Suffix Trees ind Suffix Arriys

Size: px
Start display at page:

Download "Suffix Trees ind Suffix Arriys"

Transcription

1 Suffix Tr id Suffix Arriy

2 Outli fr Tdiy Suffix Trf A impl diti tructur fr trig irchig. Suffix Tr A pwrful, id fxibl diti tructur fr trig ilgrithm. Suffix Array A cmpict iltritiv t uffix tr. Applfcatf f Suffix Tr ad Array Thr ir miy!

3 Rviw frm Lit Tim

4 Tri A trf i i tr thit tr i cllcti f trig vr m ilphibt Σ. Eich d crrpd t i prfx f m trig i th t. Tri ir mtim cilld prfix tr, ic ich d i i tri crrpd t i prfx f f th wrd i th tri. u t b t a b d g d g t

5 Ah-Criick Strig Mitchig Th Ah-Crafck trfg matchfg algrfthm i i ilgrithm fr fdig ill ccurrc f i t f trig P₁,, Pₖ iid i trig T. Rutim i O(), O(m + z), whr m = T, = P₁ + + Pₖ, id z i th umbr f mitch. Grit fr th ci whr th pittr ir fxd id th txt t irch chig.

6 Gmic Ditibi Miy trig ilgrithm th diy ir dvlpd fr r ud xtivly i cmputitiil gmic. Typicilly, w hiv i hug ditibi with miy vry lirg trig (gm) thit w'll prprc t pd up futur priti. Cmm prblm: giv i fxd trig T t irch id chigig pittr P₁,, Pₖ, fd ill mitch f th pittr i T. Qutf: Ci w itid prprc T t mik it iy t irch fr viriibl pittr?

7 Suffix Tri

8 Subtrig, Prfx, id Suffix Uful Fact : Giv i tri trig i t f trig S₁, S₂,, Sₖ, it' pibl t dtrmi, i tim O( Q ), whthr i qury trig Q i i prfx f iy Sᵢ. Uful Fact : A trig P i i ubtrig f a r t i trig T if id ly if T i i prfx f m uffix f P. a r Spcifcilly, writ T = αpω; th T i i prfx f th uffix Pω f T. a r

9 T Subtrig, Prfx, id Suffix Uful Fact : Giv i tri trig i t f trig S₁, S₂,, Sₖ, it' pibl t dtrmi, i tim O( Q ), whthr i qury trig Q i i prfx f iy Sᵢ. Uful Fact : A trig P i i ubtrig f i trig T if id ly if P i i prfx f m uffix f T. Spcifcilly, writ T = αpω; th P i i prfx f th uffix Pω f T. α P ω

10 Suffix Tri A uffix trf f T i i tri f ill th uffix f T. Giv iy pittr trig P, w ci chck i tim O( P ) whthr P i i ubtrig f T by ig whthr P i i prfx i T' uffix tri. (Thi chck whthr P i i prfx f m uffix f T.)

11 Suffix Tri A uffix trf f T i i tri f ill th uffix f T. Mr grilly, giv iy mpty pittr P₁,, Pₖ f ttil lgth, w ci dtct hw miy f th pittr ir ubtrig f T i tim O(). (Fidig ill mitch i i bit trickir; mr thit litr.)

12 A Typicil Trifrm Appd m w chirictr Σ t th d f T, th ctruct th tri fr T. Th w chirictr lxicgriphicilly prcd ill thr chirictr. Thi i uuilly cilld th tfl; thik f it lik th Thrylid vri f i ull trmiitr. Lif d crrpd t uffix. Itril d crrpd t prfx f th uffix.

13 Ctructig Suffix Tri Oc w build i igl uffix tri fr trig T, w ci fficitly dtct whthr pittr mitch i tim O(). Qutf: Hw lg d it tik t ctruct i uffix tri? Prblm: Thr' i Ω(m ) lwr bud th wrt-ci cmplxity f ay ilgrithm fr buildig uffix tri.

14 A Dgrit Ci a b a b b a b b b b b a m b m b b b b b b b

15 A Dgrit Ci a b a b b a b b b b b a m b m b b b b b b b Thr Thr ir ir Θ(m) Θ(m) cpi cpi f f d d chiid chiid tgthr tgthr i i b m m.. Spic Spic uig: uig: Θ(m Θ(m ). ).

16 A Dgrit Ci a b a b b a b b b b b a m b m b b b b b b b Thr Thr ir ir Θ(m) Θ(m) cpi cpi f f d d chiid chiid tgthr tgthr i i b m m.. Spic Spic uig: uig: Ω(m Ω(m ). ).

17 Crrctig th Prblm Bciu uffix tri miy hiv Ω(m ) d, ill uffix tri ilgrithm mut ru i tim Ω(m ) i th wrt-ci. Ci w rduc th umbr f d i th tri?

18 Pitricii Tri A illy d i i tri i i d thit hi xictly child. A Patrfcfa trf (r radfix trf) i i tri whr ill illy d ir mrgd with thir pirt.

19 Pitricii Tri A illy d i i tri i i d thit hi xictly child. A Patrfcfa trf (r radfix trf) i i tri whr ill illy d ir mrgd with thir pirt. 567

20 Suffix Tr A uffix tr fr i trig T i i Pitricii tri f T whr ich lif i libld with th idx whr th crrpdig uffix tirt i T. (Nt thit uffix tr ir t th im i uffix tri. T th bt f my kwldg, uffix tri ir t ud iywhr.) 567

21 Suffix Tr A uffix tr fr i trig T i i Pitricii tri f T whr ich lif i libld with th idx whr th crrpdig uffix tirt i T. (Nt thit uffix tr ir t th im i uffix tri. T th bt f my kwldg, uffix tri ir t ud iywhr.) 567

22 Suffix Tr A uffix tr fr i trig T i i Pitricii tri f T whr ich lif i libld with th idx whr th 7 crrpdig uffix tirt i T. (Nt thit uffix tr ir t th im i uffix tri. T th bt f my kwldg, uffix tri ir t ud iywhr.)

23 Prprti f Suffix Tr If T = m, th uffix tr hi xictly m + lif d. Fr iy T ε, ill itril d i th uffix tr hiv it lit tw childr. Numbr f d i i uffix tr i Θ(m)

24 Suffix Tr Rprtiti Suffix tr miy hiv Θ(m) d, but th libl th dg ci hiv iz ω(). Thi mi thit i iïv rprtiti f i uffix tr miy tik ω(m) pic. Uful fact: Eich dg i i uffix tr i libld with i ccutiv rig f chirictr frm w. Trfck: Rprt ich dg libld with i trig α i i piir f itgr [tirt, d] rprtig whr i th trig α ippir.

25 Suffix Tr Rprtiti

26 Suffix Tr Rprtiti

27 Suffix Tr Rprtiti tart d child

28 Buildig Suffix Tr Clafm: It pibl t build i uffix tr fr i trig f lgth m i tim Θ(m). Th algrithm ar t trivial! W'll dicu f thm xt tim.

29 Applfcatf: Strig Sirch

30 Strig Mitchig Supp w prprc i trig T by buildig i uffix tr fr it. Giv iy pittr trig P f lgth, w ci dtrmi, i tim O(), whthr i i ubtrig f P by lkig it up i th uffix tr

31 Strig Mitchig Clafm: Aftr pdig O(m) tim prprcig T, ci fd all mitch f i trig P i tim O( + z), whr z i th umbr f mitch

32 Strig Mitchig Clafm: Aftr pdig O(m) tim prprcig T, ci fd all mitch f i trig P i tim O( + z), whr z i th umbr f mitch. Obrvatf : : Evry Evry ccurrc f f P i i T i i i prfx prfx f f m m uffix uffix f f T. T

33 Strig Mitchig Clafm: Aftr pdig O(m) tim prprcig T, ci fd all mitch f i trig P i tim O( + z), whr z i th umbr f mitch. Obrvatf : : Evry Evry uffix uffix f f T T bgiig with with m m pittr pittr P ippir ippir i i th th ubtr ubtr fud fud by by irchig irchig fr fr P. P

