Algebraic Study of Stretching and Bending Modes in Linear Tetra-atomic Molecules: HCCCl

Size: px
Start display at page:

Download "Algebraic Study of Stretching and Bending Modes in Linear Tetra-atomic Molecules: HCCCl"

Transcription

1 The African Review of Physics (2013) 8: Algebraic Study of Stretching and Bending Modes in Linear Tetra-atomic Molecules: HCCCl Kamal Ziadi * Department of Chemistry, Faculty of Science, University of Batna, Algeria In this work, we present a three dimensional vibron model to study both stretching and bending models of linear tetraatomic molecules HCCCl. We describe the vibrational levels of tetra-atomic molecules through the framework of the algebraic approach by applying algebra. The Hamiltonian contains the combination of the invariant operators of the algebra and sub-algebra of a given chains. 1. Introduction The molecular spectroscopy takes a very particular place in chemistry, physics and in science in general. It is suitable for providing precise answers to several of the most searching questions, basically those concerning the atomic and molecular structures (small, large, linear, non-linear, planar or non-planar). In the last few years, the experimental study of vibrational spectrum has determined a number of bands of a large molecule. The treatment of the molecular vibrational spectra requires theoretical models in order to study and understand the experimental data. Quite often, rot-vibrational spectra of molecule are studied by means of empirical procedures. A convenient formula for diatomic molecules is the Dunham expansion [1]. However, such a phenomenological approach is really very poor since the molecular wave function is completely unknown. Second, the model based on the solution of many-body Schrödinger equation with inter-atomic potential becomes more complex to apply in the case of polyatomic molecules. Recently, new approaches, called algebraic models, have been developed and successfully applied to nuclear, atomic and molecular structure. Algebraic techniques have been applied to many molecules for a number of years, and a recent review is available. The model U(6) for nuclear structure, U(2) for diatomic molecules in one dimension [2], and the model U(4) for diatomic molecules in three dimensions have been applied with success by [2-5] for diatomic molecules and tri-atomic molecules [6-11], which implies that it is also separate, but a coupled diatomic molecule. Later, it was extended to tetra-atomic molecules [12-14]). U(4) and U(2) algebraic model have generally been used so far for a treatment of rot-vibrational spectra of molecules. U(4) model has an advantage that both rotations and vibrations are studied simultaneously, but in our work we focus only on vibrational spectra. For a four-atom molecule such as HCCCl, there will be five vibrational normal modes. By studying the nuclear displacements corresponding to changes in each of the vibrational normal coordinates, we shall focus on five normal modes of molecule HCCCl: two symmetric stretches, one asymmetric stretch, the Trans bend, and the Cis bend. The relative displacement of atoms in different modes is shown in Fig Brief Algebraic Theory The vibron model of four-body system is more similar to that of linear tri-atomic molecules type. In the traditional model, we cognize that tetraatomic molecules have three independent vectors coordinates: r1, r2 and r3. In the algebraic technique we know that in the case of tetra-atomic molecules XYYZ, to each bond for i =1, 2, 3, one associates an algebra G (i =1, 2, 3), which is taken to be always G=U(4). * ziadi_kamal@yahoo.fr

2 The African Review of Physics (2013) 8: Symmetric HC stretch CC stretch Asymmetric CCl stretch Trans bend Cis bend H C C Cl Fig.1: Local vibrational quantum numbers of linear tetra-atomic molecule. For four-body system, an algebra is constructed taking the direct sum of three U(4) algebra, one for each band. The Hamiltonian, which we select from the full algebraic Hamiltonian, is a combination of invariant operators of the algebra and its subalgebra of a given chain. The first is through the SO(4) chain, ; and the second is through the U(3) chain, The wave functions are given by: N N N,ω,0,ω,0,τ,τ, ω,0,σ,σ,j,m These quantum numbers correspond to the following chain of sub-algebra [12,13]: ## 4 $ 4 4 The product %,0 %,0 limits the values of the quantum numbers &,& and the values of quantum numbers ',' are given by (1) ' = 1 2 & % +& & % & +, -, =0,1,,min & +&,%, =0,1,,min & &,% (2) In the model two fits have been performed: 2.1. The lowest-order expansion in terms of invariant operators When the Hamiltonian describing the boson system is written in terms of the Casimir operators in one of the chains, the eigenvalue problem can be solved analytically = : + 9 : +9 : +9 : +9 : (3) The operators : ;,: ;< are the Casimir operator of ;, =1,2,3 and O 4 O 4,,- =1,2,3 respectively, and : is the Casimir operator of O 4 O 4 O 4. This Hamiltonian is diagonal in the local basis (1) with its eigenvalues written by the following formula [15]. ' = 1 2 & % +& + & % & +,+-

3 The African Review of Physics (2013) 8: >,>,>,%,%,%,&,&,',' = % % +2+9 % % % % +2+9 & & +2+& +9 ' ' +2+' (4) To simplify this equation, we must transfer the algebraic quantum numbers ω,ω,ω,τ,τ,η,η to the usual spectroscopic quantum numbers, 6, B, 5, 6, C 3 D E 3 F. Here v H,v I denote stretching vibration associated with bonds 1 and 2 (C H and C-Cl stretching modes) and v L is associated with bond 3 (C C stretching mode), and v M N O v P N Q denotes the doubly degenerate bending vibration H C C and C-C-Cl bending modes). So we have [12,15]: ω =N 2v H, ω =N 2v I, ω =N 2v L τ =N +N 2v H +2v I +v P, τ =l P, σ =N +N +N 2v H +2v L +2v I +v M + v P, σ =l M +l P (5) Now, the preceding pattern is characterized by quantum numbers 6, B, 5, C 3 D, E 3 F Eqn. (4) can be written, using Eqn. (5), as 7 6, B, 5, C 3 D, E 3 F = > > > +1 B B 9 2> +> +> E E T E 9 2> +> + > B C + E B C + E T E +T C (6) 3. Mode of Calculation The algebraic model introduced here is a model of coupled one-dimensional Morse oscillators describing the H-C, C-C and C-Cl stretching vibrations of HCCCl. The Hamiltonian (Eqn. 3) is constructed and contains the first and the secondorder combination of invariant operators. The numbers N1, N2 and N3 are the vibron numbers of each bond, which are related to the vibrational frequency of the H-C, C-C and C-Cl and anharmonicity by the relation [13, 14] > =V W F W F X F Y 2 (8) Where, % E and % E Z E are the spectroscopic constants related to the stretching interaction of diatomic molecules. The values of A1, A2, A12 and [ parameters can be obtained using a numerical fitting procedure (Least Square). The results obtained are compared with the experimental data in Table 3. The satisfying accord between theoretical values and the observed ones is enough to describe the vibrational energy levels of tetraatomic molecules. Table 1: Fundamental levels of energy for HCCCl molecule. Local Modes Energy (cm -1 ) v a HC stretch v b CCl stretch v c CC stretch v d CCCl bend v e HCC bend The second order expansion in terms of Casimir operators is given as = : + 9 : +9 : +9 : + 9 : +U : + U : +U : (7)

