2.4 Particle interactions

Size: px
Start display at page:

Download "2.4 Particle interactions"

Transcription

1 2.4 Particle interactions Particles interact through the four fundamental forces the electrostatic force, the strong nuclear force, the weak nuclear force and gravitational force. All articles with charge feel the electromagnetic force. All articles with mass feel the gravitational force. Only articles containing quarks exerience the strong nuclear force. Both hadrons and letons feel the weak nuclear force. A famous American hysicist, Richard Feynman suggested that the interaction is achieved by the articles exchanging virtual articles. In the case of charged articles (e.g. roton-roton), the electrostatic force exerienced by the articles comes from an interaction achieved by the exchange of virtual hotons. Feynman came u with a visual way of describing these interactions. They are called Feynman diagrams. Below is a Feynman diagram showing the electrostatic interaction between two rotons. time γ sace These diagrams should be read from bottom to to. This shows the events as time rogresses. We can see from the examle above that two rotons move towards each other, exchange a virtual gamma (γ) hoton and then move aart. (they reel each other). The wavy line reresents the exchange of a virtual gamma hoton. A model for exchange Below is a model to icture how exchange of virtual articles results in a force on two interacting articles. A 2016 fliedaroundhysics.com B Skater A throws a heavy ball to skater B. Skater A exeriences a force to the left. On catching, skater B exeriences a force to the right.

2 (1)! Using Newton s third law, exlain why A moves to the left on throwing the ball. (2)! Using Newton s third law, exlain why B moves to the right on catching the ball. (3)! Exlain how the momentum of the system (containing two skaters) is conserved. The second diagram models the effect of attraction between articles (e.g. electrostatic interaction between the electron and roton). A B Person A throws a boomerang to the left, which ushes them to the right. Person B catches the boomerang, which moves them to the left. The overall effect is attractive. The strong nuclear force The strong nuclear force acts between all articles containing quarks, which are constituents of articles (neutrons and rotons) in the nucleus. It acts over a very short range. The exchange article acting between nucleons is the virtual ion. (4)! Over what range is the strong nuclear force attractive? Gravitational force The exchange article for the gravitational force is the graviton. These haven t been detected yet. The weak nuclear force The weak nuclear force is resonsible for interactions which result in changes to the articles involved. W bosons are the exchange articles for the weak nuclear force fliedaroundhysics.com

3 Consider an interaction between an electron neutrino (υ " ) and a neutron (n). (Such interactions are extremely rare.) n + ν " + β ( We can see that the electron neutrino interacts with the neutron to roduce a roton () and a beta minus article (β ( ). The Feynman diagram for this interaction is shown below: n W ( υ " β ( Note: It is a good idea to draw an arrow to show the direction the exchange article moves. In this case, we could substitute a W * boson moving in the oosite direction. We can see the W minus exchange article (W ( ) is involved in changing a neutron into a roton. Note that the charge is conserved; the overall charge is zero before and after the interaction. (5)! An anti-electron neutrino (υ " ) can also (rarely) interact with a roton, roducing a neutron and a beta lus (β * )article. A W * boson is the exchange article. Draw a Feynman diagram for this interaction. The weak nuclear force is resonsible for changes which occur to nucleons during beta decay. For examle, in beta minus decay, a neutron decays to a roton and emits a beta minus article and an anti-electron neutrino: 2016 fliedaroundhysics.com n + β ( + υ "

4 We can show this weak interaction using a Feynman diagram: n W ( β ( υ " In this case the exchange article is a W ( boson. You can see that charge is conserved as the W ( boson carries a negative charge away from the neutron to the β ( (an electron). In beta lus decay, a roton changes to a neutron and emits a beta lus article and an electron neutrino. (6)! Write a symbol equation for beta lus decay. (7)! Draw a Feynman diagram for beta lus decay. Electron cature In some cases, where a nucleus is roton rich, a roton will cature an inner shell electron and transform to a neutron. (8)! What other article is roduced by electron cature? (9)! Draw a Feynman diagram for electron cature fliedaroundhysics.com

5 Electron-roton collision In a collision between an electron and a roton, a neutron can be roduced and another article. (10)! What other article is roduced by electron-roton collision? (11)! Draw a Feynman diagram for electron-roton collision fliedaroundhysics.com

Particles. Constituents of the atom

Particles. Constituents of the atom Particles Constituents of the atom For Z X = mass number (protons + neutrons), Z = number of protons Isotopes are atoms with the same number of protons number but different number of neutrons. charge Specific

More information

Introduction. Introduction to Elementary Particle Physics. Diego Bettoni Anno Accademico

Introduction. Introduction to Elementary Particle Physics. Diego Bettoni Anno Accademico Introduction Introduction to Elementary Particle Physics Diego Bettoni Anno Accademico 010-011 Course Outline 1. Introduction.. Discreet symmetries: P, C, T. 3. Isosin, strangeness, G-arity. 4. Quark Model

More information

Episode 536: Vector bosons and Feynman diagrams

Episode 536: Vector bosons and Feynman diagrams Episode 536: Vector bosons and Feynman diagrams You need to check your own specification here for details of what students will need to do in examinations, and to look at past papers: although Feynman

