New Efficient Optimal Derivative-Free Method for Solving Nonlinear Equations

Size: px
Start display at page:

Download "New Efficient Optimal Derivative-Free Method for Solving Nonlinear Equations"

Transcription

1 Itratioal Joral o Mathmatis ad Comptatioal Si Vol No 05 pp Nw Eiit Optimal Drivativ-Fr Mthod or Solvig Noliar Eqatios Q W Go Y H Qia * Dpartmt o Mathmatis Zhjiag Normal Uivrsit Jiha Zhjiag Chia Abstrat I this papr w sggst a w thiq whih ss Lagrag polomials to gt drivativ-r itrativ mthods or solvig oliar qatios With th s o th proposd thiq ad Sts o-lik mthods a w optimal orth-ordr mthod is drivd B sig thr-dgr Lagrag polomials with othr two-stp mthods whih ar iit optimal mthods ighth-ordr mthods a b ahivd Bsids w a gt sitth-ordr mthods i w s othr thr-stp mthods ad highr-ordr dgr Lagrag polomials Th rror qatios ad asmptoti ovrg ostats ar obtaid or th proposd mthods Som mrial ampls ar illstratd to vri th ara o th proposd omptatioal shm Kwords Lagrag Polomials Sts o-lik Mthod Drivativ-Fr Covrg Ordr Eii Id Rivd: Marh 7 05 / Aptd: April 6 05 / Pblishd oli: Ma 05 Th Athors Pblishd b Amria Istitt o Si This Op Ass artil is dr th CC BY-NC lis Itrodtio O o th most basi ad ompl problms i mrial aalsis is to solv oliar qatios i trms o ( = 0 Howvr it is somwhat diilt to id th roots o oliar qatios aratl Itrativ mthods ar th most ommol sd thiqs to obtai approimat soltios Lt * ab [ b a root o th qatio ( = 0 ( W hag th qatio ( as qivalt orm = φ ( Takig 0 [ ab ostrt th rrsiv ormla = k φ k k = 0 ( W gt a sq { k } k = 0 throgh th rrsiv ormla ( Takig limit o both sids o th ormla ( w a gt ɶ = φ ɶ ( whrɶ is a limit o th sq{ k } k = 0 wh k Obviosl ɶis a root o th qatio ( throgh th ormla ( Bas o qatio ( is qal to ( w wold obtai = ɶ lim k = ɶ (5 * k ad th qatio ( is alld itrativ ormla Mawhil th mthod sig qatio ( is amd itrativ mthod Nwto s mthod [ is th lassial approah or solvig oliar qatios th omptatioal algorithm is writt as ollows: whr = = (6 This is a ampl o a o-poit itratio shm [0 I som appliatios ( is mor diilt to valat tha ( Rtl mh rsarh ort * Corrspodig athor addrss: qh00@zjd (Y H Qia

2 Itratioal Joral o Mathmatis ad Comptatioal Si Vol No 05 pp [ lightd th idas o rmovig drivativs rom itratio tios i ordr to avoid th ssit o diig w tio valatios sh as th irst drivativ or sod drivativ For ampl Sts [ mad s o th orward dir approimatio to rpla ( to propos th ollowig omptatioal shm ( ( = (7 Rtl Dhgha ad Hajaria [6 prstd a third ordr itrativ mthod (DM ad iorporatd or tio valatios pr ah itratio stp as ollows whr ( ( z ( ( ( = z ( ( ( = ( Bsids R t al [5 proposd aothr optimal orth-ordr mthod i trms o th ollowig shm (RMa a R ad a is a paramtr ( = z = z (9 ( = [ [ z [ z a( z I Eq (9 th tio [ is rprstd b ( a ( b [ a b = Atrward Li t al [ prstd a a b orth-ordr mthod (LM as ollows ( = z = z [ [ z [ z = [ (0 Th aormtiod mthods [6 5 ar optimal i aorda with Kg-Trab ojtr to obtai a drivativ-r omptatioal shm It is ot limitd to th abov omptatioal shm [6 5 ma variats o Sts s mthods wr proposd i th past dad Sharma [6 itrodd a Nwto-Sts mthod to ahiv th third ordr ovrg Cordro t al [ proposd a w orth-ordr Sts tp mthod I additio othr rsarhrs also itrodd a varit o w mthods to solv oliar qatios basd o Sts s tp mthod (s th litratr pblishd i [ 5 Mawhil thr ar varios mthods sig liar tios to allat ( For ampl Gstavo t al i [ prstd thr w optimal orth-ordr mthods to osidr th polomial Cordro t al [5 ad Solmai [9 proposd Padé approimats to stimat ( I this papr a w optimal thiq is prstd to adopt Lagrag s itrpolatio ad Sts-lik mthods to ld drivativ tios i th omptatioal itratio shm Th papr is orgaizd as ollows th mthodolog ad priipl o th w optimal thiq sig Lagrag s itrpolatio or solvig oliar qatios is itrodd i Stio I th t stio th proposd thiq is gralizd or gttig ighth-ordr mthods whih ar both drivativ-r ad optimal I Stio w a driv th sitth-ordr mthods wh th proposd thiq ad othr thr-stp optimal mthods ar sd Illstrativ ampls ar giv to vri th ara o th proposd mthod i Stio 5 Fiall th papr ds with oldig rmarks i Stio 6 Forth-Ordr Optimal Mthod W osidr a gral oliar qatio ( = 0 Assmig that α is a simpl root o th qatio ( = 0 ad γ is a giv iitial gss whih is los ogh to α Aordig to Talor s sris pasio arod γ givs ( = ( γ ( γ ( γ γ γ ( Th irst-ordr approimatig qatio is ( γ ( γ ( γ 0 = ( Th rom Eq ( w a ir th ollowig itrativ mthod = ( This is th lassial Nwto s mthod with a sod-ordr ovrg Usig th ollowig orward-dir to rpla ( ilds ( ( = ( W a gt Sts s mthod b makig s o Eq ( Th w obtai a mthod ormd b th ompositio o Sts ad Nwto mthods as ollows:

3 0 Q W Go ad Y H Qia: Nw Eiit Optimal Drivativ-Fr Mthod or Solvig Noliar Eqatios ( ( ( ( = z z Whr = (5 = this ss or tio valatios whih ar I ordr to avoid th valatio o th irst drivativ ad rd th tio valatios it is sggstd approimatig it b th drivativ p ( z o th ollowig Lagrag polomial o dgr ( t ( t z ( ( z ( t ( t ( z ( z ( z ( t ( t z ( ( z p t = (6 Th th drivativ o as p = valatd i a b prssd ( z ( z ( ( ( z ( z ( z ( ( ( z ( ( z ( z (7 Sbstittig Eq (7 i th sod qatio o Eq (5 w gt a w two-stp itrativ mthod (GM sig th Lagrag polomial whos prssio is writt as ollows: p( t ( ( z ( = ( = ( ( z ( z ( ( z ( ( z ( z ( ( ( z Thorm Lt α Db a simpl zro o a siitl dirtiabl tio : D R R i a itrvald I 0 is siitl los to α th th mthod ( has optimal orth-ordr ovrg Proo Lt b th rror i whih is Talor padig at = α w hav = 5 ( ( O α B = (9 ( k whr = / k! k = k α O th basis o z ( = w gt = ( ( ( ( ( ( ( ( 5 O( z (0 Sbstittig Eq (9 ad (0 i th irst qatio o Eq ( w hav ( ( α = ( (( 5 Th w gt ( ( 6 O 5 ( ( ( = ( ( (( 5 7 ( ( 6 O 5 ( ( with Eq (9 (0 ad ( w a dd that th rror qatio o th GM mthod is ( ( 5 = O ( showig that th mthod (GM has optimal orth-ordr ovrg

