Maxima and Minima for Functions with side conditions. Lagrange s Multiplier. Question Find the critical points of w= xyz subject to the condition

Size: px
Start display at page:

Download "Maxima and Minima for Functions with side conditions. Lagrange s Multiplier. Question Find the critical points of w= xyz subject to the condition"

Transcription

1 Maima and Minima for Functions with side conditions. Lagrange s Multiplier. Find the critical points of w= z subject to the condition + + z =. We form the function ϕ = f + λg = z+ λ( + + z ) and obtain four equations ϕ = z+ λ= ϕ = z+ λ = ϕ = + λ z= z & + + z = Multipling the first three equations b z,, respectivel, adding z and using in fourth equation we find λ =. Using this relation we have (,, ± ), (, ±,), ( ±,,), and ±, ±, ± as the critical points. Find the critical points of the function where + = 5. Test for maima & minima. F(,, λ) = λ( + 5) = + + λ=. (i) F = + 6+ λ = (ii) z = & + 5=... (iii) (i) ( + λ) + =... (iv) (ii) + (8 + λ) =.... (v) Multipling equation (iv) b, (v) b ( + λ) and adding ( + λ) + = ( + λ) + ( + λ)(8 + λ) = ( + λ)(8 + λ) = = or λ + 9λ 6= =, λ = 8, 7 From (ii), = = (,) does not satisf (iii) It is not a critical point. λ = 8 = form (iv) Put this value of in (iii)

2 6 + = 5 9 =± (,) & (, ) are the critical points. Similarl when λ = 7, we have = from (iv) And putting the value of in (iii) we get =± ( ±, ± ) are the other two critical points. A= = + λ B= F = C= F = 6+ λ When λ = 8 A = + 6= 8, B =, C = 6+ 6= and so B AC = = F(,, λ ) = ( + 5) when λ = 8 F = + + At (,) F = F( + h, + h) F(,) (, ) 9 6 = ( h) ( h)( h) 6( h) 9( ) + ( )( ) 6() + = 9(6 8 h+ h ) + ( h h ) + 6(9+ 6 h+ h ) + 88 = 7h+ 9h + h h h+ 6h + 88 = 9h (,) is the point of minimum value. Similarl (, ) gives a point of minimum value. And when λ = 7, ( ±, ± ) are the point of maimum value. Find the critical points of w= + z, where Test for a maima and minima. Consider the function F( z,, ) = + z+ λ( + + z ) = + λ, F = λ, F = + λz z + + z =. For critical points, we have + λ =... (i) λ =... (ii) + λz =.. (iii) and + + z = (iv) Solving these equations we have λ =± λ = gives,, as the critical point. λ = gives,, as the critical point.

3 A= = λ, B= F =, C= F = λ i) λ = A =, B =, C = so B AC = < and A >,, is a point of relative minimum value. ii) λ = A =, B =, C = so B AC = < and A <,, is a point of relative maimum value. Find the critical points of w= z where z =. Test for the maima and minima. Consider F = z+ λ( + ) + λ( z) For critical points = z+ λ+ λ =. (i) F = z+ λ =... (ii) z F = λ =.. (iii) & + =... (iv) z =.. (v) z From (iii) λ = and from (ii) λ = Putting in (i), we get z z + = z z+ = = z form (iv) But from (iv), = = = The critical points are (,, ) and (,,). From (ii) i) At A F λ = =, B AC = z λ + = = ( ) = ( ) ±,, ±, B= F = z, C= F = λ + = & =, ± ±,, ±, z z z λ = B AC = z = ±,, ±, we have B ( ) ( ) AC = <

4 z And A= F = λ = = < Function is maimum at ±,, ±. Similarl we can show that w is maimum at (,,) and minimum at ±,, ± & (,,). Find the point to the curves + z =, + = nearest to the origin (,,,). Let ( z,, ) be a point on the curve. Then its distance from the origin is given b We are to minimize + + z f = d = + + z subject to the conditions + z =, + = Consider F = + + z + λ + z + λ + = + ( ) λ+ λ F = + ( ) λ + λ ( ) ( ) Fz = z+ λ( ) z For critical points, we have ( + λ+ λ) λ= (i) ( + λ+ λ) λ=.(ii) ( z λ ) =... (iii) + z =. (iv) + =.... (v) From (iii), we have z = & λ =. z = in (iv) gives + = = + But + = = = or = or both are zero. We can not take =, = at a same time because it gives (,,) which is origin itself. z =, = in (v) & z =, = in (v) = =± (, ±,) are the critical points = =± ( ±,,) are the other critical points. f = d = at these four points These are the required points at which function is nearest to origin.

5 Find the shortest distance from the origin to the curve = 5 We are to find the minimum value of f = d = + Consider subject to the condition F = + + λ( ) = + λ(+ 8 ) F = + λ(8+ ) For critical points + λ( + ) =.. (i) + λ(+ 7 ) =... (ii) = =.. (iii) (i) ( + λ) + λ= λ (ii) λ+ (+ 7 λ) = + 7λ = λ λ + 7λ = = 6 λ = ( + λ)(+ 7 λ) + λ λ 6λ = + λ+ 7λ + 7λ 9λ 8λ = ( λ )(9λ + ) = λ =, 9 λ = = = Putting this value of in equation (iii) we have ( ) + 8( ) + 7 = = 5 5 = 5 which gives imaginar values of. ( ) 9 λ = 9 = = = = Putting in (iii), we have + 8( ) + 7( ) = = = = 5 = 5 & = 5 = 5 = 5 =± 5 The critical points are ( 5, 5 ) & ( 5, 5) Shortest distance = d = 5 d ± ± = 5 ( 5, 5).

