B Chapter 22 Notes - Magnetic Field Spring 2018 Physics B Chapte Notes - Magnetic Field Sping 018 Magnetic Field fom a Long Staight Cuent-Caying Wie In Chapte 11 we looked at Isaac Newton s Law of Gavitation, which established that a gavitational field

More information

B. Spherical Wave Propagation

B. Spherical Wave Propagation 11/8/007 Spheical Wave Popagation notes 1/1 B. Spheical Wave Popagation Evey antenna launches a spheical wave, thus its powe density educes as a function of 1, whee is the distance fom the antenna. We

More information

OSCILLATIONS AND GRAVITATION

OSCILLATIONS AND GRAVITATION 1. SIMPLE HARMONIC MOTION Simple hamonic motion is any motion that is equivalent to a single component of unifom cicula motion. In this situation the velocity is always geatest in the middle of the motion,

More information

School of Electrical and Computer Engineering, Cornell University. ECE 303: Electromagnetic Fields and Waves. Fall 2007

School of Electrical and Computer Engineering, Cornell University. ECE 303: Electromagnetic Fields and Waves. Fall 2007 School of Electical and Compute Engineeing, Conell Univesity ECE 303: Electomagnetic Fields and Waves Fall 007 Homewok 8 Due on Oct. 19, 007 by 5:00 PM Reading Assignments: i) Review the lectue notes.

More information

11) A thin, uniform rod of mass M is supported by two vertical strings, as shown below.

11) A thin, uniform rod of mass M is supported by two vertical strings, as shown below. Fall 2007 Qualifie Pat II 12 minute questions 11) A thin, unifom od of mass M is suppoted by two vetical stings, as shown below. Find the tension in the emaining sting immediately afte one of the stings

More information

MAGNETIC FIELD INTRODUCTION

MAGNETIC FIELD INTRODUCTION MAGNETIC FIELD INTRODUCTION It was found when a magnet suspended fom its cente, it tends to line itself up in a noth-south diection (the compass needle). The noth end is called the Noth Pole (N-pole),

More information

Graphs of Sine and Cosine Functions

Graphs of Sine and Cosine Functions Gaphs of Sine and Cosine Functions In pevious sections, we defined the tigonometic o cicula functions in tems of the movement of a point aound the cicumfeence of a unit cicle, o the angle fomed by the

More information

Describing Circular motion

Describing Circular motion Unifom Cicula Motion Descibing Cicula motion In ode to undestand cicula motion, we fist need to discuss how to subtact vectos. The easiest way to explain subtacting vectos is to descibe it as adding a

More information

Electromagnetism Physics 15b

Electromagnetism Physics 15b lectomagnetism Physics 15b Lectue #20 Dielectics lectic Dipoles Pucell 10.1 10.6 What We Did Last Time Plane wave solutions of Maxwell s equations = 0 sin(k ωt) B = B 0 sin(k ωt) ω = kc, 0 = B, 0 ˆk =

More information

Phys 201A. Homework 5 Solutions

Phys 201A. Homework 5 Solutions Phys 201A Homewok 5 Solutions 3. In each of the thee cases, you can find the changes in the velocity vectos by adding the second vecto to the additive invese of the fist and dawing the esultant, and by

More information

Hopefully Helpful Hints for Gauss s Law

Hopefully Helpful Hints for Gauss s Law Hopefully Helpful Hints fo Gauss s Law As befoe, thee ae things you need to know about Gauss s Law. In no paticula ode, they ae: a.) In the context of Gauss s Law, at a diffeential level, the electic flux

More information

Chapter 22: Electric Fields. 22-1: What is physics? General physics II (22102) Dr. Iyad SAADEDDIN. 22-2: The Electric Field (E)

Chapter 22: Electric Fields. 22-1: What is physics? General physics II (22102) Dr. Iyad SAADEDDIN. 22-2: The Electric Field (E) Geneal physics II (10) D. Iyad D. Iyad Chapte : lectic Fields In this chapte we will cove The lectic Field lectic Field Lines -: The lectic Field () lectic field exists in a egion of space suounding a

More information

INTRODUCTION. 2. Vectors in Physics 1

INTRODUCTION. 2. Vectors in Physics 1 INTRODUCTION Vectos ae used in physics to extend the study of motion fom one dimension to two dimensions Vectos ae indispensable when a physical quantity has a diection associated with it As an example,

More information

Class XII - Physics Wave Optics Chapter-wise Problems. Chapter 10

Class XII - Physics Wave Optics Chapter-wise Problems. Chapter 10 Class XII - Physics Wave Optics Chapte-wise Poblems Answes Chapte (c) (a) 3 (a) 4 (c) 5 (d) 6 (a), (b), (d) 7 (b), (d) 8 (a), (b) 9 (a), (b) Yes Spheical Spheical with huge adius as compaed to the eath

More information

16.1 Permanent magnets

16.1 Permanent magnets Unit 16 Magnetism 161 Pemanent magnets 16 The magnetic foce on moving chage 163 The motion of chaged paticles in a magnetic field 164 The magnetic foce exeted on a cuent-caying wie 165 Cuent loops and

More information

The nature of electromagnetic radiation.