More information

PARTICLE PHYSICS: A PHYSICS KIT

PARTICLE PHYSICS: A PHYSICS KIT FORCE SUMMARY Force charge? baryon number? strangeness? leton number? Range Force carrier article Strong Short range: attractive u to 3 10-15 m. Below 0.5 10-15 m, it is reulsive. Gluon Weak No Very short

More information

16.5 Coulomb s Law Types of Forces in Nature. 6.1 Newton s Law of Gravitation Coulomb s Law

16.5 Coulomb s Law Types of Forces in Nature. 6.1 Newton s Law of Gravitation Coulomb s Law 5-10 Types of Forces in Nature Modern physics now recognizes four fundamental forces: 1. Gravity 2. Electromagnetism 3. Weak nuclear force (responsible for some types of radioactive decay) 4. Strong nuclear

More information

DEVIL PHYSICS THE BADDEST CLASS ON CAMPUS IB PHYSICS

DEVIL PHYSICS THE BADDEST CLASS ON CAMPUS IB PHYSICS DEVIL PHYSICS THE BADDEST CLASS ON CAMPUS IB PHYSICS LSN 7-3: THE STRUCTURE OF MATTER Questions From Reading Activity? Essential Idea: It is believed that all the matter around us is made up of fundamental

More information

Visit for more fantastic resources. AQA. A Level. A Level Physics. Particles (Answers) Name: Total Marks: /30

Visit   for more fantastic resources. AQA. A Level. A Level Physics. Particles (Answers) Name: Total Marks: /30 Visit http://www.mathsmadeeasy.co.uk/ for more fantastic resources. AQA A Level A Level Physics Particles (Answers) Name: Total Marks: /30 Maths Made Easy Complete Tuition Ltd 2017 1. This question explores

More information

Introduction to Modern Physics Problems from previous Exams 3

Introduction to Modern Physics Problems from previous Exams 3 Introduction to Modern Physics Problems from previous Exams 3 2007 An electron of mass 9 10 31 kg moves along the x axis at a velocity.9c. a. Calculate the rest energy of the electron. b. Calculate its

More information

D. Gravitational, Electric, and Magnetic Fields

D. Gravitational, Electric, and Magnetic Fields D. Gravitational, Electric, and Magnetic Fields Gravitational, Electric, and Magnetic Fields Gravitational, electric, and magnetic forces act on matter from a distance. Gravitational, electric, and magnetic

More information

Baryons, mesons and leptons are affected by particle interactions. Write an account of these interactions. Your account should:

Baryons, mesons and leptons are affected by particle interactions. Write an account of these interactions. Your account should: Baryons, mesons and leptons are affected by particle interactions. Write an account of these interactions. Your account should: include the names of the interactions identify the groups of particles that

More information

1 Introduction. 1.1 The Standard Model of particle physics The fundamental particles

1 Introduction. 1.1 The Standard Model of particle physics The fundamental particles 1 Introduction The purpose of this chapter is to provide a brief introduction to the Standard Model of particle physics. In particular, it gives an overview of the fundamental particles and the relationship

More information

Activity 12: Energy from Nuclear Reactions

Activity 12: Energy from Nuclear Reactions Name Section Activity 12: Energy from Nuclear Reactions 12.1 A Model of the Composition of Nucleons 1) Formation of Nucleons Nucleons consist of quark trios. a) Place orange or green quarks into the metal

More information

Feynman Diagrams of the Standard Model Sedigheh Jowzaee

Feynman Diagrams of the Standard Model Sedigheh Jowzaee tglied der Helmholtz-Gemeinschaft Feynman Diagrams of the Standard Model Sedigheh Jowzaee PhD Seminar, 5 July 01 Outlook Introduction to the standard model Basic information Feynman diagram Feynman rules

More information

THE STANDARD MODEL OF MATTER

THE STANDARD MODEL OF MATTER VISUAL PHYSICS ONLINE THE STANDARD MODEL OF MATTER The "Standard Model" of subatomic and sub nuclear physics is an intricate, complex and often subtle thing and a complete study of it is beyond the scope

More information

Lecture 1. Introduction to Nuclear Science

Lecture 1. Introduction to Nuclear Science Lecture 1 Introduction to Nuclear Science Composition of atoms Atoms are composed of electrons and nuclei. The electrons are held in the atom by a Coulomb attraction between the positively charged nucleus

More information

Every atom has a nucleus which contains protons and neutrons (both these particles are known nucleons). Orbiting the nucleus, are electrons.

Every atom has a nucleus which contains protons and neutrons (both these particles are known nucleons). Orbiting the nucleus, are electrons. Atomic Structure Every atom has a nucleus which contains protons and neutrons (both these particles are known nucleons). Orbiting the nucleus, are electrons. Proton Number (Atomic Number): Amount of protons

More information

Particle Physics Outline the concepts of particle production and annihilation and apply the conservation laws to these processes.

