Domain Decomposition Modified with Characteristic Finite Element Method for Numerical Simulation of Semiconductor Transient Problem of Heat Conduction

Size: px
Start display at page:

Download "Domain Decomposition Modified with Characteristic Finite Element Method for Numerical Simulation of Semiconductor Transient Problem of Heat Conduction"

Transcription

1 Joural of Matmatis Rsar; Vol. 7, No. 3; 5 ISSN E-ISSN Publisd by Caadia Ctr of Si ad Eduatio Domai Domositio Modifid wit Caratristi Fiit Elmt Mtod for Numrial Simulatio of Smiodutor Trasit Problm of Hat Codutio Yirag Yua, Luo Cag, Cagfg Li, & Togju Su Istitut of Matmatis, Sadog Uivrsity, Jia, Cia Sool of Eoomis, Sadog Uivrsity, Jia, Cia Corrsod: Yirag Yua, Istitut of Matmatis, Sadog Uivrsity, Jia, SadaNalu 7, Cia. yryua@sdu.du. Rivd: May 5, 5 Atd: Ju 5, 5 Oli Publisd: July, 5 doi:.5539/jmr.v736 URL: tt://dx.doi.org/.5539/jmr.v736 T rsar is fiad by t Natioal Natural Si Foudatio of Cia (Grat Nos 44, 73, t Natioal Taklig Ky Program (Grat No. 569, ad t Dotorat Foudatio of t Miistry of Eduatio of Cia (Grat No Abstrat A aratristi fiit lmt algoritm basd o domai domositio is struturd i tis ar to aroximat umrially multi-dimsioal smiodutor trasit roblms of at odutio. Fiit lmt aroximatio is rstd for t ltri fild ottial quatio, ad a domai domositio disrtizatio wit aratristi fiit lmt is ut forward for t ltro otratio quatio, ol otratio quatio ad at odutor quatio. A otimal ordr rror stimat i L orm is drivd for t ould systm by usig som tiqus su as variatio, domai domositio, t mtod of aratristis, t riil of rgy, gativ orm stimats, idutio yotsis, rior stimats tory ad otr tiqus of artial diffrtial quatios. Fially, xrimtal data osistt wit tortial ovrg rat ar sow. Tis ty of umrial mtod is of ig omutatioal ffiiy ad a sussfully solv tis itratioal roblm. Kywords: Numrial simulatio of smiodutor dvi, domai domositio, aratristi fiit lmt, otimal ordr stimats i L orm, umrial xrimts. Itrodutio Baus of t grat dvlomt of smiodutor dvi idustry dsribd by a iitial-boudary valu systm of diffusio ty of oliar artial diffrtial quatios, umrial simulatio must b of ig ordr auray ad quit ffiit, ad traditioal umrial mtods ar ot osidrd i atual omutatio. T som w modr disrtizatio tiqus ar itrodud to solv multi-dimsioal roblms wit omliatd ad irrgular gomtri rgios (H & Wi,989; Si, ; Yua, 9, 3. Numrial simulatio of smiodutor dvi bgis at t us of t squ itratio rstd Gumml sussfully i 964 (Gumml, 964. Cosidrig atual omutatios, Douglas ad Yua ut forward a usful fiit diffr mtod for simlifid o-dimsioal ad two-dimsioal modls (ostat offiit, witout osidratio of tmratur ad giv t ris tortial rsults firstly (Douglas & Yua, 987; Yua, Dig & Yag, 98. T Yua alis t mtod of aratristis rstivly wit fiit lmt ad mixd fiit lmt to solv two-dimsioal roblms wit variabl offiits ad givs otimal ordr rror i H orm ad L orm (Yua, 99, 993, 99. I viw of aliatios, Yua disusss t fft of at odutio to smiodutor dvi ad givs t aratristi fiit diffr ad uwid fratioal sts fiit diffr of tr dimsioal roblm o uiform artitio ad t ovrg rat i disrt l orm (Yua, 996,, 5, 8. I umrial simulatio of modr smiodutor dvi, t omutatio sal is ug, ad t disrtizatio osists of ts of tousad or svral millios ods, so a owrful aralll tool is itrodud (H & Wi,989; Si, ; Yua, 9, 3. For t simlst araboli quatio, Dawso, Duot ad Du tak t lad i disussig Galrki domai domositio mtod ad tortial aalysis (Dawso & Duot, 6

2 Joural of Matmatis Rsar Vol. 7, No. 3; 5 99, 994; Dawso, Du & Duot, 99; Dawso & Du, 99. O t disussio ow to simulat trdimsioal smiodutor trasit roblm of at odutio ffiitly, t autors stat a ty of domai domositio wit modifid aratristi fiit lmt ad aalyz t ovrg ad otimal ordr stimats i l orm by usig t tiqus su as variatio, domai domositio, aratristis, rgy orm, gativ orm stimats, matmatial idutio yotsis ad rior stimat tory ad tiqu of artial diffrtial quatio. Numrial data of xrimtal xaml ar sow osistt wit tortial ovrg rat ad by wi it illustrats tat tis rodur is mor ffiit ad alid sussfully to solv itratioal famous roblms (H & Wi,989; Si, ; Yua, 9, 3; Bak, t al., 985; Jrom, 994; Sidma, 986; Lou, 995. It is most valuabl i modl aalysis, umrial mtod, riil rsar, tory ad aliatio of smiodutor dvi simulatio. Tis ar is orgaizd as follows. I t first stio, matmatial modl, ysial itrrtatio ad som rlatd rsar ar itrodud. Som otatios ad rimary work ar giv i t sod stio. I t tird stio, t autors rst t rodurs of domai domositio ad modifid aratristi fiit lmt. I t fourt stio, t autors attmt to giv ovrg aalysis. W xami umrially t auray ad aralllism of t sm by a xaml. Som olusios ad disussios ar statd i t last stio. I tis ar M ad ε xrss gral ositiv ostat ad gral ositiv small ostat, rstivly, ad ty av diffrt maigs at diffrt las.. Matmatial Modl ad Pysial Bakgroud T matmatial modl of smiodutor trasit roblm of at odutio is dsribd by a iitial boudary valu systm of four artial diffrtial quatios (Yua, 996,, 5, 8; Bak, t al., 985; Jrom, 994; Sidma, 986; Lou, 995, wr t ottial is dfid by a lliti quatio, t otratios of ltro ad ol ar dfid by ovtio-diffusio quatios ad t tmratur is dfid by a at odutio quatio. Eltroi fild ottial is gratd by t itsity i t ltro quatio, t ol otratio quatio ad t at odutio quatio, ad boms a systm wit iitial ad boudary oditios, wi is dfid o tr variabls satial domai Ω as follows, ψ = α( N(X, X = (x, x, x 3 T Ω, t J = (, T], ( t = (D (X µ (X ψ R (,, T, (X, t Ω J, ( t = (D (X µ (X ψ R (,, T, (X, t Ω J, (3 ρ(x T t T = (D (X µ (X ψ (D (X µ (X ψ } ψ, (X, t Ω J, (4 wr t ltroi fild ottial ψ, ltro otratio, ol otratio, ad tmratur T ar ukow futios. All t offiits of (-(4 ar gratr ta a ositiv umbr ad lss ta aotr ositiv umbr. T umbr α = q/ε dots t quotit of two ositiv ostats, ltroi load q ad diltri offiit ε. T rlatio of diffusio offiit D s (X ad mobility ratio µ s (X is formulatd by D s (X = U T µ s (X(s =,, wr U T mas t quatity of at (uit: volt. N(X, a giv futio, is t diffr of t door imurity otratio N D (X ad t ator imurity otratio N A (X. T valus of N(X vary quikly as X lis arby smiodutor kot P-N. R i (,, T(i =, rrsts t rombiatio rat iflud by t ltro otratio, t ol otratio ad t tmratur. ρ = ρ(x is t offiit of at odutio. Lt gradit orator ad Lala orator of a futio b dotd by = ( x, x, x 3 T ad =. x x x3 Iitial-valu oditios ar statd as follows, (X, = (X, (X, = (X, T(X, = T (X, X Ω. (5 Boudary-valu oditios ar dfid by ψ γ = Ω γ = Ω γ = T Ω γ =, Ω (X, t Ω J, (6 wr Ω dots t boudary of Ω, ad γ is t outward uit ormal vtor of Ω. 6

3 Joural of Matmatis Rsar Vol. 7, No. 3; 5 Numa boudary valu oditios dtrmi a family of ltri fild ottial futios diffrd by a ostat. So a additioal oditio is sulid to gt a uiqu formulatio ψdx =, t J, (7a A omatibility oditio is giv, I gral, t roblm (-(7 is suosd to b ositiv dfiit, Ω Ω ( N dx =, t J. (7b (C < D D s (X D, < µ µ s (X µ, s =, ; < ρ ρ(x ρ, (8 wr D, D, µ, µ, ρ ad ρ ar ositiv ostats. R i (,, T(i =, ar Lisitz otiuous i ε -igbor trd by (,, T. Assum tat xat solutios of (-(7 ar rgular, (R ψ L (J; W k (Ω,,, T L (J; W l (Ω, τ,, T τ t L (J; L (Ω. (9 3. Notatios ad Praratios For simlifiatio, lt t omutatioal domai Ω = (x, x, x 3 < x <, < x <, < x 3 < } b domosd ito two uboids Ω = (x, x, x 3 < x < /, < x <, < x 3 < }, Ω = (x, x, x 3 / < x <, < x <, < x 3 < }, wos itrior boudary is = (x, x, x 3 x = /, < x <, < x 3 < }, as i Fig.. W us aroximatio of drivativs of dlta futio at svral oits i tis work, ad for furtr x 3 (/,, x (/,, x Figur. Skt of domai domositio artitio Ω, Ω, rfr w dfi two sial futios Φ ad Φ 4 as follows (Dawso & Duot, 99, 994; Dawso, Du & Duot, 99; Dawso & Du, 99. x, x, Φ (x = x, x, (a, otrwis. (x /, x, 5x /4 7/6, x, Φ 4 (x = 5x /4 7/6, x, (b (x /, x,, otrwis. Not tat if (x is a olyomial of dgr at most o, t (x Φ (x dx = (, (a 63