The nature of electromagnetic radiation. Lectue 3 The natue of electomagnetic adiation. Objectives: 1. Basic intoduction to the electomagnetic field: Definitions Dual natue of electomagnetic adiation lectomagnetic spectum. Main adiometic quantities:

More information

HW #5 Hints. Today. HW #5 Hints. HW #5 Hints. Announcements:

HW #5 Hints. Today. HW #5 Hints. HW #5 Hints. Announcements: Today HW #5 Hints Announcements: HW and Exta cedit #3 due 2/25 HW hints + Recap the 2nd law of themodynamics Electic and Magnetic Foces and thei unification the Foce Field concept -1-1) The speed at D

More information

r cos, and y r sin with the origin of coordinate system located at

r cos, and y r sin with the origin of coordinate system located at Lectue 3-3 Kinematics of Rotation Duing ou peious lectues we hae consideed diffeent examples of motion in one and seeal dimensions. But in each case the moing object was consideed as a paticle-like object,

More information

Physics 2020, Spring 2005 Lab 5 page 1 of 8. Lab 5. Magnetism

Physics 2020, Spring 2005 Lab 5 page 1 of 8. Lab 5. Magnetism Physics 2020, Sping 2005 Lab 5 page 1 of 8 Lab 5. Magnetism PART I: INTRODUCTION TO MAGNETS This week we will begin wok with magnets and the foces that they poduce. By now you ae an expet on setting up

More information

MAGNETIC FIELD AROUND TWO SEPARATED MAGNETIZING COILS

MAGNETIC FIELD AROUND TWO SEPARATED MAGNETIZING COILS The 8 th Intenational Confeence of the Slovenian Society fo Non-Destuctive Testing»pplication of Contempoay Non-Destuctive Testing in Engineeing«Septembe 1-3, 5, Potoož, Slovenia, pp. 17-1 MGNETIC FIELD

More information

PHY2061 Enriched Physics 2 Lecture Notes. Gauss Law

PHY2061 Enriched Physics 2 Lecture Notes. Gauss Law PHY61 Eniched Physics Lectue Notes Law Disclaime: These lectue notes ae not meant to eplace the couse textbook. The content may be incomplete. ome topics may be unclea. These notes ae only meant to be

More information

Force between two parallel current wires and Newton s. third law

Force between two parallel current wires and Newton s. third law Foce between two paallel cuent wies and Newton s thid law Yannan Yang (Shanghai Jinjuan Infomation Science and Technology Co., Ltd.) Abstact: In this pape, the essence of the inteaction between two paallel

More information

Uniform Circular Motion

Uniform Circular Motion Unifom Cicula Motion Intoduction Ealie we defined acceleation as being the change in velocity with time: a = v t Until now we have only talked about changes in the magnitude of the acceleation: the speeding

More information

Electrostatics (Electric Charges and Field) #2 2010

Electrostatics (Electric Charges and Field) #2 2010 Electic Field: The concept of electic field explains the action at a distance foce between two chaged paticles. Evey chage poduces a field aound it so that any othe chaged paticle expeiences a foce when

More information

ω = θ θ o = θ θ = s r v = rω

ω = θ θ o = θ θ = s r v = rω Unifom Cicula Motion Unifom cicula motion is the motion of an object taveling at a constant(unifom) speed in a cicula path. Fist we must define the angula displacement and angula velocity The angula displacement

More information

School of Electrical and Computer Engineering, Cornell University. ECE 303: Electromagnetic Fields and Waves. Fall 2007

School of Electrical and Computer Engineering, Cornell University. ECE 303: Electromagnetic Fields and Waves. Fall 2007 School of Electical and Compute Engineeing, Conell Univesity ECE 33: Electomagnetic Fields and Waves Fall 7 Homewok 6 Due on Oct. 5, 7 by 5: PM Reading Assignments: i) Review the lectue notes. ii) Review

More information

Physics 181. Assignment 4

Physics 181. Assignment 4 Physics 181 Assignment 4 Solutions 1. A sphee has within it a gavitational field given by g = g, whee g is constant and is the position vecto of the field point elative to the cente of the sphee. This

