Foundation Vibration Analysis with Simple Physical Models BONJOUR

Size: px
Start display at page:

Download "Foundation Vibration Analysis with Simple Physical Models BONJOUR"

Transcription

1 Foundation Vibration Analysis with Simple Physical Models BONJOUR Dr. N.Tamaskovics TU Bergakademie Freiberg, Institut für Geotechnik Chair of Soil Mechanics, Ground Engineering and Mining Geotechnics

2 Geotechnical design calculations 2

3 Geotechnical design calculations (EC7): Ultimate limit state design (ULS) with mostly (trivial) analytic computations (static force and momentum balance) Serviceability limit state design (SLS) with mostly analytic but increasingly also with numerical computations (deformation analysis) 3

4 Geotechnical design practice: For individual design procedure steps different software tools are available Engineers must master and follow the development of numerous software tools A unified engineering platform comprising numerous design computations and analyses would be of great advantage 4

5 Geotechnical design practice: Implementation of analytical design methods in GIBIANE and native Cast3M procedures for ULS design Additional numerical analyses for verification and SLS design with the Finite Element Method in Cast3M The unification of the design concepts in one system makes Cast3M a very powerful geotechnical engineering environment 5

6 The Cone Method (Swiss theory, J.P.Wolf) 6

7 Foundation design for dynamic loading: Three dimensional problem with six degrees of freedom in time or frequency domain High modelling effort for routine engineering problems Additional questions concern material damping and absorbing boundaries 7

8 The Cone Method: A cone with appropriate aperture represents the mechanical behaviour of the dynamically loaded half-space Individual treatment of translational and rotational degrees of freedom Construction induced coupling of degrees of freedom is possible 8

9 Mechanical concept of the Cone Method for homogeneous half-space 9

10 The Cone Method: Wave equation for translation degrees of freedom in the cone frustum: 2 c/s (ζ u),tt = c (ζ u),ζ ζ Wave equation for rotation degrees of freedom in the cone frustum: ϑ, tt = c 2 c/s ( 4 ϑ,ζ ζ + ϑ, ζ ζ ) 10

11 The Cone Method: Time domain analysis for translation: (M0 u +Δ M u ) u 0 + Cu u 0 + K u u 0 = P0 (t) Time domain analysis for rotation: (M 0 ϑ +Δ M ϑ ) ϑ 0 + Cϑ ( ϑ 0 ϑ 1 ) + K ϑ ϑ0 = M 0 (t) M ϑ 1 ( ϑ 0 ϑ 1 ) + Cϑ 1 ϑ1 = 0 11

12 The Cone Method: Frequency domain analysis for translation: Su (ω) u (ω) = P0 (ω) 2 Su (ω) = K ' u M u 0 ω + i C ' u ω Frequency domain analysis for rotation: Sϑ (ω) ϑ(ω) = M0 (ω) 2 Sϑ (ω) = K ' ϑ Mϑ 0 ω + i C 'ϑ ω 12

13 The Cone Method: Frequency domain analysis for translation: 2 c/s ϱ c A0 K 'u = = Ku z0 C ' u = ϱ cc/s A 0 = Cu 1 3 Δ M u = 2.4 π ν ϱ r0 0 3 ( ) 13

14 The Cone Method: Fundamental equation for cone height results from elementary solutions of elasticity theory for stiff disk foundations: z0 (1 ν) π cc = r0 4 cs 2 ( ) 14

15 The Cone Method: Double asymptotic theory converting into rigorous solutions at vanishing and at infinite frequencies It has been successfully extended for horizontally layered half-space, embedded foundations and pile foundations The Cone Method delivers results with reliable accuracy for engineering design 15

16 Mechanical concept of the Cone Method for half-space with horizontal layering 16

17 The GIBIANE Complex Procedure Collection 17

18 The Complex Comprehensive GIBIANE library implementing the most important analysis operations for complex numbers Inclusion into the main branch of Cast3M after final validation and verification 18

19 The Complex Procedure Collection: Complex procedures have a symbol marks external contribution Procedures treat all internal variables as local (decorated with! symbol) Procedures strictly avoid internal generation and passing of references 19

20 The Complex Procedure Collection: Complex numbers are simply represented with TABLE objects RE table entry for real part (R. RE ) IM table entry for imaginary part (R. IM ) The GIBIANE implementation could be significantly improved with native Cast3M procedures in ESOPE 20

21 The Complex Procedure Collection: Usage example: A=TABLE; A. RE =1.0; A. IM =2.0; B=TABLE; B. RE =3.0; B. IM =4.0; R=TABLE; R. RE =0.0; R. IM =0.0; Z R A B ; R. RE =4.0; R. IM =6.0; Z on the left side has the reference of R (!) 21

22 The Complex Procedure Collection: @CCMP 22

23 The Complex Procedure Collection: Trigonometric and 23

24 The Complex Procedure Collection: Implementation is based on open-source code examples from Perl, Javascript and Node.js Verification and validation is based on systematic test routines in Python (cmath package) 24

25 Analysis of a foundation under vertical dynamic loading in frequency domain 25

26 The Cone Method: Frequency domain analysis for translation: r 0=1.0 [m ], m=6.0e3 [kg ], Δ M u =923.6 [kg] E=1.0e8 [N / m ²], ν=0.4 [1], ϱ= [kg ] P(ω) = 1.0e6+0 i [N] 1 u (ω) = S (ω) P(ω) 26

27 The Cone Method - Amplitude: 27

28 The Cone Method Phase angle: 28

29 Conceptional Case Study (qualitative analysis) Vibrations of a tall viaduct bridge on non-flexible foundations 29

30 Non-flexible foundations Vertical displacements under self-weight RES1 = RESO RIG1 LICHP1 ; 30

31 Non-flexible foundations First eigenfrequency and eigenmode Fn,1 = [Hz] SOL1 = VIBR IRAM RIG1 MAS1 IMPR TBAS ; 31

32 Non-flexible foundations Second eigenfrequency and eigenmode Fn,2 = [Hz] SOL1 = VIBR IRAM RIG1 MAS1 IMPR TBAS ; 32

33 Non-flexible foundations Third eigenfrequency and eigenmode Fn,3 = [Hz] SOL1 = VIBR IRAM RIG1 MAS1 IMPR TBAS ; 33

34 Non-flexible foundations Fourth eigenfrequency and eigenmode Fn,4 = [Hz] SOL1 = VIBR IRAM RIG1 MAS1 IMPR TBAS ; 34

35 Non-flexible foundations Fifth eigenfrequency and eigenmode Fn,5 = [Hz] SOL1 = VIBR IRAM RIG1 MAS1 IMPR TBAS ; 35

36 Conceptional Case Study (qualitative analysis) Vibrations of a tall viaduct bridge on flexible foundations (low stiffness in the middle) 36