4 Joural of Matmatis Rsar Vol. 7, No. 3; 5 ad if (x is a olyomial of dgr at most tr, t (x Φ 4 (x dx = (. Dfiitio : For ay umbr H (,, dfi a ormalizd futio (b Φ(x = Φ m ((x //H/H, m =, 4. ( Lt N, j b a fiit-dimsioal fiit lmt sa H (Ω j ( j =,, ad lt N (Ω b a fiit-dimsioal fiit lmt subsa of l dgr of L (Ω. Morovr, if a futio v oms from N, t v Ω j must blog to N, j. Not tat a giv futio v N (Ω as a wll-dfid jum [v] o, [v] (,x,x 3 = v(, x, x 3 v(, x, x 3. (3 Dfiitio : Dfi a biliar maig D s (u, v, D s (u, v = D s (X u vdx dx dx 3 λ s uvdx dx dx 3, s =,, T, (4 Ω Ω Ω Ω wr u, v H (Ω j, j =,, ad D s (X(s =, ar all ositiv dfiit futios, D T =, ad λ s is a ositiv ostat. Dfiitio 3: A itgral orator aroximatig ormal drivativ at itrior boudary is dfid as follows wr Φ formulatd by ( is usd. B(ψ(, x, x 3 = Φ (x ψ(x, x, x 3 dx, (5 Lt (, dot a rodut ir i L (Ω Ω, ad omit t subsrit otatio (ψ, ρ = (ψ, ρ Ω as Ω Ω = Ω. Cosidr a futio ψ of H (Ω ad H (Ω, ad giv a sial orm, Not w av (D(x, x, x 3 B(ψ, [ψ] = ψ s = D s (ψ, ψ H D s [ψ] L (, s =,, T. (6 D(, x, x 3 Φ (x ψ(x, x, x 3 dx [ψ](, x, x 3 dx dx 3, Φ (x ψ(x, x, x 3 dx = ψ(x, x, x 3 Φ(x Φ(x ψ x (x, x, x 3 dx (D(x, x, x 3 B(ψ, [ψ] = H = H [ψ](, x, x 3 Φ(x ψ x (x, x, x 3 dx, D(, x, x 3 [ψ] (, x, x 3 dx dx 3 D(, x, x 3 T sod trm is formulatd i aotr xrssio, D / (, x, x 3 H Φ(x ψ x (x, x, x 3 dx [ψ](, x, x 3 dx dx 3. D / ( H, x, x 3 Φ(x ψ x (x, x, x 3 dx [ψ](, x, x 3 dx dx 3 D / (, x, x 3 ( Φ (x dx / ( H [ψ](, x, x 3 dx dx 3 ( / ( D( 3H, x, x 3 [ψ] ( /, x, x 3 dx dx 3 H D( H, x, x 3 ψ x (x, x, x 3 dx dx dx 3 D( H, x, x 3 ψ x (x, x, x 3 dx / /. (7 64

5 Joural of Matmatis Rsar Vol. 7, No. 3; 5 Not tat t valu of D(x, x, x 3 at x = / is dfid by t w av = H H ( M H D(, x, x 3 = D(x, x, x 3 (x D x (ξ (x, x, x 3, H D(, x, x 3 ψ x (x, x, x 3 dx dx dx 3 [D(x, x, x 3 (x H D (ξ (x, x, x 3 ]ψ x x (x, x, x 3 dx dx dx 3 H wr M = max x ( H, H (x, x 3 (, (, Cotiu to fid a ositiv ostat M su tat D(x, x, x 3 ψ H x (x, x, x 3 dx dx dx 3, D x (ξ(x,x,x 3 D(x,x,x 3. D s (ψ, ψ (D s B(ψ, [ψ] M ψ s, s =,, T, (8a or Similarly, w av t followig stimats for t T, ψ s M D s (ψ, ψ (D s B(ψ, [ψ] }, s =,, T. B(ψ L ( M H 3 ψ, B(ψ L ( M H ψ,, u(, t B(u(, t γ M 3 H m, L ( (8b (9a (9b (9 wr M, M, M 3 ar ositiv ostats, m =, 4, ad u γ dots t ormal drivativ of u aross itrior boudary. 4. Domai Domositio Sm Modifid wit Caratristi Fiit Elmt T aralll rodurs ar illustratd i tis stio, wi osists of a fiit lmt sm for t ltri fild ottial ad a domai domositio sm modifid wit aratristis for t ltro otratio, ol otratio ad tmratur. Firstly, rwrit t ottial quatio (, ( ψ, v = α ( N, v, v H (Ω, t J, (ψ, =. (a (b Sodly, (-(4 ar rformulatd as follows t = (D (X µ u αµ ( N u µ R (,, T, (X, t Ω J, (a t = (D (X µ u αµ ( N u µ R (,, T, (X, t Ω J, (b ρ(x T t = ( T (D (X µ (Xu (D (X µ (Xu } u, (X, t Ω J, ( wr u = ψ. Lt W = W ψ dot a fiit lmt sa of k dgr, ad lt ψ b t artitio st, t w av if v v L v W (Ω M v k k ψ. ( 65

6 Joural of Matmatis Rsar Vol. 7, No. 3; 5 Notig tat t ltri fild ottial ags vry slow wit rst to t, w a adot a larg st i its alulatios. Wil i t omutatios of t ltro otratio, ol otratio ad tmratur small sts ar adotd. Som otatios ar giv as follows,, tim st of t otratio quatio, ψ, tim st of t ottial quatio, j = ψ /, t =, t m = m ψ, ψ = ψ(t, ad ψ m = ψ(t m. For a ottial futio ψ(x, t, dfi a liar xtraolatio Eψ of t valus at t losst two tim lvls to t, Eψ ψ, t = t ( γ/ jψ m γ/ jψ m, t m < t < t m, t = t m γ. wr t subsrits orrsod to ottial tim lvls, sursrits to otratio tim lvls. T xtraolatio a b alid for t vtor futio u = ψ, tat is to say Eu is dfid similarly to Eψ ad as som sam rortis. Eltri fild ottial quatio ( is aroximatd by t followig fiit lmt sm ( ( ψ,m, v = α,m,m N m, v, v W, (3a ( ψ,m, =. (3b T t gradit of ottial is omutd by U,m = ψ,m. T ltro otratio quatio (, ol otratio quatio (3 ad at odutio quatio (4 ar osidrd. Multily tm by ω N (Ω, aly itgratio by arts, t w av wak forms of domai domositio as follows ( t, ω Ω ( µ u, ω Ω ( D, ω Ω ( D γ, [ω] ( u µ, ω Ω = α ( µ ( N, ω Ω ( R (,, T, ω Ω, ω N (Ω, (4a ( t, ω Ω ( µ u, ω Ω ( D, ω Ω ( D γ, [ω] ( u µ, ω Ω = α ( µ ( N, ω Ω ( R (,, T, ω Ω, ω N (Ω, (4b ( T ρ t, ω Ω ( T, ω Ω ( T γ, [ω] = ([ (D µ ψ (D µ ψ ] ψ, ω Ω, ω N (Ω. (4 Notig tat t flow movs sstially alog t aratristis, w aly a modifid rodur of aratristis for t first-ordr yrboli art of ( ad (3 to ovrom umrial disrsio ad osillatio. Tis kid of mtod as a ig ordr auray ad a fi stability i umrial simulatio ad a larg tim st a b adotd (Ewig 983; Ewig, Russll & Wlr, 984; Douglas & Russll, 98; Russll, 985; Douglas & Yua, 986; Ewig, Yua & Li, 989. Lt τ = τ(x, t dot t uit vtor i aratristi dirtio ( µ u, µ u, µ u 3, [ ad lt τ = τ (X, t b t uit vtor i (µ u, µ u, µ u 3, -dirtio. Lt Φ s = µ s u ] /, s =,, ad omut t aratristi dirtioal drivativ by Φ T (4a ad (4b ar agd ito = τ t µ u, Φ = τ t µ u. ( Φ, ω Ω τ ( D, ω Ω ( D γ, [ω] ( u µ, ω Ω = α ( µ ( N, ω Ω ( R (,, T, ω Ω, ω N (Ω, (5a ( Φ, ω Ω τ ( D, ω Ω ( D γ, [ω] ( u µ, ω Ω = α ( µ ( N, ω Ω ( R (,, T, ω Ω, ω N (Ω. (5b Aroximat τ = τ (X, t by a bakward diffr quotit i τ -dirtio, (X (X µ u, τ ( µ u / 66

7 Joural of Matmatis Rsar Vol. 7, No. 3; 5 ad aroximat τ (X i τ, (X (X µ u. τ ( µ u / T t rodurs of domai domositio wit aratristi fiit lmt ar statd as follows to aroximat t otratios (5, ( ê, ω Ω ( D, ω Ω ( D B(, [ω ] = α ( µ ( ˆ ê N, ω Ω ( ê EU µ, ω Ω ( R (ê, ˆ, T, ω ( ˆ, ω Ω ( D, ω Ω ( D B(, [ω ] = α ( µ ( ˆ ê N, ω Ω ( ˆ EU µ, ω Ω ( R (ê, ˆ, T, ω Ω, ω N (Ω, Ω, ω N (Ω, wr ê = ( ˆX, ˆX = X µ EU, ˆ = ( ˆX, ˆX = X µ EU, U,m = ψ,m, ad U,m = ψ,m. Notig tat t valus of ˆX ad ˆX mayb li outsid t boudary Ω, wil w a us t rfltio of t boudary baus of Numa oditios (6 ad dfi t valus of ê ( ˆX ad ˆ ( ˆX (Douglas & Yua, 986; Ewig, Yua & Li, 989. Similarly, t at odutio quatio is disrtizd by t mtod of domai domositio wit fiit lmt, (6a (6b ( T ρ T, ω Ω ( T, ω Ω ( B(T, [ω ] = ([ (D µ EU (D µ EU ] EU, ω Ω, ω N (Ω. (6 T rogram works for a tim st as follows. Firstly, giv t iitial aroximatio,, T }, ψ,, U, } is omutd by t fiit lmt sm (3. Sodly,,, T },,, T },, i, i, T i } ar omutd i aralll by t domai domositio sm wit fiit lmt (6. It otius to gt ψ,, U, } by t valus j, j, T j } =,,,, T, } ad (3, ad as a rsult, t solutios j, j, T j },,,,,, T, } ar obtaid i aralll by (6. Fially, umrial solutios a b sow aftr a sris of abov omutatio ad ty xist ad ar sol by t ositiv dfiit oditio (C. 5. Covrg Aalysis Svral subsidiary lliti rojtios ar itrodud first i tis stio, ad lt ψ} : J N b dfid o J = (, T], ( (ψ ψ, v =, v W, (7a ( ψ ψ, =. (7b Lt θ = ψ ψ ad η = ψ ψ b rror futios ad ty ar stimatd as follows (Ciarlt, 978; Wlr, 973, θ ψ θ M ψ k k ψ, (8a θ θ t ψ t M ψ k ψ } t k ψ. (8b k Dfi lliti maig ẽ,, T} : J N N N as follows, D ((, t ẽ(, t, ω λ ((, t ẽ(, t, ω =, ω N, D ((, t (, t, ω λ ((, t (, t, ω =, ω N, D T (T(, t T(, t, ω λ T (T(, t T(, t, ω =, ω N, (9a (9b (9 wr t lliti orator is oriv i H (Ω for suffiitly larg ostat λ, λ ad λ T. Iitial aroximatio is giv by = ẽ(, = (, T = T(. (3 67