More information

Physics 121: Electricity & Magnetism Lecture 1

Physics 121: Electricity & Magnetism Lecture 1 Phsics 121: Electicit & Magnetism Lectue 1 Dale E. Ga Wenda Cao NJIT Phsics Depatment Intoduction to Clices 1. What ea ae ou?. Feshman. Sophomoe C. Junio D. Senio E. Othe Intoduction to Clices 2. How man

More information

Magnetic Field. Conference 6. Physics 102 General Physics II

Magnetic Field. Conference 6. Physics 102 General Physics II Physics 102 Confeence 6 Magnetic Field Confeence 6 Physics 102 Geneal Physics II Monday, Mach 3d, 2014 6.1 Quiz Poblem 6.1 Think about the magnetic field associated with an infinite, cuent caying wie.

More information

Phys101 Lectures 30, 31. Wave Motion

Phys101 Lectures 30, 31. Wave Motion Phys0 Lectues 30, 3 Wave Motion Key points: Types of Waves: Tansvese and Longitudinal Mathematical Repesentation of a Taveling Wave The Pinciple of Supeposition Standing Waves; Resonance Ref: -7,8,9,0,,6,,3,6.

More information

Inverse Square Law and Polarization

Inverse Square Law and Polarization Invese Squae Law and Polaization Objectives: To show that light intensity is invesely popotional to the squae of the distance fom a point light souce and to show that the intensity of the light tansmitted

More information

MODULE 5a and 5b (Stewart, Sections 12.2, 12.3) INTRO: In MATH 1114 vectors were written either as rows (a1, a2,..., an) or as columns a 1 a. ...

MODULE 5a and 5b (Stewart, Sections 12.2, 12.3) INTRO: In MATH 1114 vectors were written either as rows (a1, a2,..., an) or as columns a 1 a. ... MODULE 5a and 5b (Stewat, Sections 2.2, 2.3) INTRO: In MATH 4 vectos wee witten eithe as ows (a, a2,..., an) o as columns a a 2... a n and the set of all such vectos of fixed length n was called the vecto

More information

Chapter 7-8 Rotational Motion

Chapter 7-8 Rotational Motion Chapte 7-8 Rotational Motion What is a Rigid Body? Rotational Kinematics Angula Velocity ω and Acceleation α Unifom Rotational Motion: Kinematics Unifom Cicula Motion: Kinematics and Dynamics The Toque,

More information

- 5 - TEST 1R. This is the repeat version of TEST 1, which was held during Session.

- 5 - TEST 1R. This is the repeat version of TEST 1, which was held during Session. - 5 - TEST 1R This is the epeat vesion of TEST 1, which was held duing Session. This epeat test should be attempted by those students who missed Test 1, o who wish to impove thei mak in Test 1. IF YOU

More information

To Feel a Force Chapter 7 Static equilibrium - torque and friction

To Feel a Force Chapter 7 Static equilibrium - torque and friction To eel a oce Chapte 7 Chapte 7: Static fiction, toque and static equilibium A. Review of foce vectos Between the eath and a small mass, gavitational foces of equal magnitude and opposite diection act on

More information

Sparks. From Last Time. Other electric currents. Time-varying electric current. Eventually transatlantic signals! Electric Charge

Sparks. From Last Time. Other electric currents. Time-varying electric current. Eventually transatlantic signals! Electric Charge Electic Chage Fom Last Time Two types: plus and minus Foces between chages Like chages epel, opposite chages attact Coulomb s law: foce dops invesely w/ squae of distance Electic Cuent Flow of chages fom

More information

Ch 30 - Sources of Magnetic Field! The Biot-Savart Law! = k m. r 2. Example 1! Example 2!

Ch 30 - Sources of Magnetic Field! The Biot-Savart Law! = k m. r 2. Example 1! Example 2! Ch 30 - Souces of Magnetic Field 1.) Example 1 Detemine the magnitude and diection of the magnetic field at the point O in the diagam. (Cuent flows fom top to bottom, adius of cuvatue.) Fo staight segments,

More information

Do not turn over until you are told to do so by the Invigilator.

Do not turn over until you are told to do so by the Invigilator. UNIVERSITY OF EAST ANGLIA School of Mathematics Main Seies UG Examination 2015 16 FLUID DYNAMICS WITH ADVANCED TOPICS MTH-MD59 Time allowed: 3 Hous Attempt QUESTIONS 1 and 2, and THREE othe questions.

More information

Eventually transatlantic signals! From Last Time. Electromagnetic Waves. The idea of electric fields. The electric field.