Particle Physics Outline the concepts of particle production and annihilation and apply the conservation laws to these processes. Particle Physics 12.3.1 Outline the concept of antiparticles and give examples 12.3.2 Outline the concepts of particle production and annihilation and apply the conservation laws to these processes. Every

More information

PHY-105: Introduction to Particle and Nuclear Physics

PHY-105: Introduction to Particle and Nuclear Physics M. Kruse, Spring 2011, Phy-105 PHY-105: Introduction to Particle and Nuclear Physics Up to 1900 indivisable atoms Early 20th century electrons, protons, neutrons Around 1945, other particles discovered.

More information

An Introduction to Modern Particle Physics

An Introduction to Modern Particle Physics An Introduction to Modern Particle Physics Mark Thomson University of Cambridge ALEPH DALI 3 Gev EC 6 Gev HC Run=56698 Evt=7455 Y" RO TPC 1cm 0 1cm 1cm 0 1cm X" Z0

More information

Fundamental Forces. Range Carrier Observed? Strength. Gravity Infinite Graviton No. Weak 10-6 Nuclear W+ W- Z Yes (1983)

Fundamental Forces. Range Carrier Observed? Strength. Gravity Infinite Graviton No. Weak 10-6 Nuclear W+ W- Z Yes (1983) Fundamental Forces Force Relative Strength Range Carrier Observed? Gravity 10-39 Infinite Graviton No Weak 10-6 Nuclear W+ W- Z Yes (1983) Electromagnetic 10-2 Infinite Photon Yes (1923) Strong 1 Nuclear

More information

Lecture PowerPoint. Chapter 32 Physics: Principles with Applications, 6 th edition Giancoli

Lecture PowerPoint. Chapter 32 Physics: Principles with Applications, 6 th edition Giancoli Lecture PowerPoint Chapter 32 Physics: Principles with Applications, 6 th edition Giancoli 2005 Pearson Prentice Hall This work is protected by United States copyright laws and is provided solely for the

More information

Preview. Subatomic Physics Section 1. Section 1 The Nucleus. Section 2 Nuclear Decay. Section 3 Nuclear Reactions. Section 4 Particle Physics

Preview. Subatomic Physics Section 1. Section 1 The Nucleus. Section 2 Nuclear Decay. Section 3 Nuclear Reactions. Section 4 Particle Physics Subatomic Physics Section 1 Preview Section 1 The Nucleus Section 2 Nuclear Decay Section 3 Nuclear Reactions Section 4 Particle Physics Subatomic Physics Section 1 TEKS The student is expected to: 5A

More information

FUNDAMENTAL PARTICLES CLASSIFICATION! BOSONS! QUARKS! FERMIONS! Gauge Bosons! Fermions! Strange and Charm! Top and Bottom! Up and Down!

FUNDAMENTAL PARTICLES CLASSIFICATION! BOSONS! QUARKS! FERMIONS! Gauge Bosons! Fermions! Strange and Charm! Top and Bottom! Up and Down! FUNDAMENTAL PARTICLES CLASSIFICATION! BOSONS! --Bosons are generally associated with radiation and are sometimes! characterized as force carrier particles.! Quarks! Fermions! Leptons! (protons, neutrons)!

More information

(3) (1) Complete the equation below to represent the emission of an α particle by a nucleus. Th + α

(3) (1) Complete the equation below to represent the emission of an α particle by a nucleus. Th + α Q1. (a) Describe how the strong nuclear force between two nucleons varies with the separation of the nucleons quoting suitable values for separation................... (b) An unstable nucleus can decay

More information

At this time the quark model consisted of three particles, the properties of which are given in the table.

At this time the quark model consisted of three particles, the properties of which are given in the table. *1 In 1961 Murray Gell-Mann predicted the existence of a new particle called an omega (Ω) minus. It was subsequently discovered in 1964. At this time the quark model consisted of three particles, the properties

More information

Chapter 22. Preview. Objectives Properties of the Nucleus Nuclear Stability Binding Energy Sample Problem. Section 1 The Nucleus

Chapter 22. Preview. Objectives Properties of the Nucleus Nuclear Stability Binding Energy Sample Problem. Section 1 The Nucleus Section 1 The Nucleus Preview Objectives Properties of the Nucleus Nuclear Stability Binding Energy Sample Problem Section 1 The Nucleus Objectives Identify the properties of the nucleus of an atom. Explain

More information

FXA Candidates should be able to :

FXA Candidates should be able to : 1 Candidates should be able to : MATTER AND ANTIMATTER Explain that since protons and neutrons contain charged constituents called quarks, they are therefore, not fundamental particles. Every particle

More information

PhysicsAndMathsTutor.com 1

PhysicsAndMathsTutor.com 1 Q1. (a) The K meson has strangeness 1. State the quark composition of a meson... State the baryon number of the K meson... (iii) What is the quark composition of the K meson?.... The figure below shows

More information

Chapter 8: E & M (Electricity & Magnetism or Electromagnetism)

Chapter 8: E & M (Electricity & Magnetism or Electromagnetism) Chapter 8: E & M (Electricity & Magnetism or Electromagnetism) Electric charge & electric force Coulomb s Law Electrons & basic facts about atoms (mainly review) Charge conservation Electric current &

More information

Particles and Forces

Particles and Forces Particles and Forces Particles Spin Before I get into the different types of particle there's a bit more back story you need. All particles can spin, like the earth on its axis, however it would be possible

More information

General and Inorganic Chemistry I.

