Missing Data. On Missing Data and Interactions in SNP Association Studies. Missing Data - Approaches. Missing Data - Approaches. Multiple Imputation

Size: px
Start display at page:

Download "Missing Data. On Missing Data and Interactions in SNP Association Studies. Missing Data - Approaches. Missing Data - Approaches. Multiple Imputation"

Transcription

1 October, U of British Columbia Missing Data On Missing Data Interactions in SNP Association Studies 5 SNPs Ingo Ruczinski Department of Biostatistics, Johns Hopkins Bloomberg School of Public Health 5 Subject Missing Data - Approaches Missing Data - Approaches The most common approach f dealing with missing data is to omit the observations that have missing recds in the model s covariates. This approach can have several shtcomings, including: Loss of power. Bias in the parameter estimates. A good reference on this topic is Greenl Finkle (995). Some other used approaches are: To impute a value from the marginal distribution of the covariate. To create an extra level indicating missingness, if the covariate is a fact. These choices tend to be not so great either. Multiple imputation can be used to draw valid statistical inference from data with missing values when the data are missing at rom (Little Rubin 987, Schafer 997). In essence, multiple imputation acknowledges the uncertainty due to missing data, instead of simply igning it: several complete data sets are generated, the uncertainty in the model parameter estimates incpates the stard errs of the parameter estimates as well as the variability between the parameter estimates from the replicate data sets. While the hypothesis of missing at rom cannot fmally be tested, it is a lot less stringent than the requirement of missing completely at rom, which is the underlying assumption made when observations are omitted. References: Greenl S, Finkle WD (995). A Critical Look at Methods f Hling Missing Covariates in Epidemiologic Regression Analyses. American Journal of Epidemiology, (): Little RJ, Rubin DB (987). Statistical Analysis with Missing Data. John Wiley Sons, NewYk. Schafer JL (997). Analysis of Incomplete Multivariate Data. Chapman & Hall. Not Missing at Rom Multiple Imputation parameter estimates From the white paper, updates/brlmm algithm.affx estr Snp7CG Snp7GG SnpTC SnpTT SnpGC SnpGG SnpGT SnpTT SnpAG SnpGG Snp6CT Snp6TT SnpGA SnpGG SnpGA SnpGG SnpAG SnpGG SnpAG SnpGG

2 Multiple Imputation Multiple Imputation parameter estimates estr Snp7CG Snp7GG SnpTC SnpTT SnpGC SnpGG SnpGT SnpTT SnpAG SnpGG Snp6CT Snp6TT SnpGA SnpGG SnpGA SnpGG SnpAG SnpGG SnpAG SnpGG estr Snp7CG Snp7GG confidence intervals SnpTC SnpTT SnpGC SnpGG SnpGT SnpTT SnpAG SnpGG Snp6CT Snp6TT SnpGA SnpGG SnpGA SnpGG SnpAG SnpGG SnpAG SnpGG Example Example Number of Pairs Odds Ratio Confidence Interval Family Histy not complete Family Histy complete AA AC CC na AA AC CC na XPD Lys75Gln iginal data set.9 (.. ) multiple imputations.5 (.. ) raw numbers case control XPD Gln75Gln iginal data set.8 (.8. ) multiple imputations. (.7. ) percents case control Positive Family Histy iginal data set.5 (..5 ) multiple imputations.5 (.58. ) Brewster AM, Jgensen TJ, Ruczinski I, Huang HY, Hoffman S, Thuita L, Newschaffer C, Lunn RM, Bell D, Helzlsouer KJ (6). Polymphisms of the DNA Repair Genes XPD (Lys75Gln) XRCC (Arg99Gln Arg9Trp): Relationship to Breast Cancer Risk Familial Predisposition to Breast Cancer. Breast Cancer Research Treatment, 95(): 7-8. Example Example XPD Lys75Gln 6 5 XPD Gln75Gln hazards ratio Family Histy combined iginal SNP SNP SNP SNP SNP 5 SNP 6 SNP 7 SNP 8 SNP 9 SNP SNP SNP SNP The missing data were imputed using decision trees. In a minute... Unpublished data.

3 Multiple Imputation Tree-based Imputation We looked into two approaches:. Haplotype-based imputation The idea here is to reconstruct the haplotypes (f example via the EM algithm), impute the missing values from the estimated haplotype frequencies.. Tree-based imputation The idea here is to use decision trees to impute the genotype data, browing infmation from neighbing SNPs other variables. F each individual i, let M i =(M i,m i,...,m ip) be the vect of p variables consisting of the covariates X i =(x i,...,x ir) the unphased SNP data G i =(g i,...,g ik) which have missing entries ( p r + k). Let C i be the vect of the remaining covariates unphased SNP data f which all data are available. We assume that the outcome D i is always observed. The joint probability distribution of the missing data f individual i given the observed data, Pr(M i,m i,...,m ip C i, D i), is difficult to get. An obvious problem is that the sets of missing data M i complete data C i, respectively, are different f each individual i. Dai J, Ruczinski I, LeBlanc M, Kooperberg C (6). A Comparison of Haplotype-based Tree-based SNP Imputation in Association Studies. Genetic Epidemiology, (in press). Instead of modeling the joint distribution, we use the Gibbs sampler, a Markov chain Monte Carlo technique that uses conditional (low-dimensional) distributions to draw samples from a high-dimensional distribution. Tree-based Imputation Simulation Specifically, we consider iteratively sampling from the following sequence of the full conditional distributions in the (n +) th iteration: M (n+) Pr(M M (n),m (n),...,m (n) p, C, D) M (n+) Pr(M M (n+),m (n),...,m (n) p, C, D) M (n+) p. Pr(M p M (n+),m (n+),...,m (n+) p where each full conditional distribution is modeled by CART., C, D). mean percent crect.7 percent crect.7.5 trees five sweeps.5 A convenient property of surrogate splits in CART is that we do not have to guess the initial values of the missing data in M. As a result only a very sht burn-in of the above sampler is required. trees one sweep marginal extra fraction missing [%] extra fraction missing [%] Simulation Motivation Mean imputation errs in the simulated data of four SNPs on the PGR gene f four imputation approaches: β = β = % missing data % missing data SNP SNP SNP SNP Approach SNP SNP SNP SNP Naive EM WEM Tree Naive EM Current methods f analyzing complex traits include analyzing localizing disease loci one at a time. However, complex traits can be caused by the interaction of many loci, each with varying effect.... patterns of interactions between several loci, f example, disease phenotype caused by locus A locus B, A but not B, A (B C), clearly make identification of the involved loci me difficult. While the simultaneous analysis of every single two-way pair of markers can be feasible, it becomes overwhelmingly computationally burdensome to analyze all -way, -way to N-way patterns, patterns, combinations of loci. WEM Tree β = Naive EM WEM Tree Lucek PR, Ott J (997). Neural netwk analysis of complex traits. Genetic Epidemiology, (6): -6.