Eventually transatlantic signals! From Last Time. Electromagnetic Waves. The idea of electric fields. The electric field. Fom Last Time Electomagnetic waves Chages, cuent and foces: Coulomb s law. Acceleating chages poduce an electomagnetic wave The idea of the electic field. Today Electic fields, magnetic fields, and thei

More information

( ) Make-up Tests. From Last Time. Electric Field Flux. o The Electric Field Flux through a bit of area is

( ) Make-up Tests. From Last Time. Electric Field Flux. o The Electric Field Flux through a bit of area is Mon., 3/23 Wed., 3/25 Thus., 3/26 Fi., 3/27 Mon., 3/30 Tues., 3/31 21.4-6 Using Gauss s & nto to Ampee s 21.7-9 Maxwell s, Gauss s, and Ampee s Quiz Ch 21, Lab 9 Ampee s Law (wite up) 22.1-2,10 nto to

More information

Department of Chemistry Chapter 4 continued

Department of Chemistry Chapter 4 continued Chapte 4 continued Chial o not chial esponse functions otational aveages linea and nonlinea signals Undestanding this And maybe this Non-linea signal signal ( ( ( ( f E( tn sf... E( t2 q E( t 0q aveage

More information

Balanced Flow. Natural Coordinates

Balanced Flow. Natural Coordinates Balanced Flow The pessue and velocity distibutions in atmospheic systems ae elated by elatively simple, appoximate foce balances. We can gain a qualitative undestanding by consideing steady-state conditions,

More information

Magnetic fields (origins) CHAPTER 27 SOURCES OF MAGNETIC FIELD. Permanent magnets. Electric currents. Magnetic field due to a moving charge.

Magnetic fields (origins) CHAPTER 27 SOURCES OF MAGNETIC FIELD. Permanent magnets. Electric currents. Magnetic field due to a moving charge. Magnetic fields (oigins) CHAPTER 27 SOURCES OF MAGNETC FELD Magnetic field due to a moving chage. Electic cuents Pemanent magnets Magnetic field due to electic cuents Staight wies Cicula coil Solenoid

More information

Circular Motion & Torque Test Review. The period is the amount of time it takes for an object to travel around a circular path once.

Circular Motion & Torque Test Review. The period is the amount of time it takes for an object to travel around a circular path once. Honos Physics Fall, 2016 Cicula Motion & Toque Test Review Name: M. Leonad Instuctions: Complete the following woksheet. SHOW ALL OF YOUR WORK ON A SEPARATE SHEET OF PAPER. 1. Detemine whethe each statement

More information

Chapter 5. Uniform Circular Motion. a c =v 2 /r

Chapter 5. Uniform Circular Motion. a c =v 2 /r Chapte 5 Unifom Cicula Motion a c =v 2 / Unifom cicula motion: Motion in a cicula path with constant speed s v 1) Speed and peiod Peiod, T: time fo one evolution Speed is elated to peiod: Path fo one evolution:

More information

The Laws of Motion ( ) N SOLUTIONS TO PROBLEMS ! F = ( 6.00) 2 + ( 15.0) 2 N = 16.2 N. Section 4.4. Newton s Second Law The Particle Under a Net Force

The Laws of Motion ( ) N SOLUTIONS TO PROBLEMS ! F = ( 6.00) 2 + ( 15.0) 2 N = 16.2 N. Section 4.4. Newton s Second Law The Particle Under a Net Force SOLUTIONS TO PROBLEMS The Laws of Motion Section 4.3 Mass P4. Since the ca is moving with constant speed and in a staight line, the esultant foce on it must be zeo egadless of whethe it is moving (a) towad

More information

Electromagnetic Waves

Electromagnetic Waves Chapte 32 Electomagnetic Waves PowePoint Lectues fo Univesity Physics, Twelfth Edition Hugh D. Young and Roge A. Feedman Lectues by James Pazun Modified P. Lam 8_11_2008 Topics fo Chapte 32 Maxwell s equations

More information

ECE 6340 Intermediate EM Waves. Fall Prof. David R. Jackson Dept. of ECE. Notes 4

ECE 6340 Intermediate EM Waves. Fall Prof. David R. Jackson Dept. of ECE. Notes 4 ECE 6340 Intemediate EM Waves Fall 016 Pof. David R. Jackson Dept. of ECE Notes 4 1 Debye Model This model explains molecula effects. y We conside an electic field applied in the x diection. Molecule:

More information

Magnetic Dipoles Challenge Problem Solutions

Magnetic Dipoles Challenge Problem Solutions Magnetic Dipoles Challenge Poblem Solutions Poblem 1: Cicle the coect answe. Conside a tiangula loop of wie with sides a and b. The loop caies a cuent I in the diection shown, and is placed in a unifom

More information

Math Notes on Kepler s first law 1. r(t) kp(t)

