ESE 524 Detection and Estimation Theory

Size: px
Start display at page:

Download "ESE 524 Detection and Estimation Theory"

Transcription

1 ESE 524 Detection and Estimation heory Joseh A. O Sullivan Samuel C. Sachs Professor Electronic Systems and Signals Research Laboratory Electrical and Systems Engineering Washington University 2 Urbauer Hall (Lynda answers) jao@wustl.edu J. A. O'S. ESE 524, Lecture 4, 3/3/9

2 Linear Estimation x and y are jointly Gaussian. Problem : Find the exected value of x given y. Jointly Gaussian Posterior is Gaussian and MMSE estimate = MAP estimate x μx Kxx Kxy N, =, μ N y y Kyx Kyy E xy ( μ K) μ n+ m ln (, ) ln ((2 π) det( )) ( μ ) ( μ ) Kxx Kxy x x xy = K x 2 2 x y y μ Kyx Kyy y y Kxx Kxy x μx x ln ( xy, ) = [ I ] = μ Kyx Kyy y y J. A. O'S. ESE 524, Lecture 4, 3/3/9 2

3 Linear Estimation Solution for MMSE estimate uses the bloc matrix inversion exression Result is simle, easily interretable, fundamental Kxx Kxy x μx x ln ( xy, ) = [ I ] = μ Kyx Kyy y y ( ) ( ) ( ) ( ) Κ xx K Κ xx K xyκ yyk yx Κ xx K xyκ yykyx KxyΚ xy yy = K yx Κ yy Κ yyk yx Κ xx K xyκ yyk yx Κyy + ΚyyK yx Κ xx K xyκ yykyx KxyΚ yy μ ( Κ xx K xyκ yy ) ( ) x x K = yx Κ xx K xyκ yykyx KxyΚ yy μ y y ˆ MMSE ( μ ) = μx + xy yy y x K Κ y J. A. O'S. ESE 524, Lecture 4, 3/3/9 3

4 Linear Estimation Udated ( ) xˆ MMSE = μx + KxyΚ yy y μy Posterior mean Prior mean Attenuated by uncertainty New information Amlified by correlation J. A. O'S. ESE 524, Lecture 4, 3/3/9 4

5 Linear Estimation Problem 2: Assume that the mean vectors and joint covariance matrix for x and y are nown. Among all linear estimates of x as a function of y, find the one that minimizes MSE Assume x and y are zero mean random variables with nown joint covariance matrix. Find the linear estimator that minimizes the trace of the error covariance matrix ( xay)( xay) minr E A = minr Κ xx KxyA AKyx + AΚ yya A ( ) ( ) = minr Κ K Κ K + AK Κ Κ AK Κ A = r Κ xx K xyκ yykyx, with minimum at A= KxyΚ yy xx xy yy yx xy yy yy xy yy J. A. O'S. ESE 524, Lecture 4, 3/3/9 5

6 Linear Estimation Problem : x and y are jointly Gaussian. Find the exected value of x given y. Problem 2: x and Y have nown second order statistics. Among all linear estimates of x as a function of y, find the one that minimizes MSE Answer 2 = Answer Fundamental (Orthogonality) Proerty: he error in the estimate is orthogonal to the variables used in the estimate. Error covariance matrix ( x [ x y] ) x [ x y] E E E = Κ K Κ K xx xy yy yx ( ) ( [ ]) = [ ] ( ) ( [ ] [ ]) E E E E E x x y y x x y y y = E E E x y x y y = J. A. O'S. ESE 524, Lecture 4, 3/3/9 6

7 Recursive Linear Estimation Data Model and Problem Statements Suose a zero-mean, stationary Gaussian random rocess (GRP) with nown covariance function is given. Problem : Find the minimum mean square error estimate of the resent value of the GRP given the revious values. a: Derive the result as a transversal filter and derive the order-recursive udates (from to +). b: Derive the result as a lattice filter and derive the orderrecursive udates for the coefficients (reflection arameters). Problem 2: Assume that the GRP satisfies an autoregressive (AR) model of order. 2a: Find the maximum lielihood estimates of the AR arameters, including the time-recursive and order-recursive udates. 2b: Find the time- and order-recursive udates for the lattice filter coefficients (reflection arameters). J. A. O'S. ESE 524, Lecture 4, 3/3/9 7

8 Linear Prediction heory [ ] GRP Jointly Gaussian Er [ n] =, E rr n nl = cl Distributions for any Er [ n rn, rn2,... rn] = wr n+ wr 2 n wr n subset of random variables Jointly Gaussian linear r( n ) = [ rn... rn2 rn ] estimation results aly; w = [ w w... w] estimate of current value is a linear combination of Er [ n rn, rn2,... rn] = wr( n) revious values r( n ) Linear combination defines E ( n ) rn r r = + = a transversal filter n c Imlementation through a ( ) = c i, j ij, = [ c c... c] taed delay line w =, w = Stationary covariance 2 matrix is oelitz, E ( rn wr( n ) ) = c coefficients in a transversal filter are indeendent of time J. A. O'S. ESE 524, Lecture 4, 3/3/9 8

9 Linear Prediction heory Covariance matrix is oelitz oelitz constant diagonals Order recursion derives from artition of covariance matrix by order. here are two standard artitions. he second uses an exchange matrix J that has ones along the antidiagonal. Somewhat loose on subscrits J = r ( n ) E ( n ) r = r r n n + ( ) = c, = [ c c... c ] w i, j ij = = = c ( J ) c + = J J. A. O'S. ESE 524, Lecture 4, 3/3/9 + = c+ c c c c c c c c c c c c c c c c 9

10 Linear Prediction heory Equations resulting from the orthogonality roerty are the normal equations erminology: forward rediction error of order ([ r ] n r w ) E ( n) r ( n ) = w =, w = a w = w a = = + c w + = J. A. O'S. ESE 524, Lecture 4, 3/3/9