General and Inorganic Chemistry I. General and Inorganic Chemistry I. Lecture 2 István Szalai Eötvös University István Szalai (Eötvös University) Lecture 2 1 / 44 Outline 1 Introduction 2 Standard Model 3 Nucleus 4 Electron István Szalai

More information

cgrahamphysics.com Particles that mediate force Book pg Exchange particles

cgrahamphysics.com Particles that mediate force Book pg Exchange particles Particles that mediate force Book pg 299-300 Exchange particles Review Baryon number B Total # of baryons must remain constant All baryons have the same number B = 1 (p, n, Λ, Σ, Ξ) All non baryons (leptons

More information

Chem 481 Lecture Material 1/30/09

Chem 481 Lecture Material 1/30/09 Chem 481 Lecture Material 1/30/09 Nature of Radioactive Decay The Standard Model in physics postulates that all particles in nature are composed of quarks and leptons and that they interact by exchange

More information

SCIENCE 10: (7.1) ATOMIC THEORY, ISOTOPES AND RADIOACTIVE DECAY Name: Date: Block: (Textbook Reference pp in BC Science 10) into an

SCIENCE 10: (7.1) ATOMIC THEORY, ISOTOPES AND RADIOACTIVE DECAY Name: Date: Block: (Textbook Reference pp in BC Science 10) into an SCIENCE 10: (7.1) ATOMIC THEORY, ISOTOPES AND RADIOACTIVE DECAY Name: Date: Block: (Textbook Reference pp. 286-301 in BC Science 10) Natural background radiation: It has the ability to interact with an

More information

Nuclear and Particle Physics 3: Particle Physics. Lecture 1: Introduction to Particle Physics February 5th 2007

Nuclear and Particle Physics 3: Particle Physics. Lecture 1: Introduction to Particle Physics February 5th 2007 Nuclear and Particle Physics 3: Particle Physics Lecture 1: Introduction to Particle Physics February 5th 2007 Particle Physics (PP) a.k.a. High-Energy Physics (HEP) 1 Dr Victoria Martin JCMB room 4405

More information

FACULTY OF SCIENCE. High Energy Physics. WINTHROP PROFESSOR IAN MCARTHUR and ADJUNCT/PROFESSOR JACKIE DAVIDSON

FACULTY OF SCIENCE. High Energy Physics. WINTHROP PROFESSOR IAN MCARTHUR and ADJUNCT/PROFESSOR JACKIE DAVIDSON FACULTY OF SCIENCE High Energy Physics WINTHROP PROFESSOR IAN MCARTHUR and ADJUNCT/PROFESSOR JACKIE DAVIDSON AIM: To explore nature on the smallest length scales we can achieve Current status (10-20 m)

More information

CHAPTER 7 TEST REVIEW

CHAPTER 7 TEST REVIEW IB PHYSICS Name: Period: Date: # Marks: 94 Raw Score: IB Curve: DEVIL PHYSICS BADDEST CLASS ON CAMPUS CHAPTER 7 TEST REVIEW 1. An alpha particle is accelerated through a potential difference of 10 kv.

More information

Essential Physics II. Lecture 14:

Essential Physics II. Lecture 14: Essential Physics II E II Lecture 14: 18-01-16 Last lecture of EP2! Congratulations! This was a hard course. Be proud! Next week s exam Next Monday! All lecture slides on course website: http://astro3.sci.hokudai.ac.jp/~tasker/teaching/ep2

More information

Option 212: UNIT 2 Elementary Particles

Option 212: UNIT 2 Elementary Particles Department of Physics and Astronomy Option 212: UNIT 2 Elementary Particles SCHEDULE 26-Jan-15 13.pm LRB Intro lecture 28-Jan-15 12.pm LRB Problem solving (2-Feb-15 1.am E Problem Workshop) 4-Feb-15 12.pm

More information

9.2.E - Particle Physics. Year 12 Physics 9.8 Quanta to Quarks

9.2.E - Particle Physics. Year 12 Physics 9.8 Quanta to Quarks + 9.2.E - Particle Physics Year 12 Physics 9.8 Quanta to Quarks + Atomic Size n While an atom is tiny, the nucleus is ten thousand times smaller than the atom and the quarks and electrons are at least

More information

Exam Results. Force between charges. Electric field lines. Other particles and fields

Exam Results. Force between charges. Electric field lines. Other particles and fields Exam: Exam scores posted on Learn@UW No homework due next week Exam Results F D C BC B AB A Phy107 Fall 2006 1 Particles and fields We have talked about several particles Electron,, proton, neutron, quark

More information

Chapter Three (Nuclear Radiation)

Chapter Three (Nuclear Radiation) Al-Mustansiriyah University College of Science Physics Department Fourth Grade Nuclear Physics Dr. Ali A. Ridha Chapter Three (Nuclear Radiation) (3-1) Nuclear Radiation Whenever a nucleus can attain a

