Algebraic Aspects for Two Solvable Potentials

Size: px
Start display at page:

Download "Algebraic Aspects for Two Solvable Potentials"

Transcription

1 EJTP 8, No. 5 (11) 17 Electronic Journal of Theoretical Physics Algebraic Aspects for Two Solvable Potentials Sanjib Meyur TRGR Khemka High School, 3, Rabindra Sarani, Liluah, Howrah-711, West Bengal, India Received 6 July 1, Accepted 1 February 11, Published 5 May 11 Abstract: We show that Lie algebras provide us with an useful method for studying real eigenvalues corresponding to eigenfunctions of Hamiltonian. We discuss the SU() Lie algebra. We also discuss the eigenvalues for q-deformed Pöschl-Teller and Scarf potential via Nikiforov- Uvarov method. c Electronic Journal of Theoretical Physics. All rights reserved. Keywords: Schrödinger equation: Eigenvalues: Lie algebra: Nikiforov-Uvarov method PACS (1): 3.65.Fd; 3.65 Ge 1. Introduction The solution of the Schrödinger equation with physical potentials by using different techniques has an outgoing debate since the exact solution of the Schrödinger equation with any potential play an important role in quantum mechanics. Recently, there has been a growing interest in the study of Lie algebraic methods[1-5] which appear in different branches in physics and chemistry. For example, these methods provide a way to obtain the eigenfunctions of potentials in nuclear[6-7] and polyatomic molecules[8-9]. In this present paper, we study the Pöschl-Teller and Scarf potential in the framework of SU() Lie algebra. To solve the differential equation, we use the Nikiforov-Uvarov method. The arrangement of the present paper is as follows. A brief survey of Nikiforov- Uvarov method is given in Sec.. In Sec.3, we have discussed SU() Lie algebra. The q-deformed Pöschl-Teller interaction and the q-deformed Scarf interaction are discussed in Sec.. Lastly, a closing discussion is given Sec.5. sanjibmeyur@yahoo.co.in

2 18 Electronic Journal of Theoretical Physics 8, No. 5 (11) 17. Nikiforov-Uvarov method The conventional Nikiforov-Uvarov method[1], which received much interest, has been introduced for solving Schrödinger equation, Klein-Gordon and Dirac equations. The differential equations whose solutions are the special functions of hypergeometric type can be solved by using the Nikiforov-Uvarov method which has been developed by Nikiforov and Uvarov[1]. In this method, the one dimensional Schrödinger equation is reduced to an equation by an appropriate coordinate transformation x = x(s), d ψ(s) ds + τ(s) dψ(s) + σ(s) ψ(s) = (1) σ(s) ds σ (s) where σ(s) and σ(s) are polynomials, at most of second degree, and τ(s) is a polynomial, at most of first degree. In order to obtain a particular solution to Eq.(1), we set the following wave function as a multiple of two independent parts According to Eq.(1) and Eq.() we have ψ(s) =φ(s)y(s) () σ(s)y (s)+τ(s)y (s)+λy(s) = (3) which demands that the following conditions be satisfied: φ (s) φ(s) = π(s) σ(s) () τ(s) = τ(s)+π(s), τ (s) < (5) The condition τ (s) < helps to generate energy eigenvalues and corresponding eigenfunctions. The condition τ (s) > has widely discussed in[11]. The λ in (3) satisfies the following second-order differential equation λ = λ n = nτ n(n 1) (s) σ (s), n =, 1,,... (6) The polynomial τ(s) with the parameter s and prime factors show the differentials at first degree be negative. It is to be noted that λ or λ n are obtained from a particular solution of the form y(s) =y n (s) which is a polynomial of degree n. The second part y n (s) of the wavefunction Eq.() is the hypergeometric-type function whose polynomial solutions are connected by Rodrigues relation[1-1] d n y n (s) = C n ρ(s) ds n [σn (s)ρ(s)] (7) where C n is normalization constant and the weight function ρ(s) satisfies the relation as d [σ(s)ρ(s)] = τ(s)ρ(s) (8) ds

3 Electronic Journal of Theoretical Physics 8, No. 5 (11) On the other hand, in order to find the eigenfunctions, φ n (s) andy n (s) in Eqs.() and (7) and eigenvalues λ n in Eq.(6), we need to calculate the functions: ( ) (σ ) σ τ τ π(s) = ± σ + kσ (9) k = λ π (s) (1) In principle, since π(s) has to be a polynomial of degree at most one, the expression under the square root sign in Eq.(9) can be put into order to be the square of a polynomial of first degree[1], which is possible only if its discriminant is zero. Thus, the equation for k obtained from the solution of Eq.(9) can be further substituted in Eq.(1). In addition, the energy eigenvalues are obtained from Eqs.(6) and (1). 3. SU() Lie Algebra The generators J x, J y, J z of the SU() group characterized by the commutation relations [J x,j y ]=i J z, [J y,j z ]=i J x, [J z,j x ]=i J y (11) The differential realization in spherical coordinate (r, θ, φ) ofthesu() generators are J z = i [ ( 1 φ,j = sin θ ) + 1 ] sin θ θ θ sin (1) θ φ where φ<π and J = r p (13) We consider the Hamiltonian as H = Jz and the Casimir operator corresponding to the above generators is C = J. The Schrödinger equation is Using Eqs.(11) and (1), we have [ ( 1 sin θ ) sin θ θ θ Cψ = J ψ = j(j +1)ψ (1) + 1 sin θ ] φ + ε ψ = (15) where j(j +1) ε = (16) To solve the Eq. (15), we separated ψ(θ, φ) as ψ(θ, φ) =Θ(θ)Φ(φ) (17) From Eq.(15) and Eq.(17), we have two second order differential equations d Θ(θ) +cotθ dθ(θ) ] + [ε μ dθ dθ sin Θ(θ) = (18) θ

4 Electronic Journal of Theoretical Physics 8, No. 5 (11) 17 d Φ(φ) + μ Φ(φ) = (19) dφ where μ is constant. The solution of the Eq.(19) is periodic and must satisfy the periodic boundary condition Φ(φ +π) =Φ(φ), from which we have Φ(φ) = 1 π exp(iμφ), μ =, ±1, ±,... () After the substitution s =cosθ, the Eq.(18) becomes d Θ(θ) s [ ] dθ(θ) ε(1 s ) μ + Θ(θ) = (1) ds 1 s ds (1 s ) Now comparing Eq.(1) and Eq.(19), we have From Eq.(9) and Eq.(), we have τ(s) = s, σ(s) =1 s, σ(s) = εs + ε μ () π(s) =± (ε k)s (ε k)+μ (3) Due to Nikiforov-Uvarov method, the expression in the square root is taken as the square of a polynomial. Then, one gets the possible functions for each root k as +μs if k = ε μ μs if k = ε μ π(s) = +μ if k = ε μ if k = ε In order to obtain physical solution, τ(s) must satisfy τ (s) <, for which Hence from Eq.(5), We have From Eqs.(6) and (1), the λ is given by () π(s) = μs if k = ε μ (5) τ(s) = (1 + μs), τ (s) = μ (6) λ = λ n =n(1 + μ)+n(n 1) λ = ε μ(1 + μ) (7) Eq.(7) and Eq.(16) gives ε =(n + μ) 1 j = n + μ (8)