4 Itratioal Joral o Mathmatis ad Comptatioal Si Vol No 05 pp Eighth-Ordr Optimal Mthods Th thiq a b rthr applid to highr ordr mthods b sig highr dgr Lagrag polomials To obtai drivativ-r mthods havig optimal ighth-ordr ovrg w osidr a thr-stp l i whih th irst two stps ar a drivativ-r optimal orth-ordr mthods ad ϕ is a tio that dis a optimal drivativ r mthod or = th ombiatio o ad ϕdis a optimal drivativ-r itrativ mthod or = = [ z [ z ( ( ( Th th drivativ p ( o th ollowig Lagrag polomial o dgr is sd to rpla ( Aordig to th Lagrag polomial w gt ( t ( t z ( t = ( ( z ( ( t ( t z ( t ( ( ( z ( ( t ( t ( t z ( z ( z ( z ( z ( t ( t ( t z ( ( ( ( z p t (5 Th th drivativ o p ( t valatd i a b prssd as p ( = z ( ( z ( ( ( ( z ( ( z ( ( ( ( z ( ( ( ( z ( z ( z Usig p ( to rpla ( thr-stp lass ϕ (6 obtais th ollowig [ z [ z ( ( = D (7 whr D ( is th drivativ o p( t i i othr words D ( = p ( W valat or tios whih ar ( ( ( z ( i ah itratio Th omptatioal mthod statd i Eq (7 will b optimal i w prov that it has ighth-ordr ovrg Thorm Lt α Db a simpl zro o a siitl dirtiabl tio : D R R i a itrval D I 0 is siitl los to α th th mthod (7 has optimal ighth-ordr ovrg Proo Lt = α B Talor padig at = α w hav ( = 6 6 ( k 7 7 whr = / k! k = k α O th basis o z ( 9 O = w obtai 5 5 ( z = ( ( ( ( ( ( 5 9 ( O ( (9 Sbstittig Eq ( ad (9 i th irst qatio o Eq (7 w hav α = ( ( ( ( ( 5 ( ( 6 9 O (0 Th w pad ( arodα with Eq (0 to driv th ollowig prssio

5 06 Q W Go ad Y H Qia: Nw Eiit Optimal Drivativ-Fr Mthod or Solvig Noliar Eqatios ( = ( ( ( ( 5 7 ( ( ( 6 9 O ( W di that th irst two stps ar optimal orth-ordr mthod ad assm = h h h h h O( 9 ( with Eq ( (9 ad ( w a ths dd th rror qatio o th mthod as ( h 9 O( h = ( Th abov mthod shows th optimal ighth-ordr ovrg For ampl applig RM (assm a = i (7 w gt th mthod (GRM: ( ( z ( = z = ( ( = [ [ z [ z z = D Th abov allatio mthod satisis th ollowig rror qatio: ( ( ( = 7 ( ( ( ( ( 9 O 7 (5 I additio i w appl th mthod o LM i Eq (7 w a gt aothr mthod (GLM i th orm o: ( = z = z [ [ z [ z = [ = D This mthod satisis th ollowig rror qatio: ( ( 9 O 7 (6 (7 Sitth-Ordr Optimal Mthods To rthr obtai drivativ-r mthods o optimal sitth-ordr ovrg w osidr a or-stp l i whih th irst thr stps ar a drivativ-r optimal ighth-ordr mthod as ollows: v = φ [ z [ z [ z = φ = φ = v ( v ( v ( Whr ϕ is a itrativ tio o optimal ighth ordr drivativ-r mthod omposd with ϕ ϕ Th drivativ p ( v o th ollowig Lagrag polomial o dgr is adoptd to rpla ( v ( t ( t z ( t ( t v = ( ( z ( ( v ( t ( t z ( t ( t v ( ( ( z ( ( v ( t ( t ( t ( t v ( z ( z ( z ( z ( z v ( t ( t ( t z ( t v ( ( ( ( z ( v ( t ( t ( t z ( t ( v ( v ( v ( v z ( v p t ( ( ( ( ( = 7 (9 Th th drivativ o p( t valatd iv a b prssd as

6 Itratioal Joral o Mathmatis ad Comptatioal Si Vol No 05 pp v v v v p ( = v v v z v ( v ( v ( z ( ( v ( ( ( z ( v ( v ( v z ( ( ( v ( ( z ( v ( v ( v z ( ( ( v ( ( z ( v ( v ( v ( z ( z ( v z ( z ( z Usig p ( v rplas ( v thr-stp lass othrwords ( v v [ z [ z [ z (0 w gt th ollowig ( v ( v = v D ( whr v is th drivativ o pt i v i D = p W valat iv tios i ah itratio Th mthod will b optimal i w prov that it has sitth-ordr ovrg Thorm Lt α Db a simpl zro o a siitl dirtiabl tio : D R R i a itrval D I 0 is siitl los to α th th mthod ( has optimal sitth-ordr ovrg Pr oo hav D Lt α B Talor padig at = α w 7 ( ( O = ( ( k whr k = α / k! k = O th basis o = z w obtai = ( ( ( ( (( ( 5 z ( ( = 7 O v ( Sbstittig Eq ( ad ( i th irst qatio o Eq ( w hav α = ( ( 6 7 O ( Th w pad ( arod α with Eq ( to ahiv th ollowig qatio ( = ( ( ( ( 5 7 ( ( ( 6 7 O (5 W di that th irst thr stps ar optimal ighth-ordr mthod w ths gt v = h h h = j h h ( ( ( ( 5 h 6 6 O( 7 h h 0 0 O( h h (6 (7 Fiall th rror qatio o th mthod a b drivd as ollows: ( ( 5h j 6 7 O( j = ( Th abov qatio shows that th mthod ( has a optimal orth-ordr ovrg 5 Nmrial Eampls ( Th proposd mthods dsribd i Stio sig th w thiq ar mplod to solv som illstrativ oliar problms Th obtaid rslts ar ompard with Sts s mthod (SM (7 Dhgha ad Hajaria s mthod (DM ( Usig Lagrag polomials w gt a w optimal orth-ordr mthod (GM ad two w optimal

7 0 Q W Go ad Y H Qia: Nw Eiit Optimal Drivativ-Fr Mthod or Solvig Noliar Eqatios ighth-ordr mthods (GRM GLM All th omptatios wr odtd b sig MATLAB 0 w sltd a approimat soltio rathr tha th at root omptd with 500 digits Th stoppig ritrio sd is 50 k k ( k < 0 th itrativ sssio ovrg was hkd to vri th ara o th approimat soltios Tabl shows th mbr o th itratios dd to rah th aptabl tolra or ah mthod ad stimats th omptatioal ordr o ovrg ρ (sall alld ACOC did b Cordro ad Torrgrosa [ : l( k k / k k ρ = (9 l( / k k k k I Tabl w show th ompariso o ii idis [ or dirt mthods o varios ordrs Th ii idis is did as p / whr p is th ordr o ovrg is th mbr o tio valatios pr stp W s th ollowig tios i mrial ompariso: ( = α = = os α = 7769 = l α = 5590 = α = 05 5 = 0 α = 55 6 = si α = 09 7 = 0 α = 650 = os α = 50 It is od that th ii id o th mthods (GM GRM GLM ar bttr tha othr mthods rom Tabl From Tabl w a id that th mthod (GM ovrgs mor rapidl tha Sts s mthod Dhgha ad Hajaria s mthod Th ighth-ordr mthods (GRM GLM rqir lss itrativ stps to rah th stoppig ritrio All thortial ordr o ovrg Tabl Ordrdr ad ii idis o som mthods Mthods SM DM GM GRM GLM Ordr Eii id Tabl Nmrial rslts or oliar qatio 0 SM DM GM GRM GLM Itr Error Itr Error Itr Error Itr Error Itr Error ρ ρ ρ