More information

PhysicsAndMathsTutor.com

PhysicsAndMathsTutor.com OR K π 0 + µ + v ( µ ) M. (a) (i) quark antiquark pair OR qq OR named quark antiquark pair 0 (iii) us (b) (i) Weak any of the following also score mark: weak interaction weak interaction force weak nuclear

More information

Decay Mechanisms. The laws of conservation of charge and of nucleons require that for alpha decay, He + Q 3.1

Decay Mechanisms. The laws of conservation of charge and of nucleons require that for alpha decay, He + Q 3.1 Decay Mechanisms 1. Alpha Decay An alpha particle is a helium-4 nucleus. This is a very stable entity and alpha emission was, historically, the first decay process to be studied in detail. Almost all naturally

More information

Section 10: Natural Transmutation Writing Equations for Decay

Section 10: Natural Transmutation Writing Equations for Decay Section 10: Natural Transmutation Writing Equations for Decay Alpha Decay If a radioactive substance changes into another substance because particles are emitted from its nucleus, we say that the original

More information

Name : Physics 490. Practice Final (closed book; calculator, one notecard OK)

Name : Physics 490. Practice Final (closed book; calculator, one notecard OK) Name : Physics 490. Practice Final (closed book; calculator, one notecard OK) Problem I: (a) Give an example of experimental evidence that the partons in the nucleon (i) are fractionally charged. How can

More information

Particle Physics Lectures Outline

Particle Physics Lectures Outline Subatomic Physics: Particle Physics Lectures Physics of the Large Hadron Collider (plus something about neutrino physics) 1 Particle Physics Lectures Outline 1 - Introduction The Standard Model of particle

More information

Physics 4213/5213 Lecture 1

Physics 4213/5213 Lecture 1 August 28, 2002 1 INTRODUCTION 1 Introduction Physics 4213/5213 Lecture 1 There are four known forces: gravity, electricity and magnetism (E&M), the weak force, and the strong force. Each is responsible

More information

Nuclides with excess neutrons need to convert a neutron to a proton to move closer to the line of stability.

Nuclides with excess neutrons need to convert a neutron to a proton to move closer to the line of stability. Radioactive Decay Mechanisms (cont.) Beta (β) Decay: Radioactive decay process in which the charge of the nucleus is changed without any change in the number of nucleons. There are three types of beta

More information

Overview. The quest of Particle Physics research is to understand the fundamental particles of nature and their interactions.

Overview. The quest of Particle Physics research is to understand the fundamental particles of nature and their interactions. Overview The quest of Particle Physics research is to understand the fundamental particles of nature and their interactions. Our understanding is about to take a giant leap.. the Large Hadron Collider

More information

Contents. Objectives Newton s Laws preliminaries 1 st Law pushing things 2 nd Law 3 rd Law A Problem Fundamental Forces Fundamental Particles Recap

Contents. Objectives Newton s Laws preliminaries 1 st Law pushing things 2 nd Law 3 rd Law A Problem Fundamental Forces Fundamental Particles Recap Physics 121 for Majors Class 9 Newton s Laws Standard Model Last Class Matrices Classical boosts Lorentz boosts Space-time four-vectors Space and time problems in relativity Today s Class Newton s Laws

More information

Physics 30: Chapter 8 Exam Nuclear

Physics 30: Chapter 8 Exam Nuclear Physics 30: Chapter 8 Exam Nuclear Name: Date: Mark: /34 Numeric Response. Place your answers to the numeric response questions, with units, in the blanks at the side of the page. (1 mark each) 1. A 100

More information

Fundamental Interactions (Forces) of Nature

Fundamental Interactions (Forces) of Nature Chapter 14 Fundamental Interactions (Forces) of Nature Interaction Gauge Boson Gauge Boson Mass Interaction Range (Force carrier) Strong Gluon 0 short-range (a few fm) Weak W ±, Z M W = 80.4 GeV/c 2 short-range

More information

1. (a) An ion of plutonium Pu has an overall charge of C. (iii) electrons... (3) (2) (Total 5 marks)

1. (a) An ion of plutonium Pu has an overall charge of C. (iii) electrons... (3) (2) (Total 5 marks) AQA Questions from 2004 to 2006 Particle Physics 239 94 1. (a) An ion of plutonium Pu has an overall charge of +1.6 10 19 C. For this ion state the number of (i) protons... neutrons... (iii) electrons...

More information

Basic science. Atomic structure. Electrons. The Rutherford-Bohr model of an atom. Electron shells. Types of Electrons. Describing an Atom

Basic science. Atomic structure. Electrons. The Rutherford-Bohr model of an atom. Electron shells. Types of Electrons. Describing an Atom Basic science A knowledge of basic physics is essential to understanding how radiation originates and behaves. This chapter works through what an atom is; what keeps it stable vs. radioactive and unstable;

More information

Introduction to Nuclear Science

Introduction to Nuclear Science Introduction to Nuclear Science PIXIE-PAN Summer Science Program University of Notre Dame 2006 Tony Hyder, Professor of Physics Topics we will discuss Ground-state properties of the nucleus Radioactivity

More information

The Quark-Parton Model

The Quark-Parton Model The Quark-Parton Model Before uarks and gluons were generally acceted Feynman roosed that the roton was made u of oint-like constituents artons Both Bjorken Scaling and the Callan-Gross relationshi can