11 Order Udate on Inverse: Ran One Udate ( J ) } } + = + c J row ( c ) ( c ) ( c ) ( c ) + + = = c = rows ( ( ) ) c J J ( c ( ) ) J J ( J) ( c ( ) ) ( ( ) ) + c ( ) J J J J J J J ( c ) ( c ) ( c ) ( c ) J = J + J J J J =, JJ = I, J = J } } rows row J. A. O'S. ESE 524, Lecture 4, 3/3/9

12 Order Udate on Inverse: Ran One Udate = + a c + = = J ( c ) ( c ) ( c ) ( c ) ( c ) + + = = c b a ( J ) ( c ) ( c ) ( c ) ( c ) = + b = = Ja Jw J J + J J ( c ) b J. A. O'S. ESE 524, Lecture 4, 3/3/9 2

13 Bacward Prediction Predict r n- from following values Bacward rediction error of order ; bacward rediction error filter Exchange matrix comes in again Same error variance as in forward rediction Basis for order udate: udate bacward and forward rediction error coefficients ([ r ] n r w ) E ( n) r ( n) = J w =, w = J = J = Jw J. A. O'S. ESE 524, Lecture 4, 3/3/9 + b = Jw c J + b = = J Jw + = Jw b c + J + 2 = Jw J + + c J c+ = J Jw = c+ c c+ Jw Δ = b 3

14 Order Udate For order udate, combine equations to cancel to and bottom terms he terms in arentheses must be the order-udates of the forward and bacward rediction error filters b + 2 = c + Jw = + c w a c J c + c+ Jw = J w = c+ c Δ = Ja = b b+ =+ 2, 2 a+ =+ + b Δ + + 2, + = = a Δ b =, = a J. A. O'S. ESE 524, Lecture 4, 3/3/9 + Δ Δ 2 2 4

15 Order Udate Order udate requires multilies to find Δ One division + multilies to get the udate wo multilies to get the next error variance otal comlexity: 2 +3 Sum from to is ( +)+3 his is the transversal filter version of linear rediction. Initialization: = c, a = b =, = c, = c = 2. Udate reflection coefficient and error variance 2 Δ Δ = + Ja, + = 2 = a c 3. Udate rediction error filters b Δ b + = a Δ b a + = a 4. Recursion ste c = + = +, +, return to ste 2 J. A. O'S. ESE 524, Lecture 4, 3/3/9 5

16 Lattice Filter Lattice filter structure is different from transversal. Each bloc has a delay on the bacward rediction error and cross-multilication he multilers are reflection coefficients here is an efficient udate for the reflection coefficients (just use the revious udate rule for transversal filters) Δ Define filter in terms of Define the forward and bacward rediction errors F( n) = ar+ ( n), G( n) = br+ ( n), Order udate equations give Δ b F+ ( n) = a+ r+ 2( n) = + 2( n) r a Δ b = r+ 2( n) 2( n) r + a Δ = F( n) G( n) b Δ G+ ( n) = b+ r+ 2( n) = 2( n) r + a Δ = G( n) F( n) Δ F+ ( n) F( n) = G ( n) Δ G( n) J. A. O'S. ESE + 524, Lecture 4, 3/3/9 6

17 Estimation Aroaches In this aroach to linear rediction, the second order statistics are assumed nown and the otimal estimators are derived, including order-recursive udates for both transversal and lattice filters. If the covariance function is not nown, then it must be estimated, or the filter coefficients must be estimated directly. A maximum lielihood aroach is reasonable. he data-udate version of the equations taes the form of an RLS recursive least squares solution. he RLS algorithm is usually imlemented with an arbitrary, but small initial covariance matrix.

18 Data Driven Estimation Aroaches Both data udates and order udates Data udates: ran one udate to a matrix is a ran one udate to its inverse r ( n) ( N) ( N) r ( N) c ( N) N r( n ) r n = + ( N) = n= + n w ( N) ( N) ( N) N n= + = ( w r ) 2 n ( ) ( ) = ( ) ( ) ( ) ( ) ( ) r N n c N N N N N + ( N + ) =+ ( N) + ( N) r+ ( N) ( ) r r+ N + ( N) r + ( N) ( N) ( N) + + J. A. O'S. ESE 524, Lecture 4, 3/3/9 8

Detection and Estimation Theory

Detection and Estimation Theory ESE 524 Detetion and Estimation heory Joseh A. O Sullivan Samuel C. Sahs Professor Eletroni Systems and Signals Researh Laboratory Eletrial and Systems Engineering Washington University 2 Urbauer Hall

More information

Linear Prediction Theory

Linear Prediction Theory Linear Prediction Theory Joseph A. O Sullivan ESE 524 Spring 29 March 3, 29 Overview The problem of estimating a value of a random process given other values of the random process is pervasive. Many problems

More information

Numerical Linear Algebra

Numerical Linear Algebra Numerical Linear Algebra Numerous alications in statistics, articularly in the fitting of linear models. Notation and conventions: Elements of a matrix A are denoted by a ij, where i indexes the rows and

More information

Detection and Estimation Theory

Detection and Estimation Theory ESE 524 Detection and Estimation Theory Joseph A. O Sullivan Samuel C. Sachs Professor Electronic Systems and Signals Research Laboratory Electrical and Systems Engineering Washington University 211 Urbauer

More information

Detection and Estimation Theory

Detection and Estimation Theory ESE 54 Detection and Estimation heory Joseph A. O Sullivan Samuel C. Sachs Professor Electronic Systems and Signals Research Laboratory Electrical and Systems Engineering Washington University Urbauer

More information

A Recursive Block Incomplete Factorization. Preconditioner for Adaptive Filtering Problem

A Recursive Block Incomplete Factorization. Preconditioner for Adaptive Filtering Problem Alied Mathematical Sciences, Vol. 7, 03, no. 63, 3-3 HIKARI Ltd, www.m-hiari.com A Recursive Bloc Incomlete Factorization Preconditioner for Adative Filtering Problem Shazia Javed School of Mathematical

More information

Distributed Rule-Based Inference in the Presence of Redundant Information

Distributed Rule-Based Inference in the Presence of Redundant Information istribution Statement : roved for ublic release; distribution is unlimited. istributed Rule-ased Inference in the Presence of Redundant Information June 8, 004 William J. Farrell III Lockheed Martin dvanced