8 Itratioal Joral o Mathmatis ad Comptatioal Si Vol No 05 pp SM DM GM GRM GLM ρ ρ ρ ρ ρ Colsios W proposd a w drivativ-r orth-ordr mthod (GM whih is optimal ordr o ovrg i th ss o Kg-Trab ojtr Makig s o th w thiq w obtai othr two ighth-ordr mthods whih ar a optimal mthod withot drivativ tios Highr ordr mthods a also b ostrtd sig th proposd mthod sh as sitth-ordr mthods Th ovrg o th mthod is provd i th papr Illstrativ mrial ampls ar show i this papr to dmostrat th ii o th w mthods i trms o its ii o id ad omptatioal ii id Th proposd mthods ar apabl o solvig varios oliar qatios ad a ahiv good ovrg Akowldgmts Th athor YH Qia gratll akowldg th spport o th Natioal Natral Si Fodatios o Chia (NNSFC throgh grat No 09 ad th iaial spport o Chia Sholarship Coil (CSC throgh grat No Th athor QW Go gratll akowldg th spport o th Natioal Traiig Programs o Iovatio ad Etrprrship or Udrgradats Th athors wish to akowldg th valabl partiipatio o Dr SK Lai i th proo-radig o this papr Rrs [ Argros I K: Covrg ad Appliatio o Nwto-Tp Itratios Sprir Nw York 00 [ Cordro A Torrgrosa JR: Variats o Nwto s mthod sig ith-ordr qadratr ormlas ApplMath Compt 90 ( [ Cordro A Torrgrosa JR: A lass o Sts tp mthods with optimal ordr o ovrg Appl Math Compt 7( [ Cordro A Hso J L Martíz E Torrgrosa J R: Sts tp mthods or solvig o-liar qatios J Compt Appl Math 6( (0 [5 Cordro A Hso J L Martíz E Torrgrosa JR: A w thiq to obtai drivativ-r optimal itrativ mthods or solvig oliar qatios J Compt Appl Math

9 0 Q W Go ad Y H Qia: Nw Eiit Optimal Drivativ-Fr Mthod or Solvig Noliar Eqatios [6 Dhgha M Hajaria M: Som drivativ r qadrati ad bi ovrg itrativ ormlas or solvig oliar qatios J Compt Appl Math 9( [7 Ehbst N Shvrdt M L Viga R P: Two drivativ-r mthods or solvig drdtrmid oliar sstms o qatios Compt Appl Math 0( [ Fradz-TorrsG Vasqz-Aqio J: Thr Nw Optimal Forth-Ordr Itaiv Mthods to Solv Noliar Eqatios Adv Nmr Aal0Artil ID [9 Fradz-TorrsG: Drivativ r itrativ mthods with mmor o arbitrarhigh ovrg ordr Nmr Algor [0 Kg HT Trab JF: Optimal ordr o o-poit ad mlti-poit itratio J Asso Compt Math [ Li ZL Zhg Q Zhao P: A variat o Sts s mthod o orth-ordr ovrg ad its appliatios Appl Math Compt [ Ortga JM Rhiboldt WG: Itrativ Soltios o Noliar Eqatios i Svral Variabls Aadmi Prss Nw York 970 [ Ostrowski AM: Soltios o Eqatios ad Sstms o Eqatios Aadmi [ Păvăloi I Cătiaş E: O a Nwto-Sts tp mthod Appl Math Ltt 6( [5 R HM W QB Bi WH: A lass o two-stp Sts tp mthods with orth-ordr ovrg Appl Math Compt 09( [6 Sharma JR: A omposit third ordr Nwto-Sts mthod or solvig olia qatios Appl Math Compt 69( [7 Sharma JR Arora H: A iit drivativ r itrativ mthod or solvig sstms o oliar qatios Appl Aal Disrt Math [ Solmai F Karimi Vaai S: Optimal Sts-tp mthods with ighth ordr o ovrg Compt Math Appl 6( [9 Solmai F Karimi Vaai S Jamali Paghalh M: A lass o thr-stp drivativ-r root solvrs with optimal ovrg ordr J Appl Math 0 Artil ID [0 Thkral R: Nw Highr Ordr Drivativ-Fr Mthods or Solvig Noliar Eqatios J Nmr Math Stoh ( [ Wag H Li SB: A amil o drivativ-r mthods or oliar qatiorv Mat Complt

Iterative Methods of Order Four for Solving Nonlinear Equations

Iterative Methods of Order Four for Solving Nonlinear Equations Itrativ Mods of Ordr Four for Solvig Noliar Equatios V.B. Kumar,Vatti, Shouri Domii ad Mouia,V Dpartmt of Egirig Mamatis, Formr Studt of Chmial Egirig Adhra Uivrsity Collg of Egirig A, Adhra Uivrsity Visakhapatam

More information

Worksheet: Taylor Series, Lagrange Error Bound ilearnmath.net

Worksheet: Taylor Series, Lagrange Error Bound ilearnmath.net Taylor s Thorm & Lagrag Error Bouds Actual Error This is th ral amout o rror, ot th rror boud (worst cas scario). It is th dirc btw th actual () ad th polyomial. Stps:. Plug -valu ito () to gt a valu.

More information

Chapter Taylor Theorem Revisited

Chapter Taylor Theorem Revisited Captr 0.07 Taylor Torm Rvisitd Atr radig tis captr, you sould b abl to. udrstad t basics o Taylor s torm,. writ trascdtal ad trigoomtric uctios as Taylor s polyomial,. us Taylor s torm to id t valus o

More information

New Sixteenth-Order Derivative-Free Methods for Solving Nonlinear Equations

New Sixteenth-Order Derivative-Free Methods for Solving Nonlinear Equations Amrica Joural o Computatioal ad Applid Mathmatics 0 (: -8 DOI: 0.59/j.ajcam.000.08 Nw Sixtth-Ordr Drivativ-Fr Mthods or Solvig Noliar Equatios R. Thukral Padé Rsarch Ctr 9 Daswood Hill Lds Wst Yorkshir

More information

Further Results on Pair Sum Graphs

Further Results on Pair Sum Graphs Applid Mathmatis, 0,, 67-75 http://dx.doi.org/0.46/am.0.04 Publishd Oli Marh 0 (http://www.sirp.org/joural/am) Furthr Rsults o Pair Sum Graphs Raja Poraj, Jyaraj Vijaya Xavir Parthipa, Rukhmoi Kala Dpartmt

More information

Ordinary Differential Equations

Ordinary Differential Equations Basi Nomlatur MAE 0 all 005 Egirig Aalsis Ltur Nots o: Ordiar Diffrtial Equatios Author: Profssor Albrt Y. Tog Tpist: Sakurako Takahashi Cosidr a gral O. D. E. with t as th idpdt variabl, ad th dpdt variabl.

More information

NEW APPLICATIONS OF THE ABEL-LIOUVILLE FORMULA

NEW APPLICATIONS OF THE ABEL-LIOUVILLE FORMULA NE APPLICATIONS OF THE ABEL-LIOUVILLE FORMULA Mirca I CÎRNU Ph Dp o Mathmatics III Faculty o Applid Scincs Univrsity Polithnica o Bucharst Cirnumirca @yahoocom Abstract In a rcnt papr [] 5 th indinit intgrals

More information

POSTERIOR ESTIMATES OF TWO PARAMETER EXPONENTIAL DISTRIBUTION USING S-PLUS SOFTWARE

POSTERIOR ESTIMATES OF TWO PARAMETER EXPONENTIAL DISTRIBUTION USING S-PLUS SOFTWARE Joural of Rliabilit ad tatistial tudis [IN: 0974-804 Prit 9-5666 Oli] Vol. 3 Issu 00:7-34 POTERIOR ETIMATE OF TWO PARAMETER EXPONENTIAL DITRIBUTION UING -PLU OFTWARE.P. Ahmad ad Bilal Ahmad Bhat. Dartmt

More information

Discrete Fourier Transform (DFT)

Discrete Fourier Transform (DFT) Discrt Fourir Trasorm DFT Major: All Egirig Majors Authors: Duc guy http://umricalmthods.g.us.du umrical Mthods or STEM udrgraduats 8/3/29 http://umricalmthods.g.us.du Discrt Fourir Trasorm Rcalld th xpotial

More information

New Families of Fourth-Order Derivative-Free Methods for Solving Nonlinear Equations with Multiple Roots

New Families of Fourth-Order Derivative-Free Methods for Solving Nonlinear Equations with Multiple Roots Arica Joural o Coputatioal ad Applid Mathatics (4: 7- DOI:.59/j.ajca.4. Nw Failis o Fourth-Ordr Drivativ-Fr Mthods or Solvig Noliar Equatios with Multipl Roots R. Thukral Padé Rsarch Ctr 9 Daswood Hill

More information

Option 3. b) xe dx = and therefore the series is convergent. 12 a) Divergent b) Convergent Proof 15 For. p = 1 1so the series diverges.