4 The African Review of Physics (2013) 8: Table 2: The fit parameters of HCCCl in the U 1 (4) U 2 (4) U 3 (4) model. Parameters Fit1 Fit2 N N N A A A A A K K K Discussion We have used an algebraic technique to study the vibrational spectra of tetra-atomic molecule HCCCl. The Hamiltonian describing the stretching and bending vibrational spectra of tetra-atomic molecules is calculated within the structure of vibron model using the framework of the dynamical symmetry U 4 U 4 U 4 algebra and we carried out two fits using 18 experimental data [16,17]. In the first fit, we use 18 data to five parameters; the fitting RMS is 10.15, whereas in the second fit, we also use 18 data to eight parameters, the fitting RMS of the Hamiltonian is In carrying out the least square optimization, only 18 levels have been included. We subsequently found that to improve the agreement with the experimental data more levels are to be involved. In this paper, we have studied this molecule by using the Hamiltonian that is purely local, i.e., no operators of the Majorana type have been used. But we selected it from the full algebraic Hamiltonian, which contains a polynomial of all orders in the vibrational quantum numbers. We chose the local mode because of the molecule HCCCl is nonsymmetric type. Finally, we can say that the result of this analysis presented here indicates the algebraic approach can be certainly extended to all linear molecules of the tetra-atomic system. 5. Conclusion In this paper, we have proposed the algebraic model U 4 U 4 U 4 in two fits to study the vibrational spectra that included both stretching and bending vibrations of the linear tetra-atomic molecule (HCCCl). A comparison between the experimental data and our results is shown in Table (3). The improvement of the data agreement, when passing from Fit1 to Fit2, is very clear if we compare the RMS deviations. Then, we obtained the predicted values calculated by U 4 U 4 U 4 algebra of a not yet observed numbers of vibrational spectra of HCCCl molecule. References [1] J. L. Dunham, Phys. Rev. 41, 721 (1932). [2] A. Arima and F. Iachello, Phys. Rev. Lett. 35, 1069 (1975). [3] F. Iachello, Chem. Phys. Lett. 78, 581 (1981). [4] F. Iachello and R. D. Levine, J. Chem. Phys. 77, 3046 (1982). [5] F. Iachello, S. Oss and R. Lemus, J. Mol. Spectros. 146, 56 (1991). [6] O. S. Van Roosmalen and A. E. L Dieperink, Chem. Phys. Lett. 85, 32 (1981). [7] O. S. Van Roosmalen, F. Iachello, R. D. Levine and E. L. Dieperink, J. Chem. Phys. 79, 2515 (1983). [8] F. Iachello and S. Oss. J. Mol. Spectrosc. 142, 85 (1990). [9] F. Iachello, S. Oss and R. Lemus, J. Mol. Spectrosc. 146, 56 (1991). [10] N. K. Sarkar, J. Choudhury and R. Bhattacharjee, Mol. Phys. 104, 3051 (2006). [11] N. K. Sarkar, J. Choudhury and R. Bhattacharjee, Vib. Spectros. 56, 99 (2011). [12] F. Iachello, S. Oss and R. Lemus, J. Mol Struct. 149, 132 (1991). [13] F. Iachello and S. Oss, J. Mol. Spectrosc, 156, 190 (1992). [14] N. K. Sarkar, J. Choudhury and R. Bhattacharjee, Mol. Phys. 106, 693 (2008). [15] F. Iachello and R. D. Levine, Algebraic Theory of Molecules (Oxford University, Oxford, 1994). [16] M. Saarinen, L. Halonen and O. Polanz, Chem. Phys. Lett. 219, 181 (1994). [17] A. F. Borro, I. M. Mills and A. Mose, Chem. Phys. 190, 363 (1995).

5 The African Review of Physics (2013) 8: Table 3: Vibrational energy levels (in cm -1 ) of HCCCl. v a v b v c v d ld v e le Experimental Fit1 DE% Fit2 DE%

6 The African Review of Physics (2013) 8: v a v b v c v d ld v e le Experimental Fit1 DE% Fit2 DE% rms Table 3: continued. Received: 14 December, 2012 Accepted: 5 April, 2013

Boson-Realization Model for the Vibrational Spectra of Tetrahedral Molecules

Boson-Realization Model for the Vibrational Spectra of Tetrahedral Molecules Boson-Realization Model for the Vibrational Spectra of Tetrahedral Molecules arxiv:chem-ph/9604002v1 4 Apr 1996 Zhong-Qi Ma CCAST (World Laboratory), PO Box 8730, Beijing 100080, and Institute of High

More information

Introduction to Vibrational Spectroscopy

Introduction to Vibrational Spectroscopy Introduction to Vibrational Spectroscopy Harmonic oscillators The classical harmonic oscillator The uantum mechanical harmonic oscillator Harmonic approximations in molecular vibrations Vibrational spectroscopy

More information

Chapter 6 Vibrational Spectroscopy

Chapter 6 Vibrational Spectroscopy Chapter 6 Vibrational Spectroscopy As with other applications of symmetry and group theory, these techniques reach their greatest utility when applied to the analysis of relatively small molecules in either