8 Joural of Matmatis Rsar Vol. 7, No. 3; 5 Itrodu rror futios dotd by ξ = ẽ, ζ = ẽ, ξ =, ζ =, π = T T ad σ = T T. By Galrki mtod (Ciarlt, 978; Wlr, 973, ζ ζ M l l, (3a ζ ζ M l l, (3b σ σ M T l l, (3 ζ ζ t t M l } t l ζ t ζ t M l } t l σ σ t t M T l T } t l l, (3a l, (3b l, (3 wr Ω = Ω Ω, ad dots t saial st of fiit lmt sa N (Ω. Torm Suos tat xat solutios of (-(7 ar suitably rgular, ψ L (J; W k (Ω,,, T L (J; W l (Ω,,, T L (J; L (Ω. Adot t aralll rodur modifid aratristi fiit lmt (3 ad τ τ t (6 o Ω ad Ω, ad suos tat t rlatio of artitio aramtrs is = O(, ψ = O(, M H, l = o(h, (33 wr M is a ositiv ostat ad k ad l ar t idxs of fiit lmt sa. W av ψ ψ L (J;W L (J;L (Ω L (J;L (Ω T T L (J;L (Ω M H m/ k ψ } l H l (34, wr g L (J;X = su g X ad t ostat M is ddt o ψ,,, T ad tir drivativs. T Proof. T ottial futio ψ is osidrd firstly, ad ψ ψ is stimatd. By ( (t = t m, (7 (t = t m ad (3, w av η m M ξ,m ξ,m } (l. (35 T ltro otratio is disussd sodly. Subtrat (6a from (4a (t = t, ad us (9a (t = t, ( ξ ξ, ω ( D ξ (, ω D B(ξ, [ω ] ( = ( µ EU, ω λ ζ, ω t α ( [ µ ( ˆ ê N ( N ] ([ê, ω EU u ] µ, ω (36 ( R (ê, ˆ, T R ( (,, T, ω µ (EU u, ω ( ˆξ ξ ( ζ ˆζ (, ω, ω (D γ B(, [ω ], ω N, wr ê = ( ˆX, ˆξ = ξ ( ˆX, ˆζ = ζ ( ˆX ad ˆX = X µ EU. Tak ω = ξ as a tst futio i (36, ( ξ ξ, ξ ( ( D ξ, ξ λ ξ, ξ = ( D B(ξ ξ, [ξ ] ( ( D γ γ ( D B(ζ, [ξ ] ( ( ˆξ ξ, ξ t ( ( λ ξ, ξ λ ζ, ξ ( D B(ξ, [ξ ], [ξ ] ( (D µ EU, ξ ( R (ê, ˆ, T γ B( ( ζ, [ξ ] ˆζ, ξ 68

9 Joural of Matmatis Rsar Vol. 7, No. 3; 5 ( [ R (,, T, ξ α µ ( ˆ ê N ( N ], ξ ([ ê EU u ] ( ( µ, ξ µ EU u (37, ξ. T trms o t lft-ad sid ar stimatd as follows, ( ξ ξ = ξ ξ } ξ ξ, (38a, ξ ( ( D ξ, ξ λ ξ, ξ ( D B(ξ, [ξ ] M ξ T trms o t rigt ad sid of (37 ar stimatd latr. Usig (9, w av for ositiv ostats M i (i =,, 3, ( D B(ξ ξ, [ξ ] M B(ξ ξ L ( [ξ ] L ( M H 3/ ξ ξ H / ξ M H ξ ξ ε ξ, (39a [ ] (D γ, [ξ ] M γ γ γ [ξ ] L ( L ( M H / ξ M ( H ε ξ, (39b [ ] (D γ B(, [ξ ] M 3 H m ε ξ, (39 ( D B(ζ, [ξ ] M 3H ζ ε ξ M3 H (l ε ξ. (39d Tak suffiitly small, T A idutio yotsis is giv,. (38b M H. (4 ξ ξ M H ξ ξ. (4 su η m,, su max ξ,, ξ, }, π,,. (4 m [(L / j] L Otr trms o t rigt ad sid ar stimatd. Not tat ê µ EU Φ t, ad Φ is boudd baus of (4, w av ( ê wr J = (t, t ]. t µ EU, ξ Ω M τ (X,t ( ˆX,t L (J ;L (Ω dtdx, τ ξ, (43 It follows from gativ orm stimat ad idutio yotsis (4, ( ζ ˆζ ( ζ, ξ ζ ( ζ =, ξ ˆζ, ξ M ( ζ t ξ } ξ ε ξ, (44a L (J ;L (Ω ( ˆξ ξ, ξ M ξ ε ξ, (44b ( ( } λ ξ, ξ ζ, ξ M (l ξ }, (44 ( R (ê, ˆ, T R (,, T, ξ M ( k ψ (l ξ ξ ξ } π, (44d 69

10 Joural of Matmatis Rsar Vol. 7, No. 3; 5 By (4, w a s tat, ad T ar boudd, t w av α ( [ µ ( ˆ ê N ( N ], ξ M ( k ψ (l ξ ξ ξ }, Colltig (38-(44, w driv ([ê EU u ] ( ( µ, ξ µ EU u, ξ M ( k ψ (l ξ ξ,[/ j] ξ,[/ } j]. ξ ξ } ξ M M ( ζ t L (J ;L (Ω τ k ψ (l ( ( H L (J ;L (Ω H (l H m ξ ξ ξ π ξ,[/ j] ξ,[/ } j] ε ξ ξ }. (44 (44f (45 It otius to stimat t ol otratio. Subtrat (6b from (4b (t = t, ad us (9b (t = t, ξ ξ, ω ( ( D ξ, ω D B(ξ, [ω ] ( = ( µ EU, ω λ ζ, ω t α ( [ µ ( ˆ ê N ( N ] ([, ω ˆ EU u ] µ, ω ( R (ê, ˆ, T R ( (,, T, ω µ (EU u, ω ˆξ ξ, ω ζ ˆζ ( (, ω D γ B(, [ω ], ω N, (46 wr ˆ = ( ˆX ad ˆX = X µ EU. Tst futio ω = ξ is substitutd i (46, ad it follows from a similar disussio ad aalysis, ξ ξ } ξ M M ( ζ t L (J ;L (Ω τ k ψ (l ( L (J ;L (Ω H (l H m ξ ξ ξ π ξ,[/ j] ξ,[/ } j] ε ξ ξ }. (47 Fially, rror quatio of tmratur is drivd from (4, (ρ π π, ω ( π, ω (B(π, [ω ] ( [ T T ] T ( = ρ, ω λ T σ ([, ω (D t µ EU D µ EU EU (D µ u D µ u u ], ω (ρ σ σ ( T, ω γ B(T, [ω ], ω N. (48 7

11 Joural of Matmatis Rsar Vol. 7, No. 3; 5 Tak ω = π as tst futio i (48, π π } M π M ( σ t L (J ;L (Ω T t L (J ;L (Ω k ψ (l ( H (l H m π ξ ξ ξ,[/ j] ξ,[/ j] }. (49 Colltig (45, (47 ad (49, multilyig bot sids of t rsultig quatio by, summig o ( L, ad otig tat ξ = ξ = π =, w av ξ L ξ L π L L ξ ξ π } = M ζ t ζ L (J;L (Ω t σ L (J;L (Ω t L (J;L (Ω ξ ξ,[/ j] ξ,[/ ] j] ( τ T t ( k ψ (l L (J;L (Ω L [ π ξ = L (J;L (Ω H (l H m. τ L (J;L (Ω (5 Usig Growall Lmma, ξ L ξ L π L L ξ ξ π } = M ( k ψ (l H (l H m}. (5 Trfor, it follows from (35 ad (5, ψ,m ψ m M k ψ l H l H m/}. (5 It rmais to tstify t idutio yotsis (4. It is rigt as is qual to baus of ξ = ξ = π =. Assum (4 olds for ay ositiv itgr btw ad a giv ositiv itgr L. By (5 (5 ad t rstritio (4, it is asy to s tat (4 olds for = L. Basd o t rsultig stimats (5 ad (5, ad (3, Torm is rovd. T mtod disussd i tis ar a b xtdd to tr-dimsioal as, su as Mst modl (s Fig. (H & Wi,989. T tiqu of domai domositio is vry imortat i umrial simulatio of atual aliatios, as sow i Fig., wr omutatioal rgio Ω is dividd ito fiv subdomais, Ω = 5 Ω i (H & Wi, 989; Si, ; Yua, 9, Numrial Examl I tis stio o umrial xaml is rstd to tstify t ffiiy of t aralll algoritm disussd abov. Cosidr t followig modl roblm, t u x ( D(x, t = f (, x, t, < x <, < t < T, (53a x x (x, = os(πx, x, (, t = (, t =, t T. x x (53 Som rlatd futios ad artitio aramtrs ar giv as follows, u = x t, D(x, t =.x t, = t os(πx, f = t os(πx π t x si(πx.4π 3t x ( si(πx πx os(πx, H = 4, = ad T =.5. i= (53b 7