Option 3. b) xe dx = and therefore the series is convergent. 12 a) Divergent b) Convergent Proof 15 For. p = 1 1so the series diverges. Optio Chaptr Ercis. Covrgs to Covrgs to Covrgs to Divrgs Covrgs to Covrgs to Divrgs 8 Divrgs Covrgs to Covrgs to Divrgs Covrgs to Covrgs to Covrgs to Covrgs to 8 Proof Covrgs to π l 8 l a b Divrgt π Divrgt

More information

The Variational Iteration Method for Analytic Treatment of Homogeneous and Inhomogeneous Partial Differential Equations

The Variational Iteration Method for Analytic Treatment of Homogeneous and Inhomogeneous Partial Differential Equations Global Joral of Scic Frotir Rarch: F Mathmatic ad Dciio Scic Volm 5 I 5 Vrio Yar 5 Tp : Dobl Blid Pr Rviwd Itratioal Rarch Joral Pblihr: Global Joral Ic USA Oli ISSN: 9- & Prit ISSN: 975-589 Th Variatioal

More information

Three-Step Iterative Methods with Sixth-Order Convergence for Solving Nonlinear Equations

Three-Step Iterative Methods with Sixth-Order Convergence for Solving Nonlinear Equations Article Three-Step Iteratie Methods with Sith-Order Coergece or Solig Noliear Eqatios Departmet o Mathematics, Kermashah Uiersity o Techology, Kermashah, Ira (Correspodig athor; e-mail: bghabary@yahoocom

More information

Technical Support Document Bias of the Minimum Statistic

Technical Support Document Bias of the Minimum Statistic Tchical Support Documt Bias o th Miimum Stattic Itroductio Th papr pla how to driv th bias o th miimum stattic i a radom sampl o siz rom dtributios with a shit paramtr (also kow as thrshold paramtr. Ths

More information

Fooling Newton s Method a) Find a formula for the Newton sequence, and verify that it converges to a nonzero of f. A Stirling-like Inequality

Fooling Newton s Method a) Find a formula for the Newton sequence, and verify that it converges to a nonzero of f. A Stirling-like Inequality Foolig Nwto s Mthod a Fid a formla for th Nwto sqc, ad vrify that it covrgs to a ozro of f. ( si si + cos 4 4 3 4 8 8 bt f. b Fid a formla for f ( ad dtrmi its bhavior as. f ( cos si + as A Stirlig-li

More information

10. Joint Moments and Joint Characteristic Functions

10. Joint Moments and Joint Characteristic Functions 0 Joit Momts ad Joit Charactristic Fctios Followig sctio 6 i this sctio w shall itrodc varios paramtrs to compactly rprst th iformatio cotaid i th joit pdf of two rvs Giv two rvs ad ad a fctio g x y dfi

More information

1985 AP Calculus BC: Section I

1985 AP Calculus BC: Section I 985 AP Calculus BC: Sctio I 9 Miuts No Calculator Nots: () I this amiatio, l dots th atural logarithm of (that is, logarithm to th bas ). () Ulss othrwis spcifid, th domai of a fuctio f is assumd to b

More information

Review Exercises. 1. Evaluate using the definition of the definite integral as a Riemann Sum. Does the answer represent an area? 2

Review Exercises. 1. Evaluate using the definition of the definite integral as a Riemann Sum. Does the answer represent an area? 2 MATHEMATIS --RE Itgral alculus Marti Huard Witr 9 Rviw Erciss. Evaluat usig th dfiitio of th dfiit itgral as a Rima Sum. Dos th aswr rprst a ara? a ( d b ( d c ( ( d d ( d. Fid f ( usig th Fudamtal Thorm

More information

Taylor and Maclaurin Series

Taylor and Maclaurin Series Taylor ad Maclauri Sris Taylor ad Maclauri Sris Thory sctio which dals with th followig topics: - Th Sigma otatio for summatio. - Dfiitio of Taylor sris. - Commo Maclauri sris. - Taylor sris ad Itrval

More information

( ) Differential Equations. Unit-7. Exact Differential Equations: M d x + N d y = 0. Verify the condition

( ) Differential Equations. Unit-7. Exact Differential Equations: M d x + N d y = 0. Verify the condition Diffrntial Equations Unit-7 Eat Diffrntial Equations: M d N d 0 Vrif th ondition M N Thn intgrat M d with rspt to as if wr onstants, thn intgrat th trms in N d whih do not ontain trms in and quat sum of

More information

CDS 101: Lecture 5.1 Reachability and State Space Feedback

CDS 101: Lecture 5.1 Reachability and State Space Feedback CDS, Lctur 5. CDS : Lctur 5. Rachability ad Stat Spac Fdback Richard M. Murray ad Hido Mabuchi 5 Octobr 4 Goals: Di rachability o a cotrol systm Giv tsts or rachability o liar systms ad apply to ampls

More information

VTU NOTES QUESTION PAPERS NEWS RESULTS FORUMS

VTU NOTES QUESTION PAPERS NEWS RESULTS FORUMS Diffrntial Equations Unit-7 Eat Diffrntial Equations: M d N d 0 Vrif th ondition M N Thn intgrat M d with rspt to as if wr onstants, thn intgrat th trms in N d whih do not ontain trms in and quat sum of

More information

An Introduction to Asymptotic Expansions

An Introduction to Asymptotic Expansions A Itroductio to Asmptotic Expasios R. Shaar Subramaia Dpartmt o Chmical ad Biomolcular Egirig Clarso Uivrsit Asmptotic xpasios ar usd i aalsis to dscrib th bhavior o a uctio i a limitig situatio. Wh a

More information

MONTGOMERY COLLEGE Department of Mathematics Rockville Campus. 6x dx a. b. cos 2x dx ( ) 7. arctan x dx e. cos 2x dx. 2 cos3x dx

MONTGOMERY COLLEGE Department of Mathematics Rockville Campus. 6x dx a. b. cos 2x dx ( ) 7. arctan x dx e. cos 2x dx. 2 cos3x dx MONTGOMERY COLLEGE Dpartmt of Mathmatics Rockvill Campus MATH 8 - REVIEW PROBLEMS. Stat whthr ach of th followig ca b itgratd by partial fractios (PF), itgratio by parts (PI), u-substitutio (U), or o of

More information

Probability & Statistics,

Probability & Statistics, Probability & Statistics, BITS Pilai K K Birla Goa Campus Dr. Jajati Kshari Sahoo Dpartmt of Mathmatics BITS Pilai, K K Birla Goa Campus Poisso Distributio Poisso Distributio: A radom variabl X is said

More information

ENGR 323 BHW 15 Van Bonn 1/7

ENGR 323 BHW 15 Van Bonn 1/7 ENGR 33 BHW 5 Van Bonn /7 4.4 In Eriss and 3 as wll as man othr situations on has th PDF o X and wishs th PDF o Yh. Assum that h is an invrtibl untion so that h an b solvd or to ild. Thn it an b shown