6 Find a point ( z,, ) on the sphere + + z = which is farthest from the point (,,). We are to maimize f( z,, ) = ( ) + ( ) + ( z ) subject to the condition + + z = Let F = ( ) + ( ) + ( z ) + λ( + + z ) For critical points = ( ) + λ= F = ( ) + λ = Fz = ( z ) + λz = and + + z = + λ=.. (i) + λ = (ii) z + λz =.... (iii) + + z =.. (iv) =, + λ = + λ, z = + λ Putting in (iv) + + = + λ + λ + λ = ( + λ) λ + =± λ = ± =, =, z = ± ± ± Clearl,, is the point which is farthest from (,,). 6 Find the etreme values of z = 6, provided & satisf + =. Define F = 6 + λ( + ) For critical points, we have = + λ=. (i) F = + λ =. (ii) and + =... (iii) From (i) and (ii) we have =, = λ λ 5 Putting these values in (iii) we get λ =± 5 λ = = = & = =

7 5 λ = = = 5 5 & = = 5 ( ), 5 5 &, are the critical points. 5 5 A= = λ, B= F =, C= F = λ 5 B AC = λ = ± = 5< F is maimum or minimum at the critical points. Now at And at, 5 5, 5 5 The function is min. at, we have A= 5 >, we have A= 5 < 5, 5 5 and ma. at, Find the critical point of f(, ) = Where =. Test for maima and minima. Define F = λ( ) For critical points, we have = λ=.... (i) F = + + λ = (ii) and =. (iii) From (i) λ = From (ii) λ = + + = + + = = But from (iii) = + ( + ) = = ( + ) + ( + ) = ( + )(+ ) = Either = or = If =, we get = from (iii) (, ) is a critical point and λ = in this case. 9 7 If =, we get = i.e. = 6 6 7, 6 is the other critical point and λ = in this. case.

8 Now A= = + λ, B= F =, C= F = = + = B AC ( λ) 8λ λ = B AC = > f is neither maimum nor minimum at (,). λ = B AC = 8 = + = < and A= + λ = + = > 7, is the point of minimum value. 6 Find the critical points of z = + when + = 6, Also test for maima and minima. Define F = + + λ( + 6 ) For critical points we have F = + λ 6λ=... (i) = + λ 6λ =.. (ii) F and + 6 = (iii) from (i) λ = 6 from (ii) λ = 6 = 6 6 ( 6 ) = ( 6 ) = ( ) ( ) = + = ( ) + ( )( + ) = ( )(+ + ) = Either = or + + = If = then (iii) becomes + 6 = 6 = ( ) = =, =, = & =, = (,) & (,) are the critical points. At (,), λ = = 6 6 = = = = = 6 () 6 And at (,), λ = 8

9 A= = + 6λ B= F = 6λ C= F = + 6λ At (,), we have A =, B =, C = And B AC = Consider z= zhh (, ) z(,) = h + h = h (,) is the point of minimum value. At (,), we have A = + 6 () = B = 6 = C = + 6 () = and B AC = 6 < and A= < (,) is a point of maimum value. 9 Find the points in the plane + z = 5 nearest to the origin. We are to minimize f = d = + + z subject to + z 5=. Define F = + + z + λ( + z 5) = + λ =... (i) F = + λ =... (ii) Fz = z λ =..(iii) and + z 5=..... (iv) = λ, λ λ =, z = from (i), (ii) & (iii) resp. (iv) becomes 9λ λ λ 5= λ + 9λ + λ = 5 λ = = =, =, z = ,, is the critical point. 7 A= F =, B= F =, C= F = B AC = < and A= > 55 5 F is relative minimum at,, so this is the required 7 point.

Optimization Methods: Optimization using Calculus - Equality constraints 1. Module 2 Lecture Notes 4

Optimization Methods: Optimization using Calculus - Equality constraints 1. Module 2 Lecture Notes 4 Optimization Methods: Optimization using Calculus - Equality constraints Module Lecture Notes 4 Optimization of Functions of Multiple Variables subect to Equality Constraints Introduction In the previous

More information

Mat 241 Homework Set 7key Due Professor David Schultz

Mat 241 Homework Set 7key Due Professor David Schultz Mat 1 Homework Set 7ke Due Proessor David Schultz Directions: Show all algebraic steps neatl and concisel using proper mathematical smbolism. When graphs and technolog are to be implemented, do so appropriatel.

More information

12.10 Lagrange Multipliers

12.10 Lagrange Multipliers .0 Lagrange Multipliers In the last two sections we were often solving problems involving maimizing or minimizing a function f subject to a 'constraint' equation g. For eample, we minimized the cost of

More information

MAXIMA & MINIMA The single-variable definitions and theorems relating to extermals can be extended to apply to multivariable calculus.

MAXIMA & MINIMA The single-variable definitions and theorems relating to extermals can be extended to apply to multivariable calculus. MAXIMA & MINIMA The single-variable definitions and theorems relating to etermals can be etended to appl to multivariable calculus. ( ) is a Relative Maimum if there ( ) such that ( ) f(, for all points

More information

TUTORIAL 4: APPLICATIONS - INCREASING / DECREASING FUNCTIONS, OPTIMIZATION PROBLEMS

TUTORIAL 4: APPLICATIONS - INCREASING / DECREASING FUNCTIONS, OPTIMIZATION PROBLEMS TUTORIAL 4: APPLICATIONS - INCREASING / DECREASING FUNCTIONS, OPTIMIZATION PROBLEMS INCREASING AND DECREASING FUNCTIONS f ' > 0. A function f ( ) which is differentiable over the interval [ a, b] is increasing