34 Strig Mitchig Clafm: Aftr pdig O(m) tim prprcig T, ci fd all mitch f i trig P i tim O( + z), whr z i th umbr f mitch

35 Strig Mitchig Clafm: Aftr pdig O(m) tim prprcig T, ci fd all mitch f i trig P i tim O( + z), whr z i th umbr f mitch

36 Strig Mitchig Clafm: Aftr pdig O(m) tim prprcig T, ci fd all mitch f i trig P i tim O( + z), whr z i th umbr f mitch

37 Strig Mitchig Clafm: Aftr pdig O(m) tim prprcig T, ci fd all mitch f i trig P i tim O( + z), whr z i th umbr f mitch

38 Strig Mitchig Clafm: Aftr pdig O(m) tim prprcig T, ci fd all mitch f i trig P i tim O( + z), whr z i th umbr f mitch

39 Strig Mitchig Clafm: Aftr pdig O(m) tim prprcig T, ci fd all mitch f i trig P i tim O( + z), whr z i th umbr f mitch

40 Strig Mitchig Clafm: Aftr pdig O(m) tim prprcig T, ci fd all mitch f i trig P i tim O( + z), whr z i th umbr f mitch

41 Strig Mitchig Clafm: Aftr pdig O(m) tim prprcig T, ci fd all mitch f i trig P i tim O( + z), whr z i th umbr f mitch

42 Strig Mitchig Clafm: Aftr pdig O(m) tim prprcig T, ci fd all mitch f i trig P i tim O( + z), whr z i th umbr f mitch

43 Strig Mitchig Clafm: Aftr pdig O(m) tim prprcig T, ci fd all mitch f i trig P i tim O( + z), whr z i th umbr f mitch

44 Strig Mitchig Clafm: Aftr pdig O(m) tim prprcig T, ci fd all mitch f i trig P i tim O( + z), whr z i th umbr f mitch

45 Strig Mitchig Clafm: Aftr pdig O(m) tim prprcig T, ci fd all mitch f i trig P i tim O( + z), whr z i th umbr f mitch

46 Fidig All Mitch T fd ill mitch f trig P, tirt by irchig th tr fr P. If th irch fill ff th tr, rprt mitch. Othrwi, lt v b th d it which th irch tp, r th dpit f th dg whr it tp if it d i th middl f i dg. D i DFS id rprt th umbr f ill th liv fud i thi ubtr. Th idic rprtd thi wiy giv bick ill piti it which P ccur.

47 Fidig All Mitch T fd ill mitch f trig P, tirt by irchig th tr fr P. If th irch fill ff th tr, rprt mitch. Othrwi, lt v b th d it which th irch tp, r th dpit f th dg whr it tp if it d i th middl f i dg. D i DFS id rprt th umbr f ill th liv fud i thi ubtr. Th idic rprtd thi wiy giv bick ill piti it which P ccur.

48 Fidig All Mitch T fd ill mitch f trig P, tirt by irchig th tr fr P. If th irch fill ff th tr, rprt mitch. Othrwi, lt v b th d it which th irch tp, r th dpit f th dg whr it tp if it d i th middl f i dg. D i DFS id rprt th umbr f ill th liv fud i thi ubtr. Th idic rprtd thi wiy giv bick ill piti it which P ccur. Hw Hw fit fit i i thi thi tp? tp?

49 Clafm: Th DFS t fd ill liv i th ubtr crrpdig t prfx P tik tim O(z), whr z i th umbr f mitch. Prf: If th DFS rprt z mitch, it mut hiv viitd z diffrt lif d. Sic ich itril d f i uffix tr hi it lit tw childr, th ttil umbr f itril d viitd durig th DFS i it mt z. Durig th DFS, w d't d t ictuilly mitch th chirictr th dg. W jut fllw th dg, which tik tim O(). Thrfr, th DFS viit it mt O(z) d id dg id pd O() tim pr d r dg, th ttil rutim i O(z).

50 Rvr Ah-Criick Giv pittr P₁, Pₖ f ttil lgth, uffix tr ci fd ill mitch f th pittr i tim O(m + + z). Build th tr i tim O(m), th irch fr ill mitch f ich Pᵢ; ttil tim icr ill irch i O( + z). Act i i rvr Ah-Criick: Ah-Criick trig mitchig ru i tim O(), O(m+z) Suffix tr trig mitchig ru i tim O(m), O(+z)

51 Athr Applfcatf: Lgt Rpitd Subtrig

52 Lgt Rpitd Subtrig Cidr th fllwig prblm: Giv i trig T, fd th lgt ubtrig w f T thit ippir i it lit tw diffrt piti. Sm ximpl: I m, th lgt rpitd ubtrig i. I baaa, th lgt rpitd ubtrig i aa. (Th ubtrig ci vrlip.) Appliciti t cmputitiil bilgy: mr thi hilf f th humi gm i frmd frm rpitd DNA quc!

53 Lgt Rpitd Subtrig

54 Lgt Rpitd Subtrig Obrvatf : : If If w i i i rpitd rpitd ubtrig ubtrig f f T, T, it it mut mut b b i prfx prfx f f it it lit lit tw tw diffrt diffrt uffix. uffix. 567

55 Lgt Rpitd Subtrig Obrvatf : : If If w i i i rpitd rpitd ubtrig ubtrig f f T, T, it it mut mut crrpd t t i prfx prfx f f i pith pith t t i i itril itril d. d. 567

56 Lgt Rpitd Subtrig Obrvatf Obrvatf : : If If w i i i lgt lgt rpitd rpitd ubtrig, ubtrig, it it crrpd crrpd t t i full full pith pith t t i i itril itril d. d. 567

57 Lgt Rpitd Subtrig Obrvatf Obrvatf : : If If w i i i lgt lgt rpitd rpitd ubtrig, ubtrig, it it crrpd crrpd t t i full full pith pith t t i i itril itril d. d. 567

58 Lgt Rpitd Subtrig Fr ich d v i i uffix tr, lt (v) b th trig thit it crrpd t. Th trfg dpth f i d v i dfd i (v), th lgth f th trig v crrpd t. Th lgt rpitd ubtrig i T ci b fud by fdig th itril d i T with th miximum trig dpth.

59 Lgt Rpitd Subtrig Hr' i O(m)-tim ilgrithm fr lvig th lgt rpitd ubtrig prblm: Build th uffix tr fr T i tim O(m). Ru i DFS vr th uffix tr, trickig th trig dpth i yu g, t fd th itril d f miximum trig dpth. Rcvr th trig thit d crrpd t. Gd ixrcf: Hw might yu fd th lgt ubtrig f T thit rpit it lit k tim?

60 Challg Prblm: Slv thi prblm i liir tim withut uig uffix tr (r uffix irriy).

61 Tim-Out fr Aucmt!

62 Prblm St Prblm St luti will b up th cur wbit litr tdiy. W ll try t gt it gridd id rturd i i pibl. Prblm St i du Tudiy it :PM. Stp by ffic hur with quti! Ak quti Piizzi!

63

64 Bick t CS66!

65 Grilizd Suffix Tr

66 Suffix Tr fr Multipl Strig Suffix tr tr ifrmiti ibut i igl trig id xprt i hug imut f tructuril ifrmiti ibut thit trig. Hwvr, miy ippliciti rquir ifrmiti ibut th tructur f multipl diffrt trig.

67 Grilizd Suffix Tr A gralfzd uffix tr fr T₁,, Tₖ i i Pitricii tri f ill uffix f T₁₁,, Tₖₖ. Eich Tᵢ hi i uiqu d mirkr. Liv ir tiggd with i j, miig ith uffix f trig T j ₁ ₂ ₁ ₁ ₂ 7₂ 7₁ 6₂ ₁ ₂ ₁ ₂ f ₂ ₁ 567₁ f ₂ ₂ ₂ ₁ ₁ ₁ ₂ 5₁ ₂ ₁ ₁ f f ₂ ₁ ₁ ₂ ff₂ 567₂ ₁ 6₁ ₂ 5₂ ₁ ₁

68 Grilizd Suffix Tr Clafm: A grilizd uffix tr fr trig T₁,, Tₖ f ttil lgth m ci b ctructd i tim Θ(m). U i tw-phi ilgrithm: Ctruct i uffix tr fr th igl trig T₁₁T₂₂ Tₖₖ i tim Θ(m). Thi will d up with m ivilid uffix. D i DFS vr th uffix tr id pru th ivilid uffix. Ru i tim O(m) if implmtd itlligtly.

69 Appliciti f Grilizd Suffix Tr

70 Lgt Cmm Subtrig Cidr th fllwig prblm: Giv tw trig T₁ id T₂, fd th lgt trig w thit i i ubtrig f bth T₁ id T₂. Ci lv i tim O( T₁ T₂ ) uig dyimic prgrimmig. Ci w d bttr?