37 Non-flexible foundations First eigenfrequency and eigenmode Fn,1 = [Hz] SOL1 = VIBR IRAM RIG1 MAS1 IMPR TBAS ; 37

38 Non-flexible foundations Second eigenfrequency and eigenmode Fn,2 = [Hz] SOL1 = VIBR IRAM RIG1 MAS1 IMPR TBAS ; 38

39 Non-flexible foundations Third eigenfrequency and eigenmode Fn,3 = [Hz] SOL1 = VIBR IRAM RIG1 MAS1 IMPR TBAS ; 39

40 Non-flexible foundations Fourth eigenfrequency and eigenmode Fn,4 = [Hz] SOL1 = VIBR IRAM RIG1 MAS1 IMPR TBAS ; 40

41 Non-flexible foundations Fifth eigenfrequency and eigenmode Fn,5 = [Hz] SOL1 = VIBR IRAM RIG1 MAS1 IMPR TBAS ; 41

42 Foundation design for dynamic loading: In the case of long bridges, the numerical simulation of the subsoil behaviour can represent a very high effort (huge geometry) The Cone Method can deliver reliable and validated foundation stiffness and damping properties for time and frequency domain analysis 42

43 Summary and conclusions 43

44 Summary and conclusions: Cast3M offers the unique opportunity for geotechnical design in ultimate (ULS) and serviceability (SLS) limit state in one engineering environment An extensive complex analysis procedure library has been implemented primarily for frequency domain analysis 44

45 Summary and conclusions: The Cone Method is a very useful practical engineering method for the design of foundations under dynamic loading Based on the presented complex analysis procedure library, the Cone Method can be implemented into the Cast3M engineering environment 45

46 Foundation Vibration Analysis with Simple Physical Models MERCI BEUCOUP! DES QUESTIONS? Dr. N.Tamaskovics TU Bergakademie Freiberg, Institut für Geotechnik Chair of Soil Mechanics, Ground Engineering and Mining Geotechnics

Embedded Foundation with Different Parameters under Dynamic Excitations

Embedded Foundation with Different Parameters under Dynamic Excitations 13 th World Conference on Earthquake Engineering Vancouver, B.C., Canada August 1-6, 2004 Paper No. 2287 Embedded Foundation with Different Parameters under Dynamic Excitations Jaya K P 1 and Meher Prasad

More information

Structural Dynamics Lecture 4. Outline of Lecture 4. Multi-Degree-of-Freedom Systems. Formulation of Equations of Motions. Undamped Eigenvibrations.

Structural Dynamics Lecture 4. Outline of Lecture 4. Multi-Degree-of-Freedom Systems. Formulation of Equations of Motions. Undamped Eigenvibrations. Outline of Multi-Degree-of-Freedom Systems Formulation of Equations of Motions. Newton s 2 nd Law Applied to Free Masses. D Alembert s Principle. Basic Equations of Motion for Forced Vibrations of Linear

More information

Chapter 4 Analysis of a cantilever

Chapter 4 Analysis of a cantilever Chapter 4 Analysis of a cantilever Before a complex structure is studied performing a seismic analysis, the behaviour of simpler ones should be fully understood. To achieve this knowledge we will start

More information

Gründungen von Offshore Windenergieanlagen: Von der Planung bis zur Lebensdauerüberwachung

Gründungen von Offshore Windenergieanlagen: Von der Planung bis zur Lebensdauerüberwachung Gründungen von Offshore Windenergieanlagen: Von der Planung bis zur Lebensdauerüberwachung Dr.-Ing. Fabian Kirsch GuD Geotechnik und Dynamik Consult GmbH, Berlin Offshoretage, 18. März 2016, TU Berlin

More information

Introduction to structural dynamics

Introduction to structural dynamics Introduction to structural dynamics p n m n u n p n-1 p 3... m n-1 m 3... u n-1 u 3 k 1 c 1 u 1 u 2 k 2 m p 1 1 c 2 m2 p 2 k n c n m n u n p n m 2 p 2 u 2 m 1 p 1 u 1 Static vs dynamic analysis Static

More information

Chapter 2: Rigid Bar Supported by Two Buckled Struts under Axial, Harmonic, Displacement Excitation..14

Chapter 2: Rigid Bar Supported by Two Buckled Struts under Axial, Harmonic, Displacement Excitation..14 Table of Contents Chapter 1: Research Objectives and Literature Review..1 1.1 Introduction...1 1.2 Literature Review......3 1.2.1 Describing Vibration......3 1.2.2 Vibration Isolation.....6 1.2.2.1 Overview.

More information

Feasibility of dynamic test methods in classification of damaged bridges

Feasibility of dynamic test methods in classification of damaged bridges Feasibility of dynamic test methods in classification of damaged bridges Flavio Galanti, PhD, MSc., Felieke van Duin, MSc. TNO Built Environment and Geosciences, P.O. Box 49, 26 AA, Delft, The Netherlands.

More information

Soil-Structure-Interaction: Analysis through measurements

Soil-Structure-Interaction: Analysis through measurements Soil-Structure-Interaction: Analysis through measurements F. Kopf, FCP Fritsch, Chiari & Partner, Vienna, Austria D. Schäfer VCE Vienna Consulting Engineers ZT GmbH, Vienna, Austria J. Pistrol TU University

More information

Design of Earthquake-Resistant Structures

Design of Earthquake-Resistant Structures NATIONAL TECHNICAL UNIVERSITY OF ATHENS LABORATORY OF EARTHQUAKE ENGINEERING Design of Earthquake-Resistant Structures Basic principles Ioannis N. Psycharis Basic considerations Design earthquake: small

More information

EUROCODE EN SEISMIC DESIGN OF BRIDGES

EUROCODE EN SEISMIC DESIGN OF BRIDGES Brussels, 18-20 February 2008 Dissemination of information workshop 1 EUROCODE EN1998-2 SEISMIC DESIGN OF BRIDGES Basil Kolias Basic Requirements Brussels, 18-20 February 2008 Dissemination of information