More information

Matter: it s what you have learned that makes up the world Protons, Neutrons and Electrons

Matter: it s what you have learned that makes up the world Protons, Neutrons and Electrons Name The Standard Model of Particle Physics Matter: it s what you have learned that makes up the world Protons, Neutrons and Electrons Just like there is good and evil, matter must have something like

More information

Introduction to the Standard Model of elementary particle physics

Introduction to the Standard Model of elementary particle physics Introduction to the Standard Model of elementary particle physics Anders Ryd (Anders.Ryd@cornell.edu) May 31, 2011 Abstract This short compendium will try to explain our current understanding of the microscopic

More information

Chapter 32 Lecture Notes

Chapter 32 Lecture Notes Chapter 32 Lecture Notes Physics 2424 - Strauss Formulas: mc 2 hc/2πd 1. INTRODUCTION What are the most fundamental particles and what are the most fundamental forces that make up the universe? For a brick

More information

Weak Interactions Made Simple

Weak Interactions Made Simple Weak Interactions Made Simple P. R. Silva Retired associated professor Departamento de Física ICEx Universidade Federal de Minas Gerais email: prsilvafis@gmail.com ABSTRACT A very simplified way of calculating

More information

2007 Fall Nuc Med Physics Lectures

2007 Fall Nuc Med Physics Lectures 2007 Fall Nuc Med Physics Lectures Tuesdays, 9:30am, NN203 Date Title Lecturer 9/4/07 Introduction to Nuclear Physics RS 9/11/07 Decay of radioactivity RS 9/18/07 Interactions with matter RM 9/25/07 Radiation

More information

Alpha Decay. Decay alpha particles are monoenergetic. Nuclides with A>150 are unstable against alpha decay. E α = Q (1-4/A)

Alpha Decay. Decay alpha particles are monoenergetic. Nuclides with A>150 are unstable against alpha decay. E α = Q (1-4/A) Alpha Decay Because the binding energy of the alpha particle is so large (28.3 MeV), it is often energetically favorable for a heavy nucleus to emit an alpha particle Nuclides with A>150 are unstable against

More information

Nuclear models: The liquid drop model Fermi-Gas Model

Nuclear models: The liquid drop model Fermi-Gas Model Lecture Nuclear models: The liquid dro model ermi-gas Model WS1/1: Introduction to Nuclear and Particle Physics,, Part I 1 Nuclear models Nuclear models Models with strong interaction between the nucleons

More information

THE NUCLEUS OF AN ATOM

THE NUCLEUS OF AN ATOM VISUAL PHYSICS ONLINE THE NUCLEUS OF AN ATOM Models of the atom positive charge uniformly distributed over a sphere J. J. Thomson model of the atom (1907) ~2x10-10 m plum-pudding model: positive charge

More information

Elementary particles, forces and Feynman diagrams

Elementary particles, forces and Feynman diagrams Elementary particles, forces and Feynman diagrams Particles & Forces quarks Charged leptons (e,µ,τ) Neutral leptons (ν) Strong Y N N Electro Magnetic Y Y N Weak Y Y Y Quarks carry strong, weak & EM charge!!!!!

More information

PHL424: 4 fundamental forces in nature

PHL424: 4 fundamental forces in nature PHL424: 4 fundamental forces in nature The familiar force of gravity pulls you down into your seat, toward the Earth's center. You feel it as your weight. Why don't you fall through your seat? Well, another

More information

Particles and Interactions. Prof. Marina Cobal Corso Particelle ed interazioni fondamentali 2013/2014

Particles and Interactions. Prof. Marina Cobal Corso Particelle ed interazioni fondamentali 2013/2014 Particles and Interactions Prof. Marina Cobal Corso Particelle ed interazioni fondamentali 2013/2014 What is the world made of? In the ancient time: 4 elements 19 century atoms Beginning 20 th century

More information

Instead, the probability to find an electron is given by a 3D standing wave.

Instead, the probability to find an electron is given by a 3D standing wave. Lecture 24-1 The Hydrogen Atom According to the Uncertainty Principle, we cannot know both the position and momentum of any particle precisely at the same time. The electron in a hydrogen atom cannot orbit

More information

Lecture 01. Introduction to Elementary Particle Physics

Lecture 01. Introduction to Elementary Particle Physics Introduction to Elementary Particle Physics Particle Astrophysics Particle physics Fundamental constituents of nature Most basic building blocks Describe all particles and interactions Shortest length

More information

The Discovery of the Higgs boson Matthew Herndon, University of Wisconsin Madison Physics 301: Physics Today. M. Herndon, Phys

The Discovery of the Higgs boson Matthew Herndon, University of Wisconsin Madison Physics 301: Physics Today. M. Herndon, Phys The Discovery of the Higgs boson Matthew Herndon, University of Wisconsin Madison Physics 301: Physics Today M. Herndon, Phys 301 2018 1 The Periodic Table: The early 20 th century understanding of the

More information

Unit 2 - Particles and Waves Part 1

Unit 2 - Particles and Waves Part 1 THE STANDARD MODEL Unit - Particles and Waves Part. Orders of Magnitude The range of orders of magnitude of length from the very small (subnuclear) to the very large (distance to furthest known celestial

More information

Quantum Numbers. Elementary Particles Properties. F. Di Lodovico c 1 EPP, SPA6306. Queen Mary University of London. Quantum Numbers. F.