Math Notes on Kepler s first law 1. r(t) kp(t) Math 7 - Notes on Keple s fist law Planetay motion and Keple s Laws We conside the motion of a single planet about the sun; fo simplicity, we assign coodinates in R 3 so that the position of the sun is

More information

Physics 11 Chapter 3: Vectors and Motion in Two Dimensions. Problem Solving

Physics 11 Chapter 3: Vectors and Motion in Two Dimensions. Problem Solving Physics 11 Chapte 3: Vectos and Motion in Two Dimensions The only thing in life that is achieved without effot is failue. Souce unknown "We ae what we epeatedly do. Excellence, theefoe, is not an act,

More information

Gauss s Law Simulation Activities

Gauss s Law Simulation Activities Gauss s Law Simulation Activities Name: Backgound: The electic field aound a point chage is found by: = kq/ 2 If thee ae multiple chages, the net field at any point is the vecto sum of the fields. Fo a

More information

Outline. Classes of polarizing devices Polarization states. Eigen-polarization of crystals. Momentum matching at boundaries Polarization calculations

Outline. Classes of polarizing devices Polarization states. Eigen-polarization of crystals. Momentum matching at boundaries Polarization calculations Cstal optics lectue C 566 Adv. Optics Lab Outline Classes of polaizing devices Polaization states igen-polaization of cstals Momentum matching at boundaies Polaization calculations Muelle matices Jones

More information

Lab #9: The Kinematics & Dynamics of. Circular Motion & Rotational Motion

Lab #9: The Kinematics & Dynamics of. Circular Motion & Rotational Motion Reading Assignment: Lab #9: The Kinematics & Dynamics of Cicula Motion & Rotational Motion Chapte 6 Section 4 Chapte 11 Section 1 though Section 5 Intoduction: When discussing motion, it is impotant to

More information

Section 8.2 Polar Coordinates

Section 8.2 Polar Coordinates Section 8. Pola Coodinates 467 Section 8. Pola Coodinates The coodinate system we ae most familia with is called the Catesian coodinate system, a ectangula plane divided into fou quadants by the hoizontal

More information

Objectives: After finishing this unit you should be able to:

Objectives: After finishing this unit you should be able to: lectic Field 7 Objectives: Afte finishing this unit you should be able to: Define the electic field and explain what detemines its magnitude and diection. Wite and apply fomulas fo the electic field intensity

More information

Chapter 5 Force and Motion

Chapter 5 Force and Motion Chapte 5 Foce and Motion In chaptes 2 and 4 we have studied kinematics i.e. descibed the motion of objects using paametes such as the position vecto, velocity and acceleation without any insights as to

More information

AP Physics - Coulomb's Law

AP Physics - Coulomb's Law AP Physics - oulomb's Law We ve leaned that electons have a minus one chage and potons have a positive one chage. This plus and minus one business doesn t wok vey well when we go in and ty to do the old

More information

FI 2201 Electromagnetism

FI 2201 Electromagnetism FI 2201 Electomagnetism Alexande A. Iskanda, Ph.D. Physics of Magnetism and Photonics Reseach Goup Electodynamics ELETROMOTIVE FORE AND FARADAY S LAW 1 Ohm s Law To make a cuent flow, we have to push the

More information

Unit 7: Sources of magnetic field

Unit 7: Sources of magnetic field Unit 7: Souces of magnetic field Oested s expeiment. iot and Savat s law. Magnetic field ceated by a cicula loop Ampèe s law (A.L.). Applications of A.L. Magnetic field ceated by a: Staight cuent-caying

More information

Introduction to Dielectric Properties and Magnetism

Introduction to Dielectric Properties and Magnetism Intoduction to Dielectic opeties and Magnetism At the end of the last lectue we looked at some of the electical popeties of matte and intoduces the notions of electic field and electical conductivity.

More information

Qualifying Examination Electricity and Magnetism Solutions January 12, 2006

Qualifying Examination Electricity and Magnetism Solutions January 12, 2006 1 Qualifying Examination Electicity and Magnetism Solutions Januay 12, 2006 PROBLEM EA. a. Fist, we conside a unit length of cylinde to find the elationship between the total chage pe unit length λ and

More information

c) (6) Assuming the tires do not skid, what coefficient of static friction between tires and pavement is needed?

c) (6) Assuming the tires do not skid, what coefficient of static friction between tires and pavement is needed? Geneal Physics I Exam 2 - Chs. 4,5,6 - Foces, Cicula Motion, Enegy Oct. 10, 2012 Name Rec. Inst. Rec. Time Fo full cedit, make you wok clea to the gade. Show fomulas used, essential steps, and esults with

