Structural Optimization by Using the Stiffness Homogenization.

Size: px
Start display at page:

Download "Structural Optimization by Using the Stiffness Homogenization."

Transcription

1 Strutural Optimizatio by Usig th Stiffss Homogizatio. Ri Yogsop, Ri amhyok, Ri Cholji, Ri Cholsu ad Zhihua Ch Dpartmt of Mhais Egirig, im Il Sug Uivrsity, Pyogyag, DPR of ora Dpartmt of Miig Mahi, Chogji Miig ad Mtal Uivrsity, Chogji, DPR of ora Shool of Civil Egirig, iaji Uivrsity, iaji, PR of Chia,7 Corrspodig Author Abstrat h topology optimizatio usig th homogizatio mthod is to fid optimal layout of mirostruturs whih satisfis dsig dmad i th ighborhood of a arbitrary poit i a giv dsig domai. h homogizatio approah is to omput propr mhaial proprtis of thos mirostruturs i trms of itgral avragig by aptig th priodiity assumptio ad haratristi futio. I this papr, w dsribd a stiffss homogizatio thory that is abl to avoid th ompliatio of th homogizatio approah ad rdu th omputatio ost by osidrig th topology optimizatio pross i osist with th fiit lmt aalysis. h mthod a b applid mor flxibly to idividual or simultaous optimizatio of th topology, shap, siz ad matrial layout. W disussd a stiffss homogizatio durig mshig th spa strutur with diffrt kids of lmts i dtail. A optimal ritrio for th miimum wight dsig problm, as o of typial optimizatio dsig problms, was drivd ad th omputatioal algorithm was prstd. umrial rsults of a xampl wr ompard with prvious mthods, whih show th validatio of th mthod. ywords homogizatio mthod, topology optimizatio, stiffss homogizatio, strutur dsig Itrodutio I th strutural optimizatio dsig, th homogizatio mthod was first prstd from a ida that topology optimizatio problms of th strutur a b tratd i rlativly popularizd way as wll as sizig optimizatio problms i th lat 98's(Bdso ad ikuhi 988. h homogizatio dots th pross that th htrogous mdium ovrt to th homogous mdium of whih proprty is quivalt to its. I problms of th otiuum mhais iludig solid mhais, mathmatial osidratio is prformd udr th assumptio for homogity of mdium. h

2 most ommo tool dalig with ths problms is to study bhavior of mdium usig diffrtial ad itgral alulus, ad th fudamtal thiqu for mathmatial modlig ad aalysis ad rsarh of bhavior for otiuum is to solv th iitial ad boudary valu problm of th diffrtial quatio. But i th pratis, thr ar may ass of htrogous ad disrt mdium. Solvig suh problms usig mathmatial mthod is ommoly impossibl. For this raso, various homogizatio mthods to solv ths problms wr prstd from attmpts to us th paramtrs assumd as otiuous variabls for ovrtig htrogous-disrt mdium to homogous-otiuous o with proprtis quivalt to its(zhikov t al. 979; Marko ad hruslov 974; Makhvalov ad Paasko 99. I th homogizatio mthod, it is assumd that matrial at th ighborhood of a arbitrary poit i spa osists of a st of priodi mirostruturs i.. lls iludig hol. h rsultig mdium a b dsribd by fftiv marosopi matrial proprtis whih dpd o th gomtry of th basi ll, ad ths proprtis a b omputd by ivokig th formulas of homogizatio thory basd o th multisal mthod(pavliotis ad Stuart 8. h omputatios of ths fftiv proprtis play a ky rol for th topology optimizatio. hat is, th optimal dsig problm o htrogous-disrt domai i topologial optimizatio of th otiuum strutur by th matrial layout mthod is ovrtd to th optimal dsig problm o th homogous-otiuum domai i th optimal dsig by th homogizatio mthod As a rsult, th topology optimizatio problm o th homogizd domai a b solvd by dtrmiig paramtrs rprstig th hol s distributio ad siz usig sizig optimizatio mthod. I this ss, this optimizatio mthod is alld homogizatio mthod or i a broad ss, matrial layout mthod. Aftr this rsarh i th topology optimizatio fild, it attaid th highst stag of prosprity ad this mthod was applid to th pratial problms. Most of rsarhs for this mthod ar basd o th optimality ritria mthod(allair ; Rozvay t al. 994; Bdso ad Sigmud ; Hassai ad Hito 998, ad som of thm ar basd o th mathmatial programmig mthods(allair ;Yag ad Chuag 994. Morovr, oly th topology optimizatio problms was ivstigatd at first, but gradually th sizig, shap ad matrial layout optimizatio problms was ivstigatd(allair ; Bdso ad Sigmud ; Park 995. Espially, th matrial layout optimizatio basd o homogizatio approah hav also b xpadd to svral filds iludig a work for dtrmiig th strutur with th rquird odutivity by optimally distributig matrials with diffrt hat odutivitis(rodrigus ad Frads 995, pizoomposit atuator s optimal dsig(josma t al. 999; Emilio ad lli 998 ad so o. Bsids, thr wr may rsarhs i whih th homogizatio mthod was applid o th optimizatio of dyami problms(bdso ad Sigmud ; Diaz ad ikuhi 99 ad svral rsarhs for improvig th ovrg of th optimizatio pross was prstd. But th homogizatio mthod has

3 drawbaks rquirig a lot of dsig variabls ad grat omputatioal ost yt. Bdso(989 had proposd SIMP (Solid Isotropi Matrial with Palizatio, whih itrodud matrial distributio dsity o th dsig domai of strutur i th rsarh of th topology optimizatio. h SIMP itrpolatio shm addrsss th itgr format of th origial sttig for th topology dsig problm. It ovrts this itgr problm to a sizig problm that fially rsults i pratial - dsigs. Aothr srious problm assoiatd with th - problm is that SIMP a lad to oxist of solutio of th problm. his ot oly is a srious thortial drawbak but also affts o th stimatio of ssitivity of omputatioal rsults to th fiss of th fiit lmt msh. As abov mtiod, th SIMP itrpolatio shm dos ot dirtly rsolv this problm, ad furthr osidratios ar i pla to assur a wll-posd distributd dsig problm that also is big i trms of msh fiss of th fiit lmt modl(hsu ad Hsu 5; Borrvall ad Ptrsso. Colligatig th rsarh rsults so far, w a fid that th homogizatio mthod was gralizd ad popularizd as a major mthod ovrtig th topology optimizatio problm to a matrial layout optimizatio or a sizig optimizatio problm. Also aordig to iras of th omputatio ability of omputrs, it is applid to th may optimal dsig problms for pratial struturs ad its appliatio fild is wid mor ad mor. Its appliatio objt ad fild is optimal dsig of stati strutur(allair ; Bdso ad Sigmud ; Hassai ad Hito 998; Hsu ad Hsu 5, topology optimizatio of a igvalu ad frquy rspos problm(bdso ad Sigmud ; Diaz ad ikuhi 99, topology dsig of struturs with a buklig load ostrait(vs t al. 995, topology optimizatio of thrmo-lasti struturs(rodrigus ad Frads 995, optimal dsig of otrolld struturs(ou ad ikuhi 996, Systmati sythsis of miro ompliat mhaisms(aathasursh t al. 99; Aathasursh t al. 994, optimal dsig of pizoomposit matrials, pizoltri trasdurs ad ltro-thrmal miro atuators(josma t al. 999; Emilio ad lli 998 ad so o. I this papr, th topology optimizatio pross usig stiffss homogizatio thory is disussd, i whih th priodi assumptio is rlaxd ad th omputatio ost is rdud without a ompliatd disussio as itgral avrag by itrodutio of th haratristi futio by simplifyig th homogizatio approah. h stiffss homogizatio mthod applis idividual ad simultaous optimizatio of sizig, shap, matrial layout ad topology. his mthod is mor ovit to apply to th omputatio produr ad strutural optimizatio pratis by usig th ommo mthods of th fiit lmt aalysis i all osidratio ad formulatig of ll ad lmt. hory of th stiffss homogizatio by usig ara (or volum rat of lmt. I this papr it is assumd that th strutural ompot of th dsig domai is