More information

SPECIAL DYNAMIC SOIL- STRUCTURE ANALYSIS PROCEDURES DEMONSTATED FOR TWO TOWER-LIKE STRUCTURES

SPECIAL DYNAMIC SOIL- STRUCTURE ANALYSIS PROCEDURES DEMONSTATED FOR TWO TOWER-LIKE STRUCTURES 2010/2 PAGES 1 8 RECEIVED 21. 9. 2009 ACCEPTED 20. 1. 2010 Y. KOLEKOVÁ, M. PETRONIJEVIĆ, G. SCHMID SPECIAL DYNAMIC SOIL- STRUCTURE ANALYSIS PROCEDURES DEMONSTATED FOR TWO TOWER-LIKE STRUCTURES ABSTRACT

More information

Pseudo-natural SSI frequency of coupled soil-pilestructure

Pseudo-natural SSI frequency of coupled soil-pilestructure Pseudo-natural SSI frequency of coupled soil-pilestructure systems E.N. Rovithis Institute of Engineering Seismology and Earthquake Engineering (ITSAK), Thessaloniki, Greece K.D. Pitilakis Department of

More information

Design of Structures for Earthquake Resistance

Design of Structures for Earthquake Resistance NATIONAL TECHNICAL UNIVERSITY OF ATHENS Design of Structures for Earthquake Resistance Basic principles Ioannis N. Psycharis Lecture 3 MDOF systems Equation of motion M u + C u + K u = M r x g(t) where:

More information

Chapter a. Spring constant, k : The change in the force per unit length change of the spring. b. Coefficient of subgrade reaction, k:

Chapter a. Spring constant, k : The change in the force per unit length change of the spring. b. Coefficient of subgrade reaction, k: Principles of Soil Dynamics 3rd Edition Das SOLUTIONS MANUAL Full clear download (no formatting errors) at: https://testbankreal.com/download/principles-soil-dynamics-3rd-editiondas-solutions-manual/ Chapter

More information

Introduction to Continuous Systems. Continuous Systems. Strings, Torsional Rods and Beams.

Introduction to Continuous Systems. Continuous Systems. Strings, Torsional Rods and Beams. Outline of Continuous Systems. Introduction to Continuous Systems. Continuous Systems. Strings, Torsional Rods and Beams. Vibrations of Flexible Strings. Torsional Vibration of Rods. Bernoulli-Euler Beams.

More information

Final Exam April 30, 2013

Final Exam April 30, 2013 Final Exam Instructions: You have 120 minutes to complete this exam. This is a closed-book, closed-notes exam. You are allowed to use a calculator during the exam. Usage of mobile phones and other electronic

More information

NON-LINEAR ANALYSIS OF SOIL-PILE-STRUCTURE INTERACTION UNDER SEISMIC LOADS

NON-LINEAR ANALYSIS OF SOIL-PILE-STRUCTURE INTERACTION UNDER SEISMIC LOADS NON-LINEAR ANALYSIS OF SOIL-PILE-STRUCTURE INTERACTION UNDER SEISMIC LOADS Yingcai Han 1 and Shin-Tower Wang 2 1 Fluor Canada Ltd., Calgary AB, Canada Email: yingcai.han@fluor.com 2 Ensoft, Inc. Austin,

More information

Dynamic Analysis of Pile Foundations: Effects of Material Nonlinearity of Soil

Dynamic Analysis of Pile Foundations: Effects of Material Nonlinearity of Soil Dynamic Analysis of Pile Foundations: Effects of Material Nonlinearity of Soil Bal Krishna Maheshwari Asst. Professor, Department of Earthquake Engineering, IIT Roorkee, Roorkee, U.A. 247 667, India (Formerly

More information

Assessment of Soil-Structure-Interaction by measurement

Assessment of Soil-Structure-Interaction by measurement Vienna Congress on Recent Advances in Earthquake Engineering and Structural Dynamics 2013 (VEESD 2013) C. Adam, R. Heuer, W. Lenhardt & C. Schranz (eds) 28-30 August 2013, Vienna, Austria Paper No. 340

More information

Machine Foundation Analysis VERIFICATION MANUAL REV D

Machine Foundation Analysis VERIFICATION MANUAL REV D Machine Foundation Analysis VERIFICATION MANUAL REV. 12.1-D TM Page:2 COPYRIGHT The computer program CLOCKWORK and all associated documentation are proprietary and copyrighted products. Worldwide rights

More information

Dynamic soil-pile-interaction effects on eigenfrequency and damping of slender structures

Dynamic soil-pile-interaction effects on eigenfrequency and damping of slender structures Proceedings of the 9th International Conference on Structural Dynamics, EURODYN 14 Porto, Portugal, 3 June - July 14 A. Cunha, E. Caetano, P. Ribeiro, G. Müller (eds.) ISSN: 311-9; ISBN: 978-97-75-165-4

More information

PILE SOIL INTERACTION MOMENT AREA METHOD

PILE SOIL INTERACTION MOMENT AREA METHOD Pile IGC Soil 2009, Interaction Moment Guntur, INDIA Area Method PILE SOIL INTERACTION MOMENT AREA METHOD D.M. Dewaikar Professor, Department of Civil Engineering, IIT Bombay, Mumbai 400 076, India. E-mail:

More information

Dynamic behavior of turbine foundation considering full interaction among facility, structure and soil

Dynamic behavior of turbine foundation considering full interaction among facility, structure and soil Dynamic behavior of turbine foundation considering full interaction among facility, structure and soil Fang Ming Scholl of Civil Engineering, Harbin Institute of Technology, China Wang Tao Institute of

More information

Part 6: Dynamic design analysis

Part 6: Dynamic design analysis Part 6: Dynamic design analysis BuildSoft nv All rights reserved. No part of this document may be reproduced or transmitted in any form or by any means, electronic or manual, for any purpose, without written

More information

Seismic design of bridges

Seismic design of bridges NAIONAL ECHNICAL UNIVERSIY OF AHENS LABORAORY FOR EARHQUAKE ENGINEERING Seismic design of bridges Lecture 4 Ioannis N. Psycharis Seismic isolation of bridges I. N. Psycharis Seismic design of bridges 2

More information

STRUCTURAL DYNAMICS BASICS:

STRUCTURAL DYNAMICS BASICS: BASICS: STRUCTURAL DYNAMICS Real-life structures are subjected to loads which vary with time Except self weight of the structure, all other loads vary with time In many cases, this variation of the load

More information

The student will experimentally determine the parameters to represent the behavior of a damped oscillatory system of one degree of freedom.