More information

Review Notes on Maxwell's Equations

Review Notes on Maxwell's Equations ELEC344 Micowave Engineeing, Sping 2002 Handout #1 Kevin Chen Review Notes on Maxwell's Equations Review of Vecto Poducts and the Opeato The del, gad o nabla opeato is a vecto, and can be pat of a scala

More information

to point uphill and to be equal to its maximum value, in which case f s, max = μsfn

to point uphill and to be equal to its maximum value, in which case f s, max = μsfn Chapte 6 16. (a) In this situation, we take f s to point uphill and to be equal to its maximum value, in which case f s, max = μsf applies, whee μ s = 0.5. pplying ewton s second law to the block of mass

More information

Rotational Motion. Lecture 6. Chapter 4. Physics I. Course website:

Rotational Motion. Lecture 6. Chapter 4. Physics I. Course website: Lectue 6 Chapte 4 Physics I Rotational Motion Couse website: http://faculty.uml.edu/andiy_danylov/teaching/physicsi Today we ae going to discuss: Chapte 4: Unifom Cicula Motion: Section 4.4 Nonunifom Cicula

More information

Electromagnetic scattering. Graduate Course Electrical Engineering (Communications) 1 st Semester, Sharif University of Technology

Electromagnetic scattering. Graduate Course Electrical Engineering (Communications) 1 st Semester, Sharif University of Technology Electomagnetic scatteing Gaduate Couse Electical Engineeing (Communications) 1 st Semeste, 1390-1391 Shaif Univesity of Technology Geneal infomation Infomation about the instucto: Instucto: Behzad Rejaei

More information

Physics 221 Lecture 41 Nonlinear Absorption and Refraction

Physics 221 Lecture 41 Nonlinear Absorption and Refraction Physics 221 Lectue 41 Nonlinea Absoption and Refaction Refeences Meye-Aendt, pp. 97-98. Boyd, Nonlinea Optics, 1.4 Yaiv, Optical Waves in Cystals, p. 22 (Table of cystal symmeties) 1. Intoductoy Remaks.

More information

A moving charged particle creates a magnetic field vector at every point in space except at its position.

A moving charged particle creates a magnetic field vector at every point in space except at its position. 1 Pat 3: Magnetic Foce 3.1: Magnetic Foce & Field A. Chaged Paticles A moving chaged paticle ceates a magnetic field vecto at evey point in space ecept at its position. Symbol fo Magnetic Field mks units

More information

Galilean Transformation vs E&M y. Historical Perspective. Chapter 2 Lecture 2 PHYS Special Relativity. Sep. 1, y K K O.

Galilean Transformation vs E&M y. Historical Perspective. Chapter 2 Lecture 2 PHYS Special Relativity. Sep. 1, y K K O. PHYS-2402 Chapte 2 Lectue 2 Special Relativity 1. Basic Ideas Sep. 1, 2016 Galilean Tansfomation vs E&M y K O z z y K In 1873, Maxwell fomulated Equations of Electomagnetism. v Maxwell s equations descibe

More information

Chapter 2 Classical propagation

Chapter 2 Classical propagation Chapte Classical popagation Model: Light: electomagnetic wave Atom and molecule: classical dipole oscillato n. / / t c nz i z t z k i e e c i n k e t z Two popagation paametes: n. Popagation of light in

More information

Chapter 5 Force and Motion

Chapter 5 Force and Motion Chapte 5 Foce and Motion In Chaptes 2 and 4 we have studied kinematics, i.e., we descibed the motion of objects using paametes such as the position vecto, velocity, and acceleation without any insights

More information

2 Governing Equations

2 Governing Equations 2 Govening Equations This chapte develops the govening equations of motion fo a homogeneous isotopic elastic solid, using the linea thee-dimensional theoy of elasticity in cylindical coodinates. At fist,

More information

Lecture 3.7 ELECTRICITY. Electric charge Coulomb s law Electric field

Lecture 3.7 ELECTRICITY. Electric charge Coulomb s law Electric field Lectue 3.7 ELECTRICITY Electic chage Coulomb s law Electic field ELECTRICITY Inteaction between electically chages objects Many impotant uses Light Heat Rail tavel Computes Cental nevous system Human body

More information

AH Mechanics Checklist (Unit 2) AH Mechanics Checklist (Unit 2) Circular Motion

AH Mechanics Checklist (Unit 2) AH Mechanics Checklist (Unit 2) Circular Motion AH Mechanics Checklist (Unit ) AH Mechanics Checklist (Unit ) Cicula Motion No. kill Done 1 Know that cicula motion efes to motion in a cicle of constant adius Know that cicula motion is conveniently descibed