More information

f'(x) = x 4 (2)(x - 6)(1) + (x - 6) 2 (4x 3 ) f'(x) = (x - 2) -1/3 = x 2 ; domain of f: (-, ) f'(x) = (x2 + 1)4x! 2x 2 (2x) 4x f'(x) =

f'(x) = x 4 (2)(x - 6)(1) + (x - 6) 2 (4x 3 ) f'(x) = (x - 2) -1/3 = x 2 ; domain of f: (-, ) f'(x) = (x2 + 1)4x! 2x 2 (2x) 4x f'(x) = 85. f() = 4 ( - 6) 2 f'() = 4 (2)( - 6)(1) + ( - 6) 2 (4 3 ) = 2 3 ( - 6)[ + 2( - 6)] = 2 3 ( - 6)(3-12) = 6 3 ( - 4)( - 6) Thus, the critical values are = 0, = 4, and = 6. Now we construct the sign chart

More information

Constrained Maxima and Minima EXAMPLE 1 Finding a Minimum with Constraint

Constrained Maxima and Minima EXAMPLE 1 Finding a Minimum with Constraint 1038 Chapter 14: Partial Derivatives 14.8 Lagrange Multipliers HISTORICAL BIOGRAPHY Joseph Louis Lagrange (1736 1813) Sometimes we need to find the etreme values of a function whose domain is constrained

More information

CALCULUS 4 QUIZ #3 REVIEW Part 2 / SPRING 09

CALCULUS 4 QUIZ #3 REVIEW Part 2 / SPRING 09 CACUUS QUIZ #3 REVIEW Part / SPRING 09 (.) Determine the following about maima & minima of functions of variables. (a.) Complete the square for f( ) = + and locate all absolute maima & minima.. ( ) ( )

More information

( ) 2 3x=0 3x(x 3 1)=0 x=0 x=1

( ) 2 3x=0 3x(x 3 1)=0 x=0 x=1 Stewart Calculus ET 5e 05497;4. Partial Derivatives; 4.7 Maimum and Minimum Values. (a) First we compute D(,)= f (,) f (,) [ f (,)] =(4)() () =7. Since D(,)>0 and f (,)>0, f has a local minimum at (,)

More information

If C(x) is the total cost (in dollars) of producing x items of a product, then

If C(x) is the total cost (in dollars) of producing x items of a product, then Supplemental Review Problems for Unit Test : 1 Marginal Analysis (Sec 7) Be prepared to calculate total revenue given the price - demand function; to calculate total profit given total revenue and total

More information

Review: critical point or equivalently f a,

Review: critical point or equivalently f a, Review: a b f f a b f a b critical point or equivalentl f a, b A point, is called a of if,, 0 A local ma or local min must be a critical point (but not conversel) 0 D iscriminant (or Hessian) f f D f f

More information

1. (a) Sketch the graph of a function that has two local maxima, one local minimum, and no absolute minimum. Solution: Such a graph is shown below.

1. (a) Sketch the graph of a function that has two local maxima, one local minimum, and no absolute minimum. Solution: Such a graph is shown below. MATH 9 Eam (Version ) Solutions November 7, S. F. Ellermeer Name Instructions. Your work on this eam will be graded according to two criteria: mathematical correctness and clarit of presentation. In other

More information

f x, y x 2 y 2 2x 6y 14. Then

f x, y x 2 y 2 2x 6y 14. Then SECTION 11.7 MAXIMUM AND MINIMUM VALUES 645 absolute minimum FIGURE 1 local maimum local minimum absolute maimum Look at the hills and valles in the graph of f shown in Figure 1. There are two points a,

More information

Review for Test 2 Calculus I

Review for Test 2 Calculus I Review for Test Calculus I Find the absolute etreme values of the function on the interval. ) f() = -, - ) g() = - + 8-6, ) F() = -,.5 ) F() =, - 6 5) g() = 7-8, - Find the absolute etreme values of the

More information

4.3 - How Derivatives Affect the Shape of a Graph

4.3 - How Derivatives Affect the Shape of a Graph 4.3 - How Derivatives Affect the Shape of a Graph 1. Increasing and Decreasing Functions Definition: A function f is (strictly) increasing on an interval I if for every 1, in I with 1, f 1 f. A function

More information

Let f(x) = x, but the domain of f is the interval 0 x 1. Note

Let f(x) = x, but the domain of f is the interval 0 x 1. Note I.g Maximum and Minimum. Lagrange Multipliers Recall: Suppose we are given y = f(x). We recall that the maximum/minimum points occur at the following points: (1) where f = 0; (2) where f does not exist;

More information

Mat 267 Engineering Calculus III Updated on 9/19/2010

Mat 267 Engineering Calculus III Updated on 9/19/2010 Chapter 11 Partial Derivatives Section 11.1 Functions o Several Variables Deinition: A unction o two variables is a rule that assigns to each ordered pair o real numbers (, ) in a set D a unique real number

More information

APPM 2350 Section Exam points Wednesday October 24, 6:00pm 7:30pm, 2018

APPM 2350 Section Exam points Wednesday October 24, 6:00pm 7:30pm, 2018 APPM 250 Section Eam 2 40 points Wednesda October 24, 6:00pm 7:0pm, 208 ON THE FRONT OF YOUR BLUEBOOK write: () our name, (2) our student ID number, () lecture section/time (4) our instructor s name, (5)

More information

Math Lagrange Multipliers

Math Lagrange Multipliers Math 213 - Lagrange Multipliers Peter A. Perr Universit of Kentuck October 12, 2018 Homework Re-read section 14.8 Begin practice homework on section 14.8, problems 3-11 (odd), 15, 21, 23 Begin (or continue!)

More information

Preface.