The student will experimentally determine the parameters to represent the behavior of a damped oscillatory system of one degree of freedom. Practice 3 NAME STUDENT ID LAB GROUP PROFESSOR INSTRUCTOR Vibrations of systems of one degree of freedom with damping QUIZ 10% PARTICIPATION & PRESENTATION 5% INVESTIGATION 10% DESIGN PROBLEM 15% CALCULATIONS

More information

CALCULATION OF A SHEET PILE WALL RELIABILITY INDEX IN ULTIMATE AND SERVICEABILITY LIMIT STATES

CALCULATION OF A SHEET PILE WALL RELIABILITY INDEX IN ULTIMATE AND SERVICEABILITY LIMIT STATES Studia Geotechnica et Mechanica, Vol. XXXII, No. 2, 2010 CALCULATION OF A SHEET PILE WALL RELIABILITY INDEX IN ULTIMATE AND SERVICEABILITY LIMIT STATES JERZY BAUER Institute of Mining, Wrocław University

More information

Foundation Engineering Dr. Priti Maheshwari Department Of Civil Engineering Indian Institute Of Technology, Roorkee

Foundation Engineering Dr. Priti Maheshwari Department Of Civil Engineering Indian Institute Of Technology, Roorkee Foundation Engineering Dr. Priti Maheshwari Department Of Civil Engineering Indian Institute Of Technology, Roorkee Module - 02 Lecture - 15 Machine Foundations - 3 Hello viewers, In the last class we

More information

Structural Dynamics Lecture 7. Outline of Lecture 7. Multi-Degree-of-Freedom Systems (cont.) System Reduction. Vibration due to Movable Supports.

Structural Dynamics Lecture 7. Outline of Lecture 7. Multi-Degree-of-Freedom Systems (cont.) System Reduction. Vibration due to Movable Supports. Outline of Multi-Degree-of-Freedom Systems (cont.) System Reduction. Truncated Modal Expansion with Quasi-Static Correction. Guyan Reduction. Vibration due to Movable Supports. Earthquake Excitations.

More information

Foundation models for the dynamic response of offshore wind turbines

Foundation models for the dynamic response of offshore wind turbines Marine Renewable Energy Conference (MAREC), Newcastle, UK, September 00. Foundation models for the dynamic response of offshore wind turbines. M.B. Zaaijer, MSc Delft University of Technology, The Netherlands

More information

Application of cyclic accumulation models for undrained and partially drained general boundary value problems

Application of cyclic accumulation models for undrained and partially drained general boundary value problems Application of cyclic accumulation models for undrained and partially drained general boundary value problems A. M. Page Risueño Yngres Dag 2014, May 15 th 2014 Introduction Cyclic loads in geotechnical

More information

ON THE PREDICTION OF EXPERIMENTAL RESULTS FROM TWO PILE TESTS UNDER FORCED VIBRATIONS

ON THE PREDICTION OF EXPERIMENTAL RESULTS FROM TWO PILE TESTS UNDER FORCED VIBRATIONS Transactions, SMiRT-24 ON THE PREDICTION OF EXPERIMENTAL RESULTS FROM TWO PILE TESTS UNDER FORCED VIBRATIONS 1 Principal Engineer, MTR & Associates, USA INTRODUCTION Mansour Tabatabaie 1 Dynamic response

More information

DYNAMIC PROPERTIES OF STRUCTURE-PILE SYSTEM USING MOCK-UP MODEL

DYNAMIC PROPERTIES OF STRUCTURE-PILE SYSTEM USING MOCK-UP MODEL DYNAMIC ROERTIES OF STRUCTURE-ILE SYSTEM USING MOCK-U MODEL Jun-ichi SUZUMURA 1, Hiroshi ASEGA, Toshiaki ARAI, Masataka NAKAMURA 4, Kazufumi HANADA, Hiroo SHIOJIRI 6 And Akira KASAHARA 7 SUMMARY The dynamic

More information

ME 563 HOMEWORK # 5 SOLUTIONS Fall 2010

ME 563 HOMEWORK # 5 SOLUTIONS Fall 2010 ME 563 HOMEWORK # 5 SOLUTIONS Fall 2010 PROBLEM 1: You are given the lumped parameter dynamic differential equations of motion for a two degree-offreedom model of an automobile suspension system for small

More information

Dr.Vinod Hosur, Professor, Civil Engg.Dept., Gogte Institute of Technology, Belgaum

Dr.Vinod Hosur, Professor, Civil Engg.Dept., Gogte Institute of Technology, Belgaum STRUCTURAL DYNAMICS Dr.Vinod Hosur, Professor, Civil Engg.Dept., Gogte Institute of Technology, Belgaum Overview of Structural Dynamics Structure Members, joints, strength, stiffness, ductility Structure

More information

Codal Provisions IS 1893 (Part 1) 2002

Codal Provisions IS 1893 (Part 1) 2002 Abstract Codal Provisions IS 1893 (Part 1) 00 Paresh V. Patel Assistant Professor, Civil Engineering Department, Nirma Institute of Technology, Ahmedabad 38481 In this article codal provisions of IS 1893

More information

Methods of Analysis. Force or Flexibility Method

Methods of Analysis. Force or Flexibility Method INTRODUCTION: The structural analysis is a mathematical process by which the response of a structure to specified loads is determined. This response is measured by determining the internal forces or stresses

More information

Stochastic Dynamics of SDOF Systems (cont.).

Stochastic Dynamics of SDOF Systems (cont.). Outline of Stochastic Dynamics of SDOF Systems (cont.). Weakly Stationary Response Processes. Equivalent White Noise Approximations. Gaussian Response Processes as Conditional Normal Distributions. Stochastic

More information

Dynamic Soil Structure Interaction

Dynamic Soil Structure Interaction Dynamic Soil Structure Interaction Kenji MIURA, Dr. Eng. Professor Graduate School of Engineering Hiroshima University Dynamic Soil Structure Interaction Chapter 1 : Introduction Kenji MIURA, Dr. Eng.