12 Joural of Matmatis Rsar Vol. 7, No. 3; 5 sour grid lak z y x Figur. Domositio of omutatioal domai of tr-dimsioal Mst modl, Ω = 5 Ω i i= T omutatioal itrval is domosd ito two subitrvals, [, ] = [,.5] [.5, ], ad itrior boudary is =.5. Absolut rrors of umrial data ar sow i Tabl. Tabl. Absolut Errors x =.5 x =.5 x =.45 x =.55 x =.75 x =.95 = / E 3.364E E E 3.364E E 3 = /8 5.35E 3.89E E E 3.89E E 3 = / E 3.5E E E 3.5E E 3 Numrial data ar osistt wit tortial aalysis from Tabl, ad rror rsults of aroximatio to ormal drivativ at ir boudary, x (.5 = T si π = ar sow i Tabl. Tabl. Error rsults of aroximatio to orma drivativ at itrior boudary B = /4 6.78E 6 = / E 5 = / E 4 Tim osts (uit: sod i umrial omutatio of domai domositio mtod (DDM ar illustratd i Tabl 3 omarig wit aotr omutatio stratgy, o-domai domositio mtod (NDDM. Tabl 3. Tim osts omariso (uit: sod DDM NDDM = / = / = / = / From Tabl 3, it is asy to olud tat domai domositio boms mor ad mor ffiit as t artitio boms mor rfid ad t systm of algbrai quatios boms largr ad largr. 7. Colusio ad Disussio I tis ar a domai domositio of fiit lmt is disussd to simulat smiodutor trasit roblms of at odutor. Matmatial modl, ysial basi ad itratioal rsar ar itrodud i t first stio. I t sod stio som rimary lliti rojtios, otatios ad basi rortis ar statd. T t 7

13 Joural of Matmatis Rsar Vol. 7, No. 3; 5 rodurs of domai domositio modifid wit aratristi fiit lmt ar struturd i t tird stio. Tortial aalysis is sow ad a otimal ordr stimat i L orm is drivd i t fourt stio. I t last stio a umrial xrimt is illustratd to tstify t tortial rsult ad som advatags of tis mtod ar oludd as follows. Firstly, tis mtod a b alid i larg-sald umrial omutatio of tr-dimsioal roblm wit omliatd domai. Sodly, idustrial softwar is mad asily o tis mtod. Tirdly, t algoritm works o modr aralll omutrs ad givs umrial omutatio of ig ordr auray ad ig ffiiy i aralll for smiodutor trasit roblms. Fially, tis ar is a xasiv argumt of my arly rsar (Yua,, ad a mixd lmt mtod ombid wit domai domositio is argud firstly i t rfr (Yua, to solv t roblm of smiodutor dvi. I tis ar t otimal rror stimat i L orm is drivd i tortial aalysis but ot obtaid i t rvious work. Akowldgmts T autors xrss tir d ariatio to Prof. J. Douglas Jr, ad Prof. Jiag Lisag for tir lful suggstios i t srial of rsar o umrial simulatio of smiodutor dvi. Rfrs Bak, R. E., Cougra, W. M. Jr., Fitr, Wolfgag, Gross, E. H, Ros, D. J., & Smit, R. K. (985. Trasit simulatio of silio dvis ad iruits. IEEE Tras: Comutr-Aidd Dsig of Itgratd Ciruits ad Systm, 4(4, Ciarlt, P. G. (978. T fiit lmt mtod for lliti roblms. Amstrdam: Nort-Hollad. Dawso, C. N., Du, Q., & Duot, T. F. (99. A fiit diffr domai domositio algoritm for umrial solutio of t at quatio. Mat. Com., 57(95, Dawso, C. N., & Duot, T. F. (99. Exliit/Imliit osrvativ Galrki domai domositio rodurs for araboli roblms. Mat. Com., 58(97, -34. Dawso, C. N., & Du, Q. (99. A fiit lmt domai domositio mtod for araboli quatios. Ri Tial rort TR9-, Dt. of Matmatial Sis, Ri Uivrsity, Housto, Txas. Dawso, C. N., & Duot, T. F. (994. Exliit/Imliit, osrvativ domai domositio rodurs for araboli roblms basd o blok-trd fiit diffrs. SIAM J. Numr. Aal., 3(4, Douglas, Jr. J., & Russll, T. F. (98. Numrial mtod for ovtio-domiatd diffusio roblms basd o ombiig t mtod of aratristis wit fiit lmt or fiit diffr rodurs. SIAM J. Numr. Aal., 9(5, Douglas, Jr. J., & Yua, Y. R. (986. Numrial simulatio of immisibl flow i orous mdia basd o ombiig t mtod of aratristis wit mixd fiit lmt rodur. T IMA Vol. i Mat. ad its Al.,, 9-3. Douglas, Jr. J., & Yua, Y. R.(987. Fiit diffr mtods for trasit bavior of a smiodutor dvi. Mat. Ali. Com., 6(, Ewig, R. E. (983. T Matmatis of Rsrvoir Simulatio. SIAM, Piladlia. Ewig, R. E., Russll, T. F., & Wlr, M. F. (984. Covrg aalysis of a aroximatio of misibl dislamt i orous mdia by mixd fiit lmts ad a modifid mtod of aratristis. Com. Mt. Al. M. Eg., 47(-, Ewig, R. E., Yua, Y. R., & Li, G. (989. Tim stig alog aratristis of a mixd fiit lmt aroximatio for omrssibl flow of otamiatio by ular wast diosal i orous mdia. SIAM J. Numr. Aal., 6(6, Gumml, H. K. (964. A slf-osistt itrativ sm for o-dimsioal stady-stat trasistor alulatio. IEEE Tras: Eltro Dvi, (, H, Y., & Wi, T. L. (989. Comutr simulatio mtod for smiodutor dvi. Si Prss, Bijig. Jrom, J. W. (994. Matmatial tory ad aroximatio of smiodutor modls. Piladlia, SIAM. Lou, Y. (995. O basi smiodutor quatio wit at odutio. J. Partial. Diff. Eqs., 8(, Russll, T. F. (985. Tim Stig Alog Caratristis wit Iomlt Itratio for a Galrki Aroxi- 73

14 Joural of Matmatis Rsar Vol. 7, No. 3; 5 matio of Misibl Dislamt i Porous Mdia. SLAM J. Numr. Aal., (5, Sidma, T. I. (986.Tim ddt solutio of a oliar systm arisig i smiodutor tory II: bouddss ad riodiity. Noliar Aalysis: Tory, Mtods & Aliatios, (5, Si, M. (. Pysis of modr smiodutor dvi. Si Prss, Bijig. Wlr, M. F. (973. A rior L -rror stimats for Galrki aroximatios to araboli diffrtial quatios. SIAM J. Numr. Aal., (4, Yua, Y. R., Dig, L. Y.,& Yag, H. (98. A w mtod ad tortial aalysis of umrial aalog of smiodutor. Ci. Si. Bull., 7(7, Yua, Y. R. (99. Caratristis mtod wit mixd fiit lmt for trasit bavior of smiodutor dvi. Ci. Si. Bull., 36(7, Yua, Y. R.(99. T aroximatio of t ltroi ottial by a mixd mtod i t simulatio of smiodutor. J. Systms Si. Mat. Si., (, 7-. Yua, Y. R. (993. Fiit lmt mtod ad aalysis of umrial simulatio of smiodutor dvi. Ata Mat. Si., 3(3, 4-5. Yua, Y. R. (996. Fiit diffr mtod ad aalysis for tr-dimsioal smiodutor dvi of at odutio. Si. Cia Mat., 39(, 4-5. Yua, Y. R. (. Caratristi fiit diffr fratioal st mtods for tr-dimsioal smiodutor dvi of at odutio. Ci. Si. Bull., 45(, 3-3. Yua, Y. R. (5. Fiit diffr fratioal st mtod for trasit bavior of a smiodutor dvi. Ata Mat. Si.(Egl.Sr., 5(3, Yua, Y. R. (8. Modifiatio of uwid fiit diffr fratioal st mtods by t trasit stat of t smiodutor dvi. Numr. Mtods Partial Diffrtial Eq., 4(, Yua, Y. R. (9. Rt rogrss i umrial mtods for smiodutor dvis. Cis J. Comutatioal Pysis, 6(3: Yua, Y. R. (. T modifid mtod of aratristis wit mixd fiit lmt domai domositio rodurs for t trasit bavior dvi. Numr. Mtods Partial Diffrtial Eq., 8(, Coyrigts Coyrigt for tis artil is rtaid by t autor(s, wit first ubliatio rigts gratd to t joural. Tis is a o-ass artil distributd udr t trms ad oditios of t Crativ Commos Attributio lis (tt://rativommos.org/liss/by/3./. 74

Iterative Methods of Order Four for Solving Nonlinear Equations

Iterative Methods of Order Four for Solving Nonlinear Equations Itrativ Mods of Ordr Four for Solvig Noliar Equatios V.B. Kumar,Vatti, Shouri Domii ad Mouia,V Dpartmt of Egirig Mamatis, Formr Studt of Chmial Egirig Adhra Uivrsity Collg of Egirig A, Adhra Uivrsity Visakhapatam

More information

Ordinary Differential Equations

Ordinary Differential Equations Basi Nomlatur MAE 0 all 005 Egirig Aalsis Ltur Nots o: Ordiar Diffrtial Equatios Author: Profssor Albrt Y. Tog Tpist: Sakurako Takahashi Cosidr a gral O. D. E. with t as th idpdt variabl, ad th dpdt variabl.