4 Double Penetrance Model Logic Regression AA Aa BB Bb bb X,...,X k are / (False/True) predicts. Y is a response variable. Fit a model t g(e(y)) = b + b j L j, j= where L j is a Boolean combination of the covariates, e.g. L j =(X X ) X c. Determine the logic terms L j estimate the b j simultaneously. SNP X X.R X.D aa (SNPaa SNPBB c ) (SNPbb SNPAA c ) SNPs are coded as dominant recessive: AA AT TT Ruczinski I, Kooperberg C, LeBlanc M (). Logic Regression. Journal of Computational Graphical Statistics, (): The Move Set f Logic Regression Simulated Annealing f Logic Regression Alternate Leaf Alternate Operat Grow Branch We try to fit the model g(e(y)) = b + t j= bj L j. Select a scing function (RSS, log-likelihood,...). Possible Moves 5 Pick the maximum number of Logic Trees. Pick the maximum number of leaves in a tree. Initial Tree Prune Branch Split Leaf Delete Leaf Initialize the model with L j = f all j. Carry out the Simulated Annealing Algithm: Propose a move. 6 Accept reject the move, depending on the sces the temperature. Growing Logic Models Model Selection X.7 We implemented two flavs f the required model selection. Both approaches require a definition of model size. X.7 X. X. Cross-validation: X.7 X. This is most applicable when prediction is the main objective, i. e. not in SNP association studies. Permutation tests: This is a test f association, i. e. the preferred test in SNP association studies. The model size is chosen via a sequence of hypothesis tests. so on... X. X. X.7 X. X.9 X. X. X. X.7 Ruczinski I, Kooperberg C, LeBlanc M (). Logic Regression. Journal of Computational Graphical Statistics, (): 75-5.

5 Multiple Models : Monte Carlo LR Multiple Models : Metropolis-Hastings Goal: identify all models combinations of covariates that are potentially associated with the outcome. 7 6 Use reversible jumps to implement an MCMC algithm with pris on models model size. 5 The pri on model size does influence the total number of SNPs selected. sce The pri on model size has virtually no influence on the relative dering of the SNPs combinations thereof. 5. Kooperberg C, Ruczinski I (5). Identifying Interacting SNPs using Monte Carlo Logic Regression, Genetic Epidemiol., 8(): temperature Multiple Models : Metropolis-Hastings Multiple Models : Metropolis-Hastings Let γ S be the sce of a certain state S. Example: Simulate binary predicts X,...,X. We use the acceptance function α(γ old,γ new, t) = min{,exp([γ old γ new]/t)} If we keep the temperature constant, this defines a homogeneous Markov chain. Let Y =5+ L(X, X, X, X ) + ɛ, ɛ N(,). Run a homogeneous Markov chain during crunch time f two separate cases: We constructed the move set to be irreducible aperiodic, therefe each homogeneous Markov chain has a limiting distribution π t(s). If we know the model size where the signal ends the noise starts, we can read off the cresponding temperature from the diagnostic plot! Case Case All X are independent. All X are independent, except X (in the signal) X 5 (not in the signal), which are heavily crelated. Multiple Models : Metropolis-Hastings Multiple Models : Metropolis-Hastings X X X X X5 X6 X7 X8 X9 X X X X X X5 X6 X7 X8 X9 X predicts predicts SNPs

SNP-SNP Interactions in Case-Parent Trios

SNP-SNP Interactions in Case-Parent Trios Detection of SNP-SNP Interactions in Case-Parent Trios Department of Biostatistics Johns Hopkins Bloomberg School of Public Health June 2, 2009 Karyotypes http://ghr.nlm.nih.gov/ Single Nucleotide Polymphisms

More information

Logic Regression. Ingo Ruczinski. Department of Biostatistics Johns Hopkins University.