More information

An Introduction to Asymptotic Expansions

An Introduction to Asymptotic Expansions A Itroductio to Asmptotic Expasios R. Shaar Subramaia Asmptotic xpasios ar usd i aalsis to dscrib th bhavior of a fuctio i a limitig situatio. Wh a fuctio ( x, dpds o a small paramtr, ad th solutio of

More information

On the approximation of the constant of Napier

On the approximation of the constant of Napier Stud. Uiv. Babş-Bolyai Math. 560, No., 609 64 O th approximatio of th costat of Napir Adri Vrscu Abstract. Startig from som oldr idas of [] ad [6], w show w facts cocrig th approximatio of th costat of

More information

CDS 101: Lecture 5.1 Reachability and State Space Feedback

CDS 101: Lecture 5.1 Reachability and State Space Feedback CDS, Lctur 5. CDS : Lctur 5. Rachability ad Stat Spac Fdback Richard M. Murray 7 Octobr 3 Goals: Di rachability o a cotrol systm Giv tsts or rachability o liar systms ad apply to ampls Dscrib th dsig o

More information

z 1+ 3 z = Π n =1 z f() z = n e - z = ( 1-z) e z e n z z 1- n = ( 1-z/2) 1+ 2n z e 2n e n -1 ( 1-z )/2 e 2n-1 1-2n -1 1 () z

z 1+ 3 z = Π n =1 z f() z = n e - z = ( 1-z) e z e n z z 1- n = ( 1-z/2) 1+ 2n z e 2n e n -1 ( 1-z )/2 e 2n-1 1-2n -1 1 () z Sris Expasio of Rciprocal of Gamma Fuctio. Fuctios with Itgrs as Roots Fuctio f with gativ itgrs as roots ca b dscribd as follows. f() Howvr, this ifiit product divrgs. That is, such a fuctio caot xist

More information

Control systems

Control systems Last tim,.5 Cotrol sstms Cotrollabilit ad obsrvabilit (Chaptr ) Two approahs to stat fdbak dsig (Chaptr 8) Usig otrollabl aoial form B solvig matri quatios Toda, w otiu to work o fdbak dsig (Chaptr 8)

More information

Section 11.6: Directional Derivatives and the Gradient Vector

Section 11.6: Directional Derivatives and the Gradient Vector Sction.6: Dirctional Drivativs and th Gradint Vctor Practic HW rom Stwart Ttbook not to hand in p. 778 # -4 p. 799 # 4-5 7 9 9 35 37 odd Th Dirctional Drivativ Rcall that a b Slop o th tangnt lin to th

More information

Some Families of Higher Order Three-Step Iterative Techniques. where is a real number and y (5)

Some Families of Higher Order Three-Step Iterative Techniques. where is a real number and y (5) Lif Scic Jural 03;0s http://www.lifscicsit.cm Sm Familis f Highr Orr Thr-Stp Itrativ Tchiqus Nair Ahma Mir Sahr Akmal Kha Naila Rafiq Nusrut Yasmi. Dpartmt f Basic Scics Riphah Itratial Uivrsit Islamaba

More information

2617 Mark Scheme June 2005 Mark Scheme 2617 June 2005

2617 Mark Scheme June 2005 Mark Scheme 2617 June 2005 Mark Schm 67 Ju 5 GENERAL INSTRUCTIONS Marks i th mark schm ar plicitly dsigatd as M, A, B, E or G. M marks ("mthod" ar for a attmpt to us a corrct mthod (ot mrly for statig th mthod. A marks ("accuracy"

More information

Numerical Simulation for the 2-D Heat Equation with Derivative Boundary Conditions

Numerical Simulation for the 2-D Heat Equation with Derivative Boundary Conditions IOSR Joural of Applid Chmisr IOSR-JAC -ISSN: 78-576.Volum 9 Issu 8 Vr. I Aug. 6 PP 4-8 www.iosrjourals.org Numrical Simulaio for h - Ha Equaio wih rivaiv Boudar Codiios Ima. I. Gorial parm of Mahmaics

More information

PURE MATHEMATICS A-LEVEL PAPER 1

PURE MATHEMATICS A-LEVEL PAPER 1 -AL P MATH PAPER HONG KONG EXAMINATIONS AUTHORITY HONG KONG ADVANCED LEVEL EXAMINATION PURE MATHEMATICS A-LEVEL PAPER 8 am am ( hours) This papr must b aswrd i Eglish This papr cosists of Sctio A ad Sctio

More information

Chapter 2 Infinite Series Page 1 of 11. Chapter 2 : Infinite Series

Chapter 2 Infinite Series Page 1 of 11. Chapter 2 : Infinite Series Chatr Ifiit Sris Pag of Sctio F Itgral Tst Chatr : Ifiit Sris By th d of this sctio you will b abl to valuat imror itgrals tst a sris for covrgc by alyig th itgral tst aly th itgral tst to rov th -sris

More information

Basic Polyhedral theory

Basic Polyhedral theory Basic Polyhdral thory Th st P = { A b} is calld a polyhdron. Lmma 1. Eithr th systm A = b, b 0, 0 has a solution or thr is a vctorπ such that π A 0, πb < 0 Thr cass, if solution in top row dos not ist

More information

Time : 1 hr. Test Paper 08 Date 04/01/15 Batch - R Marks : 120

Time : 1 hr. Test Paper 08 Date 04/01/15 Batch - R Marks : 120 Tim : hr. Tst Papr 8 D 4//5 Bch - R Marks : SINGLE CORRECT CHOICE TYPE [4, ]. If th compl umbr z sisfis th coditio z 3, th th last valu of z is qual to : z (A) 5/3 (B) 8/3 (C) /3 (D) o of ths 5 4. Th itgral,

More information

On Some Numerical Methods for Solving Initial Value Problems in Ordinary Differential Equations

On Some Numerical Methods for Solving Initial Value Problems in Ordinary Differential Equations IOSR Joural o Mathmatics IOSRJM ISSN: 78-578 Volum, Issu Jul-Aug, PP 5- www.iosrjourals.org O Som Numrical Mthods or Solvig Iitial Valu Problms i Ordiar Dirtial Equatios Ogurid R. Bosd, Fadugba S. Emmaul,

More information

Where k is either given or determined from the data and c is an arbitrary constant.

Where k is either given or determined from the data and c is an arbitrary constant. Exponntial growth and dcay applications W wish to solv an quation that has a drivativ. dy ky k > dx This quation says that th rat of chang of th function is proportional to th function. Th solution is

More information

Solution: APPM 1360 Final (150 pts) Spring (60 pts total) The following parts are not related, justify your answers:

Solution: APPM 1360 Final (150 pts) Spring (60 pts total) The following parts are not related, justify your answers: APPM 6 Final 5 pts) Spring 4. 6 pts total) Th following parts ar not rlatd, justify your answrs: a) Considr th curv rprsntd by th paramtric quations, t and y t + for t. i) 6 pts) Writ down th corrsponding

More information

Solution to 1223 The Evil Warden.