Preface. This document was written and copyrighted by Paul Dawkins. Use of this document and its online version is governed by the Terms and Conditions of Use located at. The online version of this document is

More information

Math Maximum and Minimum Values, I

Math Maximum and Minimum Values, I Math 213 - Maximum and Minimum Values, I Peter A. Perry University of Kentucky October 8, 218 Homework Re-read section 14.7, pp. 959 965; read carefully pp. 965 967 Begin homework on section 14.7, problems

More information

A Basic Course in Real Analysis Prof. P. D. Srivastava Department of Mathematics Indian Institute of Technology, Kharagpur

A Basic Course in Real Analysis Prof. P. D. Srivastava Department of Mathematics Indian Institute of Technology, Kharagpur A Basic Course in Real Analysis Prof. P. D. Srivastava Department of Mathematics Indian Institute of Technology, Kharagpur Lecture - 36 Application of MVT, Darbou Theorem, L Hospital Rule (Refer Slide

More information

Chiang/Wainwright: Fundamental Methods of Mathematical Economics

Chiang/Wainwright: Fundamental Methods of Mathematical Economics Chiang/Wainwright: Fundamental Methods of Mathematical Economics CHAPTER 9 EXERCISE 9.. Find the stationary values of the following (check whether they are relative maima or minima or inflection points),

More information

MAXIMA AND MINIMA - 2

MAXIMA AND MINIMA - 2 MAXIMA AND MINIMA - GREATEST AND LEAST VALUES Definition: Let f be a function defined on a set A and l f( A ). Then l is said to be (i) the maimum value or the greatest value of f in A if f( ) l A. (ii)

More information

Max-min Word Problems

Max-min Word Problems Ma-min Word Problems In this section, we ll use our results on maima and minima for functions to do word problems which involve finding the largest or smallest value of lengths, areas, volumes, costs,

More information

14.5 The Chain Rule. dx dt

14.5 The Chain Rule. dx dt SECTION 14.5 THE CHAIN RULE 931 27. w lns 2 2 z 2 28. w e z 37. If R is the total resistance of three resistors, connected in parallel, with resistances,,, then R 1 R 2 R 3 29. If z 5 2 2 and, changes

More information

Functions. Introduction

Functions. Introduction Functions,00 P,000 00 0 970 97 980 98 990 99 000 00 00 Figure Standard and Poor s Inde with dividends reinvested (credit "bull": modification of work b Praitno Hadinata; credit "graph": modification of

More information

CHAPTER 2: Partial Derivatives. 2.2 Increments and Differential

CHAPTER 2: Partial Derivatives. 2.2 Increments and Differential CHAPTER : Partial Derivatives.1 Definition of a Partial Derivative. Increments and Differential.3 Chain Rules.4 Local Etrema.5 Absolute Etrema 1 Chapter : Partial Derivatives.1 Definition of a Partial

More information

Taylor Series and stationary points

Taylor Series and stationary points Chapter 5 Taylor Series and stationary points 5.1 Taylor Series The surface z = f(x, y) and its derivatives can give a series approximation for f(x, y) about some point (x 0, y 0 ) as illustrated in Figure

More information

32. Method of Lagrange Multipliers

32. Method of Lagrange Multipliers 32. Method of Lagrange Multipliers The Method of Lagrange Multipliers is a generalized approach to solving constrained optimization problems. Assume that we are seeking to optimize a function z = f(, y)

More information

Functions. Introduction CHAPTER OUTLINE

Functions. Introduction CHAPTER OUTLINE Functions,00 P,000 00 0 970 97 980 98 990 99 000 00 00 Figure Standard and Poor s Inde with dividends reinvested (credit "bull": modification of work b Praitno Hadinata; credit "graph": modification of

More information

( ) 7 ( 5x 5 + 3) 9 b) y = x x

( ) 7 ( 5x 5 + 3) 9 b) y = x x New York City College of Technology, CUNY Mathematics Department Fall 0 MAT 75 Final Eam Review Problems Revised by Professor Kostadinov, Fall 0, Fall 0, Fall 00. Evaluate the following its, if they eist:

More information

3 Additional Applications of the Derivative

3 Additional Applications of the Derivative 3 Additional Applications of the Derivative 3.1 Increasing and Decreasing Functions; Relative Etrema 3.2 Concavit and Points of Inflection 3.4 Optimization Homework Problem Sets 3.1 (1, 3, 5-9, 11, 15,

More information

and ( x, y) in a domain D R a unique real number denoted x y and b) = x y = {(, ) + 36} that is all points inside and on

and ( x, y) in a domain D R a unique real number denoted x y and b) = x y = {(, ) + 36} that is all points inside and on Mat 7 Calculus III Updated on 10/4/07 Dr. Firoz Chapter 14 Partial Derivatives Section 14.1 Functions o Several Variables Deinition: A unction o two variables is a rule that assigns to each ordered pair

More information

3.1 ANALYSIS OF FUNCTIONS I INCREASE, DECREASE, AND CONCAVITY

3.1 ANALYSIS OF FUNCTIONS I INCREASE, DECREASE, AND CONCAVITY MATH00 (Calculus).1 ANALYSIS OF FUNCTIONS I INCREASE, DECREASE, AND CONCAVITY Name Group No. KEYWORD: increasing, decreasing, constant, concave up, concave down, and inflection point Eample 1. Match the

More information

?

? NOTES 4: APPLICATIONS OF DIFFERENTIATION Name: Date: Period: WARM UP: Assume that f( ) and g ( ) are differentiable functions: f( ) f '( ) g ( ) g'( ) - 3 1-5 8-1 -9 7 4 1 0 5 9 9-3 1 3-3 6-5 3 8? 1. Let

More information

SHORT ANSWER. Write the word or phrase that best completes each statement or answers the question.