Logic Regression. Ingo Ruczinski. Department of Biostatistics Johns Hopkins University. Logic Regression Ingo Ruczinski Department of Biostatistics Jons Hopkins University Email: ingo@ju.edu ttp://biosun.biostat.jsp.edu/ iruczins Wit Carles Kooperberg Micael LeBlanc, FHCRC Introduction Motivation

More information

SNP Association Studies with Case-Parent Trios

SNP Association Studies with Case-Parent Trios SNP Association Studies with Case-Parent Trios Department of Biostatistics Johns Hopkins Bloomberg School of Public Health September 3, 2009 Population-based Association Studies Balding (2006). Nature

More information

The E-M Algorithm in Genetics. Biostatistics 666 Lecture 8

The E-M Algorithm in Genetics. Biostatistics 666 Lecture 8 The E-M Algorithm in Genetics Biostatistics 666 Lecture 8 Maximum Likelihood Estimation of Allele Frequencies Find parameter estimates which make observed data most likely General approach, as long as

More information

Exercise 2 SISG Association Mapping

Exercise 2 SISG Association Mapping Exercise 2 SISG Association Mapping Load the bpdata.csv data file into your R session. LHON.txt data file into your R session. Can read the data directly from the website if your computer is connected

More information

Multiple QTL mapping

Multiple QTL mapping Multiple QTL mapping Karl W Broman Department of Biostatistics Johns Hopkins University www.biostat.jhsph.edu/~kbroman [ Teaching Miscellaneous lectures] 1 Why? Reduce residual variation = increased power

More information

STA 4273H: Statistical Machine Learning

STA 4273H: Statistical Machine Learning STA 4273H: Statistical Machine Learning Russ Salakhutdinov Department of Computer Science! Department of Statistical Sciences! rsalakhu@cs.toronto.edu! h0p://www.cs.utoronto.ca/~rsalakhu/ Lecture 7 Approximate

More information

Bayesian Inference of Interactions and Associations

Bayesian Inference of Interactions and Associations Bayesian Inference of Interactions and Associations Jun Liu Department of Statistics Harvard University http://www.fas.harvard.edu/~junliu Based on collaborations with Yu Zhang, Jing Zhang, Yuan Yuan,

More information

Markov Chain Monte Carlo in Practice

Markov Chain Monte Carlo in Practice Markov Chain Monte Carlo in Practice Edited by W.R. Gilks Medical Research Council Biostatistics Unit Cambridge UK S. Richardson French National Institute for Health and Medical Research Vilejuif France

More information

Tutorial Session 2. MCMC for the analysis of genetic data on pedigrees:

Tutorial Session 2. MCMC for the analysis of genetic data on pedigrees: MCMC for the analysis of genetic data on pedigrees: Tutorial Session 2 Elizabeth Thompson University of Washington Genetic mapping and linkage lod scores Monte Carlo likelihood and likelihood ratio estimation

More information

Reconstruction of individual patient data for meta analysis via Bayesian approach

Reconstruction of individual patient data for meta analysis via Bayesian approach Reconstruction of individual patient data for meta analysis via Bayesian approach Yusuke Yamaguchi, Wataru Sakamoto and Shingo Shirahata Graduate School of Engineering Science, Osaka University Masashi

More information

Markov Chain Monte Carlo

Markov Chain Monte Carlo Markov Chain Monte Carlo Recall: To compute the expectation E ( h(y ) ) we use the approximation E(h(Y )) 1 n n h(y ) t=1 with Y (1),..., Y (n) h(y). Thus our aim is to sample Y (1),..., Y (n) from f(y).

More information

QTL model selection: key players

QTL model selection: key players Bayesian Interval Mapping. Bayesian strategy -9. Markov chain sampling 0-7. sampling genetic architectures 8-5 4. criteria for model selection 6-44 QTL : Bayes Seattle SISG: Yandell 008 QTL model selection:

More information

CPSC 540: Machine Learning

CPSC 540: Machine Learning CPSC 540: Machine Learning MCMC and Non-Parametric Bayes Mark Schmidt University of British Columbia Winter 2016 Admin I went through project proposals: Some of you got a message on Piazza. No news is

More information

Multilevel Statistical Models: 3 rd edition, 2003 Contents

Multilevel Statistical Models: 3 rd edition, 2003 Contents Multilevel Statistical Models: 3 rd edition, 2003 Contents Preface Acknowledgements Notation Two and three level models. A general classification notation and diagram Glossary Chapter 1 An introduction

More information

Gene mapping in model organisms

Gene mapping in model organisms Gene mapping in model organisms Karl W Broman Department of Biostatistics Johns Hopkins University http://www.biostat.jhsph.edu/~kbroman Goal Identify genes that contribute to common human diseases. 2

More information

Bayesian Nonparametric Regression for Diabetes Deaths

Bayesian Nonparametric Regression for Diabetes Deaths Bayesian Nonparametric Regression for Diabetes Deaths Brian M. Hartman PhD Student, 2010 Texas A&M University College Station, TX, USA David B. Dahl Assistant Professor Texas A&M University College Station,

More information

Contents. Part I: Fundamentals of Bayesian Inference 1

Contents. Part I: Fundamentals of Bayesian Inference 1 Contents Preface xiii Part I: Fundamentals of Bayesian Inference 1 1 Probability and inference 3 1.1 The three steps of Bayesian data analysis 3 1.2 General notation for statistical inference 4 1.3 Bayesian

More information

Computer Vision Group Prof. Daniel Cremers. 11. Sampling Methods: Markov Chain Monte Carlo

Computer Vision Group Prof. Daniel Cremers. 11. Sampling Methods: Markov Chain Monte Carlo Group Prof. Daniel Cremers 11. Sampling Methods: Markov Chain Monte Carlo Markov Chain Monte Carlo In high-dimensional spaces, rejection sampling and importance sampling are very inefficient An alternative

More information

Introduction to Machine Learning CMU-10701

Introduction to Machine Learning CMU-10701 Introduction to Machine Learning CMU-10701 Markov Chain Monte Carlo Methods Barnabás Póczos & Aarti Singh Contents Markov Chain Monte Carlo Methods Goal & Motivation Sampling Rejection Importance Markov

More information

MCMC: Markov Chain Monte Carlo

MCMC: Markov Chain Monte Carlo I529: Machine Learning in Bioinformatics (Spring 2013) MCMC: Markov Chain Monte Carlo Yuzhen Ye School of Informatics and Computing Indiana University, Bloomington Spring 2013 Contents Review of Markov