Quantum Numbers. Elementary Particles Properties. F. Di Lodovico c 1 EPP, SPA6306. Queen Mary University of London. Quantum Numbers. F. Elementary Properties 1 1 School of Physics and Astrophysics Queen Mary University of London EPP, SPA6306 Outline Most stable sub-atomic particles are the proton, neutron (nucleons) and electron. Study

More information

NOTES: 25.2 Nuclear Stability and Radioactive Decay

NOTES: 25.2 Nuclear Stability and Radioactive Decay NOTES: 25.2 Nuclear Stability and Radioactive Decay Why does the nucleus stay together? STRONG NUCLEAR FORCE Short range, attractive force that acts among nuclear particles Nuclear particles attract one

More information

Year 12 Notes Radioactivity 1/5

Year 12 Notes Radioactivity 1/5 Year Notes Radioactivity /5 Radioactivity Stable and Unstable Nuclei Radioactivity is the spontaneous disintegration of certain nuclei, a random process in which particles and/or high-energy photons are

More information

Cumulative Review 1 Use the following information to answer the next two questions.

Cumulative Review 1 Use the following information to answer the next two questions. Cumulative Review 1 Use the following information to answer the next two questions. 1. At what distance from the mirror is the image located? a. 0.10 m b. 0.20 m c. 0.30 m d. 0.40 m 2. At what distance

More information

Hadronic Resonances in a Hadronic Picture. Daisuke Jido (Nuclear physics group)

Hadronic Resonances in a Hadronic Picture. Daisuke Jido (Nuclear physics group) Daisuke Jido (Nuclear physics group) Hadrons (particles interacting with strong interactions) are composite objects of quarks and gluons. It has been recently suggested that the structures of some hadrons

More information

Visit for more fantastic resources. OCR. A Level. A Level Physics. Particle physics (Answers) Name: Total Marks: /30

Visit   for more fantastic resources. OCR. A Level. A Level Physics. Particle physics (Answers) Name: Total Marks: /30 Visit http://www.mathsmadeeasy.co.uk/ for more fantastic resources. OCR A Level A Level Physics Particle physics (Answers) Name: Total Marks: /30 Maths Made Easy Complete Tuition Ltd 2017 1. In 1911 the

More information

Exam, FK5024, Nuclear & particle physics, astrophysics & cosmology, October 26, 2017

Exam, FK5024, Nuclear & particle physics, astrophysics & cosmology, October 26, 2017 Exam, FK5024, Nuclear & particle physics, astrophysics & cosmology, October 26, 2017 08:00 13:00, Room FR4 (Oskar Klein Auditorium) No tools allowed except calculator (provided at the exam) and the attached

More information

Subatomic Physics: Particle Physics Study Guide

Subatomic Physics: Particle Physics Study Guide Subatomic Physics: Particle Physics Study Guide This is a guide of what to revise for the exam. The other material we covered in the course may appear in uestions but it will always be provided if reuired.

More information

Chapter from the Internet course SK180N Modern Physics

Chapter from the Internet course SK180N Modern Physics Nuclear physics 1 Chapter 10 Chapter from the Internet course SK180N Modern Physics Contents 10.4.1 Introduction to Nuclear Physics 10.4.2 Natural radioactivity 10.4.3 alpha-decay 10.4.4 beta-decay 10.4.5

More information

Using the same notation, give the isotope of carbon that has two fewer neutrons.

Using the same notation, give the isotope of carbon that has two fewer neutrons. A radioactive isotope of carbon is represented by C. Using the same notation, give the isotope of carbon that has two fewer neutrons. () Calculate the charge on the ion formed when two electrons are removed

More information

Review Chap. 18: Particle Physics

Review Chap. 18: Particle Physics Final Exam: Sat. Dec. 18, 2:45-4:45 pm, 1300 Sterling Exam is cumulative, covering all material Review Chap. 18: Particle Physics Particles and fields: a new picture Quarks and leptons: the particle zoo

More information

Particle Physics. All science is either physics or stamp collecting and this from a 1908 Nobel laureate in Chemistry

Particle Physics. All science is either physics or stamp collecting and this from a 1908 Nobel laureate in Chemistry Particle Physics JJ Thompson discovered electrons in 1897 Rutherford discovered the atomic nucleus in 1911 and the proton in 1919 (idea of gold foil expt) All science is either physics or stamp collecting

More information

3 Types of Nuclear Decay Processes

3 Types of Nuclear Decay Processes 3 Types of Nuclear Decay Processes Radioactivity is the spontaneous decay of an unstable nucleus The radioactive decay of a nucleus may result from the emission of some particle from the nucleus. The emitted

More information

Nuclear and Particle Physics

Nuclear and Particle Physics Nuclear and Particle Physics W. S. С Williams Department of Physics, University of Oxford and St Edmund Hall, Oxford CLARENDON PRESS OXFORD 1991 Contents 1 Introduction 1.1 Historical perspective 1 1.2