5 Electronic Journal of Theoretical Physics 8, No. 5 (11) 17 1 According to Eqs.(), (8), () and (6), the following expressions for φ(s) andρ(s) are obtained, φ(s) =(1 s ) μ, ρ(s) =(1 s ) μ (9) Using Eqs.(7), and (9), we have Using Eqs.(), (9), and (3), we have y n (s) =N n P (μ,μ) n (s) (3) Θ(θ) =N n (sin θ) μ P (μ,μ) n (cos θ) (31) where N n is the normalization constant[15-16] satisfying. (j +1)(j μ)! N n = (j + μ)! (3) Finally, from Eq.(17), Eq.() and Eq.(31), we have (j +1)(j μ)! ψ(θ, φ) = (sin θ) μ P n (μ,μ) (cos θ)exp(iμφ) (33) π(j + μ)!. Pöschl-Teller and Scarf Potential Set s =tanh q z on Eq.(1), the equation becomes [ d dz + ( Σ+V 1 sech qz ) ] Θ(θ) = (3) where Σ = μ, V 1 = qε and the deformed hyperbolic function is defined as: sinh q x = ex qe x, cosh q x = ex +qe x,tanh q x = sinhq x cosh q. The Eq.(3) is the Schrödinger x equation for the Pöschl-Teller potential. The eigenvalue and the wavefunction of Eq.(3) are given in Ref.[17]. Again introducing s =coth q z on Eq.(1), the equation becomes [ d dz + ( Σ V 1 cosech qz ) ] Θ(θ) = (35) The Eq.(35) is the Schrödinger equation for the Scarf potential. The eigenvalue and the wavefunction of Eq.(35) are given in Ref.[18]. Conclusions In this paper, we have derived the Schrödinger equation for Pöschl-Teller and Scarf potential by choosing an appropriate coordinate transformation. The Nikiforov-Uvarov method have been used to solve the second order differential equation. We have expressed the wave function in terms of Jacobi polynomial.

6 Electronic Journal of Theoretical Physics 8, No. 5 (11) 17 5 Cosech q x 3 Sech q x x x Fig. 1 A schematic representation of Pöschl-Teller potential for q =1,andε = 35,, 5, 5, 55. Fig. A schematic representation of Scarf potential for q = 1, and ε = 35,, 5, 5, x Fig. 3 A three dimensional representation of Pöschl-Teller potential for q =1,andε = 5. 1 y x Fig. A three dimensional representation of Scarf potential for q =1,andε = 5. 1 y References [1] B. Bagchi, C. Quesne, Phys. Lett. A, 73, Issues 5-6, 85 () [] B. Bagchi, C. Quesne, Phys. Lett. A, 3, Issue 1, 18 () [3] M.R. Setare and E. Karimi, Int. J. Theor. Phys., 6, 1381 (7) [] Sanjib Meyur, S. Debnath, Pramana. J. Phys., 73, 67 (9) [5] Sanjib Meyur, S. Debnath, Bul. J. Phys., 35, 1 (8) [6] A. Arima, F. Iachello, Ann. Phys.(NY), 99, 53 (1976) [7] A. Arima, F. Iachello, Ann. Phys.(NY), 13, 68 (1979) [8] O.S. Von Rosmalen, F. Iachello, R.D. Levine, A.E. Dieperink, J. Chem. Phys., 79, 515 (1983) [9] F. Iachello, R.D. Levine, Algebraic Theory of Molecules, Oxford University Press, New York, [1] A.F. Nikiforov, V.B. Uvarov, Special Functions of Mathematical Physics, Birkhäuser, Basel, 1988 [11] B. Gönül, K. Köksal, Phys. Scr., 75, 686 (7) [1] M. Abramowitz, I. Stegun, Handbook of Mathematical Function with Formulas, Graphs and Mathematical Tables, Dover, New York, 196

7 Electronic Journal of Theoretical Physics 8, No. 5 (11) 17 3 [13] I.S. Gradshteyn, I.M. Ryzhik, Tables of Integrals, Series and Products, AP, New York, 198. [1] W. Magnus, F. Oberhettinger, R.P. Soni, Formulas and Theorems for the Special Function of Mathematical Physics, 3rd ed., Springer, Berlin, 1966 [15] Y.F. Cheng, T.Q. Dai, Phys. Scr., 75, 7 (7) [16] C.Y. Chen, S.H. Dong, Phys. Lett. A, 335, 37 (5) [17] Sanjib Meyur, S. Debnath, Bul. J. Phys., 36, volume 1 17 (9) [18] Sanjib Meyur, S. Debnath, Bul. J. Phys., 35, volume, 9 (8)

8

Position Dependent Mass for the Hulthén plus Hyperbolic Cotangent Potential

Position Dependent Mass for the Hulthén plus Hyperbolic Cotangent Potential Bulg. J. Phys. 38 (011) 357 363 Position Dependent Mass for the Hulthén plus Hyperbolic Cotangent Potential Tansuk Rai Ganapat Rai Khemka High School, 3, Rabindra Sarani, Liluah, Howrah-71104, West Bengal,

More information

Non-Hermitian Hamiltonian with Gauge-Like Transformation

Non-Hermitian Hamiltonian with Gauge-Like Transformation Bulg. J. Phys. 35 (008) 3 Non-Hermitian Hamiltonian with Gauge-Like Transformation S. Meyur 1, S. Debnath 1 Tansuk Rai Ganapat Rai Khemka High School, 3, Rabindra Sarani, Liluah, Howrah-71104, India Department

More information

Supersymmetric Approach for Eckart Potential Using the NU Method

Supersymmetric Approach for Eckart Potential Using the NU Method Adv. Studies Theor. Phys., Vol. 5, 011, no. 10, 469-476 Supersymmetric Approach for Eckart Potential Using the NU Method H. Goudarzi 1 and V. Vahidi Department of Physics, Faculty of Science Urmia University,

More information

Approximate solutions of the Wei Hua oscillator using the Pekeris approximation and Nikiforov Uvarov method

Approximate solutions of the Wei Hua oscillator using the Pekeris approximation and Nikiforov Uvarov method PRAMANA c Indian Academy of Sciences Vol. 78, No. 1 journal of January 01 physics pp. 91 99 Approximate solutions of the Wei Hua oscillator using the Pekeris approximation and Nikiforov Uvarov method P

More information

EXACT SOLUTIONS OF THE KLEIN-GORDON EQUATION WITH HYLLERAAS POTENTIAL. Theoretical Physics Group, Department of Physics, University of Uyo-Nigeria.