71 Lgt Cmm Subtrig ₁ ₂ ₁ ₁ ₂ 7₂ 7₁ 6₂ ₁ ₁ 567₁ ₁ ₂ ₂ f ₂ f ₂ ₂ ₂ ₁ ₁ ₁ ₂ 5₁ ₁ Obrvatf: Obrvatf: Ay Ay cmm cmm ubtrig ubtrig f f T₁ T₁ id id T₂ T₂ will will b b i prfx prfx f f i uffix uffix f f T₁ T₁ id id i prfx prfx f f i uffix uffix f f T₂. T₂. ₂ ₁ ₁ ₁ f f ₂ ₂ ₁ 6₁ ₂ 5₂ ₁ ff₂ 567₂ ₁

72 Lgt Cmm Subtrig ₁ ₂ ₁ ₁ ₂ 7₂ 7₁ 6₂ ₁ ₁ 567 ₁ ₂ ₂ f ₂ f ₂ ₂ ₂ ₁ ₁ ₁ ₂ 5₁ ₁ Obrvatf: Obrvatf: Ay Ay cmm cmm ubtrig ubtrig f f T₁ T₁ id id T₂ T₂ will will b b i prfx prfx f f i uffix uffix f f T₁ T₁ id id i prfx prfx f f i uffix uffix f f T₂. T₂. ₂ ₁ ₁ ₁ f f ₂ ₂ ₁ 6₁ ₂ 5₂ ₁ ff₂ 567₂ ₁

73 Lgt Cmm Subtrig ₁ ₂ ₁ ₁ ₂ 7₂ 7₁ 6₂ ₁ ₁ 567 ₁ ₂ ₂ f ₂ f ₂ ₂ ₂ ₁ ₁ ₁ ₂ 5₁ ₁ Obrvatf: Obrvatf: Ay Ay cmm cmm ubtrig ubtrig f f T₁ T₁ id id T₂ T₂ will will b b i prfx prfx f f i uffix uffix f f T₁ T₁ id id i prfx prfx f f i uffix uffix f f T₂. T₂. ₂ ₁ ₁ ₁ f f ₂ ₂ ₁ 6₁ ₂ 5₂ ₁ ff₂ 567₂ ₁

74 Lgt Cmm Subtrig ₁ ₂ ₁ ₁ ₂ 7₂ 7₁ 6₂ ₁ ₁ 567 ₁ ₂ ₂ f ₂ f ₂ ₂ ₂ ₁ ₁ ₁ ₂ 5₁ ₁ Obrvatf: Obrvatf: Ay Ay cmm cmm ubtrig ubtrig f f T₁ T₁ id id T₂ T₂ will will b b i prfx prfx f f i uffix uffix f f T₁ T₁ id id i prfx prfx f f i uffix uffix f f T₂. T₂. ₂ ₁ ₁ ₁ f f ₂ ₂ ₁ 6₁ ₂ 5₂ ₁ ff₂ 567₂ ₁

75 Lgt Cmm Subtrig ₁ ₂ ₁ ₁ ₂ 7₂ 7₁ 6₂ ₁ ₁ 567 ₁ ₂ ₂ f ₂ f ₂ ₂ ₂ ₁ ₁ ₁ ₂ 5₁ ₁ Obrvatf: Obrvatf: Ay Ay cmm cmm ubtrig ubtrig f f T₁ T₁ id id T₂ T₂ will will b b i prfx prfx f f i uffix uffix f f T₁ T₁ id id i prfx prfx f f i uffix uffix f f T₂. T₂. ₂ ₁ ₁ ₁ f f ₂ ₂ ₁ 6₁ ₂ 5₂ ₁ ff₂ 567₂ ₁

76 Lgt Cmm Subtrig ₁ ₂ ₁ ₁ ₂ 7₂ 7₁ 6₂ ₁ ₁ 567 ₁ ₂ ₂ f ₂ f ₂ ₂ ₂ ₁ ₁ ₁ ₂ 5₁ ₁ Obrvatf: Obrvatf: Ay Ay cmm cmm ubtrig ubtrig f f T₁ T₁ id id T₂ T₂ will will b b i prfx prfx f f i uffix uffix f f T₁ T₁ id id i prfx prfx f f i uffix uffix f f T₂. T₂. ₂ ₁ ₁ ₁ f f ₂ ₂ ₁ 6₁ ₂ 5₂ ₁ ff₂ 567 ₁

77 Lgt Cmm Subtrig ₁ ₂ ₁ ₁ ₂ 7₂ 7₁ 6₂ ₁ ₁ 567 ₁ ₂ ₂ f ₂ f ₂ ₂ ₂ ₁ ₁ ₁ ₂ 5₁ ₁ Obrvatf: Obrvatf: Ay Ay cmm cmm ubtrig ubtrig f f T₁ T₁ id id T₂ T₂ will will b b i prfx prfx f f i uffix uffix f f T₁ T₁ id id i prfx prfx f f i uffix uffix f f T₂. T₂. ₂ ₁ ₁ ₁ f f ₂ ₂ ₁ 6₁ ₂ 5₂ ₁ ff₂ 567 ₁

78 Lgt Cmm Subtrig ₁ ₂ ₁ ₁ ₂ 7₂ 7₁ 6₂ ₁ ₁ 567 ₁ ₂ ₂ f ₂ f ₂ ₂ ₂ ₁ ₁ ₁ ₂ 5₁ ₁ Obrvatf: Obrvatf: Ay Ay cmm cmm ubtrig ubtrig f f T₁ T₁ id id T₂ T₂ will will b b i prfx prfx f f i uffix uffix f f T₁ T₁ id id i prfx prfx f f i uffix uffix f f T₂. T₂. ₂ ₁ ₁ ₁ f f ₂ ₂ ₁ 6₁ ₂ 5₂ ₁ ff₂ 567 ₁

79 Lgt Cmm Subtrig ₁ ₁ ₂ 7₂ ₁ 7₁ ₂ 6₂ ₁ ₁ 567 ₁ ₂ ₂ f ₂ f ₂ ₂ ₂ ₁ ₁ ₁ ₂ 5₁ ₂ ₁ ₁ ₁ Obrvatf: Obrvatf: Ay Ay cmm cmm ubtrig ubtrig f f T₁ T₁ id id T₂ T₂ will will b b i prfx prfx f f i uffix uffix f f T₁ T₁ id id i prfx prfx f f i uffix uffix f f T₂. T₂. ₁ f f ₂ ₂ ₁ 6₁ ₂ 5₂ ₁ ff₂ 567 ₁

80 Lgt Cmm Subtrig Build i grilizd uffix tr fr T₁ id T₂ i tim O(m). Atit ich itril d i th tr with whthr thit d hi it lit lif d frm ich f T₁ id T₂. Tik tim O(m) uig DFS. Ru i DFS vr th tr t fd th mirkd d with th hight trig dpth. Tik tim O(m) uig DFS Ovrill tim: O(m).

81 Sufix Tr: Th Catch

82 Spac Uag Sufix tr ar mmrry hrg. Suppr Σ = {A, C, G, T, }. Each itral rd d 5 machi wrrd: frr ach charactr, wrrd frr th tart/d idx ad a child pritr. tart d child A C T G Thi i till O(m), but it' a hug hidd crtat!

83 Ca w gt th fxibility rf a ufix tr withrut th mmrry crt?

84 Y kida!

85 Sufix Array A ufix array frr a trig T i a array rf th ufix rf T, trrd i rrtd rrdr. By crvtir, prcd all rthr charactr

86 Sufix Array A ufix array frr a trig T i a array rf th ufix rf T, trrd i rrtd rrdr. By crvtir, prcd all rthr charactr

87 Rprtig Sufix Array Sufix array ar typically rprtd implicitly by jut trrig th idic rf th ufix i rrtd rrdr rathr tha th ufix thmlv. Spac rquird: Θ(m). Mrr prcily, pac frr T, plu r xtra wrrd frr ach charactr

88 Rprtig Sufix Array Sufix array ar typically rprtd implicitly by jut trrig th idic rf th ufix i rrtd rrdr rathr tha th ufix thmlv. Spac rquird: Θ(m). Mrr prcily, pac frr T, plu r xtra wrrd frr ach charactr

89 Sarchig a Sufix Array Rcall: P i a ubtrig rf T if it' a prfx rf a ufix rf T. All match rf P i T hav a crmmr prfx, r thy'll b trrd crcutivly. Ca fd all match rf P i T by drig a biary arch rvr th ufix array

90 Aalyzig th Rutim Th biary arch will rquir O(lrg m) prrb itr th ufix array. Each crmparir tak tim O(): hav tr crmpar P agait th currt ufix. Tim frr biary archig: O( lrg m). Tim tr rprrt all match aftr that prit: O(z). Trtal tim: O( lg m + z).