More information

The interacting boson model

The interacting boson model The interacting boson model P. Van Isacker, GANIL, France Introduction to the IBM Practical applications of the IBM Overview of nuclear models Ab initio methods: Description of nuclei starting from the

More information

Spectra of Atoms and Molecules. Peter F. Bernath

Spectra of Atoms and Molecules. Peter F. Bernath Spectra of Atoms and Molecules Peter F. Bernath New York Oxford OXFORD UNIVERSITY PRESS 1995 Contents 1 Introduction 3 Waves, Particles, and Units 3 The Electromagnetic Spectrum 6 Interaction of Radiation

More information

The interacting boson model

The interacting boson model The interacting boson model P. Van Isacker, GANIL, France Dynamical symmetries of the IBM Neutrons, protons and F-spin (IBM-2) T=0 and T=1 bosons: IBM-3 and IBM-4 The interacting boson model Nuclear collective

More information

Vibrational states of molecules. Diatomic molecules Polyatomic molecules

Vibrational states of molecules. Diatomic molecules Polyatomic molecules Vibrational states of molecules Diatomic molecules Polyatomic molecules Diatomic molecules V v 1 v 0 Re Q Birge-Sponer plot The solution of the Schrödinger equation can be solved analytically for the

More information

Vibrations and Rotations of Diatomic Molecules

Vibrations and Rotations of Diatomic Molecules Chapter 6 Vibrations and Rotations of Diatomic Molecules With the electronic part of the problem treated in the previous chapter, the nuclear motion shall occupy our attention in this one. In many ways

More information

THE VIBRATIONAL SPECTRUM OF A POLYATOMIC MOLECULE (Revised 4/7/2004)

THE VIBRATIONAL SPECTRUM OF A POLYATOMIC MOLECULE (Revised 4/7/2004) INTRODUCTION THE VIBRATIONAL SPECTRUM OF A POLYATOMIC MOLECULE (Revised 4/7/2004) The vibrational motion of a molecule is quantized and the resulting energy level spacings give rise to transitions in the

More information

Introduction to Molecular Vibrations and Infrared Spectroscopy

Introduction to Molecular Vibrations and Infrared Spectroscopy hemistry 362 Spring 2017 Dr. Jean M. Standard February 15, 2017 Introduction to Molecular Vibrations and Infrared Spectroscopy Vibrational Modes For a molecule with N atoms, the number of vibrational modes

More information

Calculations of the Decay Transitions of the Modified Pöschl-Teller Potential Model via Bohr Hamiltonian Technique

Calculations of the Decay Transitions of the Modified Pöschl-Teller Potential Model via Bohr Hamiltonian Technique Calculations of the Decay Transitions of the Modified Pöschl-Teller Potential Model via Bohr Hamiltonian Technique Nahid Soheibi, Majid Hamzavi, Mahdi Eshghi,*, Sameer M. Ikhdair 3,4 Department of Physics,

More information

THEORY OF MOLECULE. A molecule consists of two or more atoms with certain distances between them

THEORY OF MOLECULE. A molecule consists of two or more atoms with certain distances between them THEORY OF MOLECULE A molecule consists of two or more atoms with certain distances between them through interaction of outer electrons. Distances are determined by sum of all forces between the atoms.

More information

Lecture 5: Harmonic oscillator, Morse Oscillator, 1D Rigid Rotor

Lecture 5: Harmonic oscillator, Morse Oscillator, 1D Rigid Rotor Lecture 5: Harmonic oscillator, Morse Oscillator, 1D Rigid Rotor It turns out that the boundary condition of the wavefunction going to zero at infinity is sufficient to quantize the value of energy that

More information

EXCITED STATE QUANTUM PHASE TRANSITIONS AND MONODROMY

EXCITED STATE QUANTUM PHASE TRANSITIONS AND MONODROMY EXCITED STATE QUANTUM PHASE TRANSITIONS AND MONODROMY Francesco Iachello Yale University Groenewold Symposium on Semi-classical Methods in Mathematics and Physics, Groningen, The Netherlands, October 19-21,

More information

Spectroscopy in Inorganic Chemistry. Vibration and Rotation Spectroscopy

Spectroscopy in Inorganic Chemistry. Vibration and Rotation Spectroscopy Spectroscopy in Inorganic Chemistry Vibrational energy levels in a diatomic molecule f = k r r V = ½kX 2 Force constant r Displacement from equilibrium point 2 X= r=r-r eq V = ½kX 2 Fundamental Vibrational

More information

Spectroscopy: Tinoco Chapter 10 (but vibration, Ch.9)

Spectroscopy: Tinoco Chapter 10 (but vibration, Ch.9) Spectroscopy: Tinoco Chapter 10 (but vibration, Ch.9) XIV 67 Vibrational Spectroscopy (Typical for IR and Raman) Born-Oppenheimer separate electron-nuclear motion ψ (rr) = χ υ (R) φ el (r,r) -- product

More information

Exercises 16.3a, 16.5a, 16.13a, 16.14a, 16.21a, 16.25a.

Exercises 16.3a, 16.5a, 16.13a, 16.14a, 16.21a, 16.25a. SPECTROSCOPY Readings in Atkins: Justification 13.1, Figure 16.1, Chapter 16: Sections 16.4 (diatomics only), 16.5 (omit a, b, d, e), 16.6, 16.9, 16.10, 16.11 (omit b), 16.14 (omit c). Exercises 16.3a,

More information

/2Mα 2 α + V n (R)] χ (R) = E υ χ υ (R)

/2Mα 2 α + V n (R)] χ (R) = E υ χ υ (R) Spectroscopy: Engel Chapter 18 XIV 67 Vibrational Spectroscopy (Typically IR and Raman) Born-Oppenheimer approx. separate electron-nuclear Assume elect-nuclear motion separate, full wave fct. ψ (r,r) =

More information

5.1 Classical Harmonic Oscillator

5.1 Classical Harmonic Oscillator Chapter 5 Harmonic Oscillator 5.1 Classical Harmonic Oscillator m l o l Hooke s Law give the force exerting on the mass as: f = k(l l o ) where l o is the equilibrium length of the spring and k is the