SHORT ANSWER. Write the word or phrase that best completes each statement or answers the question. Chapter Practice Dicsclaimer: The actual eam is different. On the actual eam ou must show the correct reasoning to receive credit for the question. SHORT ANSWER. Write the word or phrase that best completes

More information

Math 20 Spring 2005 Final Exam Practice Problems (Set 2)

Math 20 Spring 2005 Final Exam Practice Problems (Set 2) Math 2 Spring 2 Final Eam Practice Problems (Set 2) 1. Find the etreme values of f(, ) = 2 2 + 3 2 4 on the region {(, ) 2 + 2 16}. 2. Allocation of Funds: A new editor has been allotted $6, to spend on

More information

( ) 9 b) y = x x c) y = (sin x) 7 x d) y = ( x ) cos x

( ) 9 b) y = x x c) y = (sin x) 7 x d) y = ( x ) cos x NYC College of Technology, CUNY Mathematics Department Spring 05 MAT 75 Final Eam Review Problems Revised by Professor Africk Spring 05, Prof. Kostadinov, Fall 0, Fall 0, Fall 0, Fall 0, Fall 00 # Evaluate

More information

CHAPTER 3 Applications of Differentiation

CHAPTER 3 Applications of Differentiation CHAPTER Applications of Differentiation Section. Etrema on an Interval................... 0 Section. Rolle s Theorem and the Mean Value Theorem...... 0 Section. Increasing and Decreasing Functions and

More information

D u f f x h f y k. Applying this theorem a second time, we have. f xx h f yx k h f xy h f yy k k. f xx h 2 2 f xy hk f yy k 2

D u f f x h f y k. Applying this theorem a second time, we have. f xx h f yx k h f xy h f yy k k. f xx h 2 2 f xy hk f yy k 2 93 CHAPTER 4 PARTIAL DERIVATIVES We close this section b giving a proof of the first part of the Second Derivatives Test. Part (b) has a similar proof. PROOF OF THEOREM 3, PART (A) We compute the second-order

More information

Abe Mirza Graphing f ( x )

Abe Mirza Graphing f ( x ) Abe Mirza Graphing f ( ) Steps to graph f ( ) 1. Set f ( ) = 0 and solve for critical values.. Substitute the critical values into f ( ) to find critical points.. Set f ( ) = 0 and solve for critical values.

More information

MATHEMATICS 200 December 2013 Final Exam Solutions

MATHEMATICS 200 December 2013 Final Exam Solutions MATHEMATICS 2 December 21 Final Eam Solutions 1. Short Answer Problems. Show our work. Not all questions are of equal difficult. Simplif our answers as much as possible in this question. (a) The line L

More information

Exercise 3.3. MA 111: Prepared by Dr. Archara Pacheenburawana 26

Exercise 3.3. MA 111: Prepared by Dr. Archara Pacheenburawana 26 MA : Prepared b Dr. Archara Pacheenburawana 6 Eercise.. For each of the numbers a, b, c, d, e, r, s, and t, state whether the function whose graphisshown hasanabsolutemaimum orminimum, a localmaimum orminimum,

More information

5.5 Worksheet - Linearization

5.5 Worksheet - Linearization AP Calculus 4.5 Worksheet 5.5 Worksheet - Linearization All work must be shown in this course for full credit. Unsupported answers ma receive NO credit. 1. Consider the function = sin. a) Find the equation

More information

Q.2 A, B and C are points in the xy plane such that A(1, 2) ; B (5, 6) and AC = 3BC. Then. (C) 1 1 or

Q.2 A, B and C are points in the xy plane such that A(1, 2) ; B (5, 6) and AC = 3BC. Then. (C) 1 1 or STRAIGHT LINE [STRAIGHT OBJECTIVE TYPE] Q. A variable rectangle PQRS has its sides parallel to fied directions. Q and S lie respectivel on the lines = a, = a and P lies on the ais. Then the locus of R

More information

Applications of Derivatives

Applications of Derivatives Chapter Applications of Derivatives. Etrema of Functions on Intervals Maimum and Minimum Values of a Function Relative Etrema and Critical Numbers Finding the Etrema on a Closed Interval Maimum and Minimum

More information

Constrained Optimization in Two Variables

Constrained Optimization in Two Variables in Two Variables James K. Peterson Department of Biological Sciences and Department of Mathematical Sciences Clemson University November 17, 216 Outline 1 2 What Does the Lagrange Multiplier Mean? Let

More information

1 x

1 x Unit 1. Calculus Topic 4: Increasing and decreasing functions: turning points In topic 4 we continue with straightforward derivatives and integrals: Locate turning points where f () = 0. Determine the

More information

3. Total number of functions from the set A to set B is n. 4. Total number of one-one functions from the set A to set B is n Pm

3. Total number of functions from the set A to set B is n. 4. Total number of one-one functions from the set A to set B is n Pm ASSIGNMENT CLASS XII RELATIONS AND FUNCTIONS Important Formulas If A and B are finite sets containing m and n elements, then Total number of relations from the set A to set B is mn Total number of relations

More information

MATH 417 Homework 2 Instructor: D. Cabrera Due June 23. v = e x sin y

MATH 417 Homework 2 Instructor: D. Cabrera Due June 23. v = e x sin y MATH 47 Homework Instructor: D. Cabrera Due June under the trans-. Find and sketch the image of the rectangle 0 < x

More information

I K J are two points on the graph given by y = 2 sin x + cos 2x. Prove that there exists

I K J are two points on the graph given by y = 2 sin x + cos 2x. Prove that there exists LEVEL I. A circular metal plate epands under heating so that its radius increase by %. Find the approimate increase in the area of the plate, if the radius of the plate before heating is 0cm.. The length

More information

To do this which theorem did you use? b) Determine which points are inflections and mark the concavity on a number line for f.