EXACT SOLUTIONS OF THE KLEIN-GORDON EQUATION WITH HYLLERAAS POTENTIAL. Theoretical Physics Group, Department of Physics, University of Uyo-Nigeria. EXACT SOLUTIONS OF THE KLEIN-GORDON EQUATION WITH HYLLERAAS POTENTIAL Akpan N. Ikot +1, Oladunjoye A. Awoga 1 and Benedict I. Ita 2 1 Theoretical Physics Group, Department of Physics, University of Uyo-Nigeria.

More information

Approximate eigenvalue and eigenfunction solutions for the generalized Hulthén potential with any angular momentum

Approximate eigenvalue and eigenfunction solutions for the generalized Hulthén potential with any angular momentum Journal of Mathematical Chemistry, Vol. 4, No. 3, October 007 ( 006) DOI: 10.1007/s10910-006-9115-8 Approximate eigenvalue and eigenfunction solutions for the generalized Hulthén potential with any angular

More information

Exact Solution of the Dirac Equation for the Coulomb Potential Plus NAD Potential by Using the Nikiforov-Uvarov Method

Exact Solution of the Dirac Equation for the Coulomb Potential Plus NAD Potential by Using the Nikiforov-Uvarov Method Adv. Studies Theor. Phys., Vol. 6, 01, no. 15, 733-74 Exact Solution of the Dirac Equation for the Coulomb Potential Plus NAD Potential by Using the Nikiforov-Uvarov Method S. Bakkeshizadeh 1 and V. Vahidi

More information

Polynomial Solutions of Shcrödinger Equation with the Generalized Woods Saxon Potential

Polynomial Solutions of Shcrödinger Equation with the Generalized Woods Saxon Potential Polynomial Solutions of Shcrödinger Equation with the Generalized Woods Saxon Potential arxiv:nucl-th/0412021v1 7 Dec 2004 Cüneyt Berkdemir a, Ayşe Berkdemir a and Ramazan Sever b a Department of Physics,

More information

Solutions of the Klein-Gordon Equation for the Harmonic Oscillator Potential Plus NAD Potential

Solutions of the Klein-Gordon Equation for the Harmonic Oscillator Potential Plus NAD Potential Adv. Studies Theor. Phys., Vol. 6, 01, no. 6, 153-16 Solutions of the Klein-Gordon Equation for the Harmonic Oscillator Potential Plus NAD Potential H. Goudarzi, A. Jafari, S. Bakkeshizadeh 1 and V. Vahidi

More information

We study the D-dimensional Schrödinger equation for Eckart plus modified. deformed Hylleraas potentials using the generalized parametric form of

We study the D-dimensional Schrödinger equation for Eckart plus modified. deformed Hylleraas potentials using the generalized parametric form of Bound state solutions of D-dimensional Schrödinger equation with Eckart potential plus modified deformed Hylleraas potential Akpan N.Ikot 1,Oladunjoye A.Awoga 2 and Akaninyene D.Antia 3 Theoretical Physics

More information

Calculations of the Decay Transitions of the Modified Pöschl-Teller Potential Model via Bohr Hamiltonian Technique

Calculations of the Decay Transitions of the Modified Pöschl-Teller Potential Model via Bohr Hamiltonian Technique Calculations of the Decay Transitions of the Modified Pöschl-Teller Potential Model via Bohr Hamiltonian Technique Nahid Soheibi, Majid Hamzavi, Mahdi Eshghi,*, Sameer M. Ikhdair 3,4 Department of Physics,

More information

We are IntechOpen, the world s leading publisher of Open Access books Built by scientists, for scientists. International authors and editors

We are IntechOpen, the world s leading publisher of Open Access books Built by scientists, for scientists. International authors and editors We are IntechOpen, the world s leading publisher of Open Access books Built by scientists, for scientists 3,800 116,000 10M Open access books available International authors and editors Downloads Our authors

More information

arxiv: v1 [quant-ph] 9 Oct 2008

arxiv: v1 [quant-ph] 9 Oct 2008 Bound states of the Klein-Gordon equation for vector and scalar general Hulthén-type potentials in D-dimension Sameer M. Ikhdair 1, 1 Department of Physics, Near East University, Nicosia, North Cyprus,

More information

Analytical Approximate Solution of Schrödinger Equation in D Dimensions with Quadratic Exponential-Type Potential for Arbitrary l-state

Analytical Approximate Solution of Schrödinger Equation in D Dimensions with Quadratic Exponential-Type Potential for Arbitrary l-state Commun. Theor. Phys. 61 (01 57 63 Vol. 61, No., April 1, 01 Analytical Approximate Solution of Schrödinger Equation in D Dimensions with Quadratic Exponential-Type Potential for Arbitrary l-state Akpan

More information

arxiv: v2 [math-ph] 2 Jan 2011

arxiv: v2 [math-ph] 2 Jan 2011 Any l-state analytical solutions of the Klein-Gordon equation for the Woods-Saxon potential V. H. Badalov 1, H. I. Ahmadov, and S. V. Badalov 3 1 Institute for Physical Problems Baku State University,

More information

Exact classical and quantum mechanics of a generalized singular equation of quadratic Liénard type

Exact classical and quantum mechanics of a generalized singular equation of quadratic Liénard type Exact classical and quantum mechanics of a generalized singular equation of quadratic Liénard type L. H. Koudahoun a, J. Akande a, D. K. K. Adjaï a, Y. J. F. Kpomahou b and M. D. Monsia a1 a Department

More information

Exact solutions of the radial Schrödinger equation for some physical potentials

Exact solutions of the radial Schrödinger equation for some physical potentials arxiv:quant-ph/070141v1 14 Feb 007 Exact solutions of the radial Schrödinger equation for some physical potentials Sameer M. Ikhdair and Ramazan Sever Department of Physics, Near East University, Nicosia,

More information

arxiv:quant-ph/ v1 17 Oct 2004

arxiv:quant-ph/ v1 17 Oct 2004 A systematic study on the exact solution of the position dependent mass Schrödinger equation Ramazan Koç Department of Physics, Faculty of Engineering University of Gaziantep, 7310 Gaziantep, Turkey Mehmet