More information

Molecular orbitals, potential energy surfaces and symmetry

Molecular orbitals, potential energy surfaces and symmetry Molecular orbitals, potential energy surfaces and symmetry mathematical presentation of molecular symmetry group theory spectroscopy valence theory molecular orbitals Wave functions Hamiltonian: electronic,

More information

The Potential Energy Surface of CO 2 from an algebraic approach

The Potential Energy Surface of CO 2 from an algebraic approach The Potential Energy Surface of CO from an algebraic approach M. Sánchez-Castellanos 1, R. Lemus 1, M. Carvajal, F. Pérez-Bernal 1 Instituto de Ciencias Nucleares, Universidad Nacional Autónoma de México,

More information

THE VIBRATIONAL SPECTRA OF A POLYATOMIC MOLECULE (Revised 3/27/2006)

THE VIBRATIONAL SPECTRA OF A POLYATOMIC MOLECULE (Revised 3/27/2006) THE VIBRATIONAL SPECTRA OF A POLYATOMIC MOLECULE (Revised 3/27/2006) 1) INTRODUCTION The vibrational motion of a molecule is quantized and the resulting energy level spacings give rise to transitions in

More information

5.80 Small-Molecule Spectroscopy and Dynamics

5.80 Small-Molecule Spectroscopy and Dynamics MIT OpenCourseWare http://ocw.mit.edu 5.80 Small-Molecule Spectroscopy and Dynamics Fall 2008 For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms. 5.80 Lecture

More information

Physical Chemistry Laboratory II (CHEM 337) EXPT 9 3: Vibronic Spectrum of Iodine (I2)

Physical Chemistry Laboratory II (CHEM 337) EXPT 9 3: Vibronic Spectrum of Iodine (I2) Physical Chemistry Laboratory II (CHEM 337) EXPT 9 3: Vibronic Spectrum of Iodine (I2) Obtaining fundamental information about the nature of molecular structure is one of the interesting aspects of molecular

More information

Joint ICTP-IAEA Workshop on Nuclear Structure Decay Data: Theory and Evaluation August Introduction to Nuclear Physics - 2

Joint ICTP-IAEA Workshop on Nuclear Structure Decay Data: Theory and Evaluation August Introduction to Nuclear Physics - 2 2358-20 Joint ICTP-IAEA Workshop on Nuclear Structure Decay Data: Theory and Evaluation 6-17 August 2012 Introduction to Nuclear Physics - 2 P. Van Isacker GANIL, Grand Accelerateur National d'ions Lourds

More information

Determining the Normal Modes of Vibration

Determining the Normal Modes of Vibration Determining the ormal Modes of Vibration Introduction vibrational modes of ammonia are shown below! 1 A 1 ) symmetric stretch! A 1 ) symmetric bend! 3a E) degenerate stretch Figure 1 Vibrational modes!

More information

Chem120a : Exam 3 (Chem Bio) Solutions

Chem120a : Exam 3 (Chem Bio) Solutions Chem10a : Exam 3 (Chem Bio) Solutions November 7, 006 Problem 1 This problem will basically involve us doing two Hückel calculations: one for the linear geometry, and one for the triangular geometry. We

More information

Chemistry 795T. NC State University. Lecture 4. Vibrational and Rotational Spectroscopy

Chemistry 795T. NC State University. Lecture 4. Vibrational and Rotational Spectroscopy Chemistry 795T Lecture 4 Vibrational and Rotational Spectroscopy NC State University The Dipole Moment Expansion The permanent dipole moment of a molecule oscillates about an equilibrium value as the molecule

More information

16.1 Molecular Vibrations

16.1 Molecular Vibrations 16.1 Molecular Vibrations molecular degrees of freedom are used to predict the number of vibrational modes vibrations occur as coordinated movement among many nuclei the harmonic oscillator approximation

More information

Renner-Teller Effect in Tetra-Atomic Molecules

Renner-Teller Effect in Tetra-Atomic Molecules Groupe de Chimie Théorique du MSME Renner-Teller Effect in Tetra-Atomic Molecules Laurent Jutier, G. Dhont, H. Khalil and C. Léonard jutier@univ-mlv.fr (non linear) Outline General Presentation Structure

More information

6.2 Polyatomic Molecules

6.2 Polyatomic Molecules 6.2 Polyatomic Molecules 6.2.1 Group Vibrations An N-atom molecule has 3N - 5 normal modes of vibrations if it is linear and 3N 6 if it is non-linear. Lissajous motion A polyatomic molecule undergoes a

More information

Vibrational Spectra (IR and Raman) update Tinoco has very little, p.576, Engel Ch. 18, House Ch. 6

Vibrational Spectra (IR and Raman) update Tinoco has very little, p.576, Engel Ch. 18, House Ch. 6 Vibrational Spectra (IR and Raman)- 2010 update Tinoco has very little, p.576, Engel Ch. 18, House Ch. 6 Born-Oppenheimer approx. separate electron-nuclear Assume elect-nuclear motion separate, full wave

More information

Lecture 4: Polyatomic Spectra

Lecture 4: Polyatomic Spectra Lecture 4: Polyatomic Spectra 1. From diatomic to polyatomic Ammonia molecule A-axis. Classification of polyatomic molecules 3. Rotational spectra of polyatomic molecules N 4. Vibrational bands, vibrational

More information

Rotations and vibrations of polyatomic molecules

Rotations and vibrations of polyatomic molecules Rotations and vibrations of polyatomic molecules When the potential energy surface V( R 1, R 2,..., R N ) is known we can compute the energy levels of the molecule. These levels can be an effect of: Rotation

More information

The rotating Morse potential energy eigenvalues solved by using the analytical transfer matrix method

The rotating Morse potential energy eigenvalues solved by using the analytical transfer matrix method Chin. Phys. B Vol. 21, No. 1 212 133 The rotating Morse potential energy eigenvalues solved by using the analytical transfer matrix method He Ying 何英, Tao Qiu-Gong 陶求功, and Yang Yan-Fang 杨艳芳 Department

More information

Nuclear Structure (II) Collective models

Nuclear Structure (II) Collective models Nuclear Structure (II) Collective models P. Van Isacker, GANIL, France NSDD Workshop, Trieste, March 2014 TALENT school TALENT (Training in Advanced Low-Energy Nuclear Theory, see http://www.nucleartalent.org).