More information

1985 AP Calculus BC: Section I

1985 AP Calculus BC: Section I 985 AP Calculus BC: Sctio I 9 Miuts No Calculator Nots: () I this amiatio, l dots th atural logarithm of (that is, logarithm to th bas ). () Ulss othrwis spcifid, th domai of a fuctio f is assumd to b

More information

Bayesian Economic Cost Plans II. The Average Outgoing Quality

Bayesian Economic Cost Plans II. The Average Outgoing Quality Eltro. J. Math. Phs. Si. 22 Sm. 1 9-15 Eltroi Joural of Mathmatial ad Phsial Sis EJMAPS ISS: 1538-3318 www.jmas.or Basia Eoomi Cost Plas II. Th Avra Outoi Qualit Abraham F. Jalbout 1*$ Hadi Y. Alkahb 2

More information

Frequency Response & Digital Filters

Frequency Response & Digital Filters Frquy Rspos & Digital Filtrs S Wogsa Dpt. of Cotrol Systms ad Istrumtatio Egirig, KUTT Today s goals Frquy rspos aalysis of digital filtrs LTI Digital Filtrs Digital filtr rprstatios ad struturs Idal filtrs

More information

Hadamard Exponential Hankel Matrix, Its Eigenvalues and Some Norms

Hadamard Exponential Hankel Matrix, Its Eigenvalues and Some Norms Math Sci Ltt Vol No 8-87 (0) adamard Exotial al Matrix, Its Eigvalus ad Som Norms İ ad M bula Mathmatical Scics Lttrs Itratioal Joural @ 0 NSP Natural Scics Publishig Cor Dartmt of Mathmatics, aculty of

More information

ELCE5180 Digital Signal Processing

ELCE5180 Digital Signal Processing ELCE580 Digital Sigal Prossig Assigmt : Disrt Fourir Trasform DFT am Class&Stut ID Aim. To stuy t Disrt Fourir Trasform.. Us DFT to aalyz t DTFT. 3. Us t FFT to imlmt t fast ovolutios. Itroutio Fast Fourir

More information

Chapter 2 Infinite Series Page 1 of 11. Chapter 2 : Infinite Series

Chapter 2 Infinite Series Page 1 of 11. Chapter 2 : Infinite Series Chatr Ifiit Sris Pag of Sctio F Itgral Tst Chatr : Ifiit Sris By th d of this sctio you will b abl to valuat imror itgrals tst a sris for covrgc by alyig th itgral tst aly th itgral tst to rov th -sris

More information

Chapter Five. More Dimensions. is simply the set of all ordered n-tuples of real numbers x = ( x 1

Chapter Five. More Dimensions. is simply the set of all ordered n-tuples of real numbers x = ( x 1 Chatr Fiv Mor Dimsios 51 Th Sac R W ar ow rard to mov o to sacs of dimsio gratr tha thr Ths sacs ar a straightforward gralizatio of our Euclida sac of thr dimsios Lt b a ositiv itgr Th -dimsioal Euclida

More information

Chapter Taylor Theorem Revisited

Chapter Taylor Theorem Revisited Captr 0.07 Taylor Torm Rvisitd Atr radig tis captr, you sould b abl to. udrstad t basics o Taylor s torm,. writ trascdtal ad trigoomtric uctios as Taylor s polyomial,. us Taylor s torm to id t valus o

More information

Discrete Fourier Transform. Discrete Fourier Transform. Discrete Fourier Transform. Discrete Fourier Transform. Discrete Fourier Transform

Discrete Fourier Transform. Discrete Fourier Transform. Discrete Fourier Transform. Discrete Fourier Transform. Discrete Fourier Transform Discrt Fourir Trasform Dfiitio - T simplst rlatio btw a lt- squc x dfid for ω ad its DTFT X ( ) is ω obtaid by uiformly sampli X ( ) o t ω-axis btw ω < at ω From t dfiitio of t DTFT w tus av X X( ω ) ω

More information

MONTGOMERY COLLEGE Department of Mathematics Rockville Campus. 6x dx a. b. cos 2x dx ( ) 7. arctan x dx e. cos 2x dx. 2 cos3x dx

MONTGOMERY COLLEGE Department of Mathematics Rockville Campus. 6x dx a. b. cos 2x dx ( ) 7. arctan x dx e. cos 2x dx. 2 cos3x dx MONTGOMERY COLLEGE Dpartmt of Mathmatics Rockvill Campus MATH 8 - REVIEW PROBLEMS. Stat whthr ach of th followig ca b itgratd by partial fractios (PF), itgratio by parts (PI), u-substitutio (U), or o of

More information

Thomas J. Osler. 1. INTRODUCTION. This paper gives another proof for the remarkable simple

Thomas J. Osler. 1. INTRODUCTION. This paper gives another proof for the remarkable simple 5/24/5 A PROOF OF THE CONTINUED FRACTION EXPANSION OF / Thomas J Oslr INTRODUCTION This ar givs aothr roof for th rmarkabl siml cotiud fractio = 3 5 / Hr is ay ositiv umbr W us th otatio x= [ a; a, a2,

More information

Review Exercises. 1. Evaluate using the definition of the definite integral as a Riemann Sum. Does the answer represent an area? 2

Review Exercises. 1. Evaluate using the definition of the definite integral as a Riemann Sum. Does the answer represent an area? 2 MATHEMATIS --RE Itgral alculus Marti Huard Witr 9 Rviw Erciss. Evaluat usig th dfiitio of th dfiit itgral as a Rima Sum. Dos th aswr rprst a ara? a ( d b ( d c ( ( d d ( d. Fid f ( usig th Fudamtal Thorm

More information

POSTERIOR ESTIMATES OF TWO PARAMETER EXPONENTIAL DISTRIBUTION USING S-PLUS SOFTWARE

POSTERIOR ESTIMATES OF TWO PARAMETER EXPONENTIAL DISTRIBUTION USING S-PLUS SOFTWARE Joural of Rliabilit ad tatistial tudis [IN: 0974-804 Prit 9-5666 Oli] Vol. 3 Issu 00:7-34 POTERIOR ETIMATE OF TWO PARAMETER EXPONENTIAL DITRIBUTION UING -PLU OFTWARE.P. Ahmad ad Bilal Ahmad Bhat. Dartmt

More information

Rectangular Waveguides

Rectangular Waveguides Rtgulr Wvguids Wvguids tt://www.tllguid.o/wvguidlirit.tl Uss To rdu ttutio loss ig rquis ig owr C ort ol ov rti rquis Ats s ig-ss iltr Norll irulr or rtgulr W will ssu losslss rtgulr tt://www..surr..u/prsol/d.jris/wguid.tl

More information

Lectures 9 IIR Systems: First Order System

Lectures 9 IIR Systems: First Order System EE3054 Sigals ad Systms Lcturs 9 IIR Systms: First Ordr Systm Yao Wag Polytchic Uivrsity Som slids icludd ar xtractd from lctur prstatios prpard by McCllla ad Schafr Lics Ifo for SPFirst Slids This work

More information

DFT: Discrete Fourier Transform

DFT: Discrete Fourier Transform : Discrt Fourir Trasform Cogruc (Itgr modulo m) I this sctio, all lttrs stad for itgrs. gcd m, = th gratst commo divisor of ad m Lt d = gcd(,m) All th liar combiatios r s m of ad m ar multils of d. a b

More information

Lecture contents. Density of states Distribution function Statistic of carriers. Intrinsic Extrinsic with no compensation Compensation

Lecture contents. Density of states Distribution function Statistic of carriers. Intrinsic Extrinsic with no compensation Compensation Ltur otts Dsity of stats Distributio futio Statisti of arrirs Itrisi trisi with o ompsatio ompsatio S 68 Ltur #7 Dsity of stats Problm: alulat umbr of stats pr uit rgy pr uit volum V() Larg 3D bo (L is

More information

PURE MATHEMATICS A-LEVEL PAPER 1

PURE MATHEMATICS A-LEVEL PAPER 1 -AL P MATH PAPER HONG KONG EXAMINATIONS AUTHORITY HONG KONG ADVANCED LEVEL EXAMINATION PURE MATHEMATICS A-LEVEL PAPER 8 am am ( hours) This papr must b aswrd i Eglish This papr cosists of Sctio A ad Sctio

More information

Option 3. b) xe dx = and therefore the series is convergent. 12 a) Divergent b) Convergent Proof 15 For. p = 1 1so the series diverges.

Option 3. b) xe dx = and therefore the series is convergent. 12 a) Divergent b) Convergent Proof 15 For. p = 1 1so the series diverges. Optio Chaptr Ercis. Covrgs to Covrgs to Covrgs to Divrgs Covrgs to Covrgs to Divrgs 8 Divrgs Covrgs to Covrgs to Divrgs Covrgs to Covrgs to Covrgs to Covrgs to 8 Proof Covrgs to π l 8 l a b Divrgt π Divrgt

More information

A Review of Complex Arithmetic

A Review of Complex Arithmetic /0/005 Rviw of omplx Arithmti.do /9 A Rviw of omplx Arithmti A omplx valu has both a ral ad imagiary ompot: { } ad Im{ } a R b so that w a xprss this omplx valu as: whr. a + b Just as a ral valu a b xprssd

More information

DEPARTMENT OF MATHEMATICS BIT, MESRA, RANCHI MA2201 Advanced Engg. Mathematics Session: SP/ 2017

DEPARTMENT OF MATHEMATICS BIT, MESRA, RANCHI MA2201 Advanced Engg. Mathematics Session: SP/ 2017 DEARMEN OF MAEMAICS BI, MESRA, RANCI MA Advad Egg. Mathatis Sssio: S/ 7 MODULE I. Cosidr th two futios f utorial Sht No. -- ad g o th itrval [,] a Show that thir Wroskia W f, g vaishs idtially. b Show

More information

Further Results on Pair Sum Graphs

Further Results on Pair Sum Graphs Applid Mathmatis, 0,, 67-75 http://dx.doi.org/0.46/am.0.04 Publishd Oli Marh 0 (http://www.sirp.org/joural/am) Furthr Rsults o Pair Sum Graphs Raja Poraj, Jyaraj Vijaya Xavir Parthipa, Rukhmoi Kala Dpartmt

More information

Worksheet: Taylor Series, Lagrange Error Bound ilearnmath.net

Worksheet: Taylor Series, Lagrange Error Bound ilearnmath.net Taylor s Thorm & Lagrag Error Bouds Actual Error This is th ral amout o rror, ot th rror boud (worst cas scario). It is th dirc btw th actual () ad th polyomial. Stps:. Plug -valu ito () to gt a valu.