4 mshd with lmts, ah of lmts is mad of th mirostrutur, that is, ifiitly small lls with hols ad th shap of ll ad lmt is triagl or ttrahdro. Of ours, th highr ordr s lmt a b usd ad hol s troid is plad i th troid of th ll i whih it blogs ad hol s shap is gomtrially similar to that ll.. Stiffss homogizatio by usig first ordr pla triagl lmt. First, lt s osidr th liar triagl pla lmt. Fig.. Gomtry modl (a dsig domai, b lmt, ll I th lls ad lmts, th hol s siz is ompltly dtrmid with a paramtr by usig ara rat: S ( S whr S is th total ara of ll or lmt ad S is ara of hol i th ll or th lmt. h haratristis for th lls is labld ad for th lmts is labld. h stiffss matrix of th lls for th liar lmt is rdud by th hol rat as ompard with that without hol ad is formulatd as followig: t B D B ds ( S whr t B D B ds, S 4

5 D D D D D, D t is thikss of th lmt(or th ll ad B is strai matrix of th lmt h stiffss distributio of th pla triagl lmt, whih is assumd to b mad of th ifiitly may lls, a b rprstd i th form itrpolatd from th stiffsss pr uit ara at th ods. ( i i j j m m whr i, j ad m ar od umbrs of th lmt rsptivly, ( i, j, m is th shap futio rprstd by th ara oordiats, ad ( i, j, m is assumd to b otiuous i th lmt. h stiffss matrix of th pla triagl lmt is; S ds i ( i j ( j m ( m (4 S hat is; whr i j m S (- is th stiffss of lls without voids, S is th stiffss matrix of th i j m lmt mad of th lls without hol ad (- is avrag ara rat. Aordigly, th stiffss of th triagl lmt is rprstd as followig (5 ( i j m S, hat is, th lmt s stiffss is rdud by th hol s rat as ompard 5

6 with that without hol i lls. Cosidrig t B D B S, th w a rwrit as followig quatios: [ t ( ]B D B S (6 t B [ D ( ] B S (7 t B D B S ( ] (8 ( [ From Equatio (6-(7, it is foud that this problm a b osidrd as th homogizatio of th thikss, matrial ostat, ara ad tir stiffss ad i th futur, sizig, shap, topology ad matrial layout optimizatio a b idividually or simultaous prformd.. Stiffss homogizatio by usig ttrahdro lmt. I th spa problm, mshig with ttrahdro lmt, B D B dv (9 V whr B, D ar strai ad lasti matrix of th spa problm, rsptivly. a V b V V C Fig.. gomtry modl(a.dsig domai, b.lmt,.ll 6

7 whr By usig abov similar mthod ( ( i j m V ad 4 From Equatio ( w a also obtai: B [ D ( ] B V ( B DB [ V ( ] ( ( I drivig abov quatios, w usd followig th itgral formulas i ara ad volum oordiats o triagl ad ttrahdro domai. S a b a! b!! i j mds S, ( a b! V d ds 6V a i b j m p a! b!! d! ( a b d!. h stiffss homogizatio for th aisotropi matrial. If th strutur is mad of th orthotropi matrial ad w osidr th orthotropi proprty i th stiffss homogizatio mthod, w disuss th triagl of lls ad lmts at th loal oordiats of whih axs oiid with th orthotropi axs. 7

8 Fig.. Gomtrial modl for orthotropi matrial (a.dsig domai, b.lmt,.ll h stiffss matrix of lls is drivd at th loal oordiat systm as followig; whr ~ ˆ ~ t B D B ds ( S is th ll s stiffss matrix without void i th loal oordiat systm, B is th strai matrix at th loal oordiat systm ad th orthotropi lasti matrix at th loal oordiat systm D is: D D D D D. D I th triagl lmt full of suh lls, if th lmt siz is ough small, th loal oordiat axs of th ir lls ar qual to ah othr. Assumig that th stiffss distributio of th lmt is itrpolatd by th stiffsss of lls at ods as ˆ ˆ i i ˆ,th stiffss matrix of th triagular lmt is; j j ˆ m m ˆ ˆ ds S S ~ i ~ ( i j ~ ( j m ( m 8

9 ~ S i j m (-. (4 Cosidrig ~ S ~ i j m ad, th th homogizd stiffss matrix of lmt at th loal oordiat systm is rprstd as followig;. ˆ ~ ( hat is, th lmt s stiffss is rdud by th ll void s rat with that without hols. as ompard If th agl btw loal oordiat s x axis ad global oordiat s x axis is, t B D B S t B D B S hrfor th homogizd lmt stiffss matrix at th global oordiat systm is; ( whr th trasformatio matrix of oordiat is, si, os, ad B is th strai matrix at th global oordiat systm. hat is, rplaig th lasti matrix D ad th strai matrix homogizd lmt s stiffss matrixs at th loal oordiat systm with 9 B i th ad B, w obtai th homogizd lmt s stiffss matrixs at th global oordiat systm..4 Stiffss homogizatio by usig high ordr lmt. I th fiit lmt aalysis by usig high ordr lmt, th stiffss homogizatio mthod a b also usd. Usig abov mthod, w a fid that all homogizd stiffss matris for high ordr lmts hav th form as D

10 ( At this tim, w rprstd th stiffss distributios of diffrt high ordr lmts by th orrspodig shap futios i th ara or volum oordiats ad usd itgral formula i th ara or volum oordiat systm. For xampl, shap futios for th sod ordr pla triagl lmt ar prstd by th ara oordiats,, as (, ( 4 4 (,, hus; ( ( 45 6 (5 6 Ad for th third ordr pla triagl lmt th shap futio is as blow ( (, ( ( 9 ( (, 4 ( (, 6 ( (, 8 ( 9 9 (, 7 hrfor 9 ( ( (6 Ad for sod ordr ttrahdro lmt; (, (, (, 4 4( 4,

11 hrfor 5 4, 6 4, , 9 4 4, 4 4 ( 4 ( (7 From abov all, w a fid that th avrag of th void s rat of ll multiplid by som wights for lls at th vrtis, ods o dgs ad ir ods of lmt is orrspodig to th stiffss rdutio of lmt s. If i for vry lls is th sam as, th. h wight offiit is th sam as i th followig tabl. triagl ttrahdro ordr od at th dg ir first sod third /4 9/ first sod -/ I this way, by usig th ara or volum rat orrspodig to th hols siz, w a obtai th homogizd stiffss matrix by usig th itrpolatio s mthod of th fiit lmt mthod ad a asily solv th optimal dsig problm. Problm formulatio for optimal dsig ad optimal ritrio. ow, w shall formulat th miimum volum dsig problm by usig th stiffss homogizatio mthod ad disuss its solvig mthod.. Optimizatio Modl h miimum volum dsig problm is to fid th strutur with miimum volum(or wight udr th rstritio of th global stiffss. hat is, th problm is to fid satisfyig th followig quatios. V ( t ( S mi (8 U U u u U U u u (9 u P (

12 whr ( Ulik i th ovtioal optimal dsig problms, all th sizig, shap, topology ad matrial layout optimizatio problms i th stiffss homogizatio mthod is rdud to th problm whih is fidig optimal dsig paramtr whih is th ara rat(volum rat haratrizig hol s siz of lls. I th abov problms, V, U : th giv volum ad strai rgy haratrizig global stiffss i th strutur rsptivly. Ad th quality rstritio u P is th stiffss quatio, amly, th rstritio of th stat quatio. Also, for ovi, w assum that is th lmt s stiffss matrix whih is xpadd i aorda with th dimsio of th strutur s stiffss matrix.. Optimality ritrio Lt s driv th problm s optimal ritrio; Lagrag s quatio is ostrutd as, u V ( u u U μ u P L ( whr, μ ar Lagrag s urtai multiplirs. From a ssary oditio for th optimal solutio of th oliar programmig problm, th strutur s stat at th optimal poit, amly, optimizatio ritrio is drivd. L Usig th oditio at th optimal poit,th u hrfor μ u u μ ( L Ad usig th oditio at th optimal poit (=,,,, th u u V u u μ u u μ (

13 V U (=,,, (4 Hr, osidrig, th th quatio ( U u u u u boms to U u u, whih prsts th lmt s strai rgy wh th lmt has o hol. Summig up th two sids of Equatio (4 for all lmts rptivly, V U (=,,, Multiplyig ( to th two sids of th abov quatio ad Equatio (4, limiatig urtai multiplir ad osidrig from th oditio of th optimal poit; u u U,th w obtai th qualizatio ritrio about th dsity of th strai rgy at th optimal poit as V ( U ( V ( U (=,,, (5 whr U is lmt s strai rgy obtaid by th fiit lmt aalysis. From Equatio (5 w a fid that th strutur of th optimal siz, shap, topology ad matrial layout is th strutur i whih lmt s ara (volum rat is dtrmid so that dsity of th lmt s strai rgy is qualizd to th dsity of th strutur s global strai rgy. 4 Algorithm h optimality ritrio a b rwritt as V ( U ( V ( (=,,, U