More information

Non-Relativistic Phase Shifts via Laplace Transform Approach

Non-Relativistic Phase Shifts via Laplace Transform Approach Bulg. J. Phys. 44 17) 1 3 Non-Relativistic Phase Shifts via Laplace Transform Approach A. Arda 1, T. Das 1 Department of Physics Education, Hacettepe University, 68, Ankara, Turkey Kodalia Prasanna Banga

More information

The massless Dirac-Weyl equation with deformed extended complex potentials

The massless Dirac-Weyl equation with deformed extended complex potentials The massless Dirac-Weyl equation with deformed extended complex potentials Journal: Manuscript ID cjp-017-0608.r1 Manuscript Type: Article Date Submitted by the Author: 7-Nov-017 Complete List of Authors:

More information

Available online at WSN 89 (2017) EISSN

Available online at  WSN 89 (2017) EISSN Available online at www.worldscientificnews.com WSN 89 (2017) 64-70 EISSN 2392-2192 L-state analytical solution of the Klein-Gordon equation with position dependent mass using modified Deng-Fan plus exponential

More information

Isospectrality of conventional and new extended potentials, second-order supersymmetry and role of PT symmetry

Isospectrality of conventional and new extended potentials, second-order supersymmetry and role of PT symmetry PRAMANA c Indian Academy of Sciences Vol. 73, No. journal of August 009 physics pp. 337 347 Isospectrality of conventional and new extended potentials, second-order supersymmetry and role of PT symmetry

More information

Bound state solutions of the Klein - Gordon equation for deformed Hulthen potential with position dependent mass

Bound state solutions of the Klein - Gordon equation for deformed Hulthen potential with position dependent mass Sri Lankan Journal of Physics, Vol. 13(1) (2012) 27-40 Institute of Physics - Sri Lanka Research Article Bound state solutions of the Klein - Gordon equation for deformed Hulthen potential with position

More information

Universal Associated Legendre Polynomials and Some Useful Definite Integrals

Universal Associated Legendre Polynomials and Some Useful Definite Integrals Commun. Theor. Phys. 66 0) 158 Vol. 66, No., August 1, 0 Universal Associated Legendre Polynomials and Some Useful Definite Integrals Chang-Yuan Chen í ), 1, Yuan You ), 1 Fa-Lin Lu öß ), 1 Dong-Sheng

More information

arxiv: v1 [nucl-th] 5 Jul 2012

arxiv: v1 [nucl-th] 5 Jul 2012 Approximate bound state solutions of the deformed Woods-Saxon potential using asymptotic iteration method Babatunde J. Falaye 1 Theoretical Physics Section, Department of Physics University of Ilorin,

More information

Calculating Binding Energy for Odd Isotopes of Beryllium (7 A 13)

Calculating Binding Energy for Odd Isotopes of Beryllium (7 A 13) Journal of Physical Science Application 5 (2015) 66-70 oi: 10.17265/2159-5348/2015.01.010 D DAVID PUBLISHING Calculating Bining Energy for O Isotopes of Beryllium (7 A 13) Fahime Mohammazae, Ali Akbar

More information

Quantum Mechanics in 3-Dimensions

Quantum Mechanics in 3-Dimensions Quantum Mechanics in 3-Dimensions Pavithran S Iyer, 2nd yr BSc Physics, Chennai Mathematical Institute Email: pavithra@cmi.ac.in August 28 th, 2009 1 Schrodinger equation in Spherical Coordinates 1.1 Transforming

More information

SOLUTIONS OF THE SCHRÖDINGER EQUATION WITH INVERSELY QUADRATIC HELLMANN PLUS MIE-TYPE POTENTIAL USING NIKIFOROV UVAROV METHOD

SOLUTIONS OF THE SCHRÖDINGER EQUATION WITH INVERSELY QUADRATIC HELLMANN PLUS MIE-TYPE POTENTIAL USING NIKIFOROV UVAROV METHOD SOLUTIONS OF THE SCHRÖDINGER EQUATION WITH INVERSELY QUADRATIC HELLMANN PLUS MIE-TYPE POTENTIAL USING NIKIFOROV UVAROV METHOD B I Ita Theoretical Quantum Mechanics Group, Department of Pure and Applied

More information

Extended Nikiforov-Uvarov method, roots of polynomial solutions, and functional Bethe ansatz method

Extended Nikiforov-Uvarov method, roots of polynomial solutions, and functional Bethe ansatz method arxiv:1704.01406v1 [math-ph] 5 Apr 2017 Extended Nikiforov-Uvarov method, roots of polynomial solutions, and functional Bethe ansatz method C. Quesne Physique Nucléaire Théorique et Physique Mathématique,

More information

arxiv: v1 [quant-ph] 22 Jul 2007

arxiv: v1 [quant-ph] 22 Jul 2007 Generalized Harmonic Oscillator and the Schrödinger Equation with Position-Dependent Mass JU Guo-Xing 1, CAI Chang-Ying 1, and REN Zhong-Zhou 1 1 Department of Physics, Nanjing University, Nanjing 10093,

More information

Solutions of the Klein-Gordon equation with the improved Rosen-Morse potential energy model

Solutions of the Klein-Gordon equation with the improved Rosen-Morse potential energy model Eur. Phys. J. Plus 2013) 128: 69 DOI 10.1140/epjp/i2013-13069-1 Regular Article THE EUROPEAN PHYSICAL JOURNAL PLUS Solutions of the Klein-Gordon equation with the improved Rosen-Morse potential energy

More information

Eigenfunctions of Spinless Particles in a One-dimensional Linear Potential Well

Eigenfunctions of Spinless Particles in a One-dimensional Linear Potential Well EJTP 6, No. 0 (009) 399 404 Electronic Journal of Theoretical Physics Eigenfunctions of Spinless Particles in a One-dimensional Linear Potential Well Nagalakshmi A. Rao 1 and B. A. Kagali 1 Department

More information

Algebraic Study of Stretching and Bending Modes in Linear Tetra-atomic Molecules: HCCCl

Algebraic Study of Stretching and Bending Modes in Linear Tetra-atomic Molecules: HCCCl The African Review of Physics (2013) 8:0016 99 Algebraic Study of Stretching and Bending Modes in Linear Tetra-atomic Molecules: HCCCl Kamal Ziadi * Department of Chemistry, Faculty of Science, University

More information

The q-deformation of Hyperbolic and Trigonometric Potentials

The q-deformation of Hyperbolic and Trigonometric Potentials International Journal of Difference Euations ISSN 0973-6069, Volume 9, Number 1, pp. 45 51 2014 http://campus.mst.edu/ijde The -deformation of Hyperbolic and Trigonometric Potentials Alina Dobrogowska