More information

COEFFICIENT OF DYNAMIC HORIZONTAL SUBGRADE REACTION OF PILE FOUNDATIONS ON PROBLEMATIC GROUND IN HOKKAIDO Hirofumi Fukushima 1

COEFFICIENT OF DYNAMIC HORIZONTAL SUBGRADE REACTION OF PILE FOUNDATIONS ON PROBLEMATIC GROUND IN HOKKAIDO Hirofumi Fukushima 1 COEFFICIENT OF DYNAMIC HORIZONTAL SUBGRADE REACTION OF PILE FOUNDATIONS ON PROBLEMATIC GROUND IN HOKKAIDO Hirofumi Fukushima 1 Abstract In this study, static loading tests and dynamic shaking tests of

More information

SHAKE TABLE STUDY OF SOIL STRUCTURE INTERACTION EFFECTS ON SEISMIC RESPONSE OF SINGLE AND ADJACENT BUILDINGS

SHAKE TABLE STUDY OF SOIL STRUCTURE INTERACTION EFFECTS ON SEISMIC RESPONSE OF SINGLE AND ADJACENT BUILDINGS 13 th World Conference on Earthquake Engineering Vancouver, B.C., Canada August 1-6, 2004 Paper No. 1918 SHAKE TABLE STUDY OF SOIL STRUCTURE INTERACTION EFFECTS ON SEISMIC RESPONSE OF SINGLE AND ADJACENT

More information

RECENT ADVANCES IN DYNAMIC COMPACTION WITH OSCILLATING ROLLERS

RECENT ADVANCES IN DYNAMIC COMPACTION WITH OSCILLATING ROLLERS Aktuálne geotechnické riešenia a ich verifikácia, Bratislava 05.- 06. júna 2017 RECENT ADVANCES IN DYNAMIC COMPACTION WITH OSCILLATING ROLLERS Johannes Pistrol 1, Dietmar Adam 2 ABSTRACT: The application

More information

Chapter 14 Oscillations. Copyright 2009 Pearson Education, Inc.

Chapter 14 Oscillations. Copyright 2009 Pearson Education, Inc. Chapter 14 Oscillations 14-1 Oscillations of a Spring If an object vibrates or oscillates back and forth over the same path, each cycle taking the same amount of time, the motion is called periodic. The

More information

Dynamics of Rotor Systems with Clearance and Weak Pedestals in Full Contact

Dynamics of Rotor Systems with Clearance and Weak Pedestals in Full Contact Paper ID No: 23 Dynamics of Rotor Systems with Clearance and Weak Pedestals in Full Contact Dr. Magnus Karlberg 1, Dr. Martin Karlsson 2, Prof. Lennart Karlsson 3 and Ass. Prof. Mats Näsström 4 1 Department

More information

Analyses of Soil-Structure Systems

Analyses of Soil-Structure Systems Analyses of Soil-Structure Systems Julio García Paul C. Rizzo Associates, Inc., 105 Mall Blvd. Suite 270E, Monroeville, PA 15146, USA Phone: +1 (412)856-9700, Fax: +1 (412)856-9749, Email: julio.garcia@rizzoassoc.com

More information

652. Effect of physical nonlinearity on bending vibrations of elements of packages

652. Effect of physical nonlinearity on bending vibrations of elements of packages 65. Effect of physical nonlinearity on bending vibrations of elements of packages Artūras Dabkevičius 1a, Edmundas Kibirkštis 1b, Laura Gegeckienė 1c, Vaidas Bivainis 1d, Liutauras Ragulskis 1 Kaunas University

More information

KINEMATIC RESPONSE OF GROUPS WITH INCLINED PILES

KINEMATIC RESPONSE OF GROUPS WITH INCLINED PILES th International Conference on Earthquake Geotechnical Engineering June 5-8, 7 Paper No. 5 KINEMATIC RESPONSE OF GROUPS WITH INCLINED PILES Amalia GIANNAKOU, Nikos GEROLYMOS, and George GAZETAS 3 ABSTRACT

More information

INFLUENCE OF SOIL NONLINEARITY AND LIQUEFACTION ON DYNAMIC RESPONSE OF PILE GROUPS

INFLUENCE OF SOIL NONLINEARITY AND LIQUEFACTION ON DYNAMIC RESPONSE OF PILE GROUPS INFLUENCE OF SOIL NONLINEARITY AND LIQUEFACTION ON DYNAMIC RESPONSE OF PILE GROUPS Rajib Sarkar 1 and B.K. Maheshwari 2 1 Research Scholar, Dept. of Earthquake Engineering, IIT Roorkee, India, e-mail:

More information

Rocking behaviour of a rigid foundation with an arbitrary embedment

Rocking behaviour of a rigid foundation with an arbitrary embedment Rocking behaviour of a rigid foundation with an arbitrary embedment H. Moghaddasi Islamic Azad University, Qazvin, Iran. M. Kalantari University of Tehran, Tehran, Iran N. Chouw The University of Auckland,

More information

Chapter 14 Oscillations

Chapter 14 Oscillations Chapter 14 Oscillations If an object vibrates or oscillates back and forth over the same path, each cycle taking the same amount of time, the motion is called periodic. The mass and spring system is a

More information

Effect of Dynamic Interaction between Train Vehicle and Structure on Seismic Response of Structure

Effect of Dynamic Interaction between Train Vehicle and Structure on Seismic Response of Structure Effect of Dynamic Interaction between Train Vehicle and Structure on Seismic Response of Structure Munemasa TOKUNAGA & Masamichi SOGABE Railway Technical Research Institute, Japan SUMMARY: The conventional

More information

STRUCTURAL CONTROL USING MODIFIED TUNED LIQUID DAMPERS

STRUCTURAL CONTROL USING MODIFIED TUNED LIQUID DAMPERS STRUCTURAL CONTROL USING MODIFIED TUNED LIQUID DAMPERS A. Samanta 1 and P. Banerji 2 1 Research Scholar, Department of Civil Engineering, Indian Institute of Technology Bombay, Mumbai, India, 2 Professor,

More information

Dynamics of structures

Dynamics of structures Dynamics of structures 2.Vibrations: single degree of freedom system Arnaud Deraemaeker (aderaema@ulb.ac.be) 1 Outline of the chapter *One degree of freedom systems in real life Hypothesis Examples *Response

More information

Natural vibration frequency of classic MEMS structures

Natural vibration frequency of classic MEMS structures Natural vibration frequency of classic MEMS structures Zacarias E. Fabrim PGCIMAT, UFRGS, Porto Alegre, RS, Brazil Wang Chong, Manoel Martín Pérez Reimbold DeTec, UNIJUI, Ijuí, RS, Brazil Abstract This