More information

5.80 Small-Molecule Spectroscopy and Dynamics

5.80 Small-Molecule Spectroscopy and Dynamics MIT OpenCourseWare http://ocw.mit.edu 5.80 Small-Molecule Spectroscopy and Dynamics Fall 2008 For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms. LECTURE

More information

Physical Chemistry II Exam 2 Solutions

Physical Chemistry II Exam 2 Solutions Chemistry 362 Spring 2017 Dr Jean M Standard March 10, 2017 Name KEY Physical Chemistry II Exam 2 Solutions 1) (14 points) Use the potential energy and momentum operators for the harmonic oscillator to

More information

CHM Physical Chemistry II Chapter 12 - Supplementary Material. 1. Einstein A and B coefficients

CHM Physical Chemistry II Chapter 12 - Supplementary Material. 1. Einstein A and B coefficients CHM 3411 - Physical Chemistry II Chapter 12 - Supplementary Material 1. Einstein A and B coefficients Consider two singly degenerate states in an atom, molecule, or ion, with wavefunctions 1 (for the lower

More information

Degrees of Freedom and Vibrational Modes

Degrees of Freedom and Vibrational Modes Degrees of Freedom and Vibrational Modes 1. Every atom in a molecule can move in three possible directions relative to a Cartesian coordinate, so for a molecule of n atoms there are 3n degrees of freedom.

More information

V( x) = V( 0) + dv. V( x) = 1 2

V( x) = V( 0) + dv. V( x) = 1 2 Spectroscopy 1: rotational and vibrational spectra The vibrations of diatomic molecules Molecular vibrations Consider a typical potential energy curve for a diatomic molecule. In regions close to R e (at

More information

Symmetry: Translation and Rotation

Symmetry: Translation and Rotation Symmetry: Translation and Rotation The sixth column of the C 2v character table indicates the symmetry species for translation along (T) and rotation about (R) the Cartesian axes. y y y C 2 F v (x) T x

More information

Nuclear Shapes in the Interacting Vector Boson Model

Nuclear Shapes in the Interacting Vector Boson Model NUCLEAR THEORY, Vol. 32 (2013) eds. A.I. Georgieva, N. Minkov, Heron Press, Sofia Nuclear Shapes in the Interacting Vector Boson Model H.G. Ganev Joint Institute for Nuclear Research, 141980 Dubna, Russia

More information

Also interested only in internal energies Uel (R) only internal forces, has symmetry of molecule--that is source of potential.

Also interested only in internal energies Uel (R) only internal forces, has symmetry of molecule--that is source of potential. IV. Molecular Vibrations IV-1 As discussed solutions, ψ, of the amiltonian, (Schrödinger Equation) must be representations of the group of the molecule i.e. energy cannot change due to a symmetry operation,

More information

Energy spectrum inverse problem of q-deformed harmonic oscillator and WBK approximation

Energy spectrum inverse problem of q-deformed harmonic oscillator and WBK approximation Journal of Physics: Conference Series PAPER OPEN ACCESS Energy spectrum inverse problem of q-deformed harmonic oscillator and WBK approximation To cite this article: Nguyen Anh Sang et al 06 J. Phys.:

More information

Determining the Normal Modes of Vibration

Determining the Normal Modes of Vibration Determining the ormal Modes of Vibration Introduction at the end of last lecture you determined the symmetry and activity of the vibrational modes of ammonia Γ vib 3 ) = A 1 IR, pol) + EIR,depol) the vibrational

More information

arxiv:q-alg/ v1 21 Oct 1995

arxiv:q-alg/ v1 21 Oct 1995 Connection between q-deformed anharmonic oscillators and quasi-exactly soluble potentials Dennis Bonatsos 1,2 *, C. Daskaloyannis 3+ and Harry A. Mavromatis 4# 1 European Centre for Theoretical Studies

More information

5.80 Small-Molecule Spectroscopy and Dynamics

5.80 Small-Molecule Spectroscopy and Dynamics MIT OpenCourseWare http://ocw.mit.edu 5.80 Small-Molecule Spectroscopy and Dynamics Fall 2008 For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms. 5.76 Lecture

More information

Electronic transitions: Vibrational and rotational structure

Electronic transitions: Vibrational and rotational structure Electronic transitions: Vibrational and rotational structure An electronic transition is made up of vibrational bands, each of which is in turn made up of rotational lines Vibrational structure Vibrational

More information

Chemistry 543--Final Exam--Keiderling May 5, pm SES

Chemistry 543--Final Exam--Keiderling May 5, pm SES Chemistry 543--Final Exam--Keiderling May 5,1992 -- 1-5pm -- 174 SES Please answer all questions in the answer book provided. Make sure your name is clearly indicated and that the answers are clearly numbered,

More information

Vibrational Autoionization in Polyatomic molecules

Vibrational Autoionization in Polyatomic molecules Vibrational Autoionization in Polyatomic molecules S.T. Pratt Annu. Rev. Phys. Chem. 2005. 56:281-308 2006. 12. 4. Choi, Sunyoung 1 Schedule 12/4 (Mon) - Introduction - Theoretical background 12/6 (Wed)

More information

Wavefunctions of the Morse Potential

Wavefunctions of the Morse Potential Wavefunctions of the Morse Potential The Schrödinger equation the Morse potential can be solved analytically. The derivation below is adapted from the original work of Philip Morse (Physical Review, 34,

More information

The electric dipole moment and hyperfine interactions of KOH

The electric dipole moment and hyperfine interactions of KOH The electric dipole moment and hyperfine interactions of KOH J. Cederberg and D. Olson Department of Physics, St. Olaf College, Northfield, Minnesota 55057 D. Rioux Department of Physics, University of

More information

Effect of bending vibration on rotation and centrifugal distortion parameters of XY2 molecules. Application to the water molecule

Effect of bending vibration on rotation and centrifugal distortion parameters of XY2 molecules. Application to the water molecule LETTRES Ce It J. Physique 45 (1984) L11 L15 ler JANVIER 1984, L11 Classification Physics Abstracts 33.20E Effect of bending vibration on rotation and centrifugal distortion parameters of XY2 molecules.