More information

Exact Bound State Solutions of the Schrödinger Equation for Noncentral Potential via the Nikiforov-Uvarov Method

Exact Bound State Solutions of the Schrödinger Equation for Noncentral Potential via the Nikiforov-Uvarov Method Exact Bound State Solutions of the Schrödinger Equation for Noncentral Potential via the Nikiforov-Uvarov Method Metin Aktaş arxiv:quant-ph/0701063v3 9 Jul 009 Department of Physics, Faculty of Arts and

More information

Hamiltonians with Position-Dependent Mass, Deformations and Supersymmetry

Hamiltonians with Position-Dependent Mass, Deformations and Supersymmetry Bulg. J. Phys. 33 (2006) 308 38 Hamiltonians with Position-Dependent Mass Deformations and Supersymmetry C. Quesne B. Bagchi 2 A. Banerjee 2 V.M. Tkachuk 3 Physique Nucléaire Théorique et Physique Mathématique

More information

Available online at WSN 77(2) (2017) EISSN SHORT COMMUNICATION

Available online at  WSN 77(2) (2017) EISSN SHORT COMMUNICATION Available online at www.worldscientificnews.com WSN 77(2) (2017) 378-384 EISSN 2392-2192 SHORT COMMUNICATION Bound State Solutions of the s-wave Schrodinger Equation for Generalized Woods-Saxon plus Mie-Type

More information

SPIN AND PSEUDOSPIN SYMMETRIES IN RELATIVISTIC TRIGONOMETRIC PÖSCHL TELLER POTENTIAL WITH CENTRIFUGAL BARRIER

SPIN AND PSEUDOSPIN SYMMETRIES IN RELATIVISTIC TRIGONOMETRIC PÖSCHL TELLER POTENTIAL WITH CENTRIFUGAL BARRIER International Journal of Modern Physics E Vol., No. 0) 50097 8 pages) c World Scientific Publishing Company DOI: 0.4/S08303500978 SPIN AND PSEUDOSPIN SYMMETRIES IN RELATIVISTIC TRIGONOMETRIC PÖSCHL TELLER

More information

6.2. The Hyperbolic Functions. Introduction. Prerequisites. Learning Outcomes

6.2. The Hyperbolic Functions. Introduction. Prerequisites. Learning Outcomes The Hyperbolic Functions 6. Introduction The hyperbolic functions cosh x, sinh x, tanh x etc are certain combinations of the exponential functions e x and e x. The notation implies a close relationship

More information

Connecting Jacobi elliptic functions with different modulus parameters

Connecting Jacobi elliptic functions with different modulus parameters PRAMANA c Indian Academy of Sciences Vol. 63, No. 5 journal of November 2004 physics pp. 921 936 Connecting Jacobi elliptic functions with different modulus parameters AVINASH KHARE 1 and UDAY SUKHATME

More information

arxiv: v1 [quant-ph] 5 Sep 2013

arxiv: v1 [quant-ph] 5 Sep 2013 Application of the Asymptotic Taylor Expansion Method to Bistable potentials arxiv:1309.1381v1 [quant-ph] 5 Sep 2013 Okan Özer, Halide Koklu and Serap Resitoglu Department of Engineering Physics, Faculty

More information

-RIGID SOLUTION OF THE BOHR HAMILTONIAN FOR = 30 COMPARED TO THE E(5) CRITICAL POINT SYMMETRY

-RIGID SOLUTION OF THE BOHR HAMILTONIAN FOR = 30 COMPARED TO THE E(5) CRITICAL POINT SYMMETRY Dedicated to Acad. Aureliu Sãndulescu s 75th Anniversary -RIGID SOLUTION OF THE BOHR HAMILTONIAN FOR = 30 COMPARED TO THE E(5) CRITICAL POINT SYMMETRY DENNIS BONATSOS 1, D. LENIS 1, D. PETRELLIS 1, P.

More information

A class of exactly solvable rationally extended non-central potentials in Two and Three Dimensions

A class of exactly solvable rationally extended non-central potentials in Two and Three Dimensions A class of exactly solvable rationally extended non-central potentials in Two and Three Dimensions arxiv:1707.089v1 [quant-ph] 10 Jul 017 Nisha Kumari a, Rajesh Kumar Yadav b, Avinash Khare c and Bhabani

More information

1 r 2 sin 2 θ. This must be the case as we can see by the following argument + L2

1 r 2 sin 2 θ. This must be the case as we can see by the following argument + L2 PHYS 4 3. The momentum operator in three dimensions is p = i Therefore the momentum-squared operator is [ p 2 = 2 2 = 2 r 2 ) + r 2 r r r 2 sin θ We notice that this can be written as sin θ ) + θ θ r 2

More information

arxiv:hep-th/ v1 11 Mar 2005

arxiv:hep-th/ v1 11 Mar 2005 Scattering of a Klein-Gordon particle by a Woods-Saxon potential Clara Rojas and Víctor M. Villalba Centro de Física IVIC Apdo 21827, Caracas 12A, Venezuela (Dated: February 1, 28) Abstract arxiv:hep-th/5318v1

More information

arxiv: v2 [math.ca] 19 Oct 2012

arxiv: v2 [math.ca] 19 Oct 2012 Symmetry, Integrability and Geometry: Methods and Applications Def inite Integrals using Orthogonality and Integral Transforms SIGMA 8 (, 77, pages Howard S. COHL and Hans VOLKMER arxiv:.4v [math.ca] 9

More information

Band Structure and matrix Methods

Band Structure and matrix Methods Quantum Mechanics Physics 34 -Winter 0-University of Chicago Outline Band Structure and matrix Methods Jing Zhou ID:4473 jessiezj@uchicago.edu March 0, 0 Introduction Supersymmetric Quantum Mechanics and

More information

Models of quadratic quantum algebras and their relation to classical superintegrable systems

Models of quadratic quantum algebras and their relation to classical superintegrable systems Models of quadratic quantum algebras and their relation to classical superintegrable systems E. G, Kalnins, 1 W. Miller, Jr., 2 and S. Post 2 1 Department of Mathematics, University of Waikato, Hamilton,

More information

University of Calabar, Calabar, Cross River State, Nigeria. 2 Department of Chemistry, ModibboAdama University of Technology, Yola, Adamawa

University of Calabar, Calabar, Cross River State, Nigeria. 2 Department of Chemistry, ModibboAdama University of Technology, Yola, Adamawa WKB SOLUTIONS FOR QUANTUM MECHANICAL GRAVITATIONAL POTENTIAL PLUS HARMONIC OSCILLATOR POTENTIAL H. Louis 1&4, B. I. Ita 1, N. A. Nzeata-Ibe 1, P. I. Amos, I. Joseph, A. N Ikot 3 and T. O. Magu 1 1 Physical/Theoretical