To do this which theorem did you use? b) Determine which points are inflections and mark the concavity on a number line for f. Math 13, Lab 11 1 a) Let f() = + 4 Determine which critical points are local maima, minima, and which are not etreme and mark this on a number line for b) Determine which points are inflections and mark

More information

Prime Factorization and GCF. In my own words

Prime Factorization and GCF. In my own words Warm- up Problem What is a prime number? A PRIME number is an INTEGER greater than 1 with EXACTLY 2 positive factors, 1 and the number ITSELF. Examples of prime numbers: 2, 3, 5, 7 What is a composite

More information

Week #6 - Taylor Series, Derivatives and Graphs Section 4.1

Week #6 - Taylor Series, Derivatives and Graphs Section 4.1 Week #6 - Talor Series, Derivatives and Graphs Section 4.1 From Calculus, Single Variable b Hughes-Hallett, Gleason, McCallum et. al. Copright 2005 b John Wile & Sons, Inc. This material is used b permission

More information

SHORT ANSWER. Write the word or phrase that best completes each statement or answers the question.

SHORT ANSWER. Write the word or phrase that best completes each statement or answers the question. Math 1325 Test 3 Review Name SHORT ANSWER. Write the word or phrase that best completes each statement or answers the question. Find the location and value of each relative etremum for the function. 1)

More information

UNIT 2 SIMPLE APPLICATION OF DIFFERENTIAL CALCULUS

UNIT 2 SIMPLE APPLICATION OF DIFFERENTIAL CALCULUS Calculus UNIT 2 SIMPLE APPLICATION OF DIFFERENTIAL CALCULUS Structure 2.0 Introduction 2.1 Objectives 2.2 Rate of Change of Quantities 2.3 Increasing and Decreasing Function 2.4 Maima and Minima of Functions

More information

In order to master the techniques explained here it is vital that you undertake plenty of practice exercises so that they become second nature.

In order to master the techniques explained here it is vital that you undertake plenty of practice exercises so that they become second nature. Maima and minima In this unit we show how differentiation can be used to find the maimum and minimum values of a function. Because the derivative provides information about the gradient or slope of the

More information

Math 2250 Exam #3 Practice Problem Solutions 1. Determine the absolute maximum and minimum values of the function f(x) = lim.

Math 2250 Exam #3 Practice Problem Solutions 1. Determine the absolute maximum and minimum values of the function f(x) = lim. Math 50 Eam #3 Practice Problem Solutions. Determine the absolute maimum and minimum values of the function f() = +. f is defined for all. Also, so f doesn t go off to infinity. Now, to find the critical

More information

Example 1. What are the critical points of f x 1 x x, 0 x? The maximal domain of f is 0 x and we find that

Example 1. What are the critical points of f x 1 x x, 0 x? The maximal domain of f is 0 x and we find that 6. Local Etrema of Functions We continue on our quest to etract as much information as possible about a function. The more information we gather, the better we can sketch the graph of the function. This

More information

Constrained Optimization in Two Variables

Constrained Optimization in Two Variables Constrained Optimization in Two Variables James K. Peterson Department of Biological Sciences and Department of Mathematical Sciences Clemson University November 17, 216 Outline Constrained Optimization

More information

v t t t t a t v t d dt t t t t t 23.61

v t t t t a t v t d dt t t t t t 23.61 SECTION 4. MAXIMUM AND MINIMUM VALUES 285 The values of f at the endpoints are f 0 0 and f 2 2 6.28 Comparing these four numbers and using the Closed Interval Method, we see that the absolute minimum value

More information

Identifying end behavior of the graph of a polynomial function

Identifying end behavior of the graph of a polynomial function 56 Polnomial Functions 3.1.1 Eercises For a link to all of the additional resources available for this section, click OSttS Chapter 3 materials. In Eercises 1-10, find the degree, the leading term, the

More information

Maximum and Minimum Values - 3.3

Maximum and Minimum Values - 3.3 Maimum and Minimum Values - 3.3. Critical Numbers Definition A point c in the domain of f is called a critical number offiff c or f c is not defined. Eample a. The graph of f is given below. Find all possible

More information

Intermediate Math Circles Wednesday November Inequalities and Linear Optimization

Intermediate Math Circles Wednesday November Inequalities and Linear Optimization WWW.CEMC.UWATERLOO.CA The CENTRE for EDUCATION in MATHEMATICS and COMPUTING Intermediate Math Circles Wednesda November 21 2012 Inequalities and Linear Optimization Review: Our goal is to solve sstems

More information

********************************************************** 1. Evaluate the double or iterated integrals:

********************************************************** 1. Evaluate the double or iterated integrals: Practice problems 1. (a). Let f = 3x 2 + 4y 2 + z 2 and g = 2x + 3y + z = 1. Use Lagrange multiplier to find the extrema of f on g = 1. Is this a max or a min? No max, but there is min. Hence, among the

More information

2.) Find an equation for the line on the point (3, 2) and perpendicular to the line 6x - 3y = 1.

2.) Find an equation for the line on the point (3, 2) and perpendicular to the line 6x - 3y = 1. College Algebra Test File Summer 007 Eam #1 1.) Find an equation for the line that goes through the points (-5, -4) and (1, 4)..) Find an equation for the line on the point (3, ) and perpendicular to the

More information

UNIVERSIDAD CARLOS III DE MADRID MATHEMATICS II EXERCISES (SOLUTIONS )

UNIVERSIDAD CARLOS III DE MADRID MATHEMATICS II EXERCISES (SOLUTIONS ) UNIVERSIDAD CARLOS III DE MADRID MATHEMATICS II EXERCISES (SOLUTIONS ) CHAPTER : Limits and continuit of functions in R n. -. Sketch the following subsets of R. Sketch their boundar and the interior. Stud

More information

Increasing and Decreasing Functions and the First Derivative Test

Increasing and Decreasing Functions and the First Derivative Test Section 3.3 Increasing and Decreasing Functions and the First Derivative Test 3 Section 3.3 Increasing and Decreasing Functions and the First Derivative Test. f 8 3. 3, Decreasing on:, 3 3 3,,, Decreasing

More information

SHORT ANSWER. Write the word or phrase that best completes each statement or answers the question. 8) Decreasing