More information

Vibrational Spectra (IR and Raman) update Tinoco has very little, p.576, Engel Ch. 18, House Ch. 6

Vibrational Spectra (IR and Raman) update Tinoco has very little, p.576, Engel Ch. 18, House Ch. 6 Vibrational Spectra (IR and Raman)- 2010 update Tinoco has very little, p.576, Engel Ch. 18, House Ch. 6 XIV 67 Born-Oppenheimer approx. separate electron-nuclear Assume elect-nuclear motion separate,

More information

Vibrational-Rotational Spectroscopy. Spectroscopy

Vibrational-Rotational Spectroscopy. Spectroscopy Applied Spectroscopy Vibrational-Rotational Spectroscopy Recommended Reading: Banwell and McCash Section 3.2, 3.3 Atkins Section 6.2 Harmonic oscillator vibrations have the exact selection rule: and the

More information

Analytical Evaluation of Two-Center Franck-Condon Overlap Integrals over Harmonic Oscillator Wave Function

Analytical Evaluation of Two-Center Franck-Condon Overlap Integrals over Harmonic Oscillator Wave Function Analytical Evaluation of Two-Center Franck-Condon Overlap Integrals over Harmonic Oscillator Wave Function Israfil I. Guseinov a, Bahtiyar A. Mamedov b, and Arife S. Ekenoğlu b a Department of Physics,

More information

Wolfgang Demtroder. Molecular Physics. Theoretical Principles and Experimental Methods WILEY- VCH. WILEY-VCH Verlag GmbH & Co.

Wolfgang Demtroder. Molecular Physics. Theoretical Principles and Experimental Methods WILEY- VCH. WILEY-VCH Verlag GmbH & Co. Wolfgang Demtroder Molecular Physics Theoretical Principles and Experimental Methods WILEY- VCH WILEY-VCH Verlag GmbH & Co. KGaA v Preface xiii 1 Introduction 1 1.1 Short Historical Overview 2 1.2 Molecular

More information

On Franck-Condon Factors and Intensity Distributions in some Band Systems of I 2, NS and PS Molecules

On Franck-Condon Factors and Intensity Distributions in some Band Systems of I 2, NS and PS Molecules J. Astrophys. Astr. (1982) 3, 13 25 On Franck-Condon Factors and Intensity Distributions in some Band Systems of I 2, NS and PS Molecules Κ. Raghuveer and Ν. A. Narasimham spectroscopy Division, Bhabha

More information

where, c is the speed of light, ν is the frequency in wave numbers (cm -1 ) and µ is the reduced mass (in amu) of A and B given by the equation: ma

where, c is the speed of light, ν is the frequency in wave numbers (cm -1 ) and µ is the reduced mass (in amu) of A and B given by the equation: ma Vibrational Spectroscopy A rough definition of spectroscopy is the study of the interaction of matter with energy (radiation in the electromagnetic spectrum). A molecular vibration is a periodic distortion

More information

Chemistry 2. Assumed knowledge

Chemistry 2. Assumed knowledge Chemistry 2 Lecture 8 IR Spectroscopy of Polyatomic Molecles Assumed knowledge There are 3N 6 vibrations in a non linear molecule and 3N 5 vibrations in a linear molecule. Only modes that lead to a change

More information

Molecular spectroscopy Multispectral imaging (FAFF 020, FYST29) fall 2017

Molecular spectroscopy Multispectral imaging (FAFF 020, FYST29) fall 2017 Molecular spectroscopy Multispectral imaging (FAFF 00, FYST9) fall 017 Lecture prepared by Joakim Bood joakim.bood@forbrf.lth.se Molecular structure Electronic structure Rotational structure Vibrational

More information

Pure and zero-point vibrational corrections to molecular properties

Pure and zero-point vibrational corrections to molecular properties Pure and zero-point vibrational corrections to molecular properties Kenneth Ruud UiT The Arctic University of Norway I UNIVERSITETET TROMSØ June 30 2015 Outline Why consider vibrational effects? General

More information

Correlation spectroscopy

Correlation spectroscopy 1 TWO-DIMENSIONAL SPECTROSCOPY Correlation spectroscopy What is two-dimensional spectroscopy? This is a method that will describe the underlying correlations between two spectral features. Our examination

More information

SYMMETRY AND PHASE TRANSITIONS IN NUCLEI. Francesco Iachello Yale University

SYMMETRY AND PHASE TRANSITIONS IN NUCLEI. Francesco Iachello Yale University SYMMETRY AND PHASE TRANSITIONS IN NUCLEI Francesco Iachello Yale University Bochum, March 18, 2009 INTRODUCTION Phase diagram of nuclear matter in the r-t plane T(MeV) 0.15 0.30 0.45 n(fm -3 ) 200 Critical

More information

Chemistry 3502/4502. Final Exam Part I. May 14, 2005

Chemistry 3502/4502. Final Exam Part I. May 14, 2005 Chemistry 3502/4502 Final Exam Part I May 14, 2005 1. For which of the below systems is = where H is the Hamiltonian operator and T is the kinetic-energy operator? (a) The free particle (e) The

More information

Chemistry 3502/4502. Final Exam Part I. May 14, 2005

Chemistry 3502/4502. Final Exam Part I. May 14, 2005 Advocacy chit Chemistry 350/450 Final Exam Part I May 4, 005. For which of the below systems is = where H is the Hamiltonian operator and T is the kinetic-energy operator? (a) The free particle