More information

General Linear Model Introduction, Classes of Linear models and Estimation

General Linear Model Introduction, Classes of Linear models and Estimation Stat 740 General Linear Model Introduction, Classes of Linear models and Estimation An aim of scientific enquiry: To describe or to discover relationshis among events (variables) in the controlled (laboratory)

More information

Detection and Estimation Theory

Detection and Estimation Theory ESE 524 Detection and Estimation Theory Joseph A. O Sullivan Samuel C. Sachs Professor Electronic Systems and Signals Research Laboratory Electrical and Systems Engineering Washington University 2 Urbauer

More information

Use of Transformations and the Repeated Statement in PROC GLM in SAS Ed Stanek

Use of Transformations and the Repeated Statement in PROC GLM in SAS Ed Stanek Use of Transformations and the Reeated Statement in PROC GLM in SAS Ed Stanek Introduction We describe how the Reeated Statement in PROC GLM in SAS transforms the data to rovide tests of hyotheses of interest.

More information

Chapter 10. Supplemental Text Material

Chapter 10. Supplemental Text Material Chater 1. Sulemental Tet Material S1-1. The Covariance Matri of the Regression Coefficients In Section 1-3 of the tetbook, we show that the least squares estimator of β in the linear regression model y=

More information

Dr. Shalabh Department of Mathematics and Statistics Indian Institute of Technology Kanpur

Dr. Shalabh Department of Mathematics and Statistics Indian Institute of Technology Kanpur Analysis of Variance and Design of Exeriment-I MODULE II LECTURE -4 GENERAL LINEAR HPOTHESIS AND ANALSIS OF VARIANCE Dr. Shalabh Deartment of Mathematics and Statistics Indian Institute of Technology Kanur

More information

CHAPTER-II Control Charts for Fraction Nonconforming using m-of-m Runs Rules

CHAPTER-II Control Charts for Fraction Nonconforming using m-of-m Runs Rules CHAPTER-II Control Charts for Fraction Nonconforming using m-of-m Runs Rules. Introduction: The is widely used in industry to monitor the number of fraction nonconforming units. A nonconforming unit is

More information

Detection and Estimation Theory

Detection and Estimation Theory ESE 524 Detection and Estimation Theory Joseph A. O Sullivan Samuel C. Sachs Professor Electronic Systems and Signals Research Laboratory Electrical and Systems Engineering Washington University 2 Urbauer

More information

Autoregressive (AR) Modelling

Autoregressive (AR) Modelling Autoregressive (AR) Modelling A. Uses of AR Modelling () Alications (a) Seech recognition and coding (storage) (b) System identification (c) Modelling and recognition of sonar, radar, geohysical signals

More information

15-451/651: Design & Analysis of Algorithms October 23, 2018 Lecture #17: Prediction from Expert Advice last changed: October 25, 2018

15-451/651: Design & Analysis of Algorithms October 23, 2018 Lecture #17: Prediction from Expert Advice last changed: October 25, 2018 5-45/65: Design & Analysis of Algorithms October 23, 208 Lecture #7: Prediction from Exert Advice last changed: October 25, 208 Prediction with Exert Advice Today we ll study the roblem of making redictions

More information

Bayesian Model Averaging Kriging Jize Zhang and Alexandros Taflanidis

Bayesian Model Averaging Kriging Jize Zhang and Alexandros Taflanidis HIPAD LAB: HIGH PERFORMANCE SYSTEMS LABORATORY DEPARTMENT OF CIVIL AND ENVIRONMENTAL ENGINEERING AND EARTH SCIENCES Bayesian Model Averaging Kriging Jize Zhang and Alexandros Taflanidis Why use metamodeling

More information

Cramér-Rao Bounds for Estimation of Linear System Noise Covariances

Cramér-Rao Bounds for Estimation of Linear System Noise Covariances Journal of Mechanical Engineering and Automation (): 6- DOI: 593/jjmea Cramér-Rao Bounds for Estimation of Linear System oise Covariances Peter Matiso * Vladimír Havlena Czech echnical University in Prague

More information

ECONOMETRIC METHODS II: TIME SERIES LECTURE NOTES ON THE KALMAN FILTER. The Kalman Filter. We will be concerned with state space systems of the form

ECONOMETRIC METHODS II: TIME SERIES LECTURE NOTES ON THE KALMAN FILTER. The Kalman Filter. We will be concerned with state space systems of the form ECONOMETRIC METHODS II: TIME SERIES LECTURE NOTES ON THE KALMAN FILTER KRISTOFFER P. NIMARK The Kalman Filter We will be concerned with state space systems of the form X t = A t X t 1 + C t u t 0.1 Z t

More information

LPC methods are the most widely used in. recognition, speaker recognition and verification

LPC methods are the most widely used in. recognition, speaker recognition and verification Digital Seech Processing Lecture 3 Linear Predictive Coding (LPC)- Introduction LPC Methods LPC methods are the most widely used in seech coding, seech synthesis, seech recognition, seaker recognition

More information

EEL 5544 Noise in Linear Systems Lecture 30. X (s) = E [ e sx] f X (x)e sx dx. Moments can be found from the Laplace transform as

EEL 5544 Noise in Linear Systems Lecture 30. X (s) = E [ e sx] f X (x)e sx dx. Moments can be found from the Laplace transform as L30-1 EEL 5544 Noise in Linear Systems Lecture 30 OTHER TRANSFORMS For a continuous, nonnegative RV X, the Laplace transform of X is X (s) = E [ e sx] = 0 f X (x)e sx dx. For a nonnegative RV, the Laplace

More information

The Recursive Fitting of Multivariate. Complex Subset ARX Models

The Recursive Fitting of Multivariate. Complex Subset ARX Models lied Mathematical Sciences, Vol. 1, 2007, no. 23, 1129-1143 The Recursive Fitting of Multivariate Comlex Subset RX Models Jack Penm School of Finance and lied Statistics NU College of Business & conomics

More information

Short course A vademecum of statistical pattern recognition techniques with applications to image and video analysis. Agenda