More information

Influence of the Soil Structure Interaction on the Fundamental Period of Large Dynamic Machine Foundation

Influence of the Soil Structure Interaction on the Fundamental Period of Large Dynamic Machine Foundation Influence of the Soil Structure Interaction on the Fundamental Period of Large Dynamic Machine Foundation Jingbo Liu, Wenhui Wang, Xiaobo Zhang, Dongdong Zhao Department of Civil Engineering, Tsinghua

More information

Stability for Bridge Cable and Cable-Deck Interaction. Dr. Maria Rosaria Marsico D.J. Wagg

Stability for Bridge Cable and Cable-Deck Interaction. Dr. Maria Rosaria Marsico D.J. Wagg Stability for Bridge Cable and Cable-Deck Interaction Dr. Maria Rosaria Marsico D.J. Wagg S.A. Neild Introduction The interaction between cables and structure can lead to complex vibration response Cables

More information

MAXIMUM LOADS ON A 1-DOF MODEL-SCALE OFFSHORE WIND TURBINE

MAXIMUM LOADS ON A 1-DOF MODEL-SCALE OFFSHORE WIND TURBINE MAXIMUM LOADS ON A 1-DOF MODEL-SCALE OFFSHORE WIND TURBINE Loup Suja-Thauvin (Industry PhD) Jørgen Krokstad (prof II) Joakim Fürst Frimann-Dahl (DNV-GL) Table of contents 1. Motivation 2. Presentation

More information

CRITERIA FOR SELECTION OF FEM MODELS.

CRITERIA FOR SELECTION OF FEM MODELS. CRITERIA FOR SELECTION OF FEM MODELS. Prof. P. C.Vasani,Applied Mechanics Department, L. D. College of Engineering,Ahmedabad- 380015 Ph.(079) 7486320 [R] E-mail:pcv-im@eth.net 1. Criteria for Convergence.

More information

Numerical simulation of the coil spring and investigation the impact of tension and compression to the spring natural frequencies

Numerical simulation of the coil spring and investigation the impact of tension and compression to the spring natural frequencies Numerical simulation of the coil spring and investigation the impact of tension and compression to the spring natural frequencies F. D. Sorokin 1, Zhou Su 2 Bauman Moscow State Technical University, Moscow,

More information

Dynamic Loads CE 543. Examples. Harmonic Loads

Dynamic Loads CE 543. Examples. Harmonic Loads CE 543 Structural Dynamics Introduction Dynamic Loads Dynamic loads are time-varying loads. (But time-varying loads may not require dynamic analysis.) Dynamics loads can be grouped in one of the following

More information

Laboratory notes. Torsional Vibration Absorber

Laboratory notes. Torsional Vibration Absorber Titurus, Marsico & Wagg Torsional Vibration Absorber UoB/1-11, v1. Laboratory notes Torsional Vibration Absorber Contents 1 Objectives... Apparatus... 3 Theory... 3 3.1 Background information... 3 3. Undamped

More information

Dynamics of Structures

Dynamics of Structures Dynamics of Structures Elements of structural dynamics Roberto Tomasi 11.05.2017 Roberto Tomasi Dynamics of Structures 11.05.2017 1 / 22 Overview 1 SDOF system SDOF system Equation of motion Response spectrum

More information

On the Dynamics of Inclined Piles

On the Dynamics of Inclined Piles On the Dynamics of Inclined Piles Amalia Giannakou, National Technical University of Athens, Greece Nikos Gerolymos, National Technical University of Athens, Greece George Gazetas, National Technical University

More information

Nonlinear Rolling Element Bearings in MADYN 2000 Version 4.3

Nonlinear Rolling Element Bearings in MADYN 2000 Version 4.3 - 1 - Nonlinear Rolling Element Bearings in MADYN 2000 Version 4.3 In version 4.3 nonlinear rolling element bearings can be considered for transient analyses. The nonlinear forces are calculated with a

More information

Seismic Design of Tall and Slender Structures Including Rotational Components of the Ground Motion: EN Approach

Seismic Design of Tall and Slender Structures Including Rotational Components of the Ground Motion: EN Approach Seismic Design of Tall and Slender Structures Including Rotational Components of the Ground Motion: EN 1998-6 6 Approach 1 Chimneys Masts Towers EN 1998-6: 005 TOWERS, CHIMNEYS and MASTS NUMERICAL MODELS

More information

Modeling of Resonators

Modeling of Resonators . 23 Modeling of Resonators 23 1 Chapter 23: MODELING OF RESONATORS 23 2 23.1 A GENERIC RESONATOR A second example where simplified discrete modeling has been found valuable is in the assessment of the

More information

CHAPTER 7 EARTHQUAKE RESPONSE OF INELASTIC SYSTEMS. Base shear force in a linearly elastic system due to ground excitation is Vb

CHAPTER 7 EARTHQUAKE RESPONSE OF INELASTIC SYSTEMS. Base shear force in a linearly elastic system due to ground excitation is Vb CHAPTER 7 EARTHQUAKE RESPONSE OF INELASTIC SYSTEMS Base shear force in a linearl elastic sstem due to ground excitation is Vb = ( A/ g) w where A is the pseudo-acceleration corresponding to natural period

More information

Harmonized European standards for construction in Egypt

Harmonized European standards for construction in Egypt Harmonized European standards for construction in Egypt EN 1998 - Design of structures for earthquake resistance Jean-Armand Calgaro Chairman of CEN/TC250 Organised with the support of the Egyptian Organization

More information

Model tests and FE-modelling of dynamic soil-structure interaction

Model tests and FE-modelling of dynamic soil-structure interaction Shock and Vibration 19 (2012) 1061 1069 1061 DOI 10.3233/SAV-2012-0712 IOS Press Model tests and FE-modelling of dynamic soil-structure interaction N. Kodama a, * and K. Komiya b a Waseda Institute for

More information

Numerical simulation of a piano soundboard under downbearing. Adrien Mamou-Mani, Joël Frelat, and Charles Besnainou. Institut Jean Le Rond d Alembert,