More information

Bagging During Markov Chain Monte Carlo for Smoother Predictions

Bagging During Markov Chain Monte Carlo for Smoother Predictions Bagging During Markov Chain Monte Carlo for Smoother Predictions Herbert K. H. Lee University of California, Santa Cruz Abstract: Making good predictions from noisy data is a challenging problem. Methods

More information

1 Springer. Nan M. Laird Christoph Lange. The Fundamentals of Modern Statistical Genetics

1 Springer. Nan M. Laird Christoph Lange. The Fundamentals of Modern Statistical Genetics 1 Springer Nan M. Laird Christoph Lange The Fundamentals of Modern Statistical Genetics 1 Introduction to Statistical Genetics and Background in Molecular Genetics 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

More information

Statistical issues in QTL mapping in mice

Statistical issues in QTL mapping in mice Statistical issues in QTL mapping in mice Karl W Broman Department of Biostatistics Johns Hopkins University http://www.biostat.jhsph.edu/~kbroman Outline Overview of QTL mapping The X chromosome Mapping

More information

Sparse, noisy Boolean functions

Sparse, noisy Boolean functions Sparse, noisy Boolean functions Sach Mukherjee & Terence P. Speed Department of Statistics University of California, Berkeley Berkeley, CA 94720 {sach,terry}@stat.berkeley.edu April 20, 2007 Abstract This

More information

Markov Chain Monte Carlo methods

Markov Chain Monte Carlo methods Markov Chain Monte Carlo methods By Oleg Makhnin 1 Introduction a b c M = d e f g h i 0 f(x)dx 1.1 Motivation 1.1.1 Just here Supresses numbering 1.1.2 After this 1.2 Literature 2 Method 2.1 New math As

More information

SAMSI Astrostatistics Tutorial. More Markov chain Monte Carlo & Demo of Mathematica software

SAMSI Astrostatistics Tutorial. More Markov chain Monte Carlo & Demo of Mathematica software SAMSI Astrostatistics Tutorial More Markov chain Monte Carlo & Demo of Mathematica software Phil Gregory University of British Columbia 26 Bayesian Logical Data Analysis for the Physical Sciences Contents:

More information

Lecture 7: Interaction Analysis. Summer Institute in Statistical Genetics 2017

Lecture 7: Interaction Analysis. Summer Institute in Statistical Genetics 2017 Lecture 7: Interaction Analysis Timothy Thornton and Michael Wu Summer Institute in Statistical Genetics 2017 1 / 39 Lecture Outline Beyond main SNP effects Introduction to Concept of Statistical Interaction

More information

STA 216, GLM, Lecture 16. October 29, 2007

STA 216, GLM, Lecture 16. October 29, 2007 STA 216, GLM, Lecture 16 October 29, 2007 Efficient Posterior Computation in Factor Models Underlying Normal Models Generalized Latent Trait Models Formulation Genetic Epidemiology Illustration Structural

More information

Machine Learning, Fall 2009: Midterm

Machine Learning, Fall 2009: Midterm 10-601 Machine Learning, Fall 009: Midterm Monday, November nd hours 1. Personal info: Name: Andrew account: E-mail address:. You are permitted two pages of notes and a calculator. Please turn off all

More information

Inferences on missing information under multiple imputation and two-stage multiple imputation

Inferences on missing information under multiple imputation and two-stage multiple imputation p. 1/4 Inferences on missing information under multiple imputation and two-stage multiple imputation Ofer Harel Department of Statistics University of Connecticut Prepared for the Missing Data Approaches

More information

Use of hidden Markov models for QTL mapping

Use of hidden Markov models for QTL mapping Use of hidden Markov models for QTL mapping Karl W Broman Department of Biostatistics, Johns Hopkins University December 5, 2006 An important aspect of the QTL mapping problem is the treatment of missing

More information

Lecture 5. G. Cowan Lectures on Statistical Data Analysis Lecture 5 page 1

Lecture 5. G. Cowan Lectures on Statistical Data Analysis Lecture 5 page 1 Lecture 5 1 Probability (90 min.) Definition, Bayes theorem, probability densities and their properties, catalogue of pdfs, Monte Carlo 2 Statistical tests (90 min.) general concepts, test statistics,

More information

Bayesian Linear Regression

Bayesian Linear Regression Bayesian Linear Regression Sudipto Banerjee 1 Biostatistics, School of Public Health, University of Minnesota, Minneapolis, Minnesota, U.S.A. September 15, 2010 1 Linear regression models: a Bayesian perspective

More information

Toutenburg, Fieger: Using diagnostic measures to detect non-mcar processes in linear regression models with missing covariates

Toutenburg, Fieger: Using diagnostic measures to detect non-mcar processes in linear regression models with missing covariates Toutenburg, Fieger: Using diagnostic measures to detect non-mcar processes in linear regression models with missing covariates Sonderforschungsbereich 386, Paper 24 (2) Online unter: http://epub.ub.uni-muenchen.de/

More information

16 : Approximate Inference: Markov Chain Monte Carlo

16 : Approximate Inference: Markov Chain Monte Carlo 10-708: Probabilistic Graphical Models 10-708, Spring 2017 16 : Approximate Inference: Markov Chain Monte Carlo Lecturer: Eric P. Xing Scribes: Yuan Yang, Chao-Ming Yen 1 Introduction As the target distribution

More information

Machine Learning for Data Science (CS4786) Lecture 24

Machine Learning for Data Science (CS4786) Lecture 24 Machine Learning for Data Science (CS4786) Lecture 24 Graphical Models: Approximate Inference Course Webpage : http://www.cs.cornell.edu/courses/cs4786/2016sp/ BELIEF PROPAGATION OR MESSAGE PASSING Each