14 U ( V ( (=,,, (6 V U Our purpos is to gt solutio, of th oliar algbrai simultaous Equatio (6. Equatio (6 is alulatd by usig th simpl itratio shma as ( k ( k ( k U ( V ( ( k (=, (k=,, (7 V U tak h algorithm is as followig:. Iitializ th dsig paramtrs (k = vrywhr i th domai. Comput (=~ for k = (i gral ass, ( k ( k ( k U ( by solvig th stat quatio, ( u P. k (k u, V ( ad. Comput ( k usig th itratio shma (7.. Rpat th itratio loop for k = k+, util th ovrg is ahivd. Hr, th ovrg oditio is h dsig paramtrs ar optimal solutios. V ( k k V (, ( k ( k or ( ( (=~ k = Figur 4 shows th abov algorithm. Obtaiig optimal dsig paramtr (=~ whih satisfy th abov oditio (=,, th th optimal struturs about vry lmts a b obtai by usig followigs; Siz ad topology optimizatio; t t (8 4

15 Shap optimizatio; S S Matrial layout optimizatio; D (9 D ( If Poisso's ratio s hag is gltd, istad of Equatio (, E E ( Simultaous optimizatio of th siz, shap ad topology; V V ( Simultaous optimizatio iludig matrial layout; ( Limits of th idividual paramtrs ar osidrd i th omputatio pross. Wh th simultaous optimizatio is prformd, th paramtr with strogr limit is first dtrmid or th paramtrs ar dtrmid i aorda with wights spifid by dsigr, osidrig thir importa. 5

16 5 Exampls Fig. 4. Optimizatio algorithm Cosidr a thi bam i a pla strss stat(th out-of-pla displamt is rstraid, whih is a stadard tstig problm(allair for vrifyig th optimal dsig mthod abov disussd. hikss m, P= k E. Pa, E.5 Pa U =.46E- m Fig. 5. h boudary oditio about th plat bam problm h strutur is mshd by 6 liar plai triagl lmts. 6

17 Aordig to th algorithm as rfrrd abov, first is foud ad o or svral limits is osidrd wh all fial paramtrs is dtrmid. Figur 6 shows th strss stat of th iitial strutur. Fig. 6. h strss stat of th iitial strutur. Figur 7 shows that th hkrboard pattr is gratd i th optimizatio prossig. At this tim i th rpat pross o-ovrgd or impossibl strutur is obtaid. o ovrom problms of th gratio of th gry domai, hkrboard phomo ad so o, th prvious mthods(allair ; Hsu ad Hsu 5 suh as avragig, filtrig ad palizig ar usd. Fig. 7. hkrboard pattr. h obtaid rsults is show i abl togthr with piturs. First ad sod piturs i th tabl show th shap optimizatio rsult at th diffrt limits ad third pitur shows th topology optimizatio rsult. Forth pitur is th alulatio rsult of th simultaous siz ad shap optimizatio udr th maximum thikss limit ad fifth is th marosopi matrial layout optimizatio usig two kid of matrials. h sixth shows th simultaous optimizatio rsult of th matrial layout ad topology. As show i this xampl of pla problm, th purposd optimal strutur is obtaid with % of th rpat umbr ad muh lss omputatio ost as ompard with th prvious mthod. abl shows th thr dimsioal topology optimizatio rsults as ompard with th prvious homogizatio mthod s rsults. h omputio xampl is rprstd as ompard with th sam objts as i litratur(hsu ad Hsu 5. h mthod s validity for th pratial problms of th svral struturs is vrifid through th rsults of th thr dimsioal topology optimizatio basd o th stiffss homogizatio mthod. abl. h alulatio rsult of -D problm. 7

18 Optimal strutur optimizatio iitial Homogizatio Mthod(Allair Et..588 itratio ( limit.9.44 itratio ( limit.8.4 itratio ( 4.4 itratio 5 ( t max = 5.m itratio ( E, E itratio ( out dg: 4 Pa i: Pa 8

19 abl. -D topology optimizatio rsults xampl homogizatio mthod(hsu ad Hsu 5 stiffss homogizatio mthod 6 Colusios As abov-mtiod, th stiffss homogizatio mthod proposd for strutural optimizatio is a kid of matrial layout mthod, i whih th ompots of th spa strutur ar orrspodig to ah lmt ad th stiffss matrix is stimatd aordig to th mirostrutur hol s rat. 9

20 h strutur optimizatio by th stiffss homogizatio mthod maks it possibl to us th thory ad mthod of th fiit lmt mthod i all th prosss of homogizatio, strutur aalysis ad optimizatio i a uifid way. h drivatio of th optimality ritrio for miimum volum dsig problm ad umrial xampl of th two ad thr dimsioal problms shows that th thory for th strutural optimizatio by th stiffss homogizatio is asily xtd to th diffrt kids of optimizatio problms ad pratis. Rfrs Allair, G. : Shap optimizatio by th homogizatio mthod. Hidlbrg, w York: Sprigr Brli, Aathasursh, G..; ota, S.; Giahadai, Y. 99: Systmati sythsis of miroompliat mhaisms prlimiary rsult. Prodigs of th hird atioal Cofr o Applid Mhaisms ad Robotis. Ciiati Ohio 8 Aathasursh, G..; ota, S.; ikuhi,. 994: Stratgis for systmati sythsis of ompliat MEMS. Prodigs of th 994 ASME Bdso, M. P. 989: Optimal shap dsig as a matrial distributio problm. Strut. Optim., 9- Bdso, M. P.; ikuhi,. 988: Gratig optimal topologis i strutural dsig usig a homogizatio mthod. Comput. Mth. Appl. Mh. Egrg. 7, 97 4 Bdso, M. P.; Sigmud, O. : opology optimizatio: hory, mthods ad appliatios. Brli, Hidlbrg, w York: Sprigr Borrvall,.; Ptrsso,J : Larg-sal topology optimizatio i D usig paralll omputig. Comput. Mth. Appl. Mh. Egrg. 9, 6 69 Diaz, A. R.; ikuhi,. 99: Solutios to shap ad topology igvalu optimizatio problms usig a homogizatio mthod. It. J. um. Mth. Egrg. 5, Emilio, C; lli, S 998: Dsig of pizoomposit matrials ad pizoltri trasdurs usig topology optimizatio. Hassai, B.; Hito, E. 998: A rviw of homogizatio ad topology

21 optimizatio. Part III: opology optimizatio usig optimality ritria. Comput. Strut. 69, Josma, J.; Sigmud, O.; Bouwstra, S. 999: Multi dgrs of frdom ltro-thrmal miroatuators. RASDUCERS 99, 7 75 Makhvalov,.; Paasko, G. 99: Homogizatio: avragig prosss i priodi mdia Mathmatis ad its appliatios. Vol. 6, luwr Aadmi Publishrs. Marko, V.; hruslov, E. 974: Boudary valu problms i domais with a fi graid boudary. (i Russia aukova Dumka, iv Mig - Hsiu Hsu ; Yh - Liag Hsu 5: Itrprtig thr- dimsioal strutural topology optimizatio rsults. Comput. Strut. 8, 7 7 vs, M. M.; Rodrigus, H. C.; Guds, J. M. 995: Gralizd topology dsig of struturs with a buklig load ritrio. Strut. Optim., 7-78 Ou, J. S.; ikuhi,. 996: Optimal dsig of otrolld struturs. Strut. Optim., 9-8 Park, Y.. 995: Extsios of Optimal Layout Dsig Usig th Homogizatio Mthod. h Uivrsity of Mihiga Pavliotis, G. A.; Stuart, A. M. 8: Multisal Mthods: Avragig ad Homogizatio, xts i Applid Mathmatis 5. Sprigr Rodrigus, H. C.; Frads, P. 995: A matrial basd modl for topology optimizatio of thrmolasti struturs. It. J. um. Mth. Egrg. 8, Rozvay, G. I..; Zhou, M.; Sigmud, O. 994: opology optimizatio i strutural dsig. Advas i Dsig Optimizatio Yag, R. J.; Chuag, C. H. 994: Optimal topology dsig usig liar programmig. Comput. Strut. 5, Zhikov, V.; ozlov, S.; Oliik, O. 979: Homogizatio ad G-ovrg of diffrtial oprators. Russ. Math. Surv. 4, 65 47

Iterative Methods of Order Four for Solving Nonlinear Equations

Iterative Methods of Order Four for Solving Nonlinear Equations Itrativ Mods of Ordr Four for Solvig Noliar Equatios V.B. Kumar,Vatti, Shouri Domii ad Mouia,V Dpartmt of Egirig Mamatis, Formr Studt of Chmial Egirig Adhra Uivrsity Collg of Egirig A, Adhra Uivrsity Visakhapatam

More information

Ordinary Differential Equations

Ordinary Differential Equations Basi Nomlatur MAE 0 all 005 Egirig Aalsis Ltur Nots o: Ordiar Diffrtial Equatios Author: Profssor Albrt Y. Tog Tpist: Sakurako Takahashi Cosidr a gral O. D. E. with t as th idpdt variabl, ad th dpdt variabl.