91 Why th Slrwdrw?

92 A Lr rf Structur May algrrithm r ufix tr ivrlv lrrkig frr itral rd with variru prrprti: Lrgt rpatd ubtrig: itral rd with largt trig dpth. Lrgt crmmr ubtrig: itral rd with largt trig dpth that ha a child frrm ach trig. Bcau ufix array dr rt trr th tr tructur, w lr acc tr thi ifrrmatir.

93 Sufix Tr ad Sufix Array

94 Sufix Tr ad Sufix Array

95 Sufix Tr ad Sufix Array

96 Sufix Tr ad Sufix Array

97 Sufix Tr ad Sufix Array

98 Th lrgt crmmr prfx rf a rag rf trig i a ufix array crrrprd tr th lrwt crmmr actrr rf thr ufix i th ufix tr.

99 Lrgt Crmmr Prfx Giv twr trig x ad y, th lgt cmm prfx rr (LCP) rf x ad y i th lrgt prfx rf x that i alr a prfx rf y. Th LCP rf x ad y i drtd lcp(x, y). Fu fact: Thr i a O(m)-tim algrrithm frr crmputig LCP ifrrmatir r a ufix array. Lt' hrw it wrrk.

100 Pairwi LCP Fact: Thr i a algrrithm (du tr Kaai t al.) that crtruct, i tim O(m), a array rf th LCP rf adjact ufix array tri. Th algrrithm i't that crmplx, but th crrrct argumt i a bit rtrivial

101 Pairwi LCP Claim: Thi ifrrmatir i rugh frr u tr fgur rut th lrgt crmmr prfx rf a rag rf lmt i th ufix array

102 Pairwi LCP Claim: Thi ifrrmatir i rugh frr u tr fgur rut th lrgt crmmr prfx rf a rag rf lmt i th ufix array

103 Pairwi LCP Claim: Thi ifrrmatir i rugh frr u tr fgur rut th lrgt crmmr prfx rf a rag rf lmt i th ufix array. Hy, Hy, lk! lk! It It a a rag rag miimum miimum qury qury prblm! prblm! 7 5 6

104 Crmputig LCP Tr prprrc a ufix array tr upprrt O() LCP quri: U Kaai' O(m)-tim algrrithm tr build th LCP array. Build a RMQ tructur rvr that array i tim O(m) uig Fichr-Hu. U th prcrmputd RMQ tructur tr awr LCP quri rvr rag. Rquir O(m) prprrcig tim ad rly O() qury tim.

105 Sarchig a Sufix Array Rcall: Ca arch a ufix array rf T frr all match rf a pattr P i tim O( lrg m + z). If w'v dr O(m) prprrcig tr build th LCP ifrrmatir, w ca pd thi up.

106 Sarchig a Sufix Array

107 Sarchig a Sufix Array

108 Sarchig a Sufix Array

109 Sarchig a Sufix Array

110 Sarchig a Sufix Array

111 Sarchig a Sufix Array

112 Sarchig a Sufix Array

113 Sarchig a Sufix Array

114 Sarchig a Sufix Array

115 Sarchig a Sufix Array

116 Sarchig a Sufix Array

117 Sarchig a Sufix Array

118 Sarchig a Sufix Array

119 Sarchig a Sufix Array

120 Sarchig a Sufix Array

121 Sarchig a Sufix Array

122 Sarchig a Sufix Array

123 Sarchig a Sufix Array

124 Sarchig a Sufix Array

125 Sarchig a Sufix Array Ituitivly, imulat drig a biary arch rf th lav rf a ufix tr, rmmbrig th dpt ubtr yru'v matchd r far. At ach prit, if th biary arch prrb a laf rutid rf th currt ubtr, kip it ad crtiu th biary arch i th dirctir rf th currt ubtr. Tr implmt thi r a actual ufix array, w u LCP ifrrmatir tr implicitly kp track rf whr th brud r th currt ubtr ar.

126 Sarchig a Sufix Array Claim: Th algrrithm w jut ktchd ru i tim O( + lrg m + z). Prf Sktch: Th O(lrg m) trm crm frrm th biary arch rvr th lav rf th ufix tr. Th O() trm crrrprd tr dcdig dpr itr th ufix tr r charactr at a tim. Fially, w hav tr pd O(z) tim rprrtig match.

127 Applicatir: Lgt Cmm Exti

128 Lrgt Crmmr Extir Giv twr trig T₁ ad T₂ ad tart pritir i ad j, th lgt cmm xti rf T₁ ad T₂, tartig at pritir i ad j, i th lgth rf th lrgt trig w that appar at pritir i i T₁ ad pritir j i T₂. W'll drt thi valu by LCET₁, T₂ (i, j). Typically, T₁ ad T₂ ar fxd ad multipl (i, j) quri ar pcifd. f f

129 Lrgt Crmmr Extir Giv twr trig T₁ ad T₂ ad tart pritir i ad j, th lgt cmm xti rf T₁ ad T₂, tartig at pritir i ad j, i th lgth rf th lrgt trig w that appar at pritir i i T₁ ad pritir j i T₂. W'll drt thi valu by LCET₁, T₂ (i, j). Typically, T₁ ad T₂ ar fxd ad multipl (i, j) quri ar pcifd. f f

130 Lrgt Crmmr Extir Giv twr trig T₁ ad T₂ ad tart pritir i ad j, th lgt cmm xti rf T₁ ad T₂, tartig at pritir i ad j, i th lgth rf th lrgt trig w that appar at pritir i i T₁ ad pritir j i T₂. W'll drt thi valu by LCET₁, T₂ (i, j). Typically, T₁ ad T₂ ar fxd ad multipl (i, j) quri ar pcifd. f f

131 Lrgt Crmmr Extir Giv twr trig T₁ ad T₂ ad tart pritir i ad j, th lgt cmm xti rf T₁ ad T₂, tartig at pritir i ad j, i th lgth rf th lrgt trig w that appar at pritir i i T₁ ad pritir j i T₂. W'll drt thi valu by LCET₁, T₂ (i, j). Typically, T₁ ad T₂ ar fxd ad multipl (i, j) quri ar pcifd. f f

132 Lrgt Crmmr Extir Giv twr trig T₁ ad T₂ ad tart pritir i ad j, th lgt cmm xti rf T₁ ad T₂, tartig at pritir i ad j, i th lgth rf th lrgt trig w that appar at pritir i i T₁ ad pritir j i T₂. W'll drt thi valu by LCET₁, T₂ (i, j). Typically, T₁ ad T₂ ar fxd ad multipl (i, j) quri ar pcifd. f f

133 Lrgt Crmmr Extir Giv twr trig T₁ ad T₂ ad tart pritir i ad j, th lgt cmm xti rf T₁ ad T₂, tartig at pritir i ad j, i th lgth rf th lrgt trig w that appar at pritir i i T₁ ad pritir j i T₂. W'll drt thi valu by LCET₁, T₂ (i, j). Typically, T₁ ad T₂ ar fxd ad multipl (i, j) quri ar pcifd. f f

134 Lrgt Crmmr Extir Obrvati: LCET₁, T₂ (i, j) i th lgth rf th lrgt crmmr prfx rf th ufix rf T₁ ad T₂ tartig at pritir i ad j. f f

135 Lrgt Crmmr Extir Obrvati: LCET₁, T₂ (i, j) i th lgth rf th lrgt crmmr prfx rf th ufix rf T₁ ad T₂ tartig at pritir i ad j.

136 Lrgt Crmmr Extir Obrvati: LCET₁, T₂ (i, j) i th lgth rf th lrgt crmmr prfx rf th ufix rf T₁ ad T₂ tartig at pritir i ad j.

137 Lrgt Crmmr Extir Obrvati: LCET₁, T₂ (i, j) i th lgth rf th lrgt crmmr prfx rf th ufix rf T₁ ad T₂ tartig at pritir i ad j.