Short course A vademecum of statistical pattern recognition techniques with applications to image and video analysis. Agenda Short course A vademecum of statistical attern recognition techniques with alications to image and video analysis Lecture 6 The Kalman filter. Particle filters Massimo Piccardi University of Technology,

More information

Observer/Kalman Filter Time Varying System Identification

Observer/Kalman Filter Time Varying System Identification Observer/Kalman Filter Time Varying System Identification Manoranjan Majji Texas A&M University, College Station, Texas, USA Jer-Nan Juang 2 National Cheng Kung University, Tainan, Taiwan and John L. Junins

More information

Self-Driving Car ND - Sensor Fusion - Extended Kalman Filters

Self-Driving Car ND - Sensor Fusion - Extended Kalman Filters Self-Driving Car ND - Sensor Fusion - Extended Kalman Filters Udacity and Mercedes February 7, 07 Introduction Lesson Ma 3 Estimation Problem Refresh 4 Measurement Udate Quiz 5 Kalman Filter Equations

More information

Spectral Analysis by Stationary Time Series Modeling

Spectral Analysis by Stationary Time Series Modeling Chater 6 Sectral Analysis by Stationary Time Series Modeling Choosing a arametric model among all the existing models is by itself a difficult roblem. Generally, this is a riori information about the signal

More information

For final project discussion every afternoon Mark and I will be available

For final project discussion every afternoon Mark and I will be available Worshop report 1. Daniels report is on website 2. Don t expect to write it based on listening to one project (we had 6 only 2 was sufficient quality) 3. I suggest writing it on one presentation. 4. Include

More information

A Comparison between Biased and Unbiased Estimators in Ordinary Least Squares Regression

A Comparison between Biased and Unbiased Estimators in Ordinary Least Squares Regression Journal of Modern Alied Statistical Methods Volume Issue Article 7 --03 A Comarison between Biased and Unbiased Estimators in Ordinary Least Squares Regression Ghadban Khalaf King Khalid University, Saudi

More information

Review (probability, linear algebra) CE-717 : Machine Learning Sharif University of Technology

Review (probability, linear algebra) CE-717 : Machine Learning Sharif University of Technology Review (probability, linear algebra) CE-717 : Machine Learning Sharif University of Technology M. Soleymani Fall 2012 Some slides have been adopted from Prof. H.R. Rabiee s and also Prof. R. Gutierrez-Osuna

More information

The Properties of Pure Diagonal Bilinear Models

The Properties of Pure Diagonal Bilinear Models American Journal of Mathematics and Statistics 016, 6(4): 139-144 DOI: 10.593/j.ajms.0160604.01 The roerties of ure Diagonal Bilinear Models C. O. Omekara Deartment of Statistics, Michael Okara University

More information

University of Cambridge Engineering Part IIB Module 3F3: Signal and Pattern Processing Handout 2:. The Multivariate Gaussian & Decision Boundaries

University of Cambridge Engineering Part IIB Module 3F3: Signal and Pattern Processing Handout 2:. The Multivariate Gaussian & Decision Boundaries University of Cambridge Engineering Part IIB Module 3F3: Signal and Pattern Processing Handout :. The Multivariate Gaussian & Decision Boundaries..15.1.5 1 8 6 6 8 1 Mark Gales mjfg@eng.cam.ac.uk Lent

More information

MATH 2710: NOTES FOR ANALYSIS

MATH 2710: NOTES FOR ANALYSIS MATH 270: NOTES FOR ANALYSIS The main ideas we will learn from analysis center around the idea of a limit. Limits occurs in several settings. We will start with finite limits of sequences, then cover infinite

More information

Chater Matrix Norms and Singular Value Decomosition Introduction In this lecture, we introduce the notion of a norm for matrices The singular value de

Chater Matrix Norms and Singular Value Decomosition Introduction In this lecture, we introduce the notion of a norm for matrices The singular value de Lectures on Dynamic Systems and Control Mohammed Dahleh Munther A Dahleh George Verghese Deartment of Electrical Engineering and Comuter Science Massachuasetts Institute of Technology c Chater Matrix Norms

More information

UCSD ECE153 Handout #30 Prof. Young-Han Kim Thursday, May 15, Homework Set #6 Due: Thursday, May 22, 2011

UCSD ECE153 Handout #30 Prof. Young-Han Kim Thursday, May 15, Homework Set #6 Due: Thursday, May 22, 2011 UCSD ECE153 Handout #30 Prof. Young-Han Kim Thursday, May 15, 2014 Homework Set #6 Due: Thursday, May 22, 2011 1. Linear estimator. Consider a channel with the observation Y = XZ, where the signal X and

More information

Estimation Tasks. Short Course on Image Quality. Matthew A. Kupinski. Introduction

Estimation Tasks. Short Course on Image Quality. Matthew A. Kupinski. Introduction Estimation Tasks Short Course on Image Quality Matthew A. Kupinski Introduction Section 13.3 in B&M Keep in mind the similarities between estimation and classification Image-quality is a statistical concept

More information

Moment Generating Function. STAT/MTHE 353: 5 Moment Generating Functions and Multivariate Normal Distribution

Moment Generating Function. STAT/MTHE 353: 5 Moment Generating Functions and Multivariate Normal Distribution Moment Generating Function STAT/MTHE 353: 5 Moment Generating Functions and Multivariate Normal Distribution T. Linder Queen s University Winter 07 Definition Let X (X,...,X n ) T be a random vector and

More information

F denotes cumulative density. denotes probability density function; (.)