More information

A Review of Complex Arithmetic

A Review of Complex Arithmetic /0/005 Rviw of omplx Arithmti.do /9 A Rviw of omplx Arithmti A omplx valu has both a ral ad imagiary ompot: { } ad Im{ } a R b so that w a xprss this omplx valu as: whr. a + b Just as a ral valu a b xprssd

More information

Further Results on Pair Sum Graphs

Further Results on Pair Sum Graphs Applid Mathmatis, 0,, 67-75 http://dx.doi.org/0.46/am.0.04 Publishd Oli Marh 0 (http://www.sirp.org/joural/am) Furthr Rsults o Pair Sum Graphs Raja Poraj, Jyaraj Vijaya Xavir Parthipa, Rukhmoi Kala Dpartmt

More information

Chapter (8) Estimation and Confedence Intervals Examples

Chapter (8) Estimation and Confedence Intervals Examples Chaptr (8) Estimatio ad Cofdc Itrvals Exampls Typs of stimatio: i. Poit stimatio: Exampl (1): Cosidr th sampl obsrvatios, 17,3,5,1,18,6,16,10 8 X i i1 17 3 5 118 6 16 10 116 X 14.5 8 8 8 14.5 is a poit

More information

Control systems

Control systems Last tim,.5 Cotrol sstms Cotrollabilit ad obsrvabilit (Chaptr ) Two approahs to stat fdbak dsig (Chaptr 8) Usig otrollabl aoial form B solvig matri quatios Toda, w otiu to work o fdbak dsig (Chaptr 8)

More information

Statistics 3858 : Likelihood Ratio for Exponential Distribution

Statistics 3858 : Likelihood Ratio for Exponential Distribution Statistics 3858 : Liklihood Ratio for Expotial Distributio I ths two xampl th rjctio rjctio rgio is of th form {x : 2 log (Λ(x)) > c} for a appropriat costat c. For a siz α tst, usig Thorm 9.5A w obtai

More information

Lecture contents. Density of states Distribution function Statistic of carriers. Intrinsic Extrinsic with no compensation Compensation

Lecture contents. Density of states Distribution function Statistic of carriers. Intrinsic Extrinsic with no compensation Compensation Ltur otts Dsity of stats Distributio futio Statisti of arrirs Itrisi trisi with o ompsatio ompsatio S 68 Ltur #7 Dsity of stats Problm: alulat umbr of stats pr uit rgy pr uit volum V() Larg 3D bo (L is

More information

Discrete Fourier Transform (DFT)

Discrete Fourier Transform (DFT) Discrt Fourir Trasorm DFT Major: All Egirig Majors Authors: Duc guy http://umricalmthods.g.us.du umrical Mthods or STEM udrgraduats 8/3/29 http://umricalmthods.g.us.du Discrt Fourir Trasorm Rcalld th xpotial

More information

Frequency Response & Digital Filters

Frequency Response & Digital Filters Frquy Rspos & Digital Filtrs S Wogsa Dpt. of Cotrol Systms ad Istrumtatio Egirig, KUTT Today s goals Frquy rspos aalysis of digital filtrs LTI Digital Filtrs Digital filtr rprstatios ad struturs Idal filtrs

More information

LECTURE 13 Filling the bands. Occupancy of Available Energy Levels

LECTURE 13 Filling the bands. Occupancy of Available Energy Levels LUR 3 illig th bads Occupacy o Availabl rgy Lvls W hav dtrmid ad a dsity o stats. W also d a way o dtrmiig i a stat is illd or ot at a giv tmpratur. h distributio o th rgis o a larg umbr o particls ad

More information

Causes of deadlocks. Four necessary conditions for deadlock to occur are: The first three properties are generally desirable

Causes of deadlocks. Four necessary conditions for deadlock to occur are: The first three properties are generally desirable auss of dadloks Four ssary oditios for dadlok to our ar: Exlusiv ass: prosss rquir xlusiv ass to a rsour Wait whil hold: prosss hold o prviously aquird rsours whil waitig for additioal rsours No prmptio:

More information

Module 5 - Thermal Radiation. A blackbody is an object that absorbs all radiation that is incident upon it.

Module 5 - Thermal Radiation. A blackbody is an object that absorbs all radiation that is incident upon it. I. History of Blabody Radiatio A. What is a blabody? Modul 5 - Thrmal Radiatio A blabody is a obt that absorbs all radiatio that is iidt upo it. Wh radiatio falls upo a obt, som of th radiatio may b absorbd,

More information

On the approximation of the constant of Napier

On the approximation of the constant of Napier Stud. Uiv. Babş-Bolyai Math. 560, No., 609 64 O th approximatio of th costat of Napir Adri Vrscu Abstract. Startig from som oldr idas of [] ad [6], w show w facts cocrig th approximatio of th costat of

More information

POSTERIOR ESTIMATES OF TWO PARAMETER EXPONENTIAL DISTRIBUTION USING S-PLUS SOFTWARE

POSTERIOR ESTIMATES OF TWO PARAMETER EXPONENTIAL DISTRIBUTION USING S-PLUS SOFTWARE Joural of Rliabilit ad tatistial tudis [IN: 0974-804 Prit 9-5666 Oli] Vol. 3 Issu 00:7-34 POTERIOR ETIMATE OF TWO PARAMETER EXPONENTIAL DITRIBUTION UING -PLU OFTWARE.P. Ahmad ad Bilal Ahmad Bhat. Dartmt

More information

Figure 2-18 Thevenin Equivalent Circuit of a Noisy Resistor

Figure 2-18 Thevenin Equivalent Circuit of a Noisy Resistor .8 NOISE.8. Th Nyquist Nois Thorm W ow wat to tur our atttio to ois. W will start with th basic dfiitio of ois as usd i radar thory ad th discuss ois figur. Th typ of ois of itrst i radar thory is trmd

More information

MONTGOMERY COLLEGE Department of Mathematics Rockville Campus. 6x dx a. b. cos 2x dx ( ) 7. arctan x dx e. cos 2x dx. 2 cos3x dx

MONTGOMERY COLLEGE Department of Mathematics Rockville Campus. 6x dx a. b. cos 2x dx ( ) 7. arctan x dx e. cos 2x dx. 2 cos3x dx MONTGOMERY COLLEGE Dpartmt of Mathmatics Rockvill Campus MATH 8 - REVIEW PROBLEMS. Stat whthr ach of th followig ca b itgratd by partial fractios (PF), itgratio by parts (PI), u-substitutio (U), or o of

More information

Predicting Fatigue Damage of Asphalt Concrete Using a Cohesive Zone Model

Predicting Fatigue Damage of Asphalt Concrete Using a Cohesive Zone Model Thial Papr ISSN 1997-1400 It. J. Pavmt Rs. Thol. 7(5):361-368 Copyright @ Chis Soity o Pavmt Egirig Prditig Fatigu Damag o Asphalt Cort Usig a Cohsiv Zo Modl Guaglai Ji 1+ ad Xiaomig Huag 1 Abstrat: This

More information

Time : 1 hr. Test Paper 08 Date 04/01/15 Batch - R Marks : 120

Time : 1 hr. Test Paper 08 Date 04/01/15 Batch - R Marks : 120 Tim : hr. Tst Papr 8 D 4//5 Bch - R Marks : SINGLE CORRECT CHOICE TYPE [4, ]. If th compl umbr z sisfis th coditio z 3, th th last valu of z is qual to : z (A) 5/3 (B) 8/3 (C) /3 (D) o of ths 5 4. Th itgral,

More information

A unified formulation for circle and polygon concrete-filled steel tube columns under axial compression

A unified formulation for circle and polygon concrete-filled steel tube columns under axial compression uifid formulatio for irl ad polygo ort-filld stl tub olums udr axial omprssio Mi Yu a, Xiaoxiog Zha a,*, Jiaqiao Y b,*, Yutig Li a a. Shzh Graduat Shool, Harbi Istitut of Thology, Shzh 51855, Chia; b.