138 Sufix Array ad LCE Claim: Thr i a O(m), O() data tructur frr LCE. Prprrcig: Crtruct a gralizd ufix array frr T₁ ad T₂ augmtd with LCP ifrrmatir. (Jut build a ufix array frr T₁₁T₂₂.) Th build a tabl mappig ach idx i th trig tr it idx i th ufix array. Qury: Dr a RMQ rvr th LCP array at th apprrpriat idic. ₁ 5₂ 7₁ ₂ ₁ ₂ ₁ 5₁ ₂ ₁ ₁ 6₁ ₂ ₁ ₂ ₁ ₂ ₁ ₂ ₁ ₂ ₁ ₁ ₂ ₁ ₁ ₁ ₂ ₁ t₂ ₂ t₂

139 Sufix Array ad LCE Claim: Thr i a O(m), O() data tructur frr LCE. Prprrcig: Crtruct a gralizd ufix array frr T₁ ad T₂ augmtd with LCP ifrrmatir. (Jut build a ufix array frr T₁₁T₂₂.) Th build a tabl mappig ach idx i th trig tr it idx i th ufix array. Qury: Dr a RMQ rvr th LCP array at th apprrpriat idic. ₁ 5₂ 7₁ ₂ ₁ ₂ ₁ 5₁ ₂ ₁ ₁ 6₁ ₂ ₁ ₂ ₁ ₂ ₁ ₂ ₁ ₂ ₁ ₁ ₂ ₁ ₁ ₁ ₂ ₁ t₂ ₂ t₂

140 Sufix Array ad LCE Claim: Thr i a O(m), O() data tructur frr LCE. Prprrcig: Crtruct a gralizd ufix array frr T₁ ad T₂ augmtd with LCP ifrrmatir. (Jut build a ufix array frr T₁₁T₂₂.) Th build a tabl mappig ach idx i th trig tr it idx i th ufix array. Qury: Dr a RMQ rvr th LCP array at th apprrpriat idic. ₁ 5₂ 7₁ ₂ ₁ ₂ ₁ 5₁ ₂ ₁ ₁ 6₁ ₂ ₁ ₂ ₁ ₂ ₁ ₂ ₁ ₂ ₁ ₁ ₂ ₁ ₁ ₁ ₂ ₁ t₂ ₂ t₂

141 Sufix Array ad LCE Claim: Thr i a O(m), O() data tructur frr LCE. Prprrcig: Crtruct a gralizd ufix array frr T₁ ad T₂ augmtd with LCP ifrrmatir. (Jut build a ufix array frr T₁₁T₂₂.) Th build a tabl mappig ach idx i th trig tr it idx i th ufix array. Qury: Dr a RMQ rvr th LCP array at th apprrpriat idic. ₁ 5₂ 7₁ ₂ ₁ ₂ ₁ 5₁ ₂ ₁ ₁ 6₁ ₂ ₁ ₂ ₁ ₂ ₁ ₂ ₁ ₂ ₁ ₁ ₂ ₁ ₁ ₁ ₂ ₁ t₂ ₂ t₂

142 A Applicati: Lrgt Palidrrmic Subtrig

143 Palidrrm A palidrm i a trig that' th am frrward ad backward. A palidrmic ubtrig rf a trig T i a ubtrig rf T that' a palidrrm. Surpriigly, rf grat imprrtac i crmputatiral birlrgy. A C U G C A G U

144 Palidrrm A palidrm i a trig that' th am frrward ad backward. A palidrmic ubtrig rf a trig T i a ubtrig rf T that' a palidrrm. Surpriigly, rf grat imprrtac i crmputatiral birlrgy. A C U G C A G U

145 Palidrrm A palidrm i a trig that' th am frrward ad backward. A palidrmic ubtrig rf a trig T i a ubtrig rf T that' a palidrrm. Surpriigly, rf grat imprrtac i crmputatiral birlrgy. A C U G U G A C

146 Palidrrm A palidrm i a trig that' th am frrward ad backward. A palidrmic ubtrig rf a trig T i a ubtrig rf T that' a palidrrm. Surpriigly, rf grat imprrtac i crmputatiral birlrgy. A C U G U G A C

147 Lrgt Palidrrmic Subtrig Th lgt palidrmic ubtrig prrblm i th frllrwig: Giv a trig T, fd th lrgt ubtrig rf T that i a palidrrm. Hrw might w rlv thi prrblm?

148 A Iitial Ida Tr dal with th iu rf trig grig frrward ad backward, tart rf by frrmig T ad T R, th rvr rf T. Iitial Ida: Fid th lrgt crmmr ubtrig rf T ad T R. Ufrrtuatly, thi dr't wrrk: T = abcdba T R = abdcba Lrgt crmmr ubtrig: ab / ba Lrgt palidrrmic ubtrig: a / b / c / d

149 Palidrrm Ctr ad Radii Frr rw, lt' frcu r v-lgth palidrrm. A v-lgth palidrrm ubtrig ww R rf a trig T ha a ctr ad radiu: Ctr: Th prt btw th duplicatd ctr charactr. Radiu: Th lgth rf th trig grig rut i ach dirctir. Ida: Frr ach ctr, fd th largt crrrprdig radiu.

150 Palidrrm Ctr ad Radii a b b a c c a b c c b

151 Palidrrm Ctr ad Radii a b b a c c a b c c b

152 Palidrrm Ctr ad Radii a b b a c c a b c c b

153 Palidrrm Ctr ad Radii a b b a c c a b c c b

154 Palidrrm Ctr ad Radii w a b b a c c a b c c b

155 Palidrrm Ctr ad Radii w a b b a c c a b c c b w R b c c b a c c a b b a

156 Palidrrm Ctr ad Radii w a b b a c c a b c c b w R b c c b a c c a b b a

157 Palidrrm Ctr ad Radii w a b b a c c a b c c b w R b c c b a c c a b b a

158 Palidrrm Ctr ad Radii w a b b a c c a b c c b w R b c c b a c c a b b a

159 Palidrrm Ctr ad Radii w a b b a c c a b c c b w R b c c b a c c a b b a

160 Palidrrm Ctr ad Radii w a b b a c c a b c c b w R b c c b a c c a b b a

161 Palidrrm Ctr ad Radii w a b b a c c a b c c b w R b c c b a c c a b b a

162 Palidrrm Ctr ad Radii w a b b a c c a b c c b w R b c c b a c c a b b a

163 A Algrrithm I tim O(m), crtruct T R. Prprrc T ad T R i tim O(m) tr upprrt LCE quri. Frr ach prt btw twr charactr i T, fd th lrgt palidrrm ctrd at that lrcatir by xcutig LCE quri r th crrrprdig lrcatir i T ad T R. Each qury tak tim O() if it jut rprrt th lgth. Trtal tim: O(m). Rprrt th lrgt trig frud thi way. Trtal tim: O(m).

164 Nxt Tim Ctructig Sufix Tr Hrw r arth dr yru build ufix tr i tim O(m)? Ctructig Sufix Array Start by buildig ufix array i tim O(m)... Ctructig LCP Array ad addig i LCP array i tim O(m).

Outline for Today. A simple data structure for string searching. A compact, powerful, and flexible data structure for string algorithms.

Outline for Today. A simple data structure for string searching. A compact, powerful, and flexible data structure for string algorithms. Suffix Tr Outli fr Tday Rviw frm Lat Tim A quick rfrhr tri. Suffix Tri A impl data tructur fr trig archig. Suffix Tr A cmpact, pwrful, ad flxibl data tructur fr trig algrithm. Gralizd Suffix Tr A v mr

More information

Outline for Today. A space-efficient data structure for substring searching. Converting from suffix arrays to suffix trees.

Outline for Today. A space-efficient data structure for substring searching. Converting from suffix arrays to suffix trees. Suffix Array Outli for Today Rviw from Lat Tim Suffix Array A urpriigly hlpful auxiliary tructur. Cotructig Suffix Tr A pac-fficit data tructur for ubtrig archig. LCP Array Quick rviw of uffix tr. Covrtig

More information

Lectur 22. RF and Microwave Circuit Design Γ-Plane and Smith Chart Analysis. ECE 303 Fall 2005 Farhan Rana Cornell University

Lectur 22. RF and Microwave Circuit Design Γ-Plane and Smith Chart Analysis. ECE 303 Fall 2005 Farhan Rana Cornell University ctur RF ad Micrwav Circuit Dig -Pla ad Smith Chart Aalyi I thi lctur yu will lar: -pla ad Smith Chart Stub tuig Quartr-Wav trafrmr ECE 33 Fall 5 Farha Raa Crll Uivrity V V Impdac Trafrmati i Tramii i ω

More information

Worksheet: Taylor Series, Lagrange Error Bound ilearnmath.net

Worksheet: Taylor Series, Lagrange Error Bound ilearnmath.net Taylor s Thorm & Lagrag Error Bouds Actual Error This is th ral amout o rror, ot th rror boud (worst cas scario). It is th dirc btw th actual () ad th polyomial. Stps:. Plug -valu ito () to gt a valu.