More information

Markov chain Monte Carlo

Markov chain Monte Carlo Markov chain Monte Carlo Peter Beerli October 10, 2005 [this chapter is highly influenced by chapter 1 in Markov chain Monte Carlo in Practice, eds Gilks W. R. et al. Chapman and Hall/CRC, 1996] 1 Short

More information

DAG models and Markov Chain Monte Carlo methods a short overview

DAG models and Markov Chain Monte Carlo methods a short overview DAG models and Markov Chain Monte Carlo methods a short overview Søren Højsgaard Institute of Genetics and Biotechnology University of Aarhus August 18, 2008 Printed: August 18, 2008 File: DAGMC-Lecture.tex

More information

17 : Markov Chain Monte Carlo

17 : Markov Chain Monte Carlo 10-708: Probabilistic Graphical Models, Spring 2015 17 : Markov Chain Monte Carlo Lecturer: Eric P. Xing Scribes: Heran Lin, Bin Deng, Yun Huang 1 Review of Monte Carlo Methods 1.1 Overview Monte Carlo

More information

(5) Multi-parameter models - Gibbs sampling. ST440/540: Applied Bayesian Analysis

(5) Multi-parameter models - Gibbs sampling. ST440/540: Applied Bayesian Analysis Summarizing a posterior Given the data and prior the posterior is determined Summarizing the posterior gives parameter estimates, intervals, and hypothesis tests Most of these computations are integrals

More information

Reminder of some Markov Chain properties:

Reminder of some Markov Chain properties: Reminder of some Markov Chain properties: 1. a transition from one state to another occurs probabilistically 2. only state that matters is where you currently are (i.e. given present, future is independent

More information

April 20th, Advanced Topics in Machine Learning California Institute of Technology. Markov Chain Monte Carlo for Machine Learning

April 20th, Advanced Topics in Machine Learning California Institute of Technology. Markov Chain Monte Carlo for Machine Learning for for Advanced Topics in California Institute of Technology April 20th, 2017 1 / 50 Table of Contents for 1 2 3 4 2 / 50 History of methods for Enrico Fermi used to calculate incredibly accurate predictions

More information

Computational Systems Biology: Biology X

Computational Systems Biology: Biology X Bud Mishra Room 1002, 715 Broadway, Courant Institute, NYU, New York, USA L#7:(Mar-23-2010) Genome Wide Association Studies 1 The law of causality... is a relic of a bygone age, surviving, like the monarchy,

More information

ST 740: Markov Chain Monte Carlo

ST 740: Markov Chain Monte Carlo ST 740: Markov Chain Monte Carlo Alyson Wilson Department of Statistics North Carolina State University October 14, 2012 A. Wilson (NCSU Stsatistics) MCMC October 14, 2012 1 / 20 Convergence Diagnostics:

More information

Mapping multiple QTL in experimental crosses

Mapping multiple QTL in experimental crosses Mapping multiple QTL in experimental crosses Karl W Broman Department of Biostatistics and Medical Informatics University of Wisconsin Madison www.biostat.wisc.edu/~kbroman [ Teaching Miscellaneous lectures]

More information

Package LBLGXE. R topics documented: July 20, Type Package

Package LBLGXE. R topics documented: July 20, Type Package Type Package Package LBLGXE July 20, 2015 Title Bayesian Lasso for detecting Rare (or Common) Haplotype Association and their interactions with Environmental Covariates Version 1.2 Date 2015-07-09 Author

More information

Stat 516, Homework 1

Stat 516, Homework 1 Stat 516, Homework 1 Due date: October 7 1. Consider an urn with n distinct balls numbered 1,..., n. We sample balls from the urn with replacement. Let N be the number of draws until we encounter a ball

More information

Supplemental Information Likelihood-based inference in isolation-by-distance models using the spatial distribution of low-frequency alleles

Supplemental Information Likelihood-based inference in isolation-by-distance models using the spatial distribution of low-frequency alleles Supplemental Information Likelihood-based inference in isolation-by-distance models using the spatial distribution of low-frequency alleles John Novembre and Montgomery Slatkin Supplementary Methods To

More information

Ronald Christensen. University of New Mexico. Albuquerque, New Mexico. Wesley Johnson. University of California, Irvine. Irvine, California

Ronald Christensen. University of New Mexico. Albuquerque, New Mexico. Wesley Johnson. University of California, Irvine. Irvine, California Texts in Statistical Science Bayesian Ideas and Data Analysis An Introduction for Scientists and Statisticians Ronald Christensen University of New Mexico Albuquerque, New Mexico Wesley Johnson University

More information

Default Priors and Effcient Posterior Computation in Bayesian

Default Priors and Effcient Posterior Computation in Bayesian Default Priors and Effcient Posterior Computation in Bayesian Factor Analysis January 16, 2010 Presented by Eric Wang, Duke University Background and Motivation A Brief Review of Parameter Expansion Literature

More information

Discrete & continuous characters: The threshold model

Discrete & continuous characters: The threshold model Discrete & continuous characters: The threshold model Discrete & continuous characters: the threshold model So far we have discussed continuous & discrete character models separately for estimating ancestral

More information

The Particle Filter. PD Dr. Rudolph Triebel Computer Vision Group. Machine Learning for Computer Vision

The Particle Filter. PD Dr. Rudolph Triebel Computer Vision Group. Machine Learning for Computer Vision The Particle Filter Non-parametric implementation of Bayes filter Represents the belief (posterior) random state samples. by a set of This representation is approximate. Can represent distributions that