More information

Intro/Review of Quantum

Intro/Review of Quantum Intro/Review of Quantum QM-1 So you might be thinking I thought I could avoid Quantum Mechanics?!? Well we will focus on thermodynamics and kinetics, but we will consider this topic with reference to the

More information

Intro/Review of Quantum

Intro/Review of Quantum Intro/Review of Quantum QM-1 So you might be thinking I thought I could avoid Quantum Mechanics?!? Well we will focus on thermodynamics and kinetics, but we will consider this topic with reference to the

More information

Molecular energy levels and spectroscopy

Molecular energy levels and spectroscopy Molecular energy levels and spectroscopy 1. Translational energy levels The translational energy levels of a molecule are usually taken to be those of a particle in a three-dimensional box: n x E(n x,n

More information

Chem 344 Final Exam Tuesday, Dec. 11, 2007, 3-?? PM

Chem 344 Final Exam Tuesday, Dec. 11, 2007, 3-?? PM Chem 344 Final Exam Tuesday, Dec. 11, 2007, 3-?? PM Closed book exam, only pencils and calculators permitted. You may bring and use one 8 1/2 x 11" paper with anything on it. No Computers. Put all of your

More information

The Harmonic Oscillator: Zero Point Energy and Tunneling

The Harmonic Oscillator: Zero Point Energy and Tunneling The Harmonic Oscillator: Zero Point Energy and Tunneling Lecture Objectives: 1. To introduce simple harmonic oscillator model using elementary classical mechanics.. To write down the Schrodinger equation

More information

Vibrational Spectroscopy

Vibrational Spectroscopy Vibrational Spectroscopy In this part of the course we will look at the kind of spectroscopy which uses light to excite the motion of atoms. The forces required to move atoms are smaller than those required

More information

Lecture 8. Assumed knowledge

Lecture 8. Assumed knowledge Chemistry 2 Lecture 8 IR Spectroscopy of Polyatomic Molecles Assumed knowledge There are 3N 6 vibrations in a non linear molecule and 3N 5 vibrations in a linear molecule. Only modes that lead to a change

More information

Periodic orbits and bifurcation diagrams of acetyleneõvinylidene revisited

Periodic orbits and bifurcation diagrams of acetyleneõvinylidene revisited JOURNAL OF CHEMICAL PHYSICS VOLUME 118, NUMBER 18 8 MAY 2003 Periodic orbits and bifurcation diagrams of acetyleneõvinylidene revisited Rita Prosmiti Instituto de Mathemáticas y Física Fundamental, C.S.I.C.,

More information

5.80 Small-Molecule Spectroscopy and Dynamics

5.80 Small-Molecule Spectroscopy and Dynamics MIT OpenCourseWare http://ocw.mit.edu 5.80 Small-Molecule Spectroscopy and Dynamics Fall 008 For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms. 5.76 Lecture

More information

Partial Dynamical Symmetry in Deformed Nuclei. Abstract

Partial Dynamical Symmetry in Deformed Nuclei. Abstract Partial Dynamical Symmetry in Deformed Nuclei Amiram Leviatan Racah Institute of Physics, The Hebrew University, Jerusalem 91904, Israel arxiv:nucl-th/9606049v1 23 Jun 1996 Abstract We discuss the notion

More information

Chemistry 431. NC State University. Lecture 17. Vibrational Spectroscopy

Chemistry 431. NC State University. Lecture 17. Vibrational Spectroscopy Chemistry 43 Lecture 7 Vibrational Spectroscopy NC State University The Dipole Moment Expansion The permanent dipole moment of a molecule oscillates about an equilibrium value as the molecule vibrates.

More information

Principles of Molecular Spectroscopy

Principles of Molecular Spectroscopy Principles of Molecular Spectroscopy What variables do we need to characterize a molecule? Nuclear and electronic configurations: What is the structure of the molecule? What are the bond lengths? How strong

More information

ChemWiki BioWiki GeoWiki StatWiki PhysWiki MathWiki SolarWiki

ChemWiki BioWiki GeoWiki StatWiki PhysWiki MathWiki SolarWiki Ashley Robison My Preferences Site Tools FAQ Sign Out If you like us, please share us on social media. The latest UCD Hyperlibrary newsletter is now complete, check it out. ChemWiki BioWiki GeoWiki StatWiki

More information

NMR and IR spectra & vibrational analysis

NMR and IR spectra & vibrational analysis Lab 5: NMR and IR spectra & vibrational analysis A brief theoretical background 1 Some of the available chemical quantum methods for calculating NMR chemical shifts are based on the Hartree-Fock self-consistent

More information

5.74 Introductory Quantum Mechanics II

5.74 Introductory Quantum Mechanics II MIT OpenCourseWare http://ocw.mit.edu 5.74 Introductory Quantum Mechanics II Spring 009 For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms. Andrei Tokmakoff,

More information

CHEM6416 Theory of Molecular Spectroscopy 2013Jan Spectroscopy frequency dependence of the interaction of light with matter

CHEM6416 Theory of Molecular Spectroscopy 2013Jan Spectroscopy frequency dependence of the interaction of light with matter CHEM6416 Theory of Molecular Spectroscopy 2013Jan22 1 1. Spectroscopy frequency dependence of the interaction of light with matter 1.1. Absorption (excitation), emission, diffraction, scattering, refraction

More information

Algebraic Aspects for Two Solvable Potentials

Algebraic Aspects for Two Solvable Potentials EJTP 8, No. 5 (11) 17 Electronic Journal of Theoretical Physics Algebraic Aspects for Two Solvable Potentials Sanjib Meyur TRGR Khemka High School, 3, Rabindra Sarani, Liluah, Howrah-711, West Bengal,

More information

NPTEL/IITM. Molecular Spectroscopy Lecture 2. Prof.K. Mangala Sunder Page 1 of 14. Lecture 2 : Elementary Microwave Spectroscopy. Topics.