F denotes cumulative density. denotes probability density function; (.) BAYESIAN ANALYSIS: FOREWORDS Notation. System means the real thing and a model is an assumed mathematical form for the system.. he probability model class M contains the set of the all admissible models

More information

Shannon meets Wiener II: On MMSE estimation in successive decoding schemes

Shannon meets Wiener II: On MMSE estimation in successive decoding schemes Shannon meets Wiener II: On MMSE estimation in successive decoding schemes G. David Forney, Jr. MIT Cambridge, MA 0239 USA forneyd@comcast.net Abstract We continue to discuss why MMSE estimation arises

More information

ECE 541 Stochastic Signals and Systems Problem Set 9 Solutions

ECE 541 Stochastic Signals and Systems Problem Set 9 Solutions ECE 541 Stochastic Signals and Systems Problem Set 9 Solutions Problem Solutions : Yates and Goodman, 9.5.3 9.1.4 9.2.2 9.2.6 9.3.2 9.4.2 9.4.6 9.4.7 and Problem 9.1.4 Solution The joint PDF of X and Y

More information

4. Score normalization technical details We now discuss the technical details of the score normalization method.

4. Score normalization technical details We now discuss the technical details of the score normalization method. SMT SCORING SYSTEM This document describes the scoring system for the Stanford Math Tournament We begin by giving an overview of the changes to scoring and a non-technical descrition of the scoring rules

More information

Copula Regression RAHUL A. PARSA DRAKE UNIVERSITY & STUART A. KLUGMAN SOCIETY OF ACTUARIES CASUALTY ACTUARIAL SOCIETY MAY 18,2011

Copula Regression RAHUL A. PARSA DRAKE UNIVERSITY & STUART A. KLUGMAN SOCIETY OF ACTUARIES CASUALTY ACTUARIAL SOCIETY MAY 18,2011 Copula Regression RAHUL A. PARSA DRAKE UNIVERSITY & STUART A. KLUGMAN SOCIETY OF ACTUARIES CASUALTY ACTUARIAL SOCIETY MAY 18,2011 Outline Ordinary Least Squares (OLS) Regression Generalized Linear Models

More information

Multiple Random Variables

Multiple Random Variables Multiple Random Variables This Version: July 30, 2015 Multiple Random Variables 2 Now we consider models with more than one r.v. These are called multivariate models For instance: height and weight An

More information

Introduction to Probability for Graphical Models

Introduction to Probability for Graphical Models Introduction to Probability for Grahical Models CSC 4 Kaustav Kundu Thursday January 4, 06 *Most slides based on Kevin Swersky s slides, Inmar Givoni s slides, Danny Tarlow s slides, Jaser Snoek s slides,

More information

ECE 534 Information Theory - Midterm 2

ECE 534 Information Theory - Midterm 2 ECE 534 Information Theory - Midterm Nov.4, 009. 3:30-4:45 in LH03. You will be given the full class time: 75 minutes. Use it wisely! Many of the roblems have short answers; try to find shortcuts. You

More information

B8.1 Martingales Through Measure Theory. Concept of independence

B8.1 Martingales Through Measure Theory. Concept of independence B8.1 Martingales Through Measure Theory Concet of indeendence Motivated by the notion of indeendent events in relims robability, we have generalized the concet of indeendence to families of σ-algebras.

More information

Notes on Instrumental Variables Methods

Notes on Instrumental Variables Methods Notes on Instrumental Variables Methods Michele Pellizzari IGIER-Bocconi, IZA and frdb 1 The Instrumental Variable Estimator Instrumental variable estimation is the classical solution to the roblem of

More information

MULTI-CHANNEL PARAMETRIC ESTIMATOR FAST BLOCK MATRIX INVERSES

MULTI-CHANNEL PARAMETRIC ESTIMATOR FAST BLOCK MATRIX INVERSES MULTI-CANNEL ARAMETRIC ESTIMATOR FAST BLOCK MATRIX INVERSES S Lawrence Marle Jr School of Electrical Engineering and Comuter Science Oregon State University Corvallis, OR 97331 Marle@eecsoregonstateedu

More information

Homework 2: Solution

Homework 2: Solution 0-704: Information Processing and Learning Sring 0 Lecturer: Aarti Singh Homework : Solution Acknowledgement: The TA graciously thanks Rafael Stern for roviding most of these solutions.. Problem Hence,

More information

Lecture 16: State Space Model and Kalman Filter Bus 41910, Time Series Analysis, Mr. R. Tsay

Lecture 16: State Space Model and Kalman Filter Bus 41910, Time Series Analysis, Mr. R. Tsay Lecture 6: State Space Model and Kalman Filter Bus 490, Time Series Analysis, Mr R Tsay A state space model consists of two equations: S t+ F S t + Ge t+, () Z t HS t + ɛ t (2) where S t is a state vector

More information

Lecture 19: Bayesian Linear Estimators

Lecture 19: Bayesian Linear Estimators ECE 830 Fall 2010 Statistical Signal Processing instructor: R Nowa, scribe: I Rosado-Mendez Lecture 19: Bayesian Linear Estimators 1 Linear Minimum Mean-Square Estimator Suppose our data is set X R n,

More information

Least Squares. Ken Kreutz-Delgado (Nuno Vasconcelos) ECE 175A Winter UCSD

Least Squares. Ken Kreutz-Delgado (Nuno Vasconcelos) ECE 175A Winter UCSD Least Squares Ken Kreutz-Delgado (Nuno Vasconcelos) ECE 75A Winter 0 - UCSD (Unweighted) Least Squares Assume linearity in the unnown, deterministic model parameters Scalar, additive noise model: y f (

More information

José Alberto Mauricio. Instituto Complutense de Análisis Económico. Universidad Complutense de Madrid. Campus de Somosaguas Madrid - SPAIN

José Alberto Mauricio. Instituto Complutense de Análisis Económico. Universidad Complutense de Madrid. Campus de Somosaguas Madrid - SPAIN A CORRECTED ALGORITHM FOR COMPUTING THE THEORETICAL AUTOCOVARIANCE MATRICES OF A VECTOR ARMA MODEL José Alberto Mauricio Instituto Comlutense de Análisis Económico Universidad Comlutense de Madrid Camus

More information

arxiv: v1 [physics.data-an] 26 Oct 2012

arxiv: v1 [physics.data-an] 26 Oct 2012 Constraints on Yield Parameters in Extended Maximum Likelihood Fits Till Moritz Karbach a, Maximilian Schlu b a TU Dortmund, Germany, moritz.karbach@cern.ch b TU Dortmund, Germany, maximilian.schlu@cern.ch

More information

1 Data Arrays and Decompositions

1 Data Arrays and Decompositions 1 Data Arrays and Decompositions 1.1 Variance Matrices and Eigenstructure Consider a p p positive definite and symmetric matrix V - a model parameter or a sample variance matrix. The eigenstructure is