More information

Connection Formula for Heine s Hypergeometric Function with q = 1

Connection Formula for Heine s Hypergeometric Function with q = 1 Connection Formula for Heine s Hypergeometric Function with q = 1 Ryu SASAKI Department of Physics, Shinshu University based on arxiv:1411.307[math-ph], J. Phys. A in 48 (015) 11504, with S. Odake nd Numazu

More information

Symmetries for fun and profit

Symmetries for fun and profit Symmetries for fun and profit Sourendu Gupta TIFR Graduate School Quantum Mechanics 1 August 28, 2008 Sourendu Gupta (TIFR Graduate School) Symmetries for fun and profit QM I 1 / 20 Outline 1 The isotropic

More information

Superintegrability in a non-conformally-at space

Superintegrability in a non-conformally-at space (Joint work with Ernie Kalnins and Willard Miller) School of Mathematics and Statistics University of New South Wales ANU, September 2011 Outline Background What is a superintegrable system Extending the

More information

International Conference on Mathematics, Science, and Education 2015 (ICMSE 2015)

International Conference on Mathematics, Science, and Education 2015 (ICMSE 2015) International Conference on Mathematics, Science, and Education 215 ICMSE 215 Solution of the Dirac equation for pseudospin symmetry with Eckart potential and trigonometric Manning Rosen potential using

More information

The solution of 4-dimensional Schrodinger equation for Scarf potential and its partner potential constructed By SUSY QM

The solution of 4-dimensional Schrodinger equation for Scarf potential and its partner potential constructed By SUSY QM Journal of Physics: Conference Series PAPER OPEN ACCESS The solution of -dimensional Schrodinger equation for Scarf potential its partner potential constructed By SUSY QM To cite this article: Wahyulianti

More information

New Exact Solutions to NLS Equation and Coupled NLS Equations

New Exact Solutions to NLS Equation and Coupled NLS Equations Commun. Theor. Phys. (Beijing, China 4 (2004 pp. 89 94 c International Academic Publishers Vol. 4, No. 2, February 5, 2004 New Exact Solutions to NLS Euation Coupled NLS Euations FU Zun-Tao, LIU Shi-Da,

More information

Rational Form Solitary Wave Solutions and Doubly Periodic Wave Solutions to (1+1)-Dimensional Dispersive Long Wave Equation

Rational Form Solitary Wave Solutions and Doubly Periodic Wave Solutions to (1+1)-Dimensional Dispersive Long Wave Equation Commun. Theor. Phys. (Beijing, China) 43 (005) pp. 975 98 c International Academic Publishers Vol. 43, No. 6, June 15, 005 Rational Form Solitary Wave Solutions and Doubly Periodic Wave Solutions to (1+1)-Dimensional

More information

Introduction to Spherical Harmonics

Introduction to Spherical Harmonics Introduction to Spherical Harmonics Lawrence Liu 3 June 4 Possibly useful information. Legendre polynomials. Rodrigues formula:. Generating function: d n P n x = x n n! dx n n. wx, t = xt t = P n xt n,

More information

arxiv: v1 [physics.class-ph] 28 Sep 2007

arxiv: v1 [physics.class-ph] 28 Sep 2007 arxiv:0709.4649v1 [physics.class-ph] 8 Sep 007 Factorizations of one dimensional classical systems Şengül Kuru and Javier Negro October 4, 018 Departamento de Física Teórica, Atómica y Óptica, Universidad

More information

Altuğ Arda. Hacettepe University. Ph. D. in Department of Physics Engineering 2003

Altuğ Arda. Hacettepe University. Ph. D. in Department of Physics Engineering 2003 Hacettepe University Faculty of Education arda@hacettepe.edu.tr http://yunus.hacettepe.edu.tr/arda PARTICULARS Education Hacettepe University Ankara Ph. D. in Department of Physics Engineering 2003 Hacettepe

More information

Electromagnetic Coupling of Negative Parity Nucleon Resonances N (1535) Based on Nonrelativistic Constituent Quark Model

Electromagnetic Coupling of Negative Parity Nucleon Resonances N (1535) Based on Nonrelativistic Constituent Quark Model Commun. Theor. Phys. 69 18 43 49 Vol. 69, No. 1, January 1, 18 Electromagnetic Coupling of Negative Parity Nucleon Resonances N 1535 Based on Nonrelativistic Constituent Quark Model Sara Parsaei 1, and

More information

arxiv:q-alg/ v1 21 Oct 1995

arxiv:q-alg/ v1 21 Oct 1995 Connection between q-deformed anharmonic oscillators and quasi-exactly soluble potentials Dennis Bonatsos 1,2 *, C. Daskaloyannis 3+ and Harry A. Mavromatis 4# 1 European Centre for Theoretical Studies

More information

Harmonic oscillator Wigner function extension to exceptional polynomials

Harmonic oscillator Wigner function extension to exceptional polynomials Pramana J. Phys. (2018) 91:39 https://doi.org/10.1007/s12043-018-1619-9 Indian Academy of Sciences Harmonic oscillator Wigner function extension to exceptional polynomials K V S SHIV CHAITANYA Department

More information

The interacting boson model

The interacting boson model The interacting boson model P. Van Isacker, GANIL, France Introduction to the IBM Practical applications of the IBM Overview of nuclear models Ab initio methods: Description of nuclei starting from the

More information

Special Functions of Mathematical Physics

Special Functions of Mathematical Physics Arnold F. Nikiforov Vasilii B. Uvarov Special Functions of Mathematical Physics A Unified Introduction with Applications Translated from the Russian by Ralph P. Boas 1988 Birkhäuser Basel Boston Table

More information

A New Integrable Couplings of Classical-Boussinesq Hierarchy with Self-Consistent Sources

A New Integrable Couplings of Classical-Boussinesq Hierarchy with Self-Consistent Sources Commun. Theor. Phys. Beijing, China 54 21 pp. 1 6 c Chinese Physical Society and IOP Publishing Ltd Vol. 54, No. 1, July 15, 21 A New Integrable Couplings of Classical-Boussinesq Hierarchy with Self-Consistent

More information

Partial Dynamical Symmetry in Deformed Nuclei. Abstract

Partial Dynamical Symmetry in Deformed Nuclei. Abstract Partial Dynamical Symmetry in Deformed Nuclei Amiram Leviatan Racah Institute of Physics, The Hebrew University, Jerusalem 91904, Israel arxiv:nucl-th/9606049v1 23 Jun 1996 Abstract We discuss the notion