NPTEL/IITM. Molecular Spectroscopy Lecture 2. Prof.K. Mangala Sunder Page 1 of 14. Lecture 2 : Elementary Microwave Spectroscopy. Topics. Lecture 2 : Elementary Microwave Spectroscopy Topics Introduction Rotational energy levels of a diatomic molecule Spectra of a diatomic molecule Moments of inertia for polyatomic molecules Polyatomic molecular

More information

2m dx 2. The particle in a one dimensional box (of size L) energy levels are

2m dx 2. The particle in a one dimensional box (of size L) energy levels are Name: Chem 3322 test #1 solutions, out of 40 marks I want complete, detailed answers to the questions. Show all your work to get full credit. indefinite integral : sin 2 (ax)dx = x 2 sin(2ax) 4a (1) with

More information

Chemistry 483 Lecture Topics Fall 2009

Chemistry 483 Lecture Topics Fall 2009 Chemistry 483 Lecture Topics Fall 2009 Text PHYSICAL CHEMISTRY A Molecular Approach McQuarrie and Simon A. Background (M&S,Chapter 1) Blackbody Radiation Photoelectric effect DeBroglie Wavelength Atomic

More information

PAPER No. : 8 (PHYSICAL SPECTROSCOPY) MODULE NO. : 23 (NORMAL MODES AND IRREDUCIBLE REPRESENTATIONS FOR POLYATOMIC MOLECULES)

PAPER No. : 8 (PHYSICAL SPECTROSCOPY) MODULE NO. : 23 (NORMAL MODES AND IRREDUCIBLE REPRESENTATIONS FOR POLYATOMIC MOLECULES) Subject Chemistry Paper No and Title Module No and Title Module Tag 8/ Physical Spectroscopy 23/ Normal modes and irreducible representations for polyatomic molecules CHE_P8_M23 TABLE OF CONTENTS 1. Learning

More information

José Cernicharo IFF-CSIC

José Cernicharo IFF-CSIC An Introduction to Molecular Spectroscopy José Cernicharo IFF-CSIC jose.cernicharo@csic.es INTRODUCTION TO MOLECULAR RADIO ASTRONOMY FROM MILLIMETER TO SUBMILLIMETER AND FAR INFRARED Molecular Spectroscopy

More information

Are Linear Molecules Really Linear? I. Theoretical Predictions

Are Linear Molecules Really Linear? I. Theoretical Predictions TB0 ISMS018 June 19, 018, Urbana-Champaign. Are Linear Molecules Really Linear? I. Theoretical Predictions Ochanomizu U., FOCUS *, U. Wuppertal ** Tsuneo Hirano, Umpei Nagashima *, Per Jensen** T. Hirano

More information

Model for vibrational motion of a diatomic molecule. To solve the Schrödinger Eq. for molecules, make the Born- Oppenheimer Approximation:

Model for vibrational motion of a diatomic molecule. To solve the Schrödinger Eq. for molecules, make the Born- Oppenheimer Approximation: THE HARMONIC OSCILLATOR Features Example of a problem in which V depends on coordinates Power series solution Energy is quantized because of the boundary conditions Model for vibrational motion of a diatomic

More information

5.3 Rotational Raman Spectroscopy General Introduction

5.3 Rotational Raman Spectroscopy General Introduction 5.3 Rotational Raman Spectroscopy 5.3.1 General Introduction When EM radiation falls on atoms or molecules, it may be absorbed or scattered. If λis unchanged, the process is referred as Rayleigh scattering.

More information

Symmetrical: implies the species possesses a number of indistinguishable configurations.

Symmetrical: implies the species possesses a number of indistinguishable configurations. Chapter 3 - Molecular Symmetry Symmetry helps us understand molecular structure, some chemical properties, and characteristics of physical properties (spectroscopy) used with group theory to predict vibrational

More information

Born-Oppenheimer Approximation

Born-Oppenheimer Approximation Born-Oppenheimer Approximation Adiabatic Assumption: Nuclei move so much more slowly than electron that the electrons that the electrons are assumed to be obtained if the nuclear kinetic energy is ignored,

More information

Infrared Spectroscopy. Provides information about the vibraions of functional groups in a molecule

Infrared Spectroscopy. Provides information about the vibraions of functional groups in a molecule Infrared Spectroscopy Provides information about the vibraions of functional groups in a molecule Therefore, the functional groups present in a molecule can be deduced from an IR spectrum Two important

More information

Lecture 10 Diatomic Vibration Spectra Harmonic Model

Lecture 10 Diatomic Vibration Spectra Harmonic Model Chemistry II: Introduction to Molecular Spectroscopy Prof. Mangala Sunder Department of Chemistry and Biochemistry Indian Institute of Technology, Madras Lecture 10 Diatomic Vibration Spectra Harmonic

More information

Determination and study the energy characteristics of vibrationalrotational levels and spectral lines of GaF, GaCl, GaBr and GaI for ground state

Determination and study the energy characteristics of vibrationalrotational levels and spectral lines of GaF, GaCl, GaBr and GaI for ground state International Letters of Chemistry, Physics and Astronomy Online: 2015-05-03 ISSN: 2299-3843, Vol. 50, pp 96-112 doi:10.18052/www.scipress.com/ilcpa.50.96 2015 SciPress Ltd., Switzerland Determination

More information

P. W. Atkins and R. S. Friedman. Molecular Quantum Mechanics THIRD EDITION

P. W. Atkins and R. S. Friedman. Molecular Quantum Mechanics THIRD EDITION P. W. Atkins and R. S. Friedman Molecular Quantum Mechanics THIRD EDITION Oxford New York Tokyo OXFORD UNIVERSITY PRESS 1997 Introduction and orientation 1 Black-body radiation 1 Heat capacities 2 The

More information

5.80 Small-Molecule Spectroscopy and Dynamics

5.80 Small-Molecule Spectroscopy and Dynamics MIT OpenCourseWare http://ocw.mit.edu 5.80 Small-Molecule Spectroscopy and Dynamics Fall 2008 For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms. 5.80 Lecture

More information

Degrees of Freedom and Vibrational Modes

Degrees of Freedom and Vibrational Modes Degrees of Freedom and Vibrational Modes 1. Every atom in a molecule can move in three possible directions relative to a Cartesian coordinate, so for a molecule of n atoms there are 3n degrees of freedom.

More information