Solution to 1223 The Evil Warden. Solutio to 1 Th Evil Ward. This is o of thos vry rar PoWs (I caot thik of aothr cas) that o o solvd. About 10 of you submittd th basic approach, which givs a probability of 47%. I was shockd wh I foud

More information

STIRLING'S 1 FORMULA AND ITS APPLICATION

STIRLING'S 1 FORMULA AND ITS APPLICATION MAT-KOL (Baja Luka) XXIV ()(08) 57-64 http://wwwimviblorg/dmbl/dmblhtm DOI: 075/МК80057A ISSN 0354-6969 (o) ISSN 986-588 (o) STIRLING'S FORMULA AND ITS APPLICATION Šfkt Arslaagić Sarajvo B&H Abstract:

More information

82A Engineering Mathematics

82A Engineering Mathematics Class Nos 5: Sod Ordr Diffrial Eqaio No Homoos 8A Eiri Mahmais Sod Ordr Liar Diffrial Eqaios Homoos & No Homoos v q Homoos No-homoos q ar iv oios fios o h o irval I Sod Ordr Liar Diffrial Eqaios Homoos

More information

Physics 302 Exam Find the curve that passes through endpoints (0,0) and (1,1) and minimizes 1

Physics 302 Exam Find the curve that passes through endpoints (0,0) and (1,1) and minimizes 1 Physis Exam 6. Fid th urv that passs through dpoits (, ad (, ad miimizs J [ y' y ]dx Solutio: Si th itgrad f dos ot dpd upo th variabl of itgratio x, w will us th sod form of Eulr s quatio: f f y' y' y

More information

Taylor Polynomials and Approximations - Classwork

Taylor Polynomials and Approximations - Classwork Taylor Polyomials ad Approimatios - Classwork Suppose you were asked to id si 37 o. You have o calculator other tha oe that ca do simple additio, subtractio, multiplicatio, or divisio. Fareched\ Not really.

More information

Statistics 3858 : Likelihood Ratio for Exponential Distribution

Statistics 3858 : Likelihood Ratio for Exponential Distribution Statistics 3858 : Liklihood Ratio for Expotial Distributio I ths two xampl th rjctio rjctio rgio is of th form {x : 2 log (Λ(x)) > c} for a appropriat costat c. For a siz α tst, usig Thorm 9.5A w obtai

More information

Chapter (8) Estimation and Confedence Intervals Examples

Chapter (8) Estimation and Confedence Intervals Examples Chaptr (8) Estimatio ad Cofdc Itrvals Exampls Typs of stimatio: i. Poit stimatio: Exampl (1): Cosidr th sampl obsrvatios, 17,3,5,1,18,6,16,10 8 X i i1 17 3 5 118 6 16 10 116 X 14.5 8 8 8 14.5 is a poit

More information

Partial Derivatives: Suppose that z = f(x, y) is a function of two variables.

Partial Derivatives: Suppose that z = f(x, y) is a function of two variables. Chaptr Functions o Two Variabls Applid Calculus 61 Sction : Calculus o Functions o Two Variabls Now that ou hav som amiliarit with unctions o two variabls it s tim to start appling calculus to hlp us solv

More information

DEPARTMENT OF MATHEMATICS BIT, MESRA, RANCHI MA2201 Advanced Engg. Mathematics Session: SP/ 2017

DEPARTMENT OF MATHEMATICS BIT, MESRA, RANCHI MA2201 Advanced Engg. Mathematics Session: SP/ 2017 DEARMEN OF MAEMAICS BI, MESRA, RANCI MA Advad Egg. Mathatis Sssio: S/ 7 MODULE I. Cosidr th two futios f utorial Sht No. -- ad g o th itrval [,] a Show that thir Wroskia W f, g vaishs idtially. b Show

More information

Euler s Method for Solving Initial Value Problems in Ordinary Differential Equations.

Euler s Method for Solving Initial Value Problems in Ordinary Differential Equations. Eulr s Mthod for Solvig Iitial Valu Problms i Ordiar Diffrtial Equatios. Suda Fadugba, M.Sc. * ; Bosd Ogurid, Ph.D. ; ad Tao Okulola, M.Sc. 3 Dpartmt of Mathmatical ad Phsical Scics, Af Babalola Uivrsit,

More information

Chapter 7 INTEGRAL EQUATIONS

Chapter 7 INTEGRAL EQUATIONS hapr 7 INTERAL EQUATIONS hapr 7 INTERAL EUATIONS hapr 7 Igral Eqaios 7. Normd Vcor Spacs. Eclidia vcor spac. Vcor spac o coios cios ( ). Vcor Spac L ( ) 4. ach-baowsi iqali 5. iowsi iqali 7. Liar Opraors

More information

First derivative analysis

First derivative analysis Robrto s Nots on Dirntial Calculus Chaptr 8: Graphical analysis Sction First drivativ analysis What you nd to know alrady: How to us drivativs to idntiy th critical valus o a unction and its trm points

More information

Thomas J. Osler. 1. INTRODUCTION. This paper gives another proof for the remarkable simple

Thomas J. Osler. 1. INTRODUCTION. This paper gives another proof for the remarkable simple 5/24/5 A PROOF OF THE CONTINUED FRACTION EXPANSION OF / Thomas J Oslr INTRODUCTION This ar givs aothr roof for th rmarkabl siml cotiud fractio = 3 5 / Hr is ay ositiv umbr W us th otatio x= [ a; a, a2,

More information

Keywords- Weighted distributions, Transmuted distribution, Weibull distribution, Maximum likelihood method.

Keywords- Weighted distributions, Transmuted distribution, Weibull distribution, Maximum likelihood method. Volum 7, Issu 3, Marh 27 ISSN: 2277 28X Itratioal Joural of Advad Rsarh i Computr Si ad Softwar Egirig Rsarh Papr Availabl oli at: www.ijarss.om O Siz-Biasd Wightd Trasmutd Wibull Distributio Moa Abdlghafour

More information

Chapter 3 Linear Equations of Higher Order (Page # 144)

Chapter 3 Linear Equations of Higher Order (Page # 144) Ma Modr Dirial Equaios Lcur wk 4 Jul 4-8 Dr Firozzama Darm o Mahmaics ad Saisics Arizoa Sa Uivrsi This wk s lcur will covr har ad har 4 Scios 4 har Liar Equaios o Highr Ordr Pag # 44 Scio Iroducio: Scod

More information

Normal Form for Systems with Linear Part N 3(n)

Normal Form for Systems with Linear Part N 3(n) Applid Mathmatics 64-647 http://dxdoiorg/46/am7 Publishd Oli ovmbr (http://wwwscirporg/joural/am) ormal Form or Systms with Liar Part () Grac Gachigua * David Maloza Johaa Sigy Dpartmt o Mathmatics Collg

More information

Practice papers A and B, produced by Edexcel in 2009, with mark schemes. Practice Paper A. 5 cosh x 2 sinh x = 11,

Practice papers A and B, produced by Edexcel in 2009, with mark schemes. Practice Paper A. 5 cosh x 2 sinh x = 11, Prai paprs A ad B, produd by Edl i 9, wih mark shms Prai Papr A. Fid h valus of for whih 5 osh sih =, givig your aswrs as aural logarihms. (Toal 6 marks) k. A = k, whr k is a ral osa. 9 (a) Fid valus of

More information

Bayesian Economic Cost Plans II. The Average Outgoing Quality

Bayesian Economic Cost Plans II. The Average Outgoing Quality Eltro. J. Math. Phs. Si. 22 Sm. 1 9-15 Eltroi Joural of Mathmatial ad Phsial Sis EJMAPS ISS: 1538-3318 www.jmas.or Basia Eoomi Cost Plas II. Th Avra Outoi Qualit Abraham F. Jalbout 1*$ Hadi Y. Alkahb 2

More information

Frequency Measurement in Noise

Frequency Measurement in Noise Frqucy Masurmt i ois Porat Sctio 6.5 /4 Frqucy Mas. i ois Problm Wat to o look at th ct o ois o usig th DFT to masur th rqucy o a siusoid. Cosidr sigl complx siusoid cas: j y +, ssum Complx Whit ois Gaussia,

More information

u x v x dx u x v x v x u x dx d u x v x u x v x dx u x v x dx Integration by Parts Formula

u x v x dx u x v x v x u x dx d u x v x u x v x dx u x v x dx Integration by Parts Formula 7. Intgration by Parts Each drivativ formula givs ris to a corrsponding intgral formula, as w v sn many tims. Th drivativ product rul yilds a vry usful intgration tchniqu calld intgration by parts. Starting