More information

1985 AP Calculus BC: Section I

1985 AP Calculus BC: Section I 985 AP Calculus BC: Sctio I 9 Miuts No Calculator Nots: () I this amiatio, l dots th atural logarithm of (that is, logarithm to th bas ). () Ulss othrwis spcifid, th domai of a fuctio f is assumd to b

More information

z 1+ 3 z = Π n =1 z f() z = n e - z = ( 1-z) e z e n z z 1- n = ( 1-z/2) 1+ 2n z e 2n e n -1 ( 1-z )/2 e 2n-1 1-2n -1 1 () z

z 1+ 3 z = Π n =1 z f() z = n e - z = ( 1-z) e z e n z z 1- n = ( 1-z/2) 1+ 2n z e 2n e n -1 ( 1-z )/2 e 2n-1 1-2n -1 1 () z Sris Expasio of Rciprocal of Gamma Fuctio. Fuctios with Itgrs as Roots Fuctio f with gativ itgrs as roots ca b dscribd as follows. f() Howvr, this ifiit product divrgs. That is, such a fuctio caot xist

More information

DTFT Properties. Example - Determine the DTFT Y ( e ) of n. Let. We can therefore write. From Table 3.1, the DTFT of x[n] is given by 1

DTFT Properties. Example - Determine the DTFT Y ( e ) of n. Let. We can therefore write. From Table 3.1, the DTFT of x[n] is given by 1 DTFT Proprtis Exampl - Dtrmi th DTFT Y of y α µ, α < Lt x α µ, α < W ca thrfor writ y x x From Tabl 3., th DTFT of x is giv by ω X ω α ω Copyright, S. K. Mitra Copyright, S. K. Mitra DTFT Proprtis DTFT

More information

Lectures 9 IIR Systems: First Order System

Lectures 9 IIR Systems: First Order System EE3054 Sigals ad Systms Lcturs 9 IIR Systms: First Ordr Systm Yao Wag Polytchic Uivrsity Som slids icludd ar xtractd from lctur prstatios prpard by McCllla ad Schafr Lics Ifo for SPFirst Slids This work

More information

DEPARTMENT OF MATHEMATICS BIT, MESRA, RANCHI MA2201 Advanced Engg. Mathematics Session: SP/ 2017

DEPARTMENT OF MATHEMATICS BIT, MESRA, RANCHI MA2201 Advanced Engg. Mathematics Session: SP/ 2017 DEARMEN OF MAEMAICS BI, MESRA, RANCI MA Advad Egg. Mathatis Sssio: S/ 7 MODULE I. Cosidr th two futios f utorial Sht No. -- ad g o th itrval [,] a Show that thir Wroskia W f, g vaishs idtially. b Show

More information

APPENDIX: STATISTICAL TOOLS

APPENDIX: STATISTICAL TOOLS I. Nots o radom samplig Why do you d to sampl radomly? APPENDI: STATISTICAL TOOLS I ordr to masur som valu o a populatio of orgaisms, you usually caot masur all orgaisms, so you sampl a subst of th populatio.

More information

Worksheet: Taylor Series, Lagrange Error Bound ilearnmath.net

Worksheet: Taylor Series, Lagrange Error Bound ilearnmath.net Taylor s Thorm & Lagrag Error Bouds Actual Error This is th ral amout o rror, ot th rror boud (worst cas scario). It is th dirc btw th actual () ad th polyomial. Stps:. Plug -valu ito () to gt a valu.

More information

Keywords- Weighted distributions, Transmuted distribution, Weibull distribution, Maximum likelihood method.

Keywords- Weighted distributions, Transmuted distribution, Weibull distribution, Maximum likelihood method. Volum 7, Issu 3, Marh 27 ISSN: 2277 28X Itratioal Joural of Advad Rsarh i Computr Si ad Softwar Egirig Rsarh Papr Availabl oli at: www.ijarss.om O Siz-Biasd Wightd Trasmutd Wibull Distributio Moa Abdlghafour

More information

Probability & Statistics,

Probability & Statistics, Probability & Statistics, BITS Pilai K K Birla Goa Campus Dr. Jajati Kshari Sahoo Dpartmt of Mathmatics BITS Pilai, K K Birla Goa Campus Poisso Distributio Poisso Distributio: A radom variabl X is said

More information

Physics 302 Exam Find the curve that passes through endpoints (0,0) and (1,1) and minimizes 1

Physics 302 Exam Find the curve that passes through endpoints (0,0) and (1,1) and minimizes 1 Physis Exam 6. Fid th urv that passs through dpoits (, ad (, ad miimizs J [ y' y ]dx Solutio: Si th itgrad f dos ot dpd upo th variabl of itgratio x, w will us th sod form of Eulr s quatio: f f y' y' y

More information

Review Exercises. 1. Evaluate using the definition of the definite integral as a Riemann Sum. Does the answer represent an area? 2

Review Exercises. 1. Evaluate using the definition of the definite integral as a Riemann Sum. Does the answer represent an area? 2 MATHEMATIS --RE Itgral alculus Marti Huard Witr 9 Rviw Erciss. Evaluat usig th dfiitio of th dfiit itgral as a Rima Sum. Dos th aswr rprst a ara? a ( d b ( d c ( ( d d ( d. Fid f ( usig th Fudamtal Thorm

More information

NET/JRF, GATE, IIT JAM, JEST, TIFR

NET/JRF, GATE, IIT JAM, JEST, TIFR Istitut for NET/JRF, GATE, IIT JAM, JEST, TIFR ad GRE i PHYSICAL SCIENCES Mathmatical Physics JEST-6 Q. Giv th coditio φ, th solutio of th quatio ψ φ φ is giv by k. kφ kφ lφ kφ lφ (a) ψ (b) ψ kφ (c) ψ

More information

Bayesian Economic Cost Plans II. The Average Outgoing Quality

Bayesian Economic Cost Plans II. The Average Outgoing Quality Eltro. J. Math. Phs. Si. 22 Sm. 1 9-15 Eltroi Joural of Mathmatial ad Phsial Sis EJMAPS ISS: 1538-3318 www.jmas.or Basia Eoomi Cost Plas II. Th Avra Outoi Qualit Abraham F. Jalbout 1*$ Hadi Y. Alkahb 2

More information

PURE MATHEMATICS A-LEVEL PAPER 1

PURE MATHEMATICS A-LEVEL PAPER 1 -AL P MATH PAPER HONG KONG EXAMINATIONS AUTHORITY HONG KONG ADVANCED LEVEL EXAMINATION PURE MATHEMATICS A-LEVEL PAPER 8 am am ( hours) This papr must b aswrd i Eglish This papr cosists of Sctio A ad Sctio

More information

15/03/1439. Lectures on Signals & systems Engineering

15/03/1439. Lectures on Signals & systems Engineering Lcturs o Sigals & syms Egirig Dsigd ad Prd by Dr. Ayma Elshawy Elsfy Dpt. of Syms & Computr Eg. Al-Azhar Uivrsity Email : aymalshawy@yahoo.com A sigal ca b rprd as a liar combiatio of basic sigals. Th

More information

Washington State University

Washington State University he 3 Ktics ad Ractor Dsig Sprg, 00 Washgto Stat Uivrsity Dpartmt of hmical Egrg Richard L. Zollars Exam # You will hav o hour (60 muts) to complt this xam which cosists of four (4) problms. You may us

More information

Solution to 1223 The Evil Warden.