More information

PHYS 420: Astrophysics & Cosmology

PHYS 420: Astrophysics & Cosmology PHYS 420: Astrophysics & Cosmology Dr Richard H. Cyburt Assistant Professor of Physics My office: 402c in the Science Building My phone: (304) 384-6006 My email: rcyburt@concord.edu My webpage: www.concord.edu/rcyburt

More information

Chapter 30 Nuclear Physics and Radioactivity

Chapter 30 Nuclear Physics and Radioactivity Chapter 30 Nuclear Physics and Radioactivity 30.1 Structure and Properties of the Nucleus Nucleus is made of protons and neutrons Proton has positive charge: Neutron is electrically neutral: 30.1 Structure

More information

Basic Nuclear Theory. Lecture 1 The Atom and Nuclear Stability

Basic Nuclear Theory. Lecture 1 The Atom and Nuclear Stability Basic Nuclear Theory Lecture 1 The Atom and Nuclear Stability Introduction Nuclear power is made possible by energy emitted from either nuclear fission or nuclear fusion. Current nuclear power plants utilize

More information

The wavefunction ψ for an electron confined to move within a box of linear size L = m, is a standing wave as shown.

The wavefunction ψ for an electron confined to move within a box of linear size L = m, is a standing wave as shown. 1. This question is about quantum aspects of the electron. The wavefunction ψ for an electron confined to move within a box of linear size L = 1.0 10 10 m, is a standing wave as shown. State what is meant

More information

General Physics (PHY 2140)

General Physics (PHY 2140) General Physics (PHY 2140) Lecture 20 Modern Physics Nuclear Energy and Elementary Particles Fission, Fusion and Reactors Elementary Particles Fundamental Forces Classification of Particles Conservation

More information

1. What does this poster contain?

1. What does this poster contain? This poster presents the elementary constituents of matter (the particles) and their interactions, the latter having other particles as intermediaries. These elementary particles are point-like and have

More information

The Four Fundamental Forces. The Four Fundamental Forces. Gravitational Force. The Electrical Force. The Photon (γ) Unification. Mass.

The Four Fundamental Forces. The Four Fundamental Forces. Gravitational Force. The Electrical Force. The Photon (γ) Unification. Mass. The Four Fundamental Forces What are the four fundamental forces? The Four Fundamental Forces What are the four fundamental forces? Weaker Stronger Gravitational, Electromagnetic, Strong and Weak Nuclear

More information

Nuclear Medicine Treatments and Clinical Applications

Nuclear Medicine Treatments and Clinical Applications INAYA MEDICAL COLLEGE (IMC) RAD 243- LECTURE 4 Nuclear Medicine Treatments and Clinical Applications DR. MOHAMMED MOSTAFA EMAM References "Advancing Nuclear Medicine Through Innovation". Committee on State

More information

Elementary Particle Physics Glossary. Course organiser: Dr Marcella Bona February 9, 2016

Elementary Particle Physics Glossary. Course organiser: Dr Marcella Bona February 9, 2016 Elementary Particle Physics Glossary Course organiser: Dr Marcella Bona February 9, 2016 1 Contents 1 Terms A-C 5 1.1 Accelerator.............................. 5 1.2 Annihilation..............................

More information

Particles involved proton neutron electron positron gamma ray 1

Particles involved proton neutron electron positron gamma ray 1 TOPIC : Nuclear and radiation chemistry Nuclide - an atom with a particular mass number and atomic number Isotopes - nuclides with the same atomic number (Z) but different mass numbers (A) Notation A Element

More information

Quantum Conductance. John Carroll. March 22, 2009

Quantum Conductance. John Carroll. March 22, 2009 Quantum Conductance John Carroll March 22, 2009 Introduction The concept of conductance is used to explain the manner in which electrical current flows though a material. The original theory of conductance

More information

Lecture 3 (Part 1) Physics 4213/5213

Lecture 3 (Part 1) Physics 4213/5213 September 8, 2000 1 FUNDAMENTAL QED FEYNMAN DIAGRAM Lecture 3 (Part 1) Physics 4213/5213 1 Fundamental QED Feynman Diagram The most fundamental process in QED, is give by the definition of how the field

More information

Introduction to Nuclear Science

Introduction to Nuclear Science Introduction to Nuclear Science PAN Summer Science Program University of Notre Dame June, 2014 Tony Hyder Professor of Physics Topics we will discuss Ground-state properties of the nucleus size, shape,

More information

Dedicated Arrays: MEDEA GDR studies (E γ = MeV) Highly excited CN E*~ MeV, 4 T 8 MeV

Dedicated Arrays: MEDEA GDR studies (E γ = MeV) Highly excited CN E*~ MeV, 4 T 8 MeV Dedicated Arrays: MEDEA GDR studies (E γ = 10-25 MeV) Highly excited CN E*~ 250-350 MeV, 4 T 8 MeV γ-ray spectrum intermediate energy region 10 MeV/A E beam 100 MeV/A - large variety of emitted particles

More information