SHORT ANSWER. Write the word or phrase that best completes each statement or answers the question. 8) Decreasing SHORT ANSWER. Write the word or phrase that best completes each statement or answers the question. 8) Decreasing Find the open interval(s) where the function is changing as requested. 1) Decreasing; f()

More information

Solution Midterm 2, Math 53, Summer (a) (10 points) Let f(x, y, z) be a differentiable function of three variables and define

Solution Midterm 2, Math 53, Summer (a) (10 points) Let f(x, y, z) be a differentiable function of three variables and define Solution Midterm, Math 5, Summer. (a) ( points) Let f(,, z) be a differentiable function of three variables and define F (s, t) = f(st, s + t, s t). Calculate the partial derivatives F s and F t in terms

More information

Functions of Several Variables

Functions of Several Variables Chapter 1 Functions of Several Variables 1.1 Introduction A real valued function of n variables is a function f : R, where the domain is a subset of R n. So: for each ( 1,,..., n ) in, the value of f is

More information

Section 4.1. Math 150 HW 4.1 Solutions C. Panza

Section 4.1. Math 150 HW 4.1 Solutions C. Panza Math 50 HW 4. Solutions C. Panza Section 4. Eercise 0. Use Eq. ( to estimate f. Use a calculator to compute both the error and the percentage error. 0. f( =, a = 5, = 0.4 Estimate f: f ( = 4 f (5 = 9 f

More information

4.3 How derivatives affect the shape of a graph. The first derivative test and the second derivative test.

4.3 How derivatives affect the shape of a graph. The first derivative test and the second derivative test. Chapter 4: Applications of Differentiation In this chapter we will cover: 41 Maimum and minimum values The critical points method for finding etrema 43 How derivatives affect the shape of a graph The first

More information

Polynomial Functions of Higher Degree

Polynomial Functions of Higher Degree SAMPLE CHAPTER. NOT FOR DISTRIBUTION. 4 Polynomial Functions of Higher Degree Polynomial functions of degree greater than 2 can be used to model data such as the annual temperature fluctuations in Daytona

More information

(d by dx notation aka Leibniz notation)

(d by dx notation aka Leibniz notation) n Prerequisites: Differentiating, sin and cos ; sum/difference and chain rules; finding ma./min.; finding tangents to curves; finding stationary points and their nature; optimising a function. Maths Applications:

More information

VARIATIONAL PRINCIPLES

VARIATIONAL PRINCIPLES CHAPTER - II VARIATIONAL PRINCIPLES Unit : Euler-Lagranges s Differential Equations: Introduction: We have seen that co-ordinates are the tools in the hands of a mathematician. With the help of these co-ordinates

More information

Engineering Mathematics 2018 : MA6151

Engineering Mathematics 2018 : MA6151 Engineering Mathematics 08 NAME OF THE SUBJECT : Mathematics I SUBJECT CODE : MA65 MATERIAL NAME : Universit Questions REGULATION : R 03 WEBSITE : wwwhariganeshcom UPDATED ON : November 07 TEXT BOOK FOR

More information

Multivariable Calculus

Multivariable Calculus Multivariable Calculus In thermodynamics, we will frequently deal with functions of more than one variable e.g., P PT, V, n, U UT, V, n, U UT, P, n U = energy n = # moles etensive variable: depends on

More information

Answer Explanations. The SAT Subject Tests. Mathematics Level 1 & 2 TO PRACTICE QUESTIONS FROM THE SAT SUBJECT TESTS STUDENT GUIDE

Answer Explanations. The SAT Subject Tests. Mathematics Level 1 & 2 TO PRACTICE QUESTIONS FROM THE SAT SUBJECT TESTS STUDENT GUIDE The SAT Subject Tests Answer Eplanations TO PRACTICE QUESTIONS FROM THE SAT SUBJECT TESTS STUDENT GUIDE Mathematics Level & Visit sat.org/stpractice to get more practice and stud tips for the Subject Test

More information

MATHEMATICS 200 December 2011 Final Exam Solutions

MATHEMATICS 200 December 2011 Final Exam Solutions MATHEMATICS December 11 Final Eam Solutions 1. Consider the function f(, ) e +4. (a) Draw a contour map of f, showing all tpes of level curves that occur. (b) Find the equation of the tangent plane to

More information

PACKET Unit 4 Honors ICM Functions and Limits 1

PACKET Unit 4 Honors ICM Functions and Limits 1 PACKET Unit 4 Honors ICM Functions and Limits 1 Day 1 Homework For each of the rational functions find: a. domain b. -intercept(s) c. y-intercept Graph #8 and #10 with at least 5 EXACT points. 1. f 6.

More information

It s Your Turn Problems I. Functions, Graphs, and Limits 1. Here s the graph of the function f on the interval [ 4,4]

It s Your Turn Problems I. Functions, Graphs, and Limits 1. Here s the graph of the function f on the interval [ 4,4] It s Your Turn Problems I. Functions, Graphs, and Limits. Here s the graph of the function f on the interval [ 4,4] f ( ) =.. It has a vertical asymptote at =, a) What are the critical numbers of f? b)

More information

Linear programming: Theory

Linear programming: Theory Division of the Humanities and Social Sciences Ec 181 KC Border Convex Analsis and Economic Theor Winter 2018 Topic 28: Linear programming: Theor 28.1 The saddlepoint theorem for linear programming The

More information

12.2. Maxima and Minima. Introduction. Prerequisites. Learning Outcomes

12.2. Maxima and Minima. Introduction. Prerequisites. Learning Outcomes Maima and Minima 1. Introduction In this section we analse curves in the local neighbourhood of a stationar point and, from this analsis, deduce necessar conditions satisfied b local maima and local minima.