Numerical simulation of a piano soundboard under downbearing. Adrien Mamou-Mani, Joël Frelat, and Charles Besnainou. Institut Jean Le Rond d Alembert, Numerical simulation of a piano soundboard under downbearing Adrien Mamou-Mani, Joël Frelat, and Charles Besnainou Institut Jean Le Rond d Alembert, UPMC/CNRS (Dated: December 27, 2007) 1 Abstract A finite

More information

Seismic design of bridges

Seismic design of bridges NATIONAL TECHNICAL UNIVERSITY OF ATHENS LABORATORY FOR EARTHQUAKE ENGINEERING Seismic design of bridges Lecture 3 Ioannis N. Psycharis Capacity design Purpose To design structures of ductile behaviour

More information

Abstract. 1 Introduction

Abstract. 1 Introduction Consideration of medium-speed four-stroke engines in ship vibration analyses I. Asmussen, A. Muller-Schmerl GermanischerLloyd, P.O. Box 111606, 20416Hamburg, Germany Abstract Vibration problems were recently

More information

A new closed-form model for isotropic elastic sphere including new solutions for the free vibrations problem

A new closed-form model for isotropic elastic sphere including new solutions for the free vibrations problem A new closed-form model for isotropic elastic sphere including new solutions for the free vibrations problem E Hanukah Faculty of Mechanical Engineering, Technion Israel Institute of Technology, Haifa

More information

STATIC NONLINEAR ANALYSIS. Advanced Earthquake Engineering CIVIL-706. Instructor: Lorenzo DIANA, PhD

STATIC NONLINEAR ANALYSIS. Advanced Earthquake Engineering CIVIL-706. Instructor: Lorenzo DIANA, PhD STATIC NONLINEAR ANALYSIS Advanced Earthquake Engineering CIVIL-706 Instructor: Lorenzo DIANA, PhD 1 By the end of today s course You will be able to answer: What are NSA advantages over other structural

More information

ANALYSES OF SOIL-STRUCTURE INTERACTION BASED ON VERTICAL LOAD TESTS OF DISPLACEMENT PILES

ANALYSES OF SOIL-STRUCTURE INTERACTION BASED ON VERTICAL LOAD TESTS OF DISPLACEMENT PILES Technical Sciences 18(4), 2015, 261 270 ANALYSES OF SOIL-STRUCTURE INTERACTION BASED ON VERTICAL LOAD TESTS OF DISPLACEMENT PILES Department of Geotechnical engineering Vilnius Gediminas Technical University

More information

The Dynamic Response Analysis of Concrete Gravity Dam under the Earthquake

The Dynamic Response Analysis of Concrete Gravity Dam under the Earthquake Copyright 2013 Tech Science Press SL, vol.9, no.1, pp.23-36, 2013 The Dynamic Response Analysis of Concrete Gravity Dam under the Earthquake Yang Lu 1, Li Shi-Min 1, Cao Peng 2 and Shen Xin-Pu 1 Abstract:

More information

DYNAMIC ANALYSIS OF PILES IN SAND BASED ON SOIL-PILE INTERACTION

DYNAMIC ANALYSIS OF PILES IN SAND BASED ON SOIL-PILE INTERACTION October 1-17,, Beijing, China DYNAMIC ANALYSIS OF PILES IN SAND BASED ON SOIL-PILE INTERACTION Mohammad M. Ahmadi 1 and Mahdi Ehsani 1 Assistant Professor, Dept. of Civil Engineering, Geotechnical Group,

More information

2D Liquefaction Analysis for Bridge Abutment

2D Liquefaction Analysis for Bridge Abutment D Liquefaction Analysis for Bridge Abutment Tutorial by Angel Francisco Martinez Integrated Solver Optimized for the next generation 64-bit platform Finite Element Solutions for Geotechnical Engineering

More information

Free vibrations of a multi-span Timoshenko beam carrying multiple spring-mass systems

Free vibrations of a multi-span Timoshenko beam carrying multiple spring-mass systems Sādhanā Vol. 33, Part 4, August 2008, pp. 385 401. Printed in India Free vibrations of a multi-span Timoshenko beam carrying multiple spring-mass systems YUSUF YESILCE 1, OKTAY DEMIRDAG 2 and SEVAL CATAL

More information

Introduction to Vibration. Professor Mike Brennan

Introduction to Vibration. Professor Mike Brennan Introduction to Vibration Professor Mie Brennan Introduction to Vibration Nature of vibration of mechanical systems Free and forced vibrations Frequency response functions Fundamentals For free vibration

More information

THE EFFECTS OF ABSORBER ATTACHMENT LOCATION ON VIBRATION RESPONSE OF SIMPLY SUPPORTED PLATE

THE EFFECTS OF ABSORBER ATTACHMENT LOCATION ON VIBRATION RESPONSE OF SIMPLY SUPPORTED PLATE THE EFFECTS OF ABSORBER ATTACHMENT LOCATION ON VIBRATION RESPONSE OF SIMPLY SUPPORTED PLATE Muhammad Mohamed Salleh 1 and Izzuddin Zaman 1,2 1 Faculty of Mechanical and Manufacturing Engineering, 2 Structural

More information

Engineering Science OUTCOME 2 - TUTORIAL 3 FREE VIBRATIONS

Engineering Science OUTCOME 2 - TUTORIAL 3 FREE VIBRATIONS Unit 2: Unit code: QCF Level: 4 Credit value: 5 Engineering Science L/60/404 OUTCOME 2 - TUTORIAL 3 FREE VIBRATIONS UNIT CONTENT OUTCOME 2 Be able to determine the behavioural characteristics of elements

More information

Asynchronous Training in Wireless Sensor Networks

Asynchronous Training in Wireless Sensor Networks u t... t. tt. tt. u.. tt tt -t t t - t, t u u t t. t tut t t t t t tt t u t ut. t u, t tt t u t t t t, t tt t t t, t t t t t. t t tt u t t t., t- t ut t t, tt t t tt. 1 tut t t tu ut- tt - t t t tu tt-t

More information

Chapter 23: Principles of Passive Vibration Control: Design of absorber

Chapter 23: Principles of Passive Vibration Control: Design of absorber Chapter 23: Principles of Passive Vibration Control: Design of absorber INTRODUCTION The term 'vibration absorber' is used for passive devices attached to the vibrating structure. Such devices are made