More information

Circular Motion. Mr. Velazquez AP/Honors Physics

Circular Motion. Mr. Velazquez AP/Honors Physics Cicula Motion M. Velazquez AP/Honos Physics Objects in Cicula Motion Accoding to Newton s Laws, if no foce acts on an object, it will move with constant speed in a constant diection. Theefoe, if an object

More information

Algebra-based Physics II

Algebra-based Physics II lgebabased Physics II Chapte 19 Electic potential enegy & The Electic potential Why enegy is stoed in an electic field? How to descibe an field fom enegetic point of view? Class Website: Natual way of

More information

( )( )( ) ( ) + ( ) ( ) ( )

( )( )( ) ( ) + ( ) ( ) ( ) 3.7. Moel: The magnetic fiel is that of a moving chage paticle. Please efe to Figue Ex3.7. Solve: Using the iot-savat law, 7 19 7 ( ) + ( ) qvsinθ 1 T m/a 1.6 1 C. 1 m/s sin135 1. 1 m 1. 1 m 15 = = = 1.13

More information

Lecture 2 Date:

Lecture 2 Date: Lectue 2 Date: 5.1.217 Definition of Some TL Paametes Examples of Tansmission Lines Tansmission Lines (contd.) Fo a lossless tansmission line the second ode diffeential equation fo phasos ae: LC 2 d I

More information

06 - ROTATIONAL MOTION Page 1 ( Answers at the end of all questions )

06 - ROTATIONAL MOTION Page 1 ( Answers at the end of all questions ) 06 - ROTATIONAL MOTION Page ) A body A of mass M while falling vetically downwads unde gavity beaks into two pats, a body B of mass ( / ) M and a body C of mass ( / ) M. The cente of mass of bodies B and

More information

Exam 3, vers Physics Spring, 2003

Exam 3, vers Physics Spring, 2003 1 of 9 Exam 3, ves. 0001 - Physics 1120 - Sping, 2003 NAME Signatue Student ID # TA s Name(Cicle one): Michael Scheffestein, Chis Kelle, Paisa Seelungsawat Stating time of you Tues ecitation (wite time

More information

Objective Notes Summary

Objective Notes Summary Objective Notes Summay An object moving in unifom cicula motion has constant speed but not constant velocity because the diection is changing. The velocity vecto in tangent to the cicle, the acceleation

More information

Tidal forces. m r. m 1 m 2. x r 2. r 1

Tidal forces. m r. m 1 m 2. x r 2. r 1 Tidal foces Befoe we look at fee waves on the eath, let s fist exaine one class of otion that is diectly foced: astonoic tides. Hee we will biefly conside soe of the tidal geneating foces fo -body systes.

More information

Rigid Body Dynamics 2. CSE169: Computer Animation Instructor: Steve Rotenberg UCSD, Winter 2018

Rigid Body Dynamics 2. CSE169: Computer Animation Instructor: Steve Rotenberg UCSD, Winter 2018 Rigid Body Dynamics 2 CSE169: Compute Animation nstucto: Steve Rotenbeg UCSD, Winte 2018 Coss Poduct & Hat Opeato Deivative of a Rotating Vecto Let s say that vecto is otating aound the oigin, maintaining

More information

Easy. P4.2 Since the car is moving with constant speed and in a straight line, the. resultant force on it must be regardless of whether it is moving

Easy. P4.2 Since the car is moving with constant speed and in a straight line, the. resultant force on it must be regardless of whether it is moving Chapte 4 Homewok Solutions Easy P4. Since the ca is moving with constant speed and in a staight line, the zeo esultant foce on it must be egadless of whethe it is moving (a) towad the ight o the left.

More information

The physics of induction stoves

The physics of induction stoves The physics of uction stoves This is an aticle fom my home page: www.olewitthansen.dk Contents 1. What is an uction stove...1. Including self-uctance...4 3. The contibution fom the magnetic moments...6

More information

Flux. Area Vector. Flux of Electric Field. Gauss s Law

Flux. Area Vector. Flux of Electric Field. Gauss s Law Gauss s Law Flux Flux in Physics is used to two distinct ways. The fist meaning is the ate of flow, such as the amount of wate flowing in a ive, i.e. volume pe unit aea pe unit time. O, fo light, it is

More information

Radian and Degree Measure

Radian and Degree Measure CHAT Pe-Calculus Radian and Degee Measue *Tigonomety comes fom the Geek wod meaning measuement of tiangles. It pimaily dealt with angles and tiangles as it petained to navigation, astonomy, and suveying.