More information

DTFT Properties. Example - Determine the DTFT Y ( e ) of n. Let. We can therefore write. From Table 3.1, the DTFT of x[n] is given by 1

DTFT Properties. Example - Determine the DTFT Y ( e ) of n. Let. We can therefore write. From Table 3.1, the DTFT of x[n] is given by 1 DTFT Proprtis Exampl - Dtrmi th DTFT Y of y α µ, α < Lt x α µ, α < W ca thrfor writ y x x From Tabl 3., th DTFT of x is giv by ω X ω α ω Copyright, S. K. Mitra Copyright, S. K. Mitra DTFT Proprtis DTFT

More information

Narayana IIT Academy

Narayana IIT Academy INDIA Sc: LT-IIT-SPARK Dat: 9--8 6_P Max.Mars: 86 KEY SHEET PHYSIS A 5 D 6 7 A,B 8 B,D 9 A,B A,,D A,B, A,B B, A,B 5 A 6 D 7 8 A HEMISTRY 9 A B D B B 5 A,B,,D 6 A,,D 7 B,,D 8 A,B,,D 9 A,B, A,B, A,B,,D A,B,

More information

Chapter (8) Estimation and Confedence Intervals Examples

Chapter (8) Estimation and Confedence Intervals Examples Chaptr (8) Estimatio ad Cofdc Itrvals Exampls Typs of stimatio: i. Poit stimatio: Exampl (1): Cosidr th sampl obsrvatios, 17,3,5,1,18,6,16,10 8 X i i1 17 3 5 118 6 16 10 116 X 14.5 8 8 8 14.5 is a poit

More information

Partition Functions and Ideal Gases

Partition Functions and Ideal Gases Partitio Fuctios ad Idal Gass PFIG- You v lard about partitio fuctios ad som uss ow w ll xplor tm i mor dpt usig idal moatomic diatomic ad polyatomic gass! for w start rmmbr: Q( N ( N! N Wat ar N ad? W

More information

07 - SEQUENCES AND SERIES Page 1 ( Answers at he end of all questions ) b, z = n

07 - SEQUENCES AND SERIES Page 1 ( Answers at he end of all questions ) b, z = n 07 - SEQUENCES AND SERIES Pag ( Aswrs at h d of all qustios ) ( ) If = a, y = b, z = c, whr a, b, c ar i A.P. ad = 0 = 0 = 0 l a l

More information

Chp6. pn Junction Diode: I-V Characteristics I

Chp6. pn Junction Diode: I-V Characteristics I 147 C6. uctio Diod: I-V Caractristics I 6.1. THE IDEAL DIODE EQUATION 6.1.1. Qualitativ Drivatio 148 Figur rfrc: Smicoductor Dvic Fudamtals Robrt F. Pirrt, Addiso-Wsly Publicig Comay 149 Figur 6.1 juctio

More information

A Simple Proof that e is Irrational

A Simple Proof that e is Irrational Two of th most bautiful ad sigificat umbrs i mathmatics ar π ad. π (approximatly qual to 3.459) rprsts th ratio of th circumfrc of a circl to its diamtr. (approximatly qual to.788) is th bas of th atural

More information

XGFIT s Curve Fitting Algorithm with GSL

XGFIT s Curve Fitting Algorithm with GSL XGFIT s Curv Fitti Alorithm ith GSL Ovrvi XGFIT is a GTK+ aliatio that taks as iut a st o (, y) oits, rodus a li rah, ad rorms a aussia it o th data. XGFIT uss th GNU Sitii Lirary (GSL) to rorm th urv

More information

z 1+ 3 z = Π n =1 z f() z = n e - z = ( 1-z) e z e n z z 1- n = ( 1-z/2) 1+ 2n z e 2n e n -1 ( 1-z )/2 e 2n-1 1-2n -1 1 () z

z 1+ 3 z = Π n =1 z f() z = n e - z = ( 1-z) e z e n z z 1- n = ( 1-z/2) 1+ 2n z e 2n e n -1 ( 1-z )/2 e 2n-1 1-2n -1 1 () z Sris Expasio of Rciprocal of Gamma Fuctio. Fuctios with Itgrs as Roots Fuctio f with gativ itgrs as roots ca b dscribd as follows. f() Howvr, this ifiit product divrgs. That is, such a fuctio caot xist

More information

Problem Value Score Earned No/Wrong Rec -3 Total

Problem Value Score Earned No/Wrong Rec -3 Total GEORGIA INSTITUTE OF TECHNOLOGY SCHOOL of ELECTRICAL & COMPUTER ENGINEERING ECE6 Fall Quiz # Writt Eam Novmr, NAME: Solutio Kys GT Usram: LAST FIRST.g., gtiit Rcitatio Sctio: Circl t dat & tim w your Rcitatio

More information

Statistics 3858 : Likelihood Ratio for Exponential Distribution

Statistics 3858 : Likelihood Ratio for Exponential Distribution Statistics 3858 : Liklihood Ratio for Expotial Distributio I ths two xampl th rjctio rjctio rgio is of th form {x : 2 log (Λ(x)) > c} for a appropriat costat c. For a siz α tst, usig Thorm 9.5A w obtai

More information

Physics 302 Exam Find the curve that passes through endpoints (0,0) and (1,1) and minimizes 1

Physics 302 Exam Find the curve that passes through endpoints (0,0) and (1,1) and minimizes 1 Physis Exam 6. Fid th urv that passs through dpoits (, ad (, ad miimizs J [ y' y ]dx Solutio: Si th itgrad f dos ot dpd upo th variabl of itgratio x, w will us th sod form of Eulr s quatio: f f y' y' y

More information

An Introduction to Asymptotic Expansions

An Introduction to Asymptotic Expansions A Itroductio to Asmptotic Expasios R. Shaar Subramaia Asmptotic xpasios ar usd i aalsis to dscrib th bhavior of a fuctio i a limitig situatio. Wh a fuctio ( x, dpds o a small paramtr, ad th solutio of

More information

Chapter 11.00C Physical Problem for Fast Fourier Transform Civil Engineering

Chapter 11.00C Physical Problem for Fast Fourier Transform Civil Engineering haptr. Physical Problm for Fast Fourir Trasform ivil Egirig Itroductio I this chaptr, applicatios of FFT algorithms [-5] for solvig ral-lif problms such as computig th dyamical (displacmt rspos [6-7] of

More information

+ x. x 2x. 12. dx. 24. dx + 1)

+ x. x 2x. 12. dx. 24. dx + 1) INTEGRATION of FUNCTION of ONE VARIABLE INDEFINITE INTEGRAL Fidig th idfiit itgrals Rductio to basic itgrals, usig th rul f ( ) f ( ) d =... ( ). ( )d. d. d ( ). d. d. d 7. d 8. d 9. d. d. d. d 9. d 9.

More information

(Reference: sections in Silberberg 5 th ed.)

(Reference: sections in Silberberg 5 th ed.) ALE. Atomic Structur Nam HEM K. Marr Tam No. Sctio What is a atom? What is th structur of a atom? Th Modl th structur of a atom (Rfrc: sctios.4 -. i Silbrbrg 5 th d.) Th subatomic articls that chmists

More information

On the approximation of the constant of Napier

On the approximation of the constant of Napier Stud. Uiv. Babş-Bolyai Math. 560, No., 609 64 O th approximatio of th costat of Napir Adri Vrscu Abstract. Startig from som oldr idas of [] ad [6], w show w facts cocrig th approximatio of th costat of

More information

Chapter At each point (x, y) on the curve, y satisfies the condition

Chapter At each point (x, y) on the curve, y satisfies the condition Chaptr 6. At ach poit (, y) o th curv, y satisfis th coditio d y 6; th li y = 5 is tagt to th curv at th poit whr =. I Erciss -6, valuat th itgral ivolvig si ad cosi.. cos si. si 5 cos 5. si cos 5. cos

More information

15/03/1439. Lectures on Signals & systems Engineering

15/03/1439. Lectures on Signals & systems Engineering Lcturs o Sigals & syms Egirig Dsigd ad Prd by Dr. Ayma Elshawy Elsfy Dpt. of Syms & Computr Eg. Al-Azhar Uivrsity Email : aymalshawy@yahoo.com A sigal ca b rprd as a liar combiatio of basic sigals. Th

More information

2.29 Numerical Fluid Mechanics Spring 2015 Lecture 12

2.29 Numerical Fluid Mechanics Spring 2015 Lecture 12 REVIEW Lctur 11: Numrical Fluid Mchaics Sprig 2015 Lctur 12 Fiit Diffrcs basd Polyomial approximatios Obtai polyomial (i gral u-qually spacd), th diffrtiat as dd Nwto s itrpolatig polyomial formulas Triagular

More information

How many neutrino species?

How many neutrino species? ow may utrio scis? Two mthods for dtrmii it lium abudac i uivrs At a collidr umbr of utrio scis Exasio of th uivrs is ovrd by th Fridma quatio R R 8G tot Kc R Whr: :ubblcostat G :Gravitatioal costat 6.

More information

CDS 101: Lecture 5.1 Reachability and State Space Feedback

CDS 101: Lecture 5.1 Reachability and State Space Feedback CDS, Lctur 5. CDS : Lctur 5. Rachability ad Stat Spac Fdback Richard M. Murray ad Hido Mabuchi 5 Octobr 4 Goals: Di rachability o a cotrol systm Giv tsts or rachability o liar systms ad apply to ampls

More information

NET/JRF, GATE, IIT JAM, JEST, TIFR

NET/JRF, GATE, IIT JAM, JEST, TIFR Istitut for NET/JRF, GATE, IIT JAM, JEST, TIFR ad GRE i PHYSICAL SCIENCES Mathmatical Physics JEST-6 Q. Giv th coditio φ, th solutio of th quatio ψ φ φ is giv by k. kφ kφ lφ kφ lφ (a) ψ (b) ψ kφ (c) ψ

More information

Folding of Hyperbolic Manifolds

Folding of Hyperbolic Manifolds It. J. Cotmp. Math. Scics, Vol. 7, 0, o. 6, 79-799 Foldig of Hyprbolic Maifolds H. I. Attiya Basic Scic Dpartmt, Collg of Idustrial Educatio BANE - SUEF Uivrsity, Egypt hala_attiya005@yahoo.com Abstract

More information

DIOPHANTINE APPROXIMATION WITH FOUR SQUARES AND ONE K-TH POWER OF PRIMES

DIOPHANTINE APPROXIMATION WITH FOUR SQUARES AND ONE K-TH POWER OF PRIMES oural of atatical Scics: Advacs ad Alicatios Volu 6 Nubr 00 Pas -6 DOPHANNE APPROAON WH FOUR SQUARES AND ONE -H POWER OF PRES Dartt of atatics ad foratio Scic Ha Uivrsit of Ecooics ad Law Zzou 000 P. R.