More information

Computer Vision Group Prof. Daniel Cremers. 14. Sampling Methods

Computer Vision Group Prof. Daniel Cremers. 14. Sampling Methods Prof. Daniel Cremers 14. Sampling Methods Sampling Methods Sampling Methods are widely used in Computer Science as an approximation of a deterministic algorithm to represent uncertainty without a parametric

More information

Lecture 2: Genetic Association Testing with Quantitative Traits. Summer Institute in Statistical Genetics 2017

Lecture 2: Genetic Association Testing with Quantitative Traits. Summer Institute in Statistical Genetics 2017 Lecture 2: Genetic Association Testing with Quantitative Traits Instructors: Timothy Thornton and Michael Wu Summer Institute in Statistical Genetics 2017 1 / 29 Introduction to Quantitative Trait Mapping

More information

Introduction to Bayesian Statistics and Markov Chain Monte Carlo Estimation. EPSY 905: Multivariate Analysis Spring 2016 Lecture #10: April 6, 2016

Introduction to Bayesian Statistics and Markov Chain Monte Carlo Estimation. EPSY 905: Multivariate Analysis Spring 2016 Lecture #10: April 6, 2016 Introduction to Bayesian Statistics and Markov Chain Monte Carlo Estimation EPSY 905: Multivariate Analysis Spring 2016 Lecture #10: April 6, 2016 EPSY 905: Intro to Bayesian and MCMC Today s Class An

More information

Monte Carlo Methods. Leon Gu CSD, CMU

Monte Carlo Methods. Leon Gu CSD, CMU Monte Carlo Methods Leon Gu CSD, CMU Approximate Inference EM: y-observed variables; x-hidden variables; θ-parameters; E-step: q(x) = p(x y, θ t 1 ) M-step: θ t = arg max E q(x) [log p(y, x θ)] θ Monte

More information

ABC methods for phase-type distributions with applications in insurance risk problems

ABC methods for phase-type distributions with applications in insurance risk problems ABC methods for phase-type with applications problems Concepcion Ausin, Department of Statistics, Universidad Carlos III de Madrid Joint work with: Pedro Galeano, Universidad Carlos III de Madrid Simon

More information

18 : Advanced topics in MCMC. 1 Gibbs Sampling (Continued from the last lecture)

18 : Advanced topics in MCMC. 1 Gibbs Sampling (Continued from the last lecture) 10-708: Probabilistic Graphical Models 10-708, Spring 2014 18 : Advanced topics in MCMC Lecturer: Eric P. Xing Scribes: Jessica Chemali, Seungwhan Moon 1 Gibbs Sampling (Continued from the last lecture)

More information

Computational statistics

Computational statistics Computational statistics Markov Chain Monte Carlo methods Thierry Denœux March 2017 Thierry Denœux Computational statistics March 2017 1 / 71 Contents of this chapter When a target density f can be evaluated

More information

Part 8: GLMs and Hierarchical LMs and GLMs

Part 8: GLMs and Hierarchical LMs and GLMs Part 8: GLMs and Hierarchical LMs and GLMs 1 Example: Song sparrow reproductive success Arcese et al., (1992) provide data on a sample from a population of 52 female song sparrows studied over the course

More information

Lecture 6: Markov Chain Monte Carlo

Lecture 6: Markov Chain Monte Carlo Lecture 6: Markov Chain Monte Carlo D. Jason Koskinen koskinen@nbi.ku.dk Photo by Howard Jackman University of Copenhagen Advanced Methods in Applied Statistics Feb - Apr 2016 Niels Bohr Institute 2 Outline

More information

A note on Reversible Jump Markov Chain Monte Carlo

A note on Reversible Jump Markov Chain Monte Carlo A note on Reversible Jump Markov Chain Monte Carlo Hedibert Freitas Lopes Graduate School of Business The University of Chicago 5807 South Woodlawn Avenue Chicago, Illinois 60637 February, 1st 2006 1 Introduction

More information

MCMC for Cut Models or Chasing a Moving Target with MCMC

MCMC for Cut Models or Chasing a Moving Target with MCMC MCMC for Cut Models or Chasing a Moving Target with MCMC Martyn Plummer International Agency for Research on Cancer MCMSki Chamonix, 6 Jan 2014 Cut models What do we want to do? 1. Generate some random

More information

Longitudinal analysis of ordinal data

Longitudinal analysis of ordinal data Longitudinal analysis of ordinal data A report on the external research project with ULg Anne-Françoise Donneau, Murielle Mauer June 30 th 2009 Generalized Estimating Equations (Liang and Zeger, 1986)

More information

CS242: Probabilistic Graphical Models Lecture 7B: Markov Chain Monte Carlo & Gibbs Sampling

CS242: Probabilistic Graphical Models Lecture 7B: Markov Chain Monte Carlo & Gibbs Sampling CS242: Probabilistic Graphical Models Lecture 7B: Markov Chain Monte Carlo & Gibbs Sampling Professor Erik Sudderth Brown University Computer Science October 27, 2016 Some figures and materials courtesy

More information

Bayesian Phylogenetics:

Bayesian Phylogenetics: Bayesian Phylogenetics: an introduction Marc A. Suchard msuchard@ucla.edu UCLA Who is this man? How sure are you? The one true tree? Methods we ve learned so far try to find a single tree that best describes

More information

MARKOV CHAIN MONTE CARLO

MARKOV CHAIN MONTE CARLO MARKOV CHAIN MONTE CARLO RYAN WANG Abstract. This paper gives a brief introduction to Markov Chain Monte Carlo methods, which offer a general framework for calculating difficult integrals. We start with