More information

MATHEMATICS (SET -1)

MATHEMATICS (SET -1) 8 Class th (SET ) BD PPER -7 M T H E M T I C S (). adj 8 I 8 I 8I 8 SECTION - I. f () is continuous at f () lim f () ( ) 6 k lim ( )( 6) k lim ( ) k sin cos d tan cot d sin cos ln sec ln sin C.. P : z

More information

Examples of rational maps

Examples of rational maps Examples of rational maps For simplicit, in all these examples the field is taken to be C, but the work over an algebraicall closed field of characteristic other than. 1. Let t be the co-ordinate on A

More information

EXERCISES Chapter 14: Partial Derivatives. Finding Local Extrema. Finding Absolute Extrema

EXERCISES Chapter 14: Partial Derivatives. Finding Local Extrema. Finding Absolute Extrema 34 Chapter 4: Partial Derivatives EXERCISES 4.7 Finding Local Etrema Find all the local maima, local minima, and saddle points of the functions in Eercises 3... 3. 4. 5. 6. 7. 8. 9.... 3. 4. 5. 6. 7. 8.

More information

LESSON #24 - POWER FUNCTIONS COMMON CORE ALGEBRA II

LESSON #24 - POWER FUNCTIONS COMMON CORE ALGEBRA II 1 LESSON #4 - POWER FUNCTIONS COMMON CORE ALGEBRA II Before we start to analze polnomials of degree higher than two (quadratics), we first will look at ver simple functions known as power functions. The

More information

CHAPTER 3 Applications of Differentiation

CHAPTER 3 Applications of Differentiation CHAPTER Applications of Differentiation Section. Etrema on an Interval.............. 78 Section. Rolle s Theorem and the Mean Value Theorem. 8 Section. Increasing and Decreasing Functions and the First

More information

Solutions to the Exercises of Chapter 8

Solutions to the Exercises of Chapter 8 8A Domains of Functions Solutions to the Eercises of Chapter 8 1 For 7 to make sense, we need 7 0or7 So the domain of f() is{ 7} For + 5 to make sense, +5 0 So the domain of g() is{ 5} For h() to make

More information

Section 4.1 Increasing and Decreasing Functions

Section 4.1 Increasing and Decreasing Functions Section.1 Increasing and Decreasing Functions The graph of the quadratic function f 1 is a parabola. If we imagine a particle moving along this parabola from left to right, we can see that, while the -coordinates

More information

3 Applications of Derivatives Instantaneous Rates of Change Optimization Related Rates... 13

3 Applications of Derivatives Instantaneous Rates of Change Optimization Related Rates... 13 Contents Limits Derivatives 3. Difference Quotients......................................... 3. Average Rate of Change...................................... 4.3 Derivative Rules...........................................

More information

AP Calc AB First Semester Review

AP Calc AB First Semester Review AP Calc AB First Semester Review MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Find the limit. 1) lim (7-7) 7 A) -4 B) -56 C) 4 D) 56 1) Determine

More information

Complete Solutions Manual. Technical Calculus with Analytic Geometry FIFTH EDITION. Peter Kuhfittig Milwaukee School of Engineering.

Complete Solutions Manual. Technical Calculus with Analytic Geometry FIFTH EDITION. Peter Kuhfittig Milwaukee School of Engineering. Complete Solutions Manual Technical Calculus with Analtic Geometr FIFTH EDITION Peter Kuhfittig Milwaukee School of Engineering Australia Brazil Meico Singapore United Kingdom United States 213 Cengage

More information

For Thought. 3.1 Exercises 142 CHAPTER 3 POLYNOMIAL AND RATIONAL FUNCTIONS. 1. False, the range of y = x 2 is [0, ).

For Thought. 3.1 Exercises 142 CHAPTER 3 POLYNOMIAL AND RATIONAL FUNCTIONS. 1. False, the range of y = x 2 is [0, ). CHAPTER POLYNOMIAL AND RATIONAL FUNCTIONS For Thought. False, the range of = is [0, ).. False, the verte is the point (, ). -5 -. True. True 5. True, since b a = 6 =. 6. True, the -intercept of = ( + )

More information

UNCONSTRAINED OPTIMIZATION PAUL SCHRIMPF OCTOBER 24, 2013

UNCONSTRAINED OPTIMIZATION PAUL SCHRIMPF OCTOBER 24, 2013 PAUL SCHRIMPF OCTOBER 24, 213 UNIVERSITY OF BRITISH COLUMBIA ECONOMICS 26 Today s lecture is about unconstrained optimization. If you re following along in the syllabus, you ll notice that we ve skipped

More information

236 Chapter 4 Applications of Derivatives

236 Chapter 4 Applications of Derivatives 26 Chapter Applications of Derivatives Î$ &Î$ Î$ 5 Î$ 0 "Î$ 5( 2) $È 26. (a) g() œ ( 5) œ 5 Ê g () œ œ Ê critical points at œ 2 and œ 0 Ê g œ ± )(, increasing on ( _ß 2) and (!ß _), decreasing on ( 2 ß!)!

More information

18 19 Find the extreme values of f on the region described by the inequality. 20. Consider the problem of maximizing the function

18 19 Find the extreme values of f on the region described by the inequality. 20. Consider the problem of maximizing the function 940 CHAPTER 14 PARTIAL DERIVATIVES 14.8 EXERCISES 1. Pictured are a contour map of f and a curve with equation t, y 8. Estimate the maimum and minimum values of f subject to the constraint that t, y 8.

More information

STATIC LECTURE 4: CONSTRAINED OPTIMIZATION II - KUHN TUCKER THEORY

STATIC LECTURE 4: CONSTRAINED OPTIMIZATION II - KUHN TUCKER THEORY STATIC LECTURE 4: CONSTRAINED OPTIMIZATION II - KUHN TUCKER THEORY UNIVERSITY OF MARYLAND: ECON 600 1. Some Eamples 1 A general problem that arises countless times in economics takes the form: (Verbally):

More information