More information

8(4 m0) ( θ ) ( ) Solutions for HW 8. Chapter 25. Conceptual Questions

8(4 m0) ( θ ) ( ) Solutions for HW 8. Chapter 25. Conceptual Questions Solutios for HW 8 Captr 5 Cocptual Qustios 5.. θ dcrass. As t crystal is coprssd, t spacig d btw t plas of atos dcrass. For t first ordr diffractio =. T Bragg coditio is = d so as d dcrass, ust icras for

More information

Solid State Device Fundamentals

Solid State Device Fundamentals 8 Biasd - Juctio Solid Stat Dvic Fudamtals 8. Biasd - Juctio ENS 345 Lctur Cours by Aladr M. Zaitsv aladr.zaitsv@csi.cuy.du Tl: 718 98 81 4N101b Dartmt of Egirig Scic ad Physics Biasig uiolar smicoductor

More information

Fooling Newton s Method a) Find a formula for the Newton sequence, and verify that it converges to a nonzero of f. A Stirling-like Inequality

Fooling Newton s Method a) Find a formula for the Newton sequence, and verify that it converges to a nonzero of f. A Stirling-like Inequality Foolig Nwto s Mthod a Fid a formla for th Nwto sqc, ad vrify that it covrgs to a ozro of f. ( si si + cos 4 4 3 4 8 8 bt f. b Fid a formla for f ( ad dtrmi its bhavior as. f ( cos si + as A Stirlig-li

More information

THERMAL STATES IN THE k-generalized HYPERGEOMETRIC COHERENT STATES REPRESENTATION

THERMAL STATES IN THE k-generalized HYPERGEOMETRIC COHERENT STATES REPRESENTATION THE PULISHING HOUSE PROCEEDINGS O THE ROMNIN CDEMY Sris O THE ROMNIN CDEMY Volum 9 Numbr 3/8 43 438 THERML STTES IN THE -GENERLIED HYPERGEOMETRIC COHERENT STTES REPRESENTTION Duša POPOV Uivrsity Polithica

More information

ln x = n e = 20 (nearest integer)

ln x = n e = 20 (nearest integer) H JC Prlim Solutios 6 a + b y a + b / / dy a b 3/ d dy a b at, d Giv quatio of ormal at is y dy ad y wh. d a b () (,) is o th curv a+ b () y.9958 Qustio Solvig () ad (), w hav a, b. Qustio d.77 d d d.77

More information

Journal of Modern Applied Statistical Methods

Journal of Modern Applied Statistical Methods Joural of Modr Applid Statistical Mthods Volum Issu Articl 6 --03 O Som Proprtis of a Htrogous Trasfr Fuctio Ivolvig Symmtric Saturatd Liar (SATLINS) with Hyprbolic Tagt (TANH) Trasfr Fuctios Christophr

More information

Module 5 - Thermal Radiation. A blackbody is an object that absorbs all radiation that is incident upon it.

Module 5 - Thermal Radiation. A blackbody is an object that absorbs all radiation that is incident upon it. I. History of Blabody Radiatio A. What is a blabody? Modul 5 - Thrmal Radiatio A blabody is a obt that absorbs all radiatio that is iidt upo it. Wh radiatio falls upo a obt, som of th radiatio may b absorbd,

More information

Superfluid Liquid Helium

Superfluid Liquid Helium Surfluid Liquid Hlium:Bo liquid ad urfluidity Ladau thory: two fluid modl Bo-iti Codatio ad urfluid ODLRO, otaou ymmtry brakig, macrocoic wafuctio Gro-Pitakii GP quatio Fyma ictur Rfrc: Thory of quatum

More information

Bipolar Junction Transistors

Bipolar Junction Transistors ipolar Juctio Trasistors ipolar juctio trasistors (JT) ar activ 3-trmial dvics with aras of applicatios: amplifirs, switch tc. high-powr circuits high-spd logic circuits for high-spd computrs. JT structur:

More information

Causes of deadlocks. Four necessary conditions for deadlock to occur are: The first three properties are generally desirable

Causes of deadlocks. Four necessary conditions for deadlock to occur are: The first three properties are generally desirable auss of dadloks Four ssary oditios for dadlok to our ar: Exlusiv ass: prosss rquir xlusiv ass to a rsour Wait whil hold: prosss hold o prviously aquird rsours whil waitig for additioal rsours No prmptio:

More information

Calculus & analytic geometry

Calculus & analytic geometry Calculus & aalytic gomtry B Sc MATHEMATICS Admissio owards IV SEMESTER CORE COURSE UNIVERSITY OF CALICUT SCHOOL OF DISTANCE EDUCATION CALICUT UNIVERSITYPO, MALAPPURAM, KERALA, INDIA 67 65 5 School of Distac

More information

Time : 1 hr. Test Paper 08 Date 04/01/15 Batch - R Marks : 120

Time : 1 hr. Test Paper 08 Date 04/01/15 Batch - R Marks : 120 Tim : hr. Tst Papr 8 D 4//5 Bch - R Marks : SINGLE CORRECT CHOICE TYPE [4, ]. If th compl umbr z sisfis th coditio z 3, th th last valu of z is qual to : z (A) 5/3 (B) 8/3 (C) /3 (D) o of ths 5 4. Th itgral,

More information

H2 Mathematics Arithmetic & Geometric Series ( )

H2 Mathematics Arithmetic & Geometric Series ( ) H Mathmatics Arithmtic & Gomtric Sris (08 09) Basic Mastry Qustios Arithmtic Progrssio ad Sris. Th rth trm of a squc is 4r 7. (i) Stat th first four trms ad th 0th trm. (ii) Show that th squc is a arithmtic

More information

Chapter 3 Higher Order Linear ODEs

Chapter 3 Higher Order Linear ODEs ht High Od i ODEs. Hoogous i ODEs A li qutio: is lld ohoogous. is lld hoogous. Tho. Sus d ostt ultils of solutios of o so o itvl I gi solutios of o I. Dfiitio. futios lld lil iddt o so itvl I if th qutio

More information

10. Joint Moments and Joint Characteristic Functions

10. Joint Moments and Joint Characteristic Functions 0 Joit Momts ad Joit Charactristic Fctios Followig sctio 6 i this sctio w shall itrodc varios paramtrs to compactly rprst th iformatio cotaid i th joit pdf of two rvs Giv two rvs ad ad a fctio g x y dfi

More information

7 Finite element methods for the Timoshenko beam problem

7 Finite element methods for the Timoshenko beam problem 7 Fiit lmt mtods for t Timosko bam problm Rak-54.3 Numrical Mtods i Structural Egirig Cotts. Modllig pricipls ad boudary valu problms i girig scics. Ergy mtods ad basic D fiit lmt mtods - bars/rods bams

More information

Chapter 6 Perturbation theory

Chapter 6 Perturbation theory Ct 6 Ptutio to 6. Ti-iddt odgt tutio to i o tutio sst is giv to fid solutios of λ ' ; : iltoi of si stt : igvlus of : otool igfutios of ; δ ii Rlig-Södig tutio to ' λ..6. ; : gl iltoi ': tutio λ : sll

More information

Law of large numbers

Law of large numbers Law of larg umbrs Saya Mukhrj W rvisit th law of larg umbrs ad study i som dtail two typs of law of larg umbrs ( 0 = lim S ) p ε ε > 0, Wak law of larrg umbrs [ ] S = ω : lim = p, Strog law of larg umbrs

More information

Solution to 1223 The Evil Warden.

Solution to 1223 The Evil Warden. Solutio to 1 Th Evil Ward. This is o of thos vry rar PoWs (I caot thik of aothr cas) that o o solvd. About 10 of you submittd th basic approach, which givs a probability of 47%. I was shockd wh I foud

More information

Taylor and Maclaurin Series

Taylor and Maclaurin Series Taylor ad Maclauri Sris Taylor ad Maclauri Sris Thory sctio which dals with th followig topics: - Th Sigma otatio for summatio. - Dfiitio of Taylor sris. - Commo Maclauri sris. - Taylor sris ad Itrval

More information

Digital Signal Processing, Fall 2006

Digital Signal Processing, Fall 2006 Digital Sigal Procssig, Fall 6 Lctur 9: Th Discrt Fourir Trasfor Zhg-Hua Ta Dpartt of Elctroic Systs Aalborg Uivrsity, Dar zt@o.aau.d Digital Sigal Procssig, I, Zhg-Hua Ta, 6 Cours at a glac MM Discrt-ti

More information

Discrete Fourier Transform. Nuno Vasconcelos UCSD

Discrete Fourier Transform. Nuno Vasconcelos UCSD Discrt Fourir Trasform uo Vascoclos UCSD Liar Shift Ivariat (LSI) systms o of th most importat cocpts i liar systms thory is that of a LSI systm Dfiitio: a systm T that maps [ ito y[ is LSI if ad oly if

More information

Near-optimal Order-reduced Control on Electric Vehicle for Both Comfortableness and Energy Consumption

Near-optimal Order-reduced Control on Electric Vehicle for Both Comfortableness and Energy Consumption Nar-otimal Ordr-rdud Cotrol o Eltri Vil or Bot Comortablss ad Ergy Cosumtio Ci-Ci Ciu, Na-Cyua Tsai*, ad Cu-Ci Li Abstrat Tis work is aimd to ivstigat t rgulatio roblm or trmal omortablss ad roos otrol

More information

Trigonometric functions

Trigonometric functions Robrto s Nots on Diffrntial Calculus Captr 5: Drivativs of transcndntal functions Sction 5 Drivativs of Trigonomtric functions Wat you nd to know alrady: Basic trigonomtric limits, t dfinition of drivativ,

More information

They must have different numbers of electrons orbiting their nuclei. They must have the same number of neutrons in their nuclei.