More information

eqr094: Hierarchical MCMC for Bayesian System Reliability

eqr094: Hierarchical MCMC for Bayesian System Reliability eqr094: Hierarchical MCMC for Bayesian System Reliability Alyson G. Wilson Statistical Sciences Group, Los Alamos National Laboratory P.O. Box 1663, MS F600 Los Alamos, NM 87545 USA Phone: 505-667-9167

More information

Linear Regression (1/1/17)

Linear Regression (1/1/17) STA613/CBB540: Statistical methods in computational biology Linear Regression (1/1/17) Lecturer: Barbara Engelhardt Scribe: Ethan Hada 1. Linear regression 1.1. Linear regression basics. Linear regression

More information

Algorithmisches Lernen/Machine Learning

Algorithmisches Lernen/Machine Learning Algorithmisches Lernen/Machine Learning Part 1: Stefan Wermter Introduction Connectionist Learning (e.g. Neural Networks) Decision-Trees, Genetic Algorithms Part 2: Norman Hendrich Support-Vector Machines

More information

Introduction to QTL mapping in model organisms

Introduction to QTL mapping in model organisms Human vs mouse Introduction to QTL mapping in model organisms Karl W Broman Department of Biostatistics Johns Hopkins University www.biostat.jhsph.edu/~kbroman [ Teaching Miscellaneous lectures] www.daviddeen.com

More information

Bayesian Additive Regression Tree (BART) with application to controlled trail data analysis

Bayesian Additive Regression Tree (BART) with application to controlled trail data analysis Bayesian Additive Regression Tree (BART) with application to controlled trail data analysis Weilan Yang wyang@stat.wisc.edu May. 2015 1 / 20 Background CATE i = E(Y i (Z 1 ) Y i (Z 0 ) X i ) 2 / 20 Background

More information

Haplotyping. Biostatistics 666

Haplotyping. Biostatistics 666 Haplotyping Biostatistics 666 Previously Introduction to te E-M algoritm Approac for likeliood optimization Examples related to gene counting Allele frequency estimation recessive disorder Allele frequency

More information

Markov Chain Monte Carlo Lecture 6

Markov Chain Monte Carlo Lecture 6 Sequential parallel tempering With the development of science and technology, we more and more need to deal with high dimensional systems. For example, we need to align a group of protein or DNA sequences

More information

Estimating Evolutionary Trees. Phylogenetic Methods

Estimating Evolutionary Trees. Phylogenetic Methods Estimating Evolutionary Trees v if the data are consistent with infinite sites then all methods should yield the same tree v it gets more complicated when there is homoplasy, i.e., parallel or convergent

More information

MCMC Methods: Gibbs and Metropolis

MCMC Methods: Gibbs and Metropolis MCMC Methods: Gibbs and Metropolis Patrick Breheny February 28 Patrick Breheny BST 701: Bayesian Modeling in Biostatistics 1/30 Introduction As we have seen, the ability to sample from the posterior distribution

More information

Prerequisite: STATS 7 or STATS 8 or AP90 or (STATS 120A and STATS 120B and STATS 120C). AP90 with a minimum score of 3

Prerequisite: STATS 7 or STATS 8 or AP90 or (STATS 120A and STATS 120B and STATS 120C). AP90 with a minimum score of 3 University of California, Irvine 2017-2018 1 Statistics (STATS) Courses STATS 5. Seminar in Data Science. 1 Unit. An introduction to the field of Data Science; intended for entering freshman and transfers.

More information

The lmm Package. May 9, Description Some improved procedures for linear mixed models

The lmm Package. May 9, Description Some improved procedures for linear mixed models The lmm Package May 9, 2005 Version 0.3-4 Date 2005-5-9 Title Linear mixed models Author Original by Joseph L. Schafer . Maintainer Jing hua Zhao Description Some improved

More information

Streamlining Missing Data Analysis by Aggregating Multiple Imputations at the Data Level

Streamlining Missing Data Analysis by Aggregating Multiple Imputations at the Data Level Streamlining Missing Data Analysis by Aggregating Multiple Imputations at the Data Level A Monte Carlo Simulation to Test the Tenability of the SuperMatrix Approach Kyle M Lang Quantitative Psychology

More information

Statistical Methods. Missing Data snijders/sm.htm. Tom A.B. Snijders. November, University of Oxford 1 / 23

Statistical Methods. Missing Data  snijders/sm.htm. Tom A.B. Snijders. November, University of Oxford 1 / 23 1 / 23 Statistical Methods Missing Data http://www.stats.ox.ac.uk/ snijders/sm.htm Tom A.B. Snijders University of Oxford November, 2011 2 / 23 Literature: Joseph L. Schafer and John W. Graham, Missing

More information

Estimation of Parameters in Random. Effect Models with Incidence Matrix. Uncertainty

Estimation of Parameters in Random. Effect Models with Incidence Matrix. Uncertainty Estimation of Parameters in Random Effect Models with Incidence Matrix Uncertainty Xia Shen 1,2 and Lars Rönnegård 2,3 1 The Linnaeus Centre for Bioinformatics, Uppsala University, Uppsala, Sweden; 2 School

More information

Package lmm. R topics documented: March 19, Version 0.4. Date Title Linear mixed models. Author Joseph L. Schafer

Package lmm. R topics documented: March 19, Version 0.4. Date Title Linear mixed models. Author Joseph L. Schafer Package lmm March 19, 2012 Version 0.4 Date 2012-3-19 Title Linear mixed models Author Joseph L. Schafer Maintainer Jing hua Zhao Depends R (>= 2.0.0) Description Some

More information

Large Scale Bayesian Inference

Large Scale Bayesian Inference Large Scale Bayesian I in Cosmology Jens Jasche Garching, 11 September 2012 Introduction Cosmography 3D density and velocity fields Power-spectra, bi-spectra Dark Energy, Dark Matter, Gravity Cosmological