More information

(1) Then we could wave our hands over this and it would become:

(1) Then we could wave our hands over this and it would become: MAT* K285 Spring 28 Anthony Bnoit 4/17/28 Wk 12: Laplac Tranform Rading: Kohlr & Johnon, Chaptr 5 to p. 35 HW: 5.1: 3, 7, 1*, 19 5.2: 1, 5*, 13*, 19, 45* 5.3: 1, 11*, 19 * Pla writ-up th problm natly and

More information

PREPARATORY MATHEMATICS FOR ENGINEERS

PREPARATORY MATHEMATICS FOR ENGINEERS CIVE 690 This qusti ppr csists f 6 pritd pgs, ch f which is idtifid by th Cd Numbr CIVE690 FORMULA SHEET ATTACHED UNIVERSITY OF LEEDS Jury 008 Emiti fr th dgr f BEg/ MEg Civil Egirig PREPARATORY MATHEMATICS

More information

Even/Odd Mode Analysis of the Wilkinson Divider

Even/Odd Mode Analysis of the Wilkinson Divider //9 Wilkinn Dividr Evn and Odd Md Analyi.dc / Evn/Odd Md Analyi f th Wilkinn Dividr Cnidr a matchd Wilkinn pwr dividr, with a urc at prt : Prt Prt Prt T implify thi chmatic, w rmv th grund plan, which

More information

H2 Mathematics Arithmetic & Geometric Series ( )

H2 Mathematics Arithmetic & Geometric Series ( ) H Mathmatics Arithmtic & Gomtric Sris (08 09) Basic Mastry Qustios Arithmtic Progrssio ad Sris. Th rth trm of a squc is 4r 7. (i) Stat th first four trms ad th 0th trm. (ii) Show that th squc is a arithmtic

More information

Review Exercises. 1. Evaluate using the definition of the definite integral as a Riemann Sum. Does the answer represent an area? 2

Review Exercises. 1. Evaluate using the definition of the definite integral as a Riemann Sum. Does the answer represent an area? 2 MATHEMATIS --RE Itgral alculus Marti Huard Witr 9 Rviw Erciss. Evaluat usig th dfiitio of th dfiit itgral as a Rima Sum. Dos th aswr rprst a ara? a ( d b ( d c ( ( d d ( d. Fid f ( usig th Fudamtal Thorm

More information

Engineering Differential Equations Practice Final Exam Solutions Fall 2011

Engineering Differential Equations Practice Final Exam Solutions Fall 2011 9.6 Enginring Diffrntial Equation Practic Final Exam Solution Fall 0 Problm. (0 pt.) Solv th following initial valu problm: x y = xy, y() = 4. Thi i a linar d.. bcau y and y appar only to th firt powr.

More information

Source code. where each α ij is a terminal or nonterminal symbol. We say that. α 1 α m 1 Bα m+1 α n α 1 α m 1 β 1 β p α m+1 α n

Source code. where each α ij is a terminal or nonterminal symbol. We say that. α 1 α m 1 Bα m+1 α n α 1 α m 1 β 1 β p α m+1 α n Adminitrivia Lctur : Paring If you do not hav a group, pla pot a rqut on Piazzza ( th Form projct tam... itm. B ur to updat your pot if you find on. W will aign orphan to group randomly in a fw day. Programming

More information

Lecture 4: Parsing. Administrivia

Lecture 4: Parsing. Administrivia Adminitrivia Lctur 4: Paring If you do not hav a group, pla pot a rqut on Piazzza ( th Form projct tam... itm. B ur to updat your pot if you find on. W will aign orphan to group randomly in a fw day. Programming

More information

Vr Vr

Vr Vr F rt l Pr nt t r : xt rn l ppl t n : Pr nt rv nd PD RDT V t : t t : p bl ( ll R lt: 00.00 L n : n L t pd t : 0 6 20 8 :06: 6 pt (p bl Vr.2 8.0 20 8.0. 6 TH N PD PPL T N N RL http : h b. x v t h. p V l

More information

1985 AP Calculus BC: Section I

1985 AP Calculus BC: Section I 985 AP Calculus BC: Sctio I 9 Miuts No Calculator Nots: () I this amiatio, l dots th atural logarithm of (that is, logarithm to th bas ). () Ulss othrwis spcifid, th domai of a fuctio f is assumd to b

More information

6. Negative Feedback in Single- Transistor Circuits

6. Negative Feedback in Single- Transistor Circuits Lctur 8: Intrductin t lctrnic analg circuit 36--366 6. Ngativ Fdback in Singl- Tranitr ircuit ugn Paprn, 2008 Our aim i t tudy t ffct f ngativ fdback n t mall-ignal gain and t mall-ignal input and utput

More information

Session : Plasmas in Equilibrium

Session : Plasmas in Equilibrium Sssio : Plasmas i Equilibrium Ioizatio ad Coductio i a High-prssur Plasma A ormal gas at T < 3000 K is a good lctrical isulator, bcaus thr ar almost o fr lctros i it. For prssurs > 0.1 atm, collisio amog

More information

Math 34A. Final Review

Math 34A. Final Review Math A Final Rviw 1) Us th graph of y10 to find approimat valus: a) 50 0. b) y (0.65) solution for part a) first writ an quation: 50 0. now tak th logarithm of both sids: log() log(50 0. ) pand th right

More information

KISS: A Bit Too Simple. Greg Rose

KISS: A Bit Too Simple. Greg Rose KI: A Bit Too impl Grg Ros ggr@qualcomm.com Outli KI radom umbr grator ubgrators Efficit attack N KI ad attack oclusio PAGE 2 O approach to PRNG scurity "A radom umbr grator is lik sx: Wh it's good, its

More information

07 - SEQUENCES AND SERIES Page 1 ( Answers at he end of all questions ) b, z = n

07 - SEQUENCES AND SERIES Page 1 ( Answers at he end of all questions ) b, z = n 07 - SEQUENCES AND SERIES Pag ( Aswrs at h d of all qustios ) ( ) If = a, y = b, z = c, whr a, b, c ar i A.P. ad = 0 = 0 = 0 l a l

More information

International Journal of Mathematical Archive-7(5), 2016, Available online through ISSN

International Journal of Mathematical Archive-7(5), 2016, Available online through   ISSN Itratial Jural f athmatial Arhiv-7(5), 06, 60-70 Availabl li thrugh wwwimaif ISSN 9 5046 IDEALS IN ALOST SEILATTICE G NANAJI RAO, TEREFE GETACHEW BEYENE*,Dpartmt f athmatis, Adhra Uivrsity, Visakhpataam,

More information

Some Families of Higher Order Three-Step Iterative Techniques. where is a real number and y (5)

Some Families of Higher Order Three-Step Iterative Techniques. where is a real number and y (5) Lif Scic Jural 03;0s http://www.lifscicsit.cm Sm Familis f Highr Orr Thr-Stp Itrativ Tchiqus Nair Ahma Mir Sahr Akmal Kha Naila Rafiq Nusrut Yasmi. Dpartmt f Basic Scics Riphah Itratial Uivrsit Islamaba

More information

Statistics 3858 : Likelihood Ratio for Exponential Distribution

Statistics 3858 : Likelihood Ratio for Exponential Distribution Statistics 3858 : Liklihood Ratio for Expotial Distributio I ths two xampl th rjctio rjctio rgio is of th form {x : 2 log (Λ(x)) > c} for a appropriat costat c. For a siz α tst, usig Thorm 9.5A w obtai

More information

More Foundations. Undirected Graphs. Degree. A Theorem. Graphs, Products, & Relations

More Foundations. Undirected Graphs. Degree. A Theorem. Graphs, Products, & Relations Mr Funtins Grphs, Pruts, & Rltins Unirt Grphs An unirt grph is pir f 1. A st f ns 2. A st f gs (whr n g is st f tw ns*) Friy, Sptmr 2, 2011 Ring: Sipsr 0.2 ginning f 0.4; Stughtn 1.1.5 ({,,,,}, {{,}, {,},

More information

On a problem of J. de Graaf connected with algebras of unbounded operators de Bruijn, N.G.