More information

LECTURE 13 Filling the bands. Occupancy of Available Energy Levels

LECTURE 13 Filling the bands. Occupancy of Available Energy Levels LUR 3 illig th bads Occupacy o Availabl rgy Lvls W hav dtrmid ad a dsity o stats. W also d a way o dtrmiig i a stat is illd or ot at a giv tmpratur. h distributio o th rgis o a larg umbr o particls ad

More information

terms of discrete sequences can only take values that are discrete as opposed to

terms of discrete sequences can only take values that are discrete as opposed to Diol Bgyoko () OWER SERIES Diitio Sris lik ( ) r th sm o th trms o discrt sqc. Th trms o discrt sqcs c oly tk vls tht r discrt s opposd to cotios, i.., trms tht r sch tht th mric vls o two cosctivs os

More information

Derangements and Applications

Derangements and Applications 2 3 47 6 23 Journal of Intgr Squncs, Vol. 6 (2003), Articl 03..2 Drangmnts and Applications Mhdi Hassani Dpartmnt of Mathmatics Institut for Advancd Studis in Basic Scincs Zanjan, Iran mhassani@iasbs.ac.ir

More information

Some Variants of Newton's Method with Fifth-Order and Fourth-Order Convergence for Solving Nonlinear Equations

Some Variants of Newton's Method with Fifth-Order and Fourth-Order Convergence for Solving Nonlinear Equations Copyright, Darbose Iteratioal Joural o Applied Mathematics ad Computatio Volume (), pp -6, 9 http//: ijamc.darbose.com Some Variats o Newto's Method with Fith-Order ad Fourth-Order Covergece or Solvig

More information

Differential Equations

Differential Equations UNIT I Diffrntial Equations.0 INTRODUCTION W li in a world of intrrlatd changing ntitis. Th locit of a falling bod changs with distanc, th position of th arth changs with tim, th ara of a circl changs

More information

IIT JEE MATHS MATRICES AND DETERMINANTS

IIT JEE MATHS MATRICES AND DETERMINANTS IIT JEE MTHS MTRICES ND DETERMINNTS THIRUMURUGN.K PGT Mths IIT Trir 978757 Pg. Lt = 5, th () =, = () = -, = () =, = - (d) = -, = -. Lt sw smmtri mtri of odd th quls () () () - (d) o of ths. Th vlu of th

More information

Empirical Study in Finite Correlation Coefficient in Two Phase Estimation

Empirical Study in Finite Correlation Coefficient in Two Phase Estimation M. Khoshvisa Griffith Uivrsity Griffith Busiss School Australia F. Kaymarm Massachustts Istitut of Tchology Dpartmt of Mchaical girig USA H. P. Sigh R. Sigh Vikram Uivrsity Dpartmt of Mathmatics ad Statistics

More information

Chapter 11 INTEGRAL EQUATIONS

Chapter 11 INTEGRAL EQUATIONS hapr INTERAL EQUATIONS hapr INTERAL EUATIONS Dcmbr 4, 8 hapr Igral Eqaios. Normd Vcor Spacs. Eclidia vcor spac. Vcor spac o coios cios ( ). Vcor Spac L ( ) 4. achy-byaowsi iqaliy 5. iowsi iqaliy. Liar

More information

A Review of Complex Arithmetic

A Review of Complex Arithmetic /0/005 Rviw of omplx Arithmti.do /9 A Rviw of omplx Arithmti A omplx valu has both a ral ad imagiary ompot: { } ad Im{ } a R b so that w a xprss this omplx valu as: whr. a + b Just as a ral valu a b xprssd

More information

Cramér-Rao Inequality: Let f(x; θ) be a probability density function with continuous parameter

Cramér-Rao Inequality: Let f(x; θ) be a probability density function with continuous parameter WHEN THE CRAMÉR-RAO INEQUALITY PROVIDES NO INFORMATION STEVEN J. MILLER Abstract. W invstigat a on-paramtr family of probability dnsitis (rlatd to th Parto distribution, which dscribs many natural phnomna)

More information

PROOF OF FIRST STANDARD FORM OF NONELEMENTARY FUNCTIONS

PROOF OF FIRST STANDARD FORM OF NONELEMENTARY FUNCTIONS Intrnational Journal Of Advanc Rsarch In Scinc And Enginring http://www.ijars.com IJARSE, Vol. No., Issu No., Fbruary, 013 ISSN-319-8354(E) PROOF OF FIRST STANDARD FORM OF NONELEMENTARY FUNCTIONS 1 Dharmndra

More information

Chapter 7 Rules of Differentiation & Taylor Series

Chapter 7 Rules of Differentiation & Taylor Series RS - Ch 7 - Ruls o Dirtiatio Chaptr 7 Ruls o Dirtiatio & Taylor Sris Isaa Nwto a Gottri Libiz 7. Rviw: Drivativ a Drivativ Ruls Rviw: Diitio o rivativ. y ' lim lim Applyig this iitio, w rviw th 9 ruls

More information

LECTURE 6 TRANSFORMATION OF RANDOM VARIABLES

LECTURE 6 TRANSFORMATION OF RANDOM VARIABLES LECTURE 6 TRANSFORMATION OF RANDOM VARIABLES TRANSFORMATION OF FUNCTION OF A RANDOM VARIABLE UNIVARIATE TRANSFORMATIONS TRANSFORMATION OF RANDOM VARIABLES If s a rv wth cdf F th Y=g s also a rv. If w wrt

More information

Pipe flow friction, small vs. big pipes

Pipe flow friction, small vs. big pipes Friction actor (t/0 t o pip) Friction small vs larg pips J. Chaurtt May 016 It is an intrsting act that riction is highr in small pips than largr pips or th sam vlocity o low and th sam lngth. Friction

More information

Lecture contents. Density of states Distribution function Statistic of carriers. Intrinsic Extrinsic with no compensation Compensation

Lecture contents. Density of states Distribution function Statistic of carriers. Intrinsic Extrinsic with no compensation Compensation Ltur otts Dsity of stats Distributio futio Statisti of arrirs Itrisi trisi with o ompsatio ompsatio S 68 Ltur #7 Dsity of stats Problm: alulat umbr of stats pr uit rgy pr uit volum V() Larg 3D bo (L is

More information

Chapter 13 GMM for Linear Factor Models in Discount Factor form. GMM on the pricing errors gives a crosssectional

Chapter 13 GMM for Linear Factor Models in Discount Factor form. GMM on the pricing errors gives a crosssectional Chaptr 13 GMM for Linar Factor Modls in Discount Factor form GMM on th pricing rrors givs a crosssctional rgrssion h cas of xcss rturns Hors rac sting for charactristic sting for pricd factors: lambdas

More information

The Matrix Exponential

The Matrix Exponential Th Matrix Exponntial (with xrciss) by D. Klain Vrsion 207.0.05 Corrctions and commnts ar wlcom. Th Matrix Exponntial For ach n n complx matrix A, dfin th xponntial of A to b th matrix A A k I + A + k!