More information

Appendix B The Relativistic Transformation of Forces

Appendix B The Relativistic Transformation of Forces Appendix B The Relativistic Tansfomation of oces B. The ou-foce We intoduced the idea of foces in Chapte 3 whee we saw that the change in the fou-momentum pe unit time is given by the expession d d w x

More information

FARADAY'S LAW. dates : No. of lectures allocated. Actual No. of lectures 3 9/5/09-14 /5/09

FARADAY'S LAW. dates : No. of lectures allocated. Actual No. of lectures 3 9/5/09-14 /5/09 FARADAY'S LAW No. of lectues allocated Actual No. of lectues dates : 3 9/5/09-14 /5/09 31.1 Faaday's Law of Induction In the pevious chapte we leaned that electic cuent poduces agnetic field. Afte this

More information

A new force Magnetic force. Today. Force Fields: A disturbance of space. The correspondence of a loop of current and magnet.

A new force Magnetic force. Today. Force Fields: A disturbance of space. The correspondence of a loop of current and magnet. Today A new foce Magnetic foce Announcements HW#6 and HW#7 ae both due Wednesday Mach 18th. Thanks to my being WAY behind schedule, you 2nd exam will be a take-home exam! Stay tuned fo details Even if

More information

2.5 The Quarter-Wave Transformer

2.5 The Quarter-Wave Transformer /3/5 _5 The Quate Wave Tansfome /.5 The Quate-Wave Tansfome Reading Assignment: pp. 73-76 By now you ve noticed that a quate-wave length of tansmission line ( λ 4, β π ) appeas often in micowave engineeing

More information

b) (5) What is the magnitude of the force on the 6.0-kg block due to the contact with the 12.0-kg block?

b) (5) What is the magnitude of the force on the 6.0-kg block due to the contact with the 12.0-kg block? Geneal Physics I Exam 2 - Chs. 4,5,6 - Foces, Cicula Motion, Enegy Oct. 13, 2010 Name Rec. Inst. Rec. Time Fo full cedit, make you wok clea to the gade. Show fomulas used, essential steps, and esults with

More information

rt () is constant. We know how to find the length of the radius vector by r( t) r( t) r( t)

rt () is constant. We know how to find the length of the radius vector by r( t) r( t) r( t) Cicula Motion Fom ancient times cicula tajectoies hae occupied a special place in ou model of the Uniese. Although these obits hae been eplaced by the moe geneal elliptical geomety, cicula motion is still

More information

PHYS Summer Professor Caillault Homework Solutions. Chapter 5

PHYS Summer Professor Caillault Homework Solutions. Chapter 5 PHYS 1111 - Summe 2007 - Pofesso Caillault Homewok Solutions Chapte 5 7. Pictue the Poblem: The ball is acceleated hoizontally fom est to 98 mi/h ove a distance of 1.7 m. Stategy: Use equation 2-12 to

More information

Physics 235 Chapter 5. Chapter 5 Gravitation

Physics 235 Chapter 5. Chapter 5 Gravitation Chapte 5 Gavitation In this Chapte we will eview the popeties of the gavitational foce. The gavitational foce has been discussed in geat detail in you intoductoy physics couses, and we will pimaily focus

More information

σ = neμ = v D = E H, the Hall Field B Z E Y = ee y Determining n and μ: The Hall Effect V x, E x I, J x E y B z F = qe + qv B F y

σ = neμ = v D = E H, the Hall Field B Z E Y = ee y Determining n and μ: The Hall Effect V x, E x I, J x E y B z F = qe + qv B F y Detemining n and μ: The Hall Effect V x, E x + + + + + + + + + + + --------- E y I, J x F = qe + qv B F y = ev D B z F y = ee y B z In steady state, E Y = v D B Z = E H, the Hall Field Since v D =-J x

More information

Physics 121 Hour Exam #5 Solution

Physics 121 Hour Exam #5 Solution Physics 2 Hou xam # Solution This exam consists of a five poblems on five pages. Point values ae given with each poblem. They add up to 99 points; you will get fee point to make a total of. In any given

More information

Circular motion. Objectives. Physics terms. Assessment. Equations 5/22/14. Describe the accelerated motion of objects moving in circles.

Circular motion. Objectives. Physics terms. Assessment. Equations 5/22/14. Describe the accelerated motion of objects moving in circles. Cicula motion Objectives Descibe the acceleated motion of objects moving in cicles. Use equations to analyze the acceleated motion of objects moving in cicles.. Descibe in you own wods what this equation

More information

Cartesian Coordinate System and Vectors

Cartesian Coordinate System and Vectors Catesian Coodinate System and Vectos Coodinate System Coodinate system: used to descibe the position of a point in space and consists of 1. An oigin as the efeence point 2. A set of coodinate axes with

More information