On a problem of J. de Graaf connected with algebras of unbounded operators de Bruijn, N.G. O a problm of J. d Graaf coctd with algbras of uboudd oprators d Bruij, N.G. Publishd: 01/01/1984 Documt Vrsio Publishr s PDF, also kow as Vrsio of Rcord (icluds fial pag, issu ad volum umbrs) Plas chck

More information

EE 119 Homework 6 Solution

EE 119 Homework 6 Solution EE 9 Hmwrk 6 Slutin Prr: J Bkr TA: Xi Lu Slutin: (a) Th angular magniicatin a tlcp i m / th cal lngth th bjctiv ln i m 4 45 80cm (b) Th clar aprtur th xit pupil i 35 mm Th ditanc btwn th bjctiv ln and

More information

1. Be a nurse for 2. Practice a Hazard hunt 4. ABCs of life do. 7. Build a pasta sk

1. Be a nurse for 2. Practice a Hazard hunt 4. ABCs of life do. 7. Build a pasta sk Y M B P V P U up civii r i d d Wh clu dy 1. B nur fr cll 2. Prcic 999 3. Hzrd hun d 4. B f lif d cld grm 5. Mk plic g hzrd 6. p cmp ln 7. Build p k pck? r hi p Bvr g c rup l fr y k cn 7 fu dr, u d n cun

More information

A L A BA M A L A W R E V IE W

A L A BA M A L A W R E V IE W A L A BA M A L A W R E V IE W Volume 52 Fall 2000 Number 1 B E F O R E D I S A B I L I T Y C I V I L R I G HT S : C I V I L W A R P E N S I O N S A N D TH E P O L I T I C S O F D I S A B I L I T Y I N

More information

Strongly Connected Components

Strongly Connected Components Strongly Connctd Componnts Lt G = (V, E) b a dirctd graph Writ if thr is a path from to in G Writ if and is an quivalnc rlation: implis and implis s quivalnc classs ar calld th strongly connctd componnts

More information

Solution to 1223 The Evil Warden.

Solution to 1223 The Evil Warden. Solutio to 1 Th Evil Ward. This is o of thos vry rar PoWs (I caot thik of aothr cas) that o o solvd. About 10 of you submittd th basic approach, which givs a probability of 47%. I was shockd wh I foud

More information

H NT Z N RT L 0 4 n f lt r h v d lt n r n, h p l," "Fl d nd fl d " ( n l d n l tr l t nt r t t n t nt t nt n fr n nl, th t l n r tr t nt. r d n f d rd n t th nd r nt r d t n th t th n r lth h v b n f

More information

EECE 301 Signals & Systems Prof. Mark Fowler

EECE 301 Signals & Systems Prof. Mark Fowler EECE 301 Signals & Systms Prof. Mark Fowlr ot St #21 D-T Signals: Rlation btwn DFT, DTFT, & CTFT 1/16 W can us th DFT to implmnt numrical FT procssing This nabls us to numrically analyz a signal to find

More information

Outline. Heat Exchangers. Heat Exchangers. Compact Heat Exchangers. Compact Heat Exchangers II. Heat Exchangers April 18, ME 375 Heat Transfer 1

Outline. Heat Exchangers. Heat Exchangers. Compact Heat Exchangers. Compact Heat Exchangers II. Heat Exchangers April 18, ME 375 Heat Transfer 1 Hat Exangr April 8, 007 Hat Exangr Larry artt Manial Engrg 375 Hat ranfr April 8, 007 Outl Bai ida f at xangr Ovrall at tranfr ffiint Lg-man tmpratur diffrn mtd Efftivn NU mtd ratial nidratin Hat Exangr

More information

Final Exam : Solutions

Final Exam : Solutions Comp : Algorihm and Daa Srucur Final Exam : Soluion. Rcuriv Algorihm. (a) To bgin ind h mdian o {x, x,... x n }. Sinc vry numbr xcp on in h inrval [0, n] appar xacly onc in h li, w hav ha h mdian mu b

More information

Integration by Parts

Integration by Parts Intgration by Parts Intgration by parts is a tchniqu primarily for valuating intgrals whos intgrand is th product of two functions whr substitution dosn t work. For ampl, sin d or d. Th rul is: u ( ) v'(

More information

Time : 1 hr. Test Paper 08 Date 04/01/15 Batch - R Marks : 120

Time : 1 hr. Test Paper 08 Date 04/01/15 Batch - R Marks : 120 Tim : hr. Tst Papr 8 D 4//5 Bch - R Marks : SINGLE CORRECT CHOICE TYPE [4, ]. If th compl umbr z sisfis th coditio z 3, th th last valu of z is qual to : z (A) 5/3 (B) 8/3 (C) /3 (D) o of ths 5 4. Th itgral,

More information

The Language of SOCIAL MEDIA. Christine Dugan

The Language of SOCIAL MEDIA. Christine Dugan Th Languag f SOCIAL MEDIA Christin Dugan Tabl f Cntnts Gt th Wrd Out...4 A Nw Kind f Languag...6 Scial Mdia Talk...12 Cnncting with Othrs...28 Changing th Dictinary...36 Glssary...42 Indx...44 Chck It

More information

MONTGOMERY COLLEGE Department of Mathematics Rockville Campus. 6x dx a. b. cos 2x dx ( ) 7. arctan x dx e. cos 2x dx. 2 cos3x dx

MONTGOMERY COLLEGE Department of Mathematics Rockville Campus. 6x dx a. b. cos 2x dx ( ) 7. arctan x dx e. cos 2x dx. 2 cos3x dx MONTGOMERY COLLEGE Dpartmt of Mathmatics Rockvill Campus MATH 8 - REVIEW PROBLEMS. Stat whthr ach of th followig ca b itgratd by partial fractios (PF), itgratio by parts (PI), u-substitutio (U), or o of

More information

Opening. Monster Guard. Grades 1-3. Teacher s Guide

Opening. Monster Guard. Grades 1-3. Teacher s Guide Tcr Gi 2017 Amric R Cr PLEASE NOTE: S m cml Iiii ci f Mr Gr bfr y bgi i civiy, i rr gi cc Vlc riig mii. Oig Ifrm y r gig lr b vlc y f vlc r. Exli r r vlc ll vr rl, i Ui S, r, iclig Alk Hii, v m civ vlc.

More information

ln x = n e = 20 (nearest integer)

ln x = n e = 20 (nearest integer) H JC Prlim Solutios 6 a + b y a + b / / dy a b 3/ d dy a b at, d Giv quatio of ormal at is y dy ad y wh. d a b () (,) is o th curv a+ b () y.9958 Qustio Solvig () ad (), w hav a, b. Qustio d.77 d d d.77

More information

European Business Confidence Survey December 2012 Positive expectations for 2013

European Business Confidence Survey December 2012 Positive expectations for 2013 Dcmbr 2012 Erpa Bsiss Cfic rv Dcmbr 2012 Psitiv xpctatis fr 2013 Lasrp a Ivigrs EMEA hav rctl cmplt thir latst Erpa Bsiss Cfic rv. Th fiigs sggst a psitiv start t 2013 a a mr ptimistic tlk cmpar t that

More information

MAXIMA-MINIMA EXERCISE - 01 CHECK YOUR GRASP

MAXIMA-MINIMA EXERCISE - 01 CHECK YOUR GRASP EXERCISE - MAXIMA-MINIMA CHECK YOUR GRASP. f() 5 () 75 f'() 5. () 75 75.() 7. 5 + 5. () 7 {} 5 () 7 ( ) 5. f() 9a + a +, a > f'() 6 8a + a 6( a + a ) 6( a) ( a) p a, q a a a + + a a a (rjctd) or a a 6.

More information

Pupil / Class Record We can assume a word has been learned when it has been either tested or used correctly at least three times.

Pupil / Class Record We can assume a word has been learned when it has been either tested or used correctly at least three times. 2 Pupi / Css Rr W ssum wr hs b r wh i hs b ihr s r us rry s hr ims. Nm: D Bu: fr i bus brhr u firs hf hp hm s uh i iv iv my my mr muh m w ih w Tik r pp push pu sh shu sisr s sm h h hir hr hs im k w vry

More information

Linear Algebra Existence of the determinant. Expansion according to a row.