More information

H2 Mathematics Arithmetic & Geometric Series ( )

H2 Mathematics Arithmetic & Geometric Series ( ) H Mathmatics Arithmtic & Gomtric Sris (08 09) Basic Mastry Qustios Arithmtic Progrssio ad Sris. Th rth trm of a squc is 4r 7. (i) Stat th first four trms ad th 0th trm. (ii) Show that th squc is a arithmtic

More information

Triple Play: From De Morgan to Stirling To Euler to Maclaurin to Stirling

Triple Play: From De Morgan to Stirling To Euler to Maclaurin to Stirling Tripl Play: From D Morga to Stirlig To Eulr to Maclauri to Stirlig Augustus D Morga (186-1871) was a sigificat Victoria Mathmaticia who mad cotributios to Mathmatics History, Mathmatical Rcratios, Mathmatical

More information

On the Existence and uniqueness for solution of system Fractional Differential Equations

On the Existence and uniqueness for solution of system Fractional Differential Equations OSR Jourl o Mhms OSR-JM SSN: 78-578. Volum 4 ssu 3 Nov. - D. PP -5 www.osrjourls.org O h Es d uquss or soluo o ssm rol Drl Equos Mh Ad Al-Wh Dprm o Appld S Uvrs o holog Bghdd- rq Asr: hs ppr w d horm o

More information

Einstein Equations for Tetrad Fields

Einstein Equations for Tetrad Fields Apiron, Vol 13, No, Octobr 006 6 Einstin Equations for Ttrad Filds Ali Rıza ŞAHİN, R T L Istanbul (Turky) Evry mtric tnsor can b xprssd by th innr product of ttrad filds W prov that Einstin quations for

More information

Aotomorphic Functions And Fermat s Last Theorem(4)

Aotomorphic Functions And Fermat s Last Theorem(4) otomorphc Fuctos d Frmat s Last Thorm(4) Chu-Xua Jag P. O. Box 94 Bg 00854 P. R. Cha agchuxua@sohu.com bsract 67 Frmat wrot: It s mpossbl to sparat a cub to two cubs or a bquadrat to two bquadrats or gral

More information

The Matrix Exponential

The Matrix Exponential Th Matrix Exponntial (with xrciss) by Dan Klain Vrsion 28928 Corrctions and commnts ar wlcom Th Matrix Exponntial For ach n n complx matrix A, dfin th xponntial of A to b th matrix () A A k I + A + k!

More information

(2) If we multiplied a row of B by λ, then the value is also multiplied by λ(here lambda could be 0). namely

(2) If we multiplied a row of B by λ, then the value is also multiplied by λ(here lambda could be 0). namely . DETERMINANT.. Dtrminnt. Introution:I you think row vtor o mtrix s oorint o vtors in sp, thn th gomtri mning o th rnk o th mtrix is th imnsion o th prlllppi spnn y thm. But w r not only r out th imnsion,

More information

The Interplay between l-max, l-min, p-max and p-min Stable Distributions

The Interplay between l-max, l-min, p-max and p-min Stable Distributions DOI: 0.545/mjis.05.4006 Th Itrplay btw lma lmi pma ad pmi Stabl Distributios S Ravi ad TS Mavitha Dpartmt of Studis i Statistics Uivrsity of Mysor Maasagagotri Mysuru 570006 Idia. Email:ravi@statistics.uimysor.ac.i

More information

Mathematical Statistics. Chapter VIII Sampling Distributions and the Central Limit Theorem

Mathematical Statistics. Chapter VIII Sampling Distributions and the Central Limit Theorem Mahmacal ascs 8 Chapr VIII amplg Dsrbos ad h Cral Lm Thorm Fcos of radom arabls ar sall of rs sascal applcao Cosdr a s of obsrabl radom arabls L For ampl sppos h arabls ar a radom sampl of s from a poplao

More information

4037 ADDITIONAL MATHEMATICS

4037 ADDITIONAL MATHEMATICS CAMBRIDGE INTERNATIONAL EXAMINATIONS GCE Ordinary Lvl MARK SCHEME for th Octobr/Novmbr 0 sris 40 ADDITIONAL MATHEMATICS 40/ Papr, maimum raw mark 80 This mark schm is publishd as an aid to tachrs and candidats,

More information

Solutions to Homework 5

Solutions to Homework 5 Solutions to Homwork 5 Pro. Silvia Frnánz Disrt Mathmatis Math 53A, Fall 2008. [3.4 #] (a) Thr ar x olor hois or vrtx an x or ah o th othr thr vrtis. So th hromati polynomial is P (G, x) =x (x ) 3. ()

More information

NEW VERSION OF SZEGED INDEX AND ITS COMPUTATION FOR SOME NANOTUBES

NEW VERSION OF SZEGED INDEX AND ITS COMPUTATION FOR SOME NANOTUBES Digst Joural of Naomatrials ad Biostructurs Vol 4, No, March 009, p 67-76 NEW VERSION OF SZEGED INDEX AND ITS COMPUTATION FOR SOME NANOTUBES A IRANMANESH a*, O KHORMALI b, I NAJAFI KHALILSARAEE c, B SOLEIMANI

More information

Ordinary Differential Equations

Ordinary Differential Equations Ordiary Diffrtial Equatio Aftr radig thi chaptr, you hould b abl to:. dfi a ordiary diffrtial quatio,. diffrtiat btw a ordiary ad partial diffrtial quatio, ad. Solv liar ordiary diffrtial quatio with fid

More information

Restricted Factorial And A Remark On The Reduced Residue Classes

Restricted Factorial And A Remark On The Reduced Residue Classes Applid Mathmatics E-Nots, 162016, 244-250 c ISSN 1607-2510 Availabl fr at mirror sits of http://www.math.thu.du.tw/ am/ Rstrictd Factorial Ad A Rmark O Th Rducd Rsidu Classs Mhdi Hassai Rcivd 26 March

More information

Structural Optimization by Using the Stiffness Homogenization.

Structural Optimization by Using the Stiffness Homogenization. Strutural Optimizatio by Usig th Stiffss Homogizatio. Ri Yogsop, Ri amhyok, Ri Cholji, Ri Cholsu ad Zhihua Ch Dpartmt of Mhais Egirig, im Il Sug Uivrsity, Pyogyag, DPR of ora Dpartmt of Miig Mahi, Chogji

More information

Applying Differential Transformation Method to. the One-Dimensional Planar Bratu Problem

Applying Differential Transformation Method to. the One-Dimensional Planar Bratu Problem It J Cotemp Math Siees, Vol, 7, o, 49-54 Applyig Differetial Trasformatio Method to the Oe-Dimesioal Plaar Brat Problem I H Abdel-Halim Hassa Departmet of Mathematis, Falty of Siee, Zagazig iversity, Zagazig,

More information

1973 AP Calculus BC: Section I

1973 AP Calculus BC: Section I 97 AP Calculus BC: Scio I 9 Mius No Calculaor No: I his amiaio, l dos h aural logarihm of (ha is, logarihm o h bas ).. If f ( ) =, h f ( ) = ( ). ( ) + d = 7 6. If f( ) = +, h h s of valus for which f

More information

Integration by Parts

Integration by Parts Intgration by Parts Intgration by parts is a tchniqu primarily for valuating intgrals whos intgrand is th product of two functions whr substitution dosn t work. For ampl, sin d or d. Th rul is: u ( ) v'(

More information

2008 AP Calculus BC Multiple Choice Exam

2008 AP Calculus BC Multiple Choice Exam 008 AP Multipl Choic Eam Nam 008 AP Calculus BC Multipl Choic Eam Sction No Calculator Activ AP Calculus 008 BC Multipl Choic. At tim t 0, a particl moving in th -plan is th acclration vctor of th particl

More information

FEM FOR HEAT TRANSFER PROBLEMS دانشگاه صنعتي اصفهان- دانشكده مكانيك

FEM FOR HEAT TRANSFER PROBLEMS دانشگاه صنعتي اصفهان- دانشكده مكانيك FEM FOR HE RNSFER PROBLEMS 1 Fild problms Gnral orm o systm quations o D linar stady stat ild problms: For 1D problms: D D g Q y y (Hlmholtz quation) d D g Q d Fild problms Hat transr in D in h h ( D D

More information

Predator Population Dynamics Involving Exponential Integral Function When Prey Follows Gompertz Model

Predator Population Dynamics Involving Exponential Integral Function When Prey Follows Gompertz Model Op Joral of Modllig ad Simlatio, 25, 3, 7-8 Pblishd Oli Jly 25 i SciRs. http://www.scirp.org/joral/ojmsi http://dx.doi.org/.4236/ojmsi.25.338 Prdator Poplatio Dyamics Ivolvig Expotial Itgral Fctio Wh Pry

More information