More information

Angular momentum. Quantum mechanics. Orbital angular momentum

Angular momentum. Quantum mechanics. Orbital angular momentum Angular momentum 1 Orbital angular momentum Consider a particle described by the Cartesian coordinates (x, y, z r and their conjugate momenta (p x, p y, p z p. The classical definition of the orbital angular

More information

Department of Applied Mathematics, Dalian University of Technology, Dalian , China

Department of Applied Mathematics, Dalian University of Technology, Dalian , China Commun Theor Phys (Being, China 45 (006 pp 199 06 c International Academic Publishers Vol 45, No, February 15, 006 Further Extended Jacobi Elliptic Function Rational Expansion Method and New Families of

More information

MODELING MATTER AT NANOSCALES. 4. Introduction to quantum treatments Outline of the principles and the method of quantum mechanics

MODELING MATTER AT NANOSCALES. 4. Introduction to quantum treatments Outline of the principles and the method of quantum mechanics MODELING MATTER AT NANOSCALES 4. Introduction to quantum treatments 4.01. Outline of the principles and the method of quantum mechanics 1 Why quantum mechanics? Physics and sizes in universe Knowledge

More information

One-electron Atom. (in spherical coordinates), where Y lm. are spherical harmonics, we arrive at the following Schrödinger equation:

One-electron Atom. (in spherical coordinates), where Y lm. are spherical harmonics, we arrive at the following Schrödinger equation: One-electron Atom The atomic orbitals of hydrogen-like atoms are solutions to the Schrödinger equation in a spherically symmetric potential. In this case, the potential term is the potential given by Coulomb's

More information

Solving ground eigenvalue and eigenfunction of spheroidal wave equation at low frequency by supersymmetric quantum mechanics method

Solving ground eigenvalue and eigenfunction of spheroidal wave equation at low frequency by supersymmetric quantum mechanics method Chin. Phys. B Vol. 0, No. (0) 00304 Solving ground eigenvalue eigenfunction of spheroidal wave equation at low frequency by supersymmetric quantum mechanics method Tang Wen-Lin( ) Tian Gui-Hua( ) School

More information

Structure relations for the symmetry algebras of classical and quantum superintegrable systems

Structure relations for the symmetry algebras of classical and quantum superintegrable systems UNAM talk p. 1/4 Structure relations for the symmetry algebras of classical and quantum superintegrable systems Willard Miller miller@ima.umn.edu University of Minnesota UNAM talk p. 2/4 Abstract 1 A quantum

More information

The rotating Morse potential energy eigenvalues solved by using the analytical transfer matrix method

The rotating Morse potential energy eigenvalues solved by using the analytical transfer matrix method Chin. Phys. B Vol. 21, No. 1 212 133 The rotating Morse potential energy eigenvalues solved by using the analytical transfer matrix method He Ying 何英, Tao Qiu-Gong 陶求功, and Yang Yan-Fang 杨艳芳 Department

More information

Computation of the scattering amplitude in the spheroidal coordinates

Computation of the scattering amplitude in the spheroidal coordinates Computation of the scattering amplitude in the spheroidal coordinates Takuya MINE Kyoto Institute of Technology 12 October 2015 Lab Seminar at Kochi University of Technology Takuya MINE (KIT) Spheroidal

More information

Representation of su(1,1) Algebra and Hall Effect

Representation of su(1,1) Algebra and Hall Effect EJTP 6, No. 21 (2009) 157 164 Electronic Journal of Theoretical Physics Representation of su(1,1) Algebra and Hall Effect J. Sadeghi 1 and B. Pourhassan 1 1 Sciences Faculty, Department of Physics, Mazandaran

More information

Nuclear Shapes in the Interacting Vector Boson Model

Nuclear Shapes in the Interacting Vector Boson Model NUCLEAR THEORY, Vol. 32 (2013) eds. A.I. Georgieva, N. Minkov, Heron Press, Sofia Nuclear Shapes in the Interacting Vector Boson Model H.G. Ganev Joint Institute for Nuclear Research, 141980 Dubna, Russia

More information

Addendum to On the derivative of the Legendre function of the first kind with respect to its degree

Addendum to On the derivative of the Legendre function of the first kind with respect to its degree IOP PUBLISHING JOURNAL OF PHYSICS A: MATHEMATICAL AND THEORETICAL J. Phys. A: Math. Theor. 40 (007) 14887 14891 doi:10.1088/1751-8113/40/49/00 ADDENDUM Addendum to On the derivative of the Legendre function

More information

Travelling wave solutions for a CBS equation in dimensions

Travelling wave solutions for a CBS equation in dimensions AMERICAN CONFERENCE ON APPLIED MATHEMATICS (MATH '8), Harvard, Massachusetts, USA, March -6, 8 Travelling wave solutions for a CBS equation in + dimensions MARIA LUZ GANDARIAS University of Cádiz Department

More information

Massive Scalar Field in Anti-deSitter Space: a Superpotential Approach

Massive Scalar Field in Anti-deSitter Space: a Superpotential Approach P R A Y A S Students Journal of Physics c Indian Association of Physics Teachers Massive Scalar Field in Anti-deSitter Space: a Superpotential Approach M. Sc., Physics Department, Utkal University, Bhubaneswar-751

More information

The 3 dimensional Schrödinger Equation

The 3 dimensional Schrödinger Equation Chapter 6 The 3 dimensional Schrödinger Equation 6.1 Angular Momentum To study how angular momentum is represented in quantum mechanics we start by reviewing the classical vector of orbital angular momentum

More information

Differential Representations of SO(4) Dynamical Group

Differential Representations of SO(4) Dynamical Group Commun. Theor. Phys. Beijing China 50 2008 pp. 63 68 c Chinese Physical Society Vol. 50 No. July 5 2008 Differential Representations of SO4 Dynamical Group ZHAO Dun WANG Shun-Jin 2 and LUO Hong-Gang 34

More information

Sample Quantum Chemistry Exam 2 Solutions

Sample Quantum Chemistry Exam 2 Solutions Chemistry 46 Fall 7 Dr. Jean M. Standard Name SAMPE EXAM Sample Quantum Chemistry Exam Solutions.) ( points) Answer the following questions by selecting the correct answer from the choices provided. a.)