Solution to 1223 The Evil Warden. Solutio to 1 Th Evil Ward. This is o of thos vry rar PoWs (I caot thik of aothr cas) that o o solvd. About 10 of you submittd th basic approach, which givs a probability of 47%. I was shockd wh I foud

More information

A Strain-based Non-linear Elastic Model for Geomaterials

A Strain-based Non-linear Elastic Model for Geomaterials A Strai-basd No-liar Elastic Modl for Gomatrials ANDREW HEATH Dpartmt of Architctur ad Civil Egirig Uivrsity of Bath Bath, BA2 7AY UNITED KINGDOM A.Hath@bath.ac.uk http://www.bath.ac.uk/ac Abstract: -

More information

Ideal crystal : Regulary ordered point masses connected via harmonic springs

Ideal crystal : Regulary ordered point masses connected via harmonic springs Statistical thrmodyamics of crystals Mooatomic crystal Idal crystal : Rgulary ordrd poit masss coctd via harmoic sprigs Itratomic itractios Rprstd by th lattic forc-costat quivalt atom positios miima o

More information

CDS 101: Lecture 5.1 Reachability and State Space Feedback

CDS 101: Lecture 5.1 Reachability and State Space Feedback CDS, Lctur 5. CDS : Lctur 5. Rachability ad Stat Spac Fdback Richard M. Murray ad Hido Mabuchi 5 Octobr 4 Goals: Di rachability o a cotrol systm Giv tsts or rachability o liar systms ad apply to ampls

More information

Chapter 11.00C Physical Problem for Fast Fourier Transform Civil Engineering

Chapter 11.00C Physical Problem for Fast Fourier Transform Civil Engineering haptr. Physical Problm for Fast Fourir Trasform ivil Egirig Itroductio I this chaptr, applicatios of FFT algorithms [-5] for solvig ral-lif problms such as computig th dyamical (displacmt rspos [6-7] of

More information

Technical Support Document Bias of the Minimum Statistic

Technical Support Document Bias of the Minimum Statistic Tchical Support Documt Bias o th Miimum Stattic Itroductio Th papr pla how to driv th bias o th miimum stattic i a radom sampl o siz rom dtributios with a shit paramtr (also kow as thrshold paramtr. Ths

More information

NEW VERSION OF SZEGED INDEX AND ITS COMPUTATION FOR SOME NANOTUBES

NEW VERSION OF SZEGED INDEX AND ITS COMPUTATION FOR SOME NANOTUBES Digst Joural of Naomatrials ad Biostructurs Vol 4, No, March 009, p 67-76 NEW VERSION OF SZEGED INDEX AND ITS COMPUTATION FOR SOME NANOTUBES A IRANMANESH a*, O KHORMALI b, I NAJAFI KHALILSARAEE c, B SOLEIMANI

More information

An Introduction to Asymptotic Expansions

An Introduction to Asymptotic Expansions A Itroductio to Asmptotic Expasios R. Shaar Subramaia Asmptotic xpasios ar usd i aalsis to dscrib th bhavior of a fuctio i a limitig situatio. Wh a fuctio ( x, dpds o a small paramtr, ad th solutio of

More information

2.29 Numerical Fluid Mechanics Spring 2015 Lecture 12

2.29 Numerical Fluid Mechanics Spring 2015 Lecture 12 REVIEW Lctur 11: Numrical Fluid Mchaics Sprig 2015 Lctur 12 Fiit Diffrcs basd Polyomial approximatios Obtai polyomial (i gral u-qually spacd), th diffrtiat as dd Nwto s itrpolatig polyomial formulas Triagular

More information

A Simple Proof that e is Irrational

A Simple Proof that e is Irrational Two of th most bautiful ad sigificat umbrs i mathmatics ar π ad. π (approximatly qual to 3.459) rprsts th ratio of th circumfrc of a circl to its diamtr. (approximatly qual to.788) is th bas of th atural

More information

How Fast a Hydrogen Atom can Move Before Its Proton and Electron Fly Apart?

How Fast a Hydrogen Atom can Move Before Its Proton and Electron Fly Apart? Optis ad Photois Joural,,, 36- doi:.36/opj..6 Publishd Oli Ju (http://www.sirp.org/joural/opj/) How Fast a Hydrog Atom a Mo Bfor Its Proto ad Eltro Fly Apart? Abstrat Wi-Xig Xu Nwth Moitorig I., Oshawa,

More information

H2 Mathematics Arithmetic & Geometric Series ( )

H2 Mathematics Arithmetic & Geometric Series ( ) H Mathmatics Arithmtic & Gomtric Sris (08 09) Basic Mastry Qustios Arithmtic Progrssio ad Sris. Th rth trm of a squc is 4r 7. (i) Stat th first four trms ad th 0th trm. (ii) Show that th squc is a arithmtic

More information

The Interplay between l-max, l-min, p-max and p-min Stable Distributions

The Interplay between l-max, l-min, p-max and p-min Stable Distributions DOI: 0.545/mjis.05.4006 Th Itrplay btw lma lmi pma ad pmi Stabl Distributios S Ravi ad TS Mavitha Dpartmt of Studis i Statistics Uivrsity of Mysor Maasagagotri Mysuru 570006 Idia. Email:ravi@statistics.uimysor.ac.i

More information

Utilizing exact and Monte Carlo methods to investigate properties of the Blume Capel Model applied to a nine site lattice.

Utilizing exact and Monte Carlo methods to investigate properties of the Blume Capel Model applied to a nine site lattice. Utilizing xat and Mont Carlo mthods to invstigat proprtis of th Blum Capl Modl applid to a nin sit latti Nik Franios Writing various xat and Mont Carlo omputr algorithms in C languag, I usd th Blum Capl

More information

10. Joint Moments and Joint Characteristic Functions

10. Joint Moments and Joint Characteristic Functions 0 Joit Momts ad Joit Charactristic Fctios Followig sctio 6 i this sctio w shall itrodc varios paramtrs to compactly rprst th iformatio cotaid i th joit pdf of two rvs Giv two rvs ad ad a fctio g x y dfi

More information

Sequential Tests for the Detection of Voice Activity and the Recognition of Cyber Exploits *

Sequential Tests for the Detection of Voice Activity and the Recognition of Cyber Exploits * Commuiatios ad Ntwork,, 3, 85-99 doi:.436/..34 Publishd Oli Novmbr (http://www.sirp.org/joural/) Squtial Tsts for th Dttio of Voi Ativity ad th Rogitio of Cybr Exploits * Abstrat Ehab Etllisi, P. Papatoi-Kazakos

More information

Discrete Fourier Transform. Nuno Vasconcelos UCSD

Discrete Fourier Transform. Nuno Vasconcelos UCSD Discrt Fourir Trasform uo Vascoclos UCSD Liar Shift Ivariat (LSI) systms o of th most importat cocpts i liar systms thory is that of a LSI systm Dfiitio: a systm T that maps [ ito y[ is LSI if ad oly if

More information

Chapter 3 Fourier Series Representation of Periodic Signals

Chapter 3 Fourier Series Representation of Periodic Signals Chptr Fourir Sris Rprsttio of Priodic Sigls If ritrry sigl x(t or x[] is xprssd s lir comitio of som sic sigls th rspos of LI systm coms th sum of th idividul rsposs of thos sic sigls Such sic sigl must:

More information

Blackbody Radiation. All bodies at a temperature T emit and absorb thermal electromagnetic radiation. How is blackbody radiation absorbed and emitted?

Blackbody Radiation. All bodies at a temperature T emit and absorb thermal electromagnetic radiation. How is blackbody radiation absorbed and emitted? All bodis at a tmpratur T mit ad absorb thrmal lctromagtic radiatio Blackbody radiatio I thrmal quilibrium, th powr mittd quals th powr absorbd How is blackbody radiatio absorbd ad mittd? 1 2 A blackbody

More information

Journal of Modern Applied Statistical Methods

Journal of Modern Applied Statistical Methods Joural of Modr Applid Statistical Mthods Volum Issu Articl 6 --03 O Som Proprtis of a Htrogous Trasfr Fuctio Ivolvig Symmtric Saturatd Liar (SATLINS) with Hyprbolic Tagt (TANH) Trasfr Fuctios Christophr

More information

Model of the multi-level laser

Model of the multi-level laser Modl of th multilvl lsr Trih Dih Chi Fulty of Physis, Collg of turl Sis, oi tiol Uivrsity Tr Mh ug, Dih u Kho Fulty of Physis, Vih Uivrsity Astrt. Th lsr hrtristis dpd o th rgylvl digrm. A rsol rgylvl

More information

On a problem of J. de Graaf connected with algebras of unbounded operators de Bruijn, N.G.

On a problem of J. de Graaf connected with algebras of unbounded operators de Bruijn, N.G. O a problm of J. d Graaf coctd with algbras of uboudd oprators d Bruij, N.G. Publishd: 01/01/1984 Documt Vrsio Publishr s PDF, also kow as Vrsio of Rcord (icluds fial pag, issu ad volum umbrs) Plas chck

More information

07 - SEQUENCES AND SERIES Page 1 ( Answers at he end of all questions ) b, z = n

07 - SEQUENCES AND SERIES Page 1 ( Answers at he end of all questions ) b, z = n 07 - SEQUENCES AND SERIES Pag ( Aswrs at h d of all qustios ) ( ) If = a, y = b, z = c, whr a, b, c ar i A.P. ad = 0 = 0 = 0 l a l

More information

Thomas J. Osler. 1. INTRODUCTION. This paper gives another proof for the remarkable simple

Thomas J. Osler. 1. INTRODUCTION. This paper gives another proof for the remarkable simple 5/24/5 A PROOF OF THE CONTINUED FRACTION EXPANSION OF / Thomas J Oslr INTRODUCTION This ar givs aothr roof for th rmarkabl siml cotiud fractio = 3 5 / Hr is ay ositiv umbr W us th otatio x= [ a; a, a2,

More information

CDS 101: Lecture 5.1 Reachability and State Space Feedback

CDS 101: Lecture 5.1 Reachability and State Space Feedback CDS, Lctur 5. CDS : Lctur 5. Rachability ad Stat Spac Fdback Richard M. Murray 7 Octobr 3 Goals: Di rachability o a cotrol systm Giv tsts or rachability o liar systms ad apply to ampls Dscrib th dsig o

More information

They must have different numbers of electrons orbiting their nuclei. They must have the same number of neutrons in their nuclei.