More information

Case-Control Association Testing. Case-Control Association Testing

Case-Control Association Testing. Case-Control Association Testing Introduction Association mapping is now routinely being used to identify loci that are involved with complex traits. Technological advances have made it feasible to perform case-control association studies

More information

Bayesian Inference and MCMC

Bayesian Inference and MCMC Bayesian Inference and MCMC Aryan Arbabi Partly based on MCMC slides from CSC412 Fall 2018 1 / 18 Bayesian Inference - Motivation Consider we have a data set D = {x 1,..., x n }. E.g each x i can be the

More information

Introduction to Computational Biology Lecture # 14: MCMC - Markov Chain Monte Carlo

Introduction to Computational Biology Lecture # 14: MCMC - Markov Chain Monte Carlo Introduction to Computational Biology Lecture # 14: MCMC - Markov Chain Monte Carlo Assaf Weiner Tuesday, March 13, 2007 1 Introduction Today we will return to the motif finding problem, in lecture 10

More information

MH I. Metropolis-Hastings (MH) algorithm is the most popular method of getting dependent samples from a probability distribution

MH I. Metropolis-Hastings (MH) algorithm is the most popular method of getting dependent samples from a probability distribution MH I Metropolis-Hastings (MH) algorithm is the most popular method of getting dependent samples from a probability distribution a lot of Bayesian mehods rely on the use of MH algorithm and it s famous

More information

Computer Vision Group Prof. Daniel Cremers. 10a. Markov Chain Monte Carlo

Computer Vision Group Prof. Daniel Cremers. 10a. Markov Chain Monte Carlo Group Prof. Daniel Cremers 10a. Markov Chain Monte Carlo Markov Chain Monte Carlo In high-dimensional spaces, rejection sampling and importance sampling are very inefficient An alternative is Markov Chain

More information

Association studies and regression

Association studies and regression Association studies and regression CM226: Machine Learning for Bioinformatics. Fall 2016 Sriram Sankararaman Acknowledgments: Fei Sha, Ameet Talwalkar Association studies and regression 1 / 104 Administration

More information

Bayesian Methods for Machine Learning

Bayesian Methods for Machine Learning Bayesian Methods for Machine Learning CS 584: Big Data Analytics Material adapted from Radford Neal s tutorial (http://ftp.cs.utoronto.ca/pub/radford/bayes-tut.pdf), Zoubin Ghahramni (http://hunch.net/~coms-4771/zoubin_ghahramani_bayesian_learning.pdf),

More information

Genotype Imputation. Biostatistics 666

Genotype Imputation. Biostatistics 666 Genotype Imputation Biostatistics 666 Previously Hidden Markov Models for Relative Pairs Linkage analysis using affected sibling pairs Estimation of pairwise relationships Identity-by-Descent Relatives

More information

Marginal Screening and Post-Selection Inference

Marginal Screening and Post-Selection Inference Marginal Screening and Post-Selection Inference Ian McKeague August 13, 2017 Ian McKeague (Columbia University) Marginal Screening August 13, 2017 1 / 29 Outline 1 Background on Marginal Screening 2 2

More information

A Gentle Tutorial of the EM Algorithm and its Application to Parameter Estimation for Gaussian Mixture and Hidden Markov Models

A Gentle Tutorial of the EM Algorithm and its Application to Parameter Estimation for Gaussian Mixture and Hidden Markov Models A Gentle Tutorial of the EM Algorithm and its Application to Parameter Estimation for Gaussian Mixture and Hidden Markov Models Jeff A. Bilmes (bilmes@cs.berkeley.edu) International Computer Science Institute

More information

Graphical Models and Kernel Methods

Graphical Models and Kernel Methods Graphical Models and Kernel Methods Jerry Zhu Department of Computer Sciences University of Wisconsin Madison, USA MLSS June 17, 2014 1 / 123 Outline Graphical Models Probabilistic Inference Directed vs.

More information

Principles of Bayesian Inference

Principles of Bayesian Inference Principles of Bayesian Inference Sudipto Banerjee University of Minnesota July 20th, 2008 1 Bayesian Principles Classical statistics: model parameters are fixed and unknown. A Bayesian thinks of parameters

More information

Association Testing with Quantitative Traits: Common and Rare Variants. Summer Institute in Statistical Genetics 2014 Module 10 Lecture 5

Association Testing with Quantitative Traits: Common and Rare Variants. Summer Institute in Statistical Genetics 2014 Module 10 Lecture 5 Association Testing with Quantitative Traits: Common and Rare Variants Timothy Thornton and Katie Kerr Summer Institute in Statistical Genetics 2014 Module 10 Lecture 5 1 / 41 Introduction to Quantitative

More information

Multiple Imputation for Missing Data in Repeated Measurements Using MCMC and Copulas

Multiple Imputation for Missing Data in Repeated Measurements Using MCMC and Copulas Multiple Imputation for Missing Data in epeated Measurements Using MCMC and Copulas Lily Ingsrisawang and Duangporn Potawee Abstract This paper presents two imputation methods: Marov Chain Monte Carlo

More information

Brief introduction to Markov Chain Monte Carlo

Brief introduction to Markov Chain Monte Carlo Brief introduction to Department of Probability and Mathematical Statistics seminar Stochastic modeling in economics and finance November 7, 2011 Brief introduction to Content 1 and motivation Classical

More information

Convex Optimization CMU-10725

Convex Optimization CMU-10725 Convex Optimization CMU-10725 Simulated Annealing Barnabás Póczos & Ryan Tibshirani Andrey Markov Markov Chains 2 Markov Chains Markov chain: Homogen Markov chain: 3 Markov Chains Assume that the state

More information