More information

FOOTFALL ANALYSIS GUIDE 2016 FEBRUÁR. Copyright Inter-CAD Kft

FOOTFALL ANALYSIS GUIDE 2016 FEBRUÁR. Copyright Inter-CAD Kft FOOTFALL ANALYSIS GUIDE 2016 FEBRUÁR Copyright 1991-2018 Inter-CAD Kft 2 This page is intentionally left blank. Footfall Analysis Guide 3 SUMMARY Introduction... 5 THEORY AND BACKGROUND... 5 Vibration

More information

BRB and viscous damper hybrid vibration mitigation structural system: seismic performance analysis method and case studies

BRB and viscous damper hybrid vibration mitigation structural system: seismic performance analysis method and case studies BRB and viscous damper hybrid vibration mitigation structural system: seismic performance analysis method and case studies Xin Zhao Tongji Architectural Design (Group) Co., Ltd., Shanghai, China 2 Contents

More information

General elastic beam with an elastic foundation

General elastic beam with an elastic foundation General elastic beam with an elastic foundation Figure 1 shows a beam-column on an elastic foundation. The beam is connected to a continuous series of foundation springs. The other end of the foundation

More information

PIANO SOUNDBOARD UNDER PRESTRESS: A NUMERICAL APPROACH

PIANO SOUNDBOARD UNDER PRESTRESS: A NUMERICAL APPROACH 9th INTERNATIONAL CONGRESS ON ACOUSTICS MADRID, -7 SEPTEMBER 7 PIANO SOUNDBOARD UNDER PRESTRESS: A NUMERICAL APPROACH PACS: 43.75.Mn Mamou-Mani, Adrien ; Frelat, Joël ; Besnainou, Charles Institut Jean

More information

AEROELASTIC ANALYSIS OF COMBINED CONICAL - CYLINDRICAL SHELLS

AEROELASTIC ANALYSIS OF COMBINED CONICAL - CYLINDRICAL SHELLS Proceedings of the 7th International Conference on Mechanics and Materials in Design Albufeira/Portugal 11-15 June 2017. Editors J.F. Silva Gomes and S.A. Meguid. Publ. INEGI/FEUP (2017) PAPER REF: 6642

More information

Effective stress analysis of pile foundations in liquefiable soil

Effective stress analysis of pile foundations in liquefiable soil Effective stress analysis of pile foundations in liquefiable soil H. J. Bowen, M. Cubrinovski University of Canterbury, Christchurch, New Zealand. M. E. Jacka Tonkin and Taylor Ltd., Christchurch, New

More information

A Circular Cavity Embedded in a Full-Plane Under Impulse Pressure

A Circular Cavity Embedded in a Full-Plane Under Impulse Pressure Benchmark Example No. 50 A Circular Cavity Embedded in a Full-Plane Under Impulse Pressure SOFiSTiK 2018 VERiFiCATiON MANUAL BE50: A Circular Cavity Embedded in a Full-Plane Under Impulse Pressure VERiFiCATiON

More information

RESPONSE SPECTRUM METHOD FOR EVALUATING NONLINEAR AMPLIFICATION OF SURFACE STRATA

RESPONSE SPECTRUM METHOD FOR EVALUATING NONLINEAR AMPLIFICATION OF SURFACE STRATA RESPONSE SPECTRUM METHOD FOR EVALUATING NONLINEAR AMPLIFICATION OF SURFACE STRATA Kenji MIURA, Kohji KOYAMADA 2 and Masanori IIBA 3 Structuring Engineering, Hiroshima University, Higashi-hiroshima, Japan

More information

A Guide to linear dynamic analysis with Damping

A Guide to linear dynamic analysis with Damping A Guide to linear dynamic analysis with Damping This guide starts from the applications of linear dynamic response and its role in FEA simulation. Fundamental concepts and principles will be introduced

More information

Structural Dynamics Lecture 2. Outline of Lecture 2. Single-Degree-of-Freedom Systems (cont.)

Structural Dynamics Lecture 2. Outline of Lecture 2. Single-Degree-of-Freedom Systems (cont.) Outline of Single-Degree-of-Freedom Systems (cont.) Linear Viscous Damped Eigenvibrations. Logarithmic decrement. Response to Harmonic and Periodic Loads. 1 Single-Degreee-of-Freedom Systems (cont.). Linear

More information

Safety Concepts and Calibration of Partial Factors in European and North American Codes of Practice

Safety Concepts and Calibration of Partial Factors in European and North American Codes of Practice Safety Concepts and Calibration of Partial Factors in European and North American Codes of Practice The Dutch approach on Geotechnical Design by Eurocode 7 Adriaan van Seters Hein Jansen Fugro GeoServices

More information

COMPUTER AIDED NONLINEAR ANALYSIS OF MACHINE TOOL VIBRATIONS AND A DEVELOPED COMPUTER SOFTWARE

COMPUTER AIDED NONLINEAR ANALYSIS OF MACHINE TOOL VIBRATIONS AND A DEVELOPED COMPUTER SOFTWARE Mathematical and Computational Applications, Vol. 10, No. 3, pp. 377-385, 005. Association for Scientific Research COMPUTER AIDED NONLINEAR ANALYSIS OF MACHINE TOOL VIBRATIONS AND A DEVELOPED COMPUTER

More information

7 SEISMIC LOADS. 7.1 Estimation of Seismic Loads. 7.2 Calculation of Seismic Loads

7 SEISMIC LOADS. 7.1 Estimation of Seismic Loads. 7.2 Calculation of Seismic Loads 1 7 SEISMIC LOADS 7.1 Estimation of Seismic Loads 7.1.1 Seismic load and design earthquake motion (1) For ordinary buildings, seismic load is evaluated using the acceleration response spectrum (see Sec.7.2)

More information

Shake Table Study of Soil Structure Interaction Effects in Surface and Embedded Foundations

Shake Table Study of Soil Structure Interaction Effects in Surface and Embedded Foundations Shake Table Study of Soil Structure Interaction Effects in Surface and Embedded Foundations Naghdali Hosseinzadeh Structural Engineering Research Center, International Institute of Earthquake Engineering

More information

Numerical Investigation of the Effect of Recent Load History on the Behaviour of Steel Piles under Horizontal Loading

Numerical Investigation of the Effect of Recent Load History on the Behaviour of Steel Piles under Horizontal Loading Numerical Investigation of the Effect of Recent Load History on the Behaviour of Steel Piles under Horizontal Loading K. Abdel-Rahman Dr.-Ing., Institute of Soil Mechanics, Foundation Engineering and Waterpower

More information