They must have different numbers of electrons orbiting their nuclei. They must have the same number of neutrons in their nuclei. 37 1 How may utros ar i a uclus of th uclid l? 20 37 54 2 crtai lmt has svral isotops. Which statmt about ths isotops is corrct? Thy must hav diffrt umbrs of lctros orbitig thir ucli. Thy must hav th sam

More information

International Journal of Advanced and Applied Sciences

International Journal of Advanced and Applied Sciences Itratioal Joural of Advacd ad Applid Scics x(x) xxxx Pags: xx xx Cotts lists availabl at Scic Gat Itratioal Joural of Advacd ad Applid Scics Joural hompag: http://wwwscic gatcom/ijaashtml Symmtric Fuctios

More information

2617 Mark Scheme June 2005 Mark Scheme 2617 June 2005

2617 Mark Scheme June 2005 Mark Scheme 2617 June 2005 Mark Schm 67 Ju 5 GENERAL INSTRUCTIONS Marks i th mark schm ar plicitly dsigatd as M, A, B, E or G. M marks ("mthod" ar for a attmpt to us a corrct mthod (ot mrly for statig th mthod. A marks ("accuracy"

More information

CDS 101: Lecture 5.1 Reachability and State Space Feedback

CDS 101: Lecture 5.1 Reachability and State Space Feedback CDS, Lctur 5. CDS : Lctur 5. Rachability ad Stat Spac Fdback Richard M. Murray 7 Octobr 3 Goals: Di rachability o a cotrol systm Giv tsts or rachability o liar systms ad apply to ampls Dscrib th dsig o

More information

k m The reason that his is very useful can be seen by examining the Taylor series expansion of some potential V(x) about a minimum point:

k m The reason that his is very useful can be seen by examining the Taylor series expansion of some potential V(x) about a minimum point: roic Oscilltor Pottil W r ow goig to stuy solutios to t TIS for vry usful ottil tt of t roic oscilltor. I clssicl cics tis is quivlt to t block srig robl or tt of t ulu (for sll oscilltios bot of wic r

More information

NEW VERSION OF SZEGED INDEX AND ITS COMPUTATION FOR SOME NANOTUBES

NEW VERSION OF SZEGED INDEX AND ITS COMPUTATION FOR SOME NANOTUBES Digst Joural of Naomatrials ad Biostructurs Vol 4, No, March 009, p 67-76 NEW VERSION OF SZEGED INDEX AND ITS COMPUTATION FOR SOME NANOTUBES A IRANMANESH a*, O KHORMALI b, I NAJAFI KHALILSARAEE c, B SOLEIMANI

More information

An efficient response sensitivity analysis method for a bounding surface plasticity sandy soil model

An efficient response sensitivity analysis method for a bounding surface plasticity sandy soil model A fficit rsos ssitivity aalysis mthod for a boudig surfac lasticity sady soil modl Q. Gu Xiam Uivrsity, Xiam, Fujia, Chia G. Wag Hog Kog Uivrsity of Scic ad Tchology, Hog Kog S. Huag Xiam Uivrsity, Xiam,

More information

Traveling Salesperson Problem and Neural Networks. A Complete Algorithm in Matrix Form

Traveling Salesperson Problem and Neural Networks. A Complete Algorithm in Matrix Form Procdigs of th th WSEAS Itratioal Cofrc o COMPUTERS, Agios Nikolaos, Crt Islad, Grc, July 6-8, 7 47 Travlig Salsprso Problm ad Nural Ntworks A Complt Algorithm i Matrix Form NICOLAE POPOVICIU Faculty of

More information

STIRLING'S 1 FORMULA AND ITS APPLICATION

STIRLING'S 1 FORMULA AND ITS APPLICATION MAT-KOL (Baja Luka) XXIV ()(08) 57-64 http://wwwimviblorg/dmbl/dmblhtm DOI: 075/МК80057A ISSN 0354-6969 (o) ISSN 986-588 (o) STIRLING'S FORMULA AND ITS APPLICATION Šfkt Arslaagić Sarajvo B&H Abstract:

More information

INCOMPLETE KLOOSTERMAN SUMS AND MULTIPLICATIVE INVERSES IN SHORT INTERVALS. xy 1 (mod p), (x, y) I (j)

INCOMPLETE KLOOSTERMAN SUMS AND MULTIPLICATIVE INVERSES IN SHORT INTERVALS. xy 1 (mod p), (x, y) I (j) INCOMPLETE KLOOSTERMAN SUMS AND MULTIPLICATIVE INVERSES IN SHORT INTERVALS T D BROWNING AND A HAYNES Abstract W invstigat th solubility of th congrunc xy (mod ), whr is a rim and x, y ar rstrictd to li

More information

Structural Optimization by Using the Stiffness Homogenization.

Structural Optimization by Using the Stiffness Homogenization. Strutural Optimizatio by Usig th Stiffss Homogizatio. Ri Yogsop, Ri amhyok, Ri Cholji, Ri Cholsu ad Zhihua Ch Dpartmt of Mhais Egirig, im Il Sug Uivrsity, Pyogyag, DPR of ora Dpartmt of Miig Mahi, Chogji

More information

Washington State University

Washington State University he 3 Ktics ad Ractor Dsig Sprg, 00 Washgto Stat Uivrsity Dpartmt of hmical Egrg Richard L. Zollars Exam # You will hav o hour (60 muts) to complt this xam which cosists of four (4) problms. You may us

More information

5.1 The Nuclear Atom

5.1 The Nuclear Atom Sav My Exams! Th Hom of Rvisio For mor awsom GSE ad lvl rsourcs, visit us at www.savmyxams.co.uk/ 5.1 Th Nuclar tom Qustio Papr Lvl IGSE Subjct Physics (0625) Exam oard Topic Sub Topic ooklt ambridg Itratioal

More information

The Real Hydrogen Atom

The Real Hydrogen Atom T Ra Hydog Ato ov ad i fist od gt iddt of :.6V a us tubatio toy to dti: agti ffts si-obit ad yfi -A ativisti otios Aso av ab sift du to to sfitatio. Nd QD Dia q. ad dds o H wavfutio at sou of ti fid. Vy

More information

A Solution of Kepler s Equation

A Solution of Kepler s Equation Itratioal Joural of Astroomy ad Astrohysics, 4, 4, 68-698 Publishd Oli Dcmbr 4 i SciRs. htt://www.scir.org/joural/ijaa htt://dx.doi.org/.46/ijaa.4.446 A Solutio of Klr s Equatio Joh N. Tokis Tchological

More information

The Interplay between l-max, l-min, p-max and p-min Stable Distributions

The Interplay between l-max, l-min, p-max and p-min Stable Distributions DOI: 0.545/mjis.05.4006 Th Itrplay btw lma lmi pma ad pmi Stabl Distributios S Ravi ad TS Mavitha Dpartmt of Studis i Statistics Uivrsity of Mysor Maasagagotri Mysuru 570006 Idia. Email:ravi@statistics.uimysor.ac.i

More information

The Matrix Exponential

The Matrix Exponential Th Matrix Exponntial (with xrciss) by D. Klain Vrsion 207.0.05 Corrctions and commnts ar wlcom. Th Matrix Exponntial For ach n n complx matrix A, dfin th xponntial of A to b th matrix A A k I + A + k!

More information

ELEC9721: Digital Signal Processing Theory and Applications

ELEC9721: Digital Signal Processing Theory and Applications ELEC97: Digital Sigal Pocssig Thoy ad Applicatios Tutoial ad solutios Not: som of th solutios may hav som typos. Q a Show that oth digital filts giv low hav th sam magitud spos: i [] [ ] m m i i i x c

More information

Equation Sheet Please tear off this page and keep it with you

Equation Sheet Please tear off this page and keep it with you ECE 30L, Exam Fall 05 Equatio Sht Plas tar off this ag ad k it with you Gral Smicoductor: 0 i ( EF EFi ) kt 0 i ( EFi EF ) kt Eg i N C NV kt 0 0 V IR L, D, τ, d d τ c g L D kt I J diff D D µ * m σ (µ +

More information

Unit 6: Solving Exponential Equations and More

Unit 6: Solving Exponential Equations and More Habrman MTH 111 Sction II: Eonntial and Logarithmic Functions Unit 6: Solving Eonntial Equations and Mor EXAMPLE: Solv th quation 10 100 for. Obtain an act solution. This quation is so asy to solv that

More information

Session : Plasmas in Equilibrium

Session : Plasmas in Equilibrium Sssio : Plasmas i Equilibrium Ioizatio ad Coductio i a High-prssur Plasma A ormal gas at T < 3000 K is a good lctrical isulator, bcaus thr ar almost o fr lctros i it. For prssurs > 0.1 atm, collisio amog

More information

Supplemental Material for "Automated Estimation of Vector Error Correction Models"

Supplemental Material for Automated Estimation of Vector Error Correction Models Supplmtal Matrial for "Automatd Estimatio of Vctor Error Corrctio Modls" ipg Liao Ptr C. B. Pillips y Tis Vrsio: Sptmbr 23 Abstract Tis supplmt icluds two sctios. Sctio cotais t proofs of som auxiliary

More information

Figure 2-18 Thevenin Equivalent Circuit of a Noisy Resistor

Figure 2-18 Thevenin Equivalent Circuit of a Noisy Resistor .8 NOISE.8. Th Nyquist Nois Thorm W ow wat to tur our atttio to ois. W will start with th basic dfiitio of ois as usd i radar thory ad th discuss ois figur. Th typ of ois of itrst i radar thory is trmd

More information

COLLECTION OF SUPPLEMENTARY PROBLEMS CALCULUS II

COLLECTION OF SUPPLEMENTARY PROBLEMS CALCULUS II COLLECTION OF SUPPLEMENTARY PROBLEMS I. CHAPTER 6 --- Trscdtl Fuctios CALCULUS II A. FROM CALCULUS BY J. STEWART:. ( How is th umbr dfid? ( Wht is pproimt vlu for? (c ) Sktch th grph of th turl potil fuctios.

More information

DIGITAL SIGNAL PROCESSING BEG 433 EC

DIGITAL SIGNAL PROCESSING BEG 433 EC Dowloadd from www.ayaram.com. DIGITAL SIGAL PROCESSIG BEG EC.Yar: IV Smstr: II Tachig Schdul Examiatio Schm Hours/W Thory Tutorial Practical Itral Assssmt Fial - / Thory Practical* Thory Practical** 5

More information

The Matrix Exponential

The Matrix Exponential Th Matrix Exponntial (with xrciss) by Dan Klain Vrsion 28928 Corrctions and commnts ar wlcom Th Matrix Exponntial For ach n n complx matrix A, dfin th xponntial of A to b th matrix () A A k I + A + k!

More information