More information

Generation of Linear Models using Simulation Results

Generation of Linear Models using Simulation Results 4. IMACS-Symosium MATHMOD, Wien, 5..003,. 436-443 Generation of Linear Models using Simulation Results Georg Otte, Sven Reitz, Joachim Haase Fraunhofer Institute for Integrated Circuits, Branch Lab Design

More information

Adaptive Filter Theory

Adaptive Filter Theory 0 Adaptive Filter heory Sung Ho Cho Hanyang University Seoul, Korea (Office) +8--0-0390 (Mobile) +8-10-541-5178 dragon@hanyang.ac.kr able of Contents 1 Wiener Filters Gradient Search by Steepest Descent

More information

COMPARISON OF VARIOUS OPTIMIZATION TECHNIQUES FOR DESIGN FIR DIGITAL FILTERS

COMPARISON OF VARIOUS OPTIMIZATION TECHNIQUES FOR DESIGN FIR DIGITAL FILTERS NCCI 1 -National Conference on Comutational Instrumentation CSIO Chandigarh, INDIA, 19- March 1 COMPARISON OF VARIOUS OPIMIZAION ECHNIQUES FOR DESIGN FIR DIGIAL FILERS Amanjeet Panghal 1, Nitin Mittal,Devender

More information

Outline. Markov Chains and Markov Models. Outline. Markov Chains. Markov Chains Definitions Huizhen Yu

Outline. Markov Chains and Markov Models. Outline. Markov Chains. Markov Chains Definitions Huizhen Yu and Markov Models Huizhen Yu janey.yu@cs.helsinki.fi Det. Comuter Science, Univ. of Helsinki Some Proerties of Probabilistic Models, Sring, 200 Huizhen Yu (U.H.) and Markov Models Jan. 2 / 32 Huizhen Yu

More information

Chapter 13 Variable Selection and Model Building

Chapter 13 Variable Selection and Model Building Chater 3 Variable Selection and Model Building The comlete regsion analysis deends on the exlanatory variables ent in the model. It is understood in the regsion analysis that only correct and imortant

More information

3.4 Design Methods for Fractional Delay Allpass Filters

3.4 Design Methods for Fractional Delay Allpass Filters Chater 3. Fractional Delay Filters 15 3.4 Design Methods for Fractional Delay Allass Filters Above we have studied the design of FIR filters for fractional delay aroximation. ow we show how recursive or

More information

E( x ) = [b(n) - a(n,m)x(m) ]

E( x ) = [b(n) - a(n,m)x(m) ] Exam #, EE5353, Fall 0. Here we consider MLPs with binary-valued inuts (0 or ). (a) If the MLP has inuts, what is the maximum degree D of its PBF model? (b) If the MLP has inuts, what is the maximum value

More information

The Longest Run of Heads

The Longest Run of Heads The Longest Run of Heads Review by Amarioarei Alexandru This aer is a review of older and recent results concerning the distribution of the longest head run in a coin tossing sequence, roblem that arise

More information

MODEL-BASED MULTIPLE FAULT DETECTION AND ISOLATION FOR NONLINEAR SYSTEMS

MODEL-BASED MULTIPLE FAULT DETECTION AND ISOLATION FOR NONLINEAR SYSTEMS MODEL-BASED MULIPLE FAUL DEECION AND ISOLAION FOR NONLINEAR SYSEMS Ivan Castillo, and homas F. Edgar he University of exas at Austin Austin, X 78712 David Hill Chemstations Houston, X 77009 Abstract A

More information

Iterative Methods for Designing Orthogonal and Biorthogonal Two-channel FIR Filter Banks with Regularities

Iterative Methods for Designing Orthogonal and Biorthogonal Two-channel FIR Filter Banks with Regularities R. Bregović and T. Saramäi, Iterative methods for designing orthogonal and biorthogonal two-channel FIR filter bans with regularities, Proc. Of Int. Worsho on Sectral Transforms and Logic Design for Future

More information

1. INTRODUCTION. Fn 2 = F j F j+1 (1.1)

1. INTRODUCTION. Fn 2 = F j F j+1 (1.1) CERTAIN CLASSES OF FINITE SUMS THAT INVOLVE GENERALIZED FIBONACCI AND LUCAS NUMBERS The beautiful identity R.S. Melham Deartment of Mathematical Sciences, University of Technology, Sydney PO Box 23, Broadway,

More information

Lecture 6. 2 Recurrence/transience, harmonic functions and martingales

Lecture 6. 2 Recurrence/transience, harmonic functions and martingales Lecture 6 Classification of states We have shown that all states of an irreducible countable state Markov chain must of the same tye. This gives rise to the following classification. Definition. [Classification

More information

Analysis of M/M/n/K Queue with Multiple Priorities

Analysis of M/M/n/K Queue with Multiple Priorities Analysis of M/M/n/K Queue with Multile Priorities Coyright, Sanjay K. Bose For a P-riority system, class P of highest riority Indeendent, Poisson arrival rocesses for each class with i as average arrival

More information

Multivariate Random Variable

Multivariate Random Variable Multivariate Random Variable Author: Author: Andrés Hincapié and Linyi Cao This Version: August 7, 2016 Multivariate Random Variable 3 Now we consider models with more than one r.v. These are called multivariate

More information

On Fractional Predictive PID Controller Design Method Emmanuel Edet*. Reza Katebi.**

On Fractional Predictive PID Controller Design Method Emmanuel Edet*. Reza Katebi.** On Fractional Predictive PID Controller Design Method Emmanuel Edet*. Reza Katebi.** * echnology and Innovation Centre, Level 4, Deartment of Electronic and Electrical Engineering, University of Strathclyde,

More information

The Graph Accessibility Problem and the Universality of the Collision CRCW Conflict Resolution Rule

The Graph Accessibility Problem and the Universality of the Collision CRCW Conflict Resolution Rule The Grah Accessibility Problem and the Universality of the Collision CRCW Conflict Resolution Rule STEFAN D. BRUDA Deartment of Comuter Science Bisho s University Lennoxville, Quebec J1M 1Z7 CANADA bruda@cs.ubishos.ca