They must have different numbers of electrons orbiting their nuclei. They must have the same number of neutrons in their nuclei. 37 1 How may utros ar i a uclus of th uclid l? 20 37 54 2 crtai lmt has svral isotops. Which statmt about ths isotops is corrct? Thy must hav diffrt umbrs of lctros orbitig thir ucli. Thy must hav th sam

More information

Data Assimilation 1. Alan O Neill National Centre for Earth Observation UK

Data Assimilation 1. Alan O Neill National Centre for Earth Observation UK Data Assimilation 1 Alan O Nill National Cntr for Earth Obsrvation UK Plan Motivation & basic idas Univariat (scalar) data assimilation Multivariat (vctor) data assimilation 3d-Variational Mthod (& optimal

More information

Discrete Fourier Transform. Discrete Fourier Transform. Discrete Fourier Transform. Discrete Fourier Transform. Discrete Fourier Transform

Discrete Fourier Transform. Discrete Fourier Transform. Discrete Fourier Transform. Discrete Fourier Transform. Discrete Fourier Transform Discrt Fourir Trasform Dfiitio - T simplst rlatio btw a lt- squc x dfid for ω ad its DTFT X ( ) is ω obtaid by uiformly sampli X ( ) o t ω-axis btw ω < at ω From t dfiitio of t DTFT w tus av X X( ω ) ω

More information

Restricted Factorial And A Remark On The Reduced Residue Classes

Restricted Factorial And A Remark On The Reduced Residue Classes Applid Mathmatics E-Nots, 162016, 244-250 c ISSN 1607-2510 Availabl fr at mirror sits of http://www.math.thu.du.tw/ am/ Rstrictd Factorial Ad A Rmark O Th Rducd Rsidu Classs Mhdi Hassai Rcivd 26 March

More information

Reliability of time dependent stress-strength system for various distributions

Reliability of time dependent stress-strength system for various distributions IOS Joural of Mathmatcs (IOS-JM ISSN: 78-578. Volum 3, Issu 6 (Sp-Oct., PP -7 www.osrjourals.org lablty of tm dpdt strss-strgth systm for varous dstrbutos N.Swath, T.S.Uma Mahswar,, Dpartmt of Mathmatcs,

More information

Ordinary Differential Equations

Ordinary Differential Equations Ordiary Diffrtial Equatio Aftr radig thi chaptr, you hould b abl to:. dfi a ordiary diffrtial quatio,. diffrtiat btw a ordiary ad partial diffrtial quatio, ad. Solv liar ordiary diffrtial quatio with fid

More information

2617 Mark Scheme June 2005 Mark Scheme 2617 June 2005

2617 Mark Scheme June 2005 Mark Scheme 2617 June 2005 Mark Schm 67 Ju 5 GENERAL INSTRUCTIONS Marks i th mark schm ar plicitly dsigatd as M, A, B, E or G. M marks ("mthod" ar for a attmpt to us a corrct mthod (ot mrly for statig th mthod. A marks ("accuracy"

More information

Chapter 4 - The Fourier Series

Chapter 4 - The Fourier Series M. J. Robrts - 8/8/4 Chaptr 4 - Th Fourir Sris Slctd Solutios (I this solutio maual, th symbol,, is usd for priodic covolutio bcaus th prfrrd symbol which appars i th txt is ot i th fot slctio of th word

More information

Chapter Five. More Dimensions. is simply the set of all ordered n-tuples of real numbers x = ( x 1

Chapter Five. More Dimensions. is simply the set of all ordered n-tuples of real numbers x = ( x 1 Chatr Fiv Mor Dimsios 51 Th Sac R W ar ow rard to mov o to sacs of dimsio gratr tha thr Ths sacs ar a straightforward gralizatio of our Euclida sac of thr dimsios Lt b a ositiv itgr Th -dimsioal Euclida

More information

International Journal of Advanced and Applied Sciences

International Journal of Advanced and Applied Sciences Itratioal Joural of Advacd ad Applid Scics x(x) xxxx Pags: xx xx Cotts lists availabl at Scic Gat Itratioal Joural of Advacd ad Applid Scics Joural hompag: http://wwwscic gatcom/ijaashtml Symmtric Fuctios

More information

n n ee (for index notation practice, see if you can verify the derivation given in class)

n n ee (for index notation practice, see if you can verify the derivation given in class) EN24: Computatioal mthods i Structural ad Solid Mchaics Homwork 6: Noliar matrials Du Wd Oct 2, 205 School of Egirig Brow Uivrsity I this homwork you will xtd EN24FEA to solv problms for oliar matrials.

More information

Root Mean Square Speed And Mean Free Path

Root Mean Square Speed And Mean Free Path Disipli Cours-I Sstr-II Papr No: hral Physis : Physis-IIA Lsso: Root Ma Squar Spd Ad Ma Fr Path Lsso Dlopr: Sa Dabas Collg/ Dpartt: Shya Lal Collg, Uirsity of Dlhi abl of Cotts Chaptr Root Ma Squar Spd

More information

Normal Form for Systems with Linear Part N 3(n)

Normal Form for Systems with Linear Part N 3(n) Applid Mathmatics 64-647 http://dxdoiorg/46/am7 Publishd Oli ovmbr (http://wwwscirporg/joural/am) ormal Form or Systms with Liar Part () Grac Gachigua * David Maloza Johaa Sigy Dpartmt o Mathmatics Collg

More information

(Reference: sections in Silberberg 5 th ed.)

(Reference: sections in Silberberg 5 th ed.) ALE. Atomic Structur Nam HEM K. Marr Tam No. Sctio What is a atom? What is th structur of a atom? Th Modl th structur of a atom (Rfrc: sctios.4 -. i Silbrbrg 5 th d.) Th subatomic articls that chmists

More information

Chemical Physics II. More Stat. Thermo Kinetics Protein Folding...

Chemical Physics II. More Stat. Thermo Kinetics Protein Folding... Chmical Physics II Mor Stat. Thrmo Kintics Protin Folding... http://www.nmc.ctc.com/imags/projct/proj15thumb.jpg http://nuclarwaponarchiv.org/usa/tsts/ukgrabl2.jpg http://www.photolib.noaa.gov/corps/imags/big/corp1417.jpg

More information

Free vibration of pre-tensioned nanobeams based. on nonlocal stress theory *

Free vibration of pre-tensioned nanobeams based. on nonlocal stress theory * 3 Lim t al. / J Zhjiag Uiv-Sci A (Appl Phys & Eg) 010 11(1):3- Joural of Zhjiag Uivrsity-SIENE A (Applid Physics & Egirig) ISSN 1673-565X (Prit); ISSN 186-1775 (Oli) www.zju.du.c/jzus; www.sprigrlik.com

More information

Chapter 2 Infinite Series Page 1 of 11. Chapter 2 : Infinite Series

Chapter 2 Infinite Series Page 1 of 11. Chapter 2 : Infinite Series Chatr Ifiit Sris Pag of Sctio F Itgral Tst Chatr : Ifiit Sris By th d of this sctio you will b abl to valuat imror itgrals tst a sris for covrgc by alyig th itgral tst aly th itgral tst to rov th -sris

More information

Empirical Study in Finite Correlation Coefficient in Two Phase Estimation

Empirical Study in Finite Correlation Coefficient in Two Phase Estimation M. Khoshvisa Griffith Uivrsity Griffith Busiss School Australia F. Kaymarm Massachustts Istitut of Tchology Dpartmt of Mchaical girig USA H. P. Sigh R. Sigh Vikram Uivrsity Dpartmt of Mathmatics ad Statistics