More information

New Homoclinic and Heteroclinic Solutions for Zakharov System

New Homoclinic and Heteroclinic Solutions for Zakharov System Commun. Theor. Phys. 58 (2012) 749 753 Vol. 58, No. 5, November 15, 2012 New Homoclinic and Heteroclinic Solutions for Zakharov System WANG Chuan-Jian ( ), 1 DAI Zheng-De (à ), 2, and MU Gui (½ ) 3 1 Department

More information

arxiv:quant-ph/ v1 21 Feb 2001

arxiv:quant-ph/ v1 21 Feb 2001 Explicit summation of the constituent WKB series and new approximate wavefunctions arxiv:quant-ph/0102111v1 21 Feb 2001 1. Introduction Vladimir V Kudryashov and Yulian V Vanne Institute of Physics, National

More information

Chemistry 432 Problem Set 4 Spring 2018 Solutions

Chemistry 432 Problem Set 4 Spring 2018 Solutions Chemistry 4 Problem Set 4 Spring 18 Solutions 1. V I II III a b c A one-dimensional particle of mass m is confined to move under the influence of the potential x a V V (x) = a < x b b x c elsewhere and

More information

Analytic l-state solutions of the Klein Gordon equation for q-deformed Woods-Saxon plus generalized ring shape potential

Analytic l-state solutions of the Klein Gordon equation for q-deformed Woods-Saxon plus generalized ring shape potential Analytic l-state solutions of the Klein Gordon equation for q-deformed Woods-Saxon plus generalized ring shape potential M. Chabab, A. Lahbas, M. Oulne * High Energy Physics and Astrophysics Laboratory,

More information

The interacting boson model

The interacting boson model The interacting boson model P. Van Isacker, GANIL, France Dynamical symmetries of the IBM Neutrons, protons and F-spin (IBM-2) T=0 and T=1 bosons: IBM-3 and IBM-4 The interacting boson model Nuclear collective

More information

arxiv:physics/ v1 [math-ph] 17 May 1997

arxiv:physics/ v1 [math-ph] 17 May 1997 arxiv:physics/975v1 [math-ph] 17 May 1997 Quasi-Exactly Solvable Time-Dependent Potentials Federico Finkel ) Departamento de Física Teórica II Universidad Complutense Madrid 84 SPAIN Abstract Niky Kamran

More information

World Journal of Applied Physics

World Journal of Applied Physics World Journal of Applied Physics 2017; 2(): 77-84 http://www.sciencepublishinggroup.com/j/wjap doi: 10.11648/j.wjap.2017020.1 Analytic Spin and Pseudospin Solutions to the Dirac Equation for the Quadratic

More information

arxiv: v2 [quant-ph] 9 Jul 2009

arxiv: v2 [quant-ph] 9 Jul 2009 The integral property of the spheroidal wave functions Guihua Tian 1,, Shuquan Zhong 1 1.School of Science, Beijing University of Posts And Telecommunications. Beijing 10087 China..Department of Physics,

More information

RELATIVISTIC BOUND STATES IN THE PRESENCE OF SPHERICALLY RING-SHAPED. POTENTIAL WITH ARBITRARY l-states

RELATIVISTIC BOUND STATES IN THE PRESENCE OF SPHERICALLY RING-SHAPED. POTENTIAL WITH ARBITRARY l-states International Journal of Modern Physics E Vol. 22, No. 3 (2013) 1350015 (16 pages) c World Scientific Publishing Company DOI: 10.1142/S0218301313500158 RELATIVISTIC BOUND STATES IN THE PRESENCE OF SPHERICALLY

More information

Total Angular Momentum for Hydrogen

Total Angular Momentum for Hydrogen Physics 4 Lecture 7 Total Angular Momentum for Hydrogen Lecture 7 Physics 4 Quantum Mechanics I Friday, April th, 008 We have the Hydrogen Hamiltonian for central potential φ(r), we can write: H r = p

More information

Exact propagator for generalized Ornstein-Uhlenbeck processes

Exact propagator for generalized Ornstein-Uhlenbeck processes Exact propagator for generalized Ornstein-Uhlenbeck processes F. Mota-Furtado* and P. F. O Mahony Department of Mathematics, Royal Holloway, University of London, Egham, Surrey TW20 0EX, United Kingdom

More information

ONE AND MANY ELECTRON ATOMS Chapter 15

ONE AND MANY ELECTRON ATOMS Chapter 15 See Week 8 lecture notes. This is exactly the same as the Hamiltonian for nonrigid rotation. In Week 8 lecture notes it was shown that this is the operator for Lˆ 2, the square of the angular momentum.

More information

Chapter 3 Differentiation Rules (continued)

Chapter 3 Differentiation Rules (continued) Chapter 3 Differentiation Rules (continued) Sec 3.5: Implicit Differentiation (continued) Implicit Differentiation What if you want to find the slope of the tangent line to a curve that is not the graph

More information

arxiv: v1 [quant-ph] 15 Dec 2011

arxiv: v1 [quant-ph] 15 Dec 2011 Sharp and Infinite Boundaries in the Path Integral Formalism Phillip Dluhy and Asim Gangopadhyaya Loyola University Chicago, Department of Physics, Chicago, IL 666 Abstract arxiv:.3674v [quant-ph 5 Dec

More information

A Realization of Yangian and Its Applications to the Bi-spin System in an External Magnetic Field

A Realization of Yangian and Its Applications to the Bi-spin System in an External Magnetic Field Commun. Theor. Phys. Beijing, China) 39 003) pp. 1 5 c International Academic Publishers Vol. 39, No. 1, January 15, 003 A Realization of Yangian and Its Applications to the Bi-spin System in an External

More information

Continuous vs. discrete models for the quantum harmonic oscillator and the hydrogen atom

Continuous vs. discrete models for the quantum harmonic oscillator and the hydrogen atom Continuous vs. discrete models for the quantum harmonic oscillator and the hydrogen atom Miguel Lorente 1 Departamento de Física, Universidad de Oviedo, 33007 Oviedo, Spain The Kravchuk and Meixner polynomials

More information

arxiv:math/ v1 [math.ca] 9 Jul 1993

arxiv:math/ v1 [math.ca] 9 Jul 1993 The q-harmonic Oscillator and the Al-Salam and Carlitz polynomials Dedicated to the Memory of Professor Ya. A. Smorodinskiĭ R. Askey and S. K. Suslov arxiv:math/9307207v1 [math.ca] 9 Jul 1993 Abstract.

More information

A NEW APPROACH FOR SOLITON SOLUTIONS OF RLW EQUATION AND (1+2)-DIMENSIONAL NONLINEAR SCHRÖDINGER S EQUATION

A NEW APPROACH FOR SOLITON SOLUTIONS OF RLW EQUATION AND (1+2)-DIMENSIONAL NONLINEAR SCHRÖDINGER S EQUATION A NEW APPROACH FOR SOLITON SOLUTIONS OF RLW EQUATION AND (+2-DIMENSIONAL NONLINEAR SCHRÖDINGER S EQUATION ALI FILIZ ABDULLAH SONMEZOGLU MEHMET EKICI and DURGUN DURAN Communicated by Horia Cornean In this

More information