More information

Optimization. Sherif Khalifa. Sherif Khalifa () Optimization 1 / 50

Optimization. Sherif Khalifa. Sherif Khalifa () Optimization 1 / 50 Sherif Khalifa Sherif Khalifa () Optimization 1 / 50 Y f(x 0 ) Y=f(X) X 0 X Sherif Khalifa () Optimization 2 / 50 Y Y=f(X) f(x 0 ) X 0 X Sherif Khalifa () Optimization 3 / 50 A necessary condition for

More information

DETC2003/DAC AN EFFICIENT ALGORITHM FOR CONSTRUCTING OPTIMAL DESIGN OF COMPUTER EXPERIMENTS

DETC2003/DAC AN EFFICIENT ALGORITHM FOR CONSTRUCTING OPTIMAL DESIGN OF COMPUTER EXPERIMENTS Proceedings of DETC 03 ASME 003 Design Engineering Technical Conferences and Comuters and Information in Engineering Conference Chicago, Illinois USA, Setember -6, 003 DETC003/DAC-48760 AN EFFICIENT ALGORITHM

More information

Nonlinear Estimation. Professor David H. Staelin

Nonlinear Estimation. Professor David H. Staelin Nonlinear Estimation Professor Davi H. Staelin Massachusetts Institute of Technology Lec22.5-1 [ DD 1 2] ˆ = 1 Best Fit, "Linear Regression" Case I: Nonlinear Physics Data Otimum Estimator P() ˆ D 1 D

More information

A Simple Weight Decay Can Improve. Abstract. It has been observed in numerical simulations that a weight decay can improve

A Simple Weight Decay Can Improve. Abstract. It has been observed in numerical simulations that a weight decay can improve In Advances in Neural Information Processing Systems 4, J.E. Moody, S.J. Hanson and R.P. Limann, eds. Morgan Kaumann Publishers, San Mateo CA, 1995,. 950{957. A Simle Weight Decay Can Imrove Generalization

More information

Lecture 13 Heat Engines

Lecture 13 Heat Engines Lecture 3 Heat Engines hermodynamic rocesses and entroy hermodynamic cycles Extracting work from heat - How do we define engine efficiency? - Carnot cycle: the best ossible efficiency Reading for this

More information

Training sequence optimization for frequency selective channels with MAP equalization

Training sequence optimization for frequency selective channels with MAP equalization 532 ISCCSP 2008, Malta, 12-14 March 2008 raining sequence otimization for frequency selective channels with MAP equalization Imed Hadj Kacem, Noura Sellami Laboratoire LEI ENIS, Route Sokra km 35 BP 3038

More information

A New Asymmetric Interaction Ridge (AIR) Regression Method

A New Asymmetric Interaction Ridge (AIR) Regression Method A New Asymmetric Interaction Ridge (AIR) Regression Method by Kristofer Månsson, Ghazi Shukur, and Pär Sölander The Swedish Retail Institute, HUI Research, Stockholm, Sweden. Deartment of Economics and

More information

Lecture 25: Review. Statistics 104. April 23, Colin Rundel

Lecture 25: Review. Statistics 104. April 23, Colin Rundel Lecture 25: Review Statistics 104 Colin Rundel April 23, 2012 Joint CDF F (x, y) = P [X x, Y y] = P [(X, Y ) lies south-west of the point (x, y)] Y (x,y) X Statistics 104 (Colin Rundel) Lecture 25 April

More information

Asymptotic Properties of the Markov Chain Model method of finding Markov chains Generators of..

Asymptotic Properties of the Markov Chain Model method of finding Markov chains Generators of.. IOSR Journal of Mathematics (IOSR-JM) e-issn: 78-578, -ISSN: 319-765X. Volume 1, Issue 4 Ver. III (Jul. - Aug.016), PP 53-60 www.iosrournals.org Asymtotic Proerties of the Markov Chain Model method of

More information

SAS for Bayesian Mediation Analysis

SAS for Bayesian Mediation Analysis Paer 1569-2014 SAS for Bayesian Mediation Analysis Miočević Milica, Arizona State University; David P. MacKinnon, Arizona State University ABSTRACT Recent statistical mediation analysis research focuses

More information

EE482: Digital Signal Processing Applications

EE482: Digital Signal Processing Applications Professor Brendan Morris, SEB 3216, brendan.morris@unlv.edu EE482: Digital Signal Processing Applications Spring 2014 TTh 14:30-15:45 CBC C222 Lecture 11 Adaptive Filtering 14/03/04 http://www.ee.unlv.edu/~b1morris/ee482/

More information

Detection and Estimation Theory

Detection and Estimation Theory ESE 54 Detection and Estiation Theory Joseph A. O Sullivan Sauel C. Sachs Professor Electronic Systes and Signals Research Laboratory Electrical and Systes Engineering Washington University 11 Urbauer

More information

Elementary Analysis in Q p

Elementary Analysis in Q p Elementary Analysis in Q Hannah Hutter, May Szedlák, Phili Wirth November 17, 2011 This reort follows very closely the book of Svetlana Katok 1. 1 Sequences and Series In this section we will see some

More information

Appendix A : Introduction to Probability and stochastic processes

Appendix A : Introduction to Probability and stochastic processes A-1 Mathematical methods in communication July 5th, 2009 Appendix A : Introduction to Probability and stochastic processes Lecturer: Haim Permuter Scribe: Shai Shapira and Uri Livnat The probability of

More information

Data Analysis and Manifold Learning Lecture 6: Probabilistic PCA and Factor Analysis

Data Analysis and Manifold Learning Lecture 6: Probabilistic PCA and Factor Analysis Data Analysis and Manifold Learning Lecture 6: Probabilistic PCA and Factor Analysis Radu Horaud INRIA Grenoble Rhone-Alpes, France Radu.Horaud@inrialpes.fr http://perception.inrialpes.fr/ Outline of Lecture