More information

3.4 Properties of the Stress Tensor

3.4 Properties of the Stress Tensor cto.4.4 Proprts of th trss sor.4. trss rasformato Lt th compots of th Cauchy strss tsor a coordat systm wth bas vctors b. h compots a scod coordat systm wth bas vctors j,, ar gv by th tsor trasformato

More information

Elements of Statistical Thermodynamics

Elements of Statistical Thermodynamics 24 Elmnts of Statistical Thrmodynamics Statistical thrmodynamics is a branch of knowldg that has its own postulats and tchniqus. W do not attmpt to giv hr vn an introduction to th fild. In this chaptr,

More information

Fluids Lecture 2 Notes

Fluids Lecture 2 Notes Fluids Leture Notes. Airfoil orte Sheet Models. Thi-Airfoil Aalysis Problem Readig: Aderso.,.7 Airfoil orte Sheet Models Surfae orte Sheet Model A aurate meas of represetig the flow about a airfoil i a

More information

A Mathematical Study of Electro-Magneto- Thermo-Voigt Viscoelastic Surface Wave Propagation under Gravity Involving Time Rate of Change of Strain

A Mathematical Study of Electro-Magneto- Thermo-Voigt Viscoelastic Surface Wave Propagation under Gravity Involving Time Rate of Change of Strain Thortical Mathmatics & Applicatios vol.3 o.3 3 87-6 ISSN: 79-9687 (prit) 79-979 (oli) Sciprss Ltd 3 A Mathmatical Study of Elctro-Magto- Thrmo-Voigt Viscolastic Surfac Wav Propagatio udr Gravity Ivolvig

More information

Einstein Equations for Tetrad Fields

Einstein Equations for Tetrad Fields Apiron, Vol 13, No, Octobr 006 6 Einstin Equations for Ttrad Filds Ali Rıza ŞAHİN, R T L Istanbul (Turky) Evry mtric tnsor can b xprssd by th innr product of ttrad filds W prov that Einstin quations for

More information

New Efficient Optimal Derivative-Free Method for Solving Nonlinear Equations

New Efficient Optimal Derivative-Free Method for Solving Nonlinear Equations Itratioal Joral o Mathmatis ad Comptatioal Si Vol No 05 pp 0-0 http://wwwaisiorg/joral/ijms Nw Eiit Optimal Drivativ-Fr Mthod or Solvig Noliar Eqatios Q W Go Y H Qia * Dpartmt o Mathmatis Zhjiag Normal

More information

Folding of Hyperbolic Manifolds

Folding of Hyperbolic Manifolds It. J. Cotmp. Math. Scics, Vol. 7, 0, o. 6, 79-799 Foldig of Hyprbolic Maifolds H. I. Attiya Basic Scic Dpartmt, Collg of Idustrial Educatio BANE - SUEF Uivrsity, Egypt hala_attiya005@yahoo.com Abstract

More information

7 Finite element methods for the Timoshenko beam problem

7 Finite element methods for the Timoshenko beam problem 7 Fiit lmt mtods for t Timosko bam problm Rak-54.3 Numrical Mtods i Structural Egirig Cotts. Modllig pricipls ad boudary valu problms i girig scics. Ergy mtods ad basic D fiit lmt mtods - bars/rods bams

More information

Linear Algebra Existence of the determinant. Expansion according to a row.

Linear Algebra Existence of the determinant. Expansion according to a row. Lir Algbr 2270 1 Existc of th dtrmit. Expsio ccordig to row. W dfi th dtrmit for 1 1 mtrics s dt([]) = (1) It is sy chck tht it stisfis D1)-D3). For y othr w dfi th dtrmit s follows. Assumig th dtrmit

More information

AS 5850 Finite Element Analysis

AS 5850 Finite Element Analysis AS 5850 Finit Elmnt Analysis Two-Dimnsional Linar Elasticity Instructor Prof. IIT Madras Equations of Plan Elasticity - 1 displacmnt fild strain- displacmnt rlations (infinitsimal strain) in matrix form

More information

5.1 The Nuclear Atom

5.1 The Nuclear Atom Sav My Exams! Th Hom of Rvisio For mor awsom GSE ad lvl rsourcs, visit us at www.savmyxams.co.uk/ 5.1 Th Nuclar tom Qustio Papr Lvl IGSE Subjct Physics (0625) Exam oard Topic Sub Topic ooklt ambridg Itratioal

More information

Chapter Taylor Theorem Revisited

Chapter Taylor Theorem Revisited Captr 0.07 Taylor Torm Rvisitd Atr radig tis captr, you sould b abl to. udrstad t basics o Taylor s torm,. writ trascdtal ad trigoomtric uctios as Taylor s polyomial,. us Taylor s torm to id t valus o

More information

An Introduction to Asymptotic Expansions

An Introduction to Asymptotic Expansions A Itroductio to Asmptotic Expasios R. Shaar Subramaia Dpartmt o Chmical ad Biomolcular Egirig Clarso Uivrsit Asmptotic xpasios ar usd i aalsis to dscrib th bhavior o a uctio i a limitig situatio. Wh a

More information

Session : Plasmas in Equilibrium

Session : Plasmas in Equilibrium Sssio : Plasmas i Equilibrium Ioizatio ad Coductio i a High-prssur Plasma A ormal gas at T < 3000 K is a good lctrical isulator, bcaus thr ar almost o fr lctros i it. For prssurs > 0.1 atm, collisio amog

More information

Math 34A. Final Review

Math 34A. Final Review Math A Final Rviw 1) Us th graph of y10 to find approimat valus: a) 50 0. b) y (0.65) solution for part a) first writ an quation: 50 0. now tak th logarithm of both sids: log() log(50 0. ) pand th right

More information

Option 3. b) xe dx = and therefore the series is convergent. 12 a) Divergent b) Convergent Proof 15 For. p = 1 1so the series diverges.

Option 3. b) xe dx = and therefore the series is convergent. 12 a) Divergent b) Convergent Proof 15 For. p = 1 1so the series diverges. Optio Chaptr Ercis. Covrgs to Covrgs to Covrgs to Divrgs Covrgs to Covrgs to Divrgs 8 Divrgs Covrgs to Covrgs to Divrgs Covrgs to Covrgs to Covrgs to Covrgs to 8 Proof Covrgs to π l 8 l a b Divrgt π Divrgt

More information

XGFIT s Curve Fitting Algorithm with GSL

XGFIT s Curve Fitting Algorithm with GSL XGFIT s Curv Fitti Alorithm ith GSL Ovrvi XGFIT is a GTK+ aliatio that taks as iut a st o (, y) oits, rodus a li rah, ad rorms a aussia it o th data. XGFIT uss th GNU Sitii Lirary (GSL) to rorm th urv

More information

A Prey-Predator Model with an Alternative Food for the Predator, Harvesting of Both the Species and with A Gestation Period for Interaction

A Prey-Predator Model with an Alternative Food for the Predator, Harvesting of Both the Species and with A Gestation Period for Interaction Int. J. Opn Problms Compt. Math., Vol., o., Jun 008 A Pry-Prdator Modl with an Altrnativ Food for th Prdator, Harvsting of Both th Spcis and with A Gstation Priod for Intraction K. L. arayan and. CH. P.

More information

Three-Dimensional (3D) Trefftz Computational Grains (TCGs) for the Micromechanical Modeling of Heterogeneous Media with Coated Spherical Inclusions

Three-Dimensional (3D) Trefftz Computational Grains (TCGs) for the Micromechanical Modeling of Heterogeneous Media with Coated Spherical Inclusions hr-dimsioal (3D) rfftz Computatioal Grais (CGs) for th Micromchaical Modlig of Htrogous Mdia with Coatd Sphrical Iclusios Guaa Wag a,b, Jubo Wag c, Litig Dog c,*,satya N. Alturi a,b a Ctr for Advacd Rsarch

More information

Electronic Supplementary Information

Electronic Supplementary Information Elctroic Supplmtary Matrial (ESI) for Joural of Matrials Chmistry A. This joural is Th Royal Socity of Chmistry 2016 Elctroic Supplmtary Iformatio Photolctrochmical Watr Oxidatio usig a Bi 2 MoO 6 / MoO

More information

Global Chaos Synchronization of the Hyperchaotic Qi Systems by Sliding Mode Control

Global Chaos Synchronization of the Hyperchaotic Qi Systems by Sliding Mode Control Dr. V. Sudarapadia t al. / Itratioal Joural o Computr Scic ad Egirig (IJCSE) Global Chaos Sychroizatio of th Hyprchaotic Qi Systms by Slidig Mod Cotrol Dr. V. Sudarapadia Profssor, Rsarch ad Dvlopmt Ctr

More information