More information

Solution sheet ξi ξ < ξ i+1 0 otherwise ξ ξ i N i,p 1 (ξ) + where 0 0

Solution sheet ξi ξ < ξ i+1 0 otherwise ξ ξ i N i,p 1 (ξ) + where 0 0 Advanced Finite Elements MA5337 - WS7/8 Solution sheet This exercise sheets deals with B-slines and NURBS, which are the basis of isogeometric analysis as they will later relace the olynomial ansatz-functions

More information

LINEAR SYSTEMS WITH POLYNOMIAL UNCERTAINTY STRUCTURE: STABILITY MARGINS AND CONTROL

LINEAR SYSTEMS WITH POLYNOMIAL UNCERTAINTY STRUCTURE: STABILITY MARGINS AND CONTROL LINEAR SYSTEMS WITH POLYNOMIAL UNCERTAINTY STRUCTURE: STABILITY MARGINS AND CONTROL Mohammad Bozorg Deatment of Mechanical Engineering University of Yazd P. O. Box 89195-741 Yazd Iran Fax: +98-351-750110

More information

Multivariable Generalized Predictive Scheme for Gas Turbine Control in Combined Cycle Power Plant

Multivariable Generalized Predictive Scheme for Gas Turbine Control in Combined Cycle Power Plant Multivariable Generalized Predictive Scheme for Gas urbine Control in Combined Cycle Power Plant L.X.Niu and X.J.Liu Deartment of Automation North China Electric Power University Beiing, China, 006 e-mail

More information

Applied Fitting Theory VI. Formulas for Kinematic Fitting

Applied Fitting Theory VI. Formulas for Kinematic Fitting Alied Fitting heory VI Paul Avery CBX 98 37 June 9, 1998 Ar. 17, 1999 (rev.) I Introduction Formulas for Kinematic Fitting I intend for this note and the one following it to serve as mathematical references,

More information

TSRT14: Sensor Fusion Lecture 9

TSRT14: Sensor Fusion Lecture 9 TSRT14: Sensor Fusion Lecture 9 Simultaneous localization and mapping (SLAM) Gustaf Hendeby gustaf.hendeby@liu.se TSRT14 Lecture 9 Gustaf Hendeby Spring 2018 1 / 28 Le 9: simultaneous localization and

More information

Solutions to Homework Set #6 (Prepared by Lele Wang)

Solutions to Homework Set #6 (Prepared by Lele Wang) Solutions to Homework Set #6 (Prepared by Lele Wang) Gaussian random vector Given a Gaussian random vector X N (µ, Σ), where µ ( 5 ) T and 0 Σ 4 0 0 0 9 (a) Find the pdfs of i X, ii X + X 3, iii X + X

More information

Learning Sequence Motif Models Using Gibbs Sampling

Learning Sequence Motif Models Using Gibbs Sampling Learning Sequence Motif Models Using Gibbs Samling BMI/CS 776 www.biostat.wisc.edu/bmi776/ Sring 2018 Anthony Gitter gitter@biostat.wisc.edu These slides excluding third-arty material are licensed under

More information

Hidden Predictors: A Factor Analysis Primer

Hidden Predictors: A Factor Analysis Primer Hidden Predictors: A Factor Analysis Primer Ryan C Sanchez Western Washington University Factor Analysis is a owerful statistical method in the modern research sychologist s toolbag When used roerly, factor

More information

OR MSc Maths Revision Course

OR MSc Maths Revision Course OR MSc Maths Revision Course Tom Byrne School of Mathematics University of Edinburgh t.m.byrne@sms.ed.ac.uk 15 September 2017 General Information Today JCMB Lecture Theatre A, 09:30-12:30 Mathematics revision

More information

Consider the joint probability, P(x,y), shown as the contours in the figure above. P(x) is given by the integral of P(x,y) over all values of y.

Consider the joint probability, P(x,y), shown as the contours in the figure above. P(x) is given by the integral of P(x,y) over all values of y. ATMO/OPTI 656b Spring 009 Bayesian Retrievals Note: This follows the discussion in Chapter of Rogers (000) As we have seen, the problem with the nadir viewing emission measurements is they do not contain

More information

Chapter 5,6 Multiple RandomVariables

Chapter 5,6 Multiple RandomVariables Chapter 5,6 Multiple RandomVariables ENCS66 - Probabilityand Stochastic Processes Concordia University Vector RandomVariables A vector r.v. is a function where is the sample space of a random experiment.

More information

Pretest (Optional) Use as an additional pacing tool to guide instruction. August 21

Pretest (Optional) Use as an additional pacing tool to guide instruction. August 21 Trimester 1 Pretest (Otional) Use as an additional acing tool to guide instruction. August 21 Beyond the Basic Facts In Trimester 1, Grade 7 focus on multilication. Daily Unit 1: The Number System Part

More information

Towards understanding the Lorenz curve using the Uniform distribution. Chris J. Stephens. Newcastle City Council, Newcastle upon Tyne, UK

Towards understanding the Lorenz curve using the Uniform distribution. Chris J. Stephens. Newcastle City Council, Newcastle upon Tyne, UK Towards understanding the Lorenz curve using the Uniform distribution Chris J. Stehens Newcastle City Council, Newcastle uon Tyne, UK (For the Gini-Lorenz Conference, University of Siena, Italy, May 2005)

More information

A SIMPLE PLASTICITY MODEL FOR PREDICTING TRANSVERSE COMPOSITE RESPONSE AND FAILURE

A SIMPLE PLASTICITY MODEL FOR PREDICTING TRANSVERSE COMPOSITE RESPONSE AND FAILURE THE 19 TH INTERNATIONAL CONFERENCE ON COMPOSITE MATERIALS A SIMPLE PLASTICITY MODEL FOR PREDICTING TRANSVERSE COMPOSITE RESPONSE AND FAILURE K.W. Gan*, M.R. Wisnom, S.R. Hallett, G. Allegri Advanced Comosites

More information

Review (Probability & Linear Algebra)

Review (Probability & Linear Algebra) Review (Probability & Linear Algebra) CE-725 : Statistical Pattern Recognition Sharif University of Technology Spring 2013 M. Soleymani Outline Axioms of probability theory Conditional probability, Joint

More information