Linear Algebra Existence of the determinant. Expansion according to a row. Lir Algbr 2270 1 Existc of th dtrmit. Expsio ccordig to row. W dfi th dtrmit for 1 1 mtrics s dt([]) = (1) It is sy chck tht it stisfis D1)-D3). For y othr w dfi th dtrmit s follows. Assumig th dtrmit

More information

n r t d n :4 T P bl D n, l d t z d th tr t. r pd l

n r t d n :4 T P bl D n, l d t z d   th tr t. r pd l n r t d n 20 20 :4 T P bl D n, l d t z d http:.h th tr t. r pd l 2 0 x pt n f t v t, f f d, b th n nd th P r n h h, th r h v n t b n p d f r nt r. Th t v v d pr n, h v r, p n th pl v t r, d b p t r b R

More information

c. What is the average rate of change of f on the interval [, ]? Answer: d. What is a local minimum value of f? Answer: 5 e. On what interval(s) is f

c. What is the average rate of change of f on the interval [, ]? Answer: d. What is a local minimum value of f? Answer: 5 e. On what interval(s) is f Essential Skills Chapter f ( x + h) f ( x ). Simplifying the difference quotient Section. h f ( x + h) f ( x ) Example: For f ( x) = 4x 4 x, find and simplify completely. h Answer: 4 8x 4 h. Finding the

More information

I M P O R T A N T S A F E T Y I N S T R U C T I O N S W h e n u s i n g t h i s e l e c t r o n i c d e v i c e, b a s i c p r e c a u t i o n s s h o

I M P O R T A N T S A F E T Y I N S T R U C T I O N S W h e n u s i n g t h i s e l e c t r o n i c d e v i c e, b a s i c p r e c a u t i o n s s h o I M P O R T A N T S A F E T Y I N S T R U C T I O N S W h e n u s i n g t h i s e l e c t r o n i c d e v i c e, b a s i c p r e c a u t i o n s s h o u l d a l w a y s b e t a k e n, i n c l u d f o l

More information

ELEC 372 LECTURE NOTES, WEEK 11 Dr. Amir G. Aghdam Concordia University

ELEC 372 LECTURE NOTES, WEEK 11 Dr. Amir G. Aghdam Concordia University ELEC 37 LECTURE NOTES, WEE Dr Amir Aghdam Cncrdia Univrity Part f th nt ar adaptd frm th matrial in th fllwing rfrnc: Mdrn Cntrl Sytm by Richard C Drf and Rbrt H Bihp, Prntic Hall Fdback Cntrl f Dynamic

More information

Division of Mechanics Lund University MULTIBODY DYNAMICS. Examination Name (write in block letters):.

Division of Mechanics Lund University MULTIBODY DYNAMICS. Examination Name (write in block letters):. Division of Mchanics Lund Univrsity MULTIBODY DYNMICS Examination 7033 Nam (writ in block lttrs):. Id.-numbr: Writtn xamination with fiv tasks. Plas chck that all tasks ar includd. clan copy of th solutions

More information

1. Accident preve. 3. First aid kit ess 4. ABCs of life do. 6. Practice a Build a pasta sk

1. Accident preve. 3. First aid kit ess 4. ABCs of life do. 6. Practice a Build a pasta sk Y M D B D K P S V P U D hi p r ub g rup ck l yu cn 7 r, f r i y un civi i u ir r ub c fr ll y u n rgncy i un pg 3-9 bg i pr hich. ff c cn b ll p i f h grup r b n n c rk ivii ru gh g r! i pck? i i rup civ

More information

Registered Sex Offenders

Registered Sex Offenders gitrd x ffdr victd x ffdr r rquird by tt lw t rgitr wit t lw frct gcy vig juridicti vr wr ty rid cwll lic prtt tctiv igd t ti prc t ur rgitrti d cplic wit t rquirt t frt udr t lw fllwig pg w ll currtly

More information

+ x. x 2x. 12. dx. 24. dx + 1)

+ x. x 2x. 12. dx. 24. dx + 1) INTEGRATION of FUNCTION of ONE VARIABLE INDEFINITE INTEGRAL Fidig th idfiit itgrals Rductio to basic itgrals, usig th rul f ( ) f ( ) d =... ( ). ( )d. d. d ( ). d. d. d 7. d 8. d 9. d. d. d. d 9. d 9.

More information

Bohr type models of the atom give a totally incorrect picture of the atom and are of only historical significance.

Bohr type models of the atom give a totally incorrect picture of the atom and are of only historical significance. VISUAL PHYSICS ONLIN BOHR MODL OF TH ATOM Bhr typ mdls f th atm giv a ttally icrrct pictur f th atm ad ar f ly histrical sigificac. Fig.. Bhr s platary mdl f th atm. Hwvr, th Bhr mdls wr a imprtat stp

More information

LECTURE 5 Guassian Wave Packet

LECTURE 5 Guassian Wave Packet LECTURE 5 Guassian Wav Pact 1.5 Eampl f a guassian shap fr dscribing a wav pact Elctrn Pact ψ Guassian Assumptin Apprimatin ψ As w hav sn in QM th wav functin is ftn rprsntd as a Furir transfrm r sris.

More information

3 2x. 3x 2. Prepared by Vince Zaccone For Campus Learning Assistance Services at UCSB

3 2x. 3x 2.   Prepared by Vince Zaccone For Campus Learning Assistance Services at UCSB Math B Intgration Rviw (Solutions) Do ths intgrals. Solutions ar postd at th wbsit blow. If you hav troubl with thm, sk hlp immdiatly! () 8 d () 5 d () d () sin d (5) d (6) cos d (7) d www.clas.ucsb.du/staff/vinc

More information

ECEN 5005 Crystals, Nanocrystals and Device Applications Class 14 Group Theory For Crystals

ECEN 5005 Crystals, Nanocrystals and Device Applications Class 14 Group Theory For Crystals ECEN 5005 Cryta Naocryta ad Dvic Appicatio Ca 14 Group Thory For Cryta Spi Aguar Motu Quatu Stat of Hydrog-ik Ato Sig Ectro Cryta Fid Thory Fu Rotatio Group 1 Spi Aguar Motu Spi itriic aguar otu of ctro

More information

Chapter 2 Infinite Series Page 1 of 11. Chapter 2 : Infinite Series

Chapter 2 Infinite Series Page 1 of 11. Chapter 2 : Infinite Series Chatr Ifiit Sris Pag of Sctio F Itgral Tst Chatr : Ifiit Sris By th d of this sctio you will b abl to valuat imror itgrals tst a sris for covrgc by alyig th itgral tst aly th itgral tst to rov th -sris

More information

Mor Tutorial at www.dumblittldoctor.com Work th problms without a calculator, but us a calculator to chck rsults. And try diffrntiating your answrs in part III as a usful chck. I. Applications of Intgration

More information

Stochastic Heating in RF capacitive discharges

Stochastic Heating in RF capacitive discharges Stochatic Hating in RF capacitiv dicharg PTSG Sminar Emi Kawamura Thr ar two main mchanim for hating lctron in RF capacitiv dicharg: ohmic and tochatic hating. Plama ritivity du to lctron-nutral colliion

More information

ALOHA Product no.: 03007

ALOHA Product no.: 03007 EN s l d m S vrsatil, s yu! Yur styl is vry prsal as is yur MySpdy. Attach f ths trdy spdmtrs t yur bik ad shw vry wh yu rally ar. Satch up yur favrit dsig ad xprss yur idividuality mr tha vr wh ut ad

More information

y = 2xe x + x 2 e x at (0, 3). solution: Since y is implicitly related to x we have to use implicit differentiation: 3 6y = 0 y = 1 2 x ln(b) ln(b)

y = 2xe x + x 2 e x at (0, 3). solution: Since y is implicitly related to x we have to use implicit differentiation: 3 6y = 0 y = 1 2 x ln(b) ln(b) 4. y = y = + 5. Find th quation of th tangnt lin for th function y = ( + ) 3 whn = 0. solution: First not that whn = 0, y = (1 + 1) 3 = 8, so th lin gos through (0, 8) and thrfor its y-intrcpt is 8. y

More information

4 4 N v b r t, 20 xpr n f th ll f th p p l t n p pr d. H ndr d nd th nd f t v L th n n f th pr v n f V ln, r dn nd l r thr n nt pr n, h r th ff r d nd

4 4 N v b r t, 20 xpr n f th ll f th p p l t n p pr d. H ndr d nd th nd f t v L th n n f th pr v n f V ln, r dn nd l r thr n nt pr n, h r th ff r d nd n r t d n 20 20 0 : 0 T P bl D n, l d t z d http:.h th tr t. r pd l 4 4 N v b r t, 20 xpr n f th ll f th p p l t n p pr d. H ndr d nd th nd f t v L th n n f th pr v n f V ln, r dn nd l r thr n nt pr n,

More information

LECTURE 13 Filling the bands. Occupancy of Available Energy Levels

LECTURE 13 Filling the bands. Occupancy of Available Energy Levels LUR 3 illig th bads Occupacy o Availabl rgy Lvls W hav dtrmid ad a dsity o stats. W also d a way o dtrmiig i a stat is illd or ot at a giv tmpratur. h distributio o th rgis o a larg umbr o particls ad

More information

Types of Communication

Types of Communication Tps f Cmmunicatin Analg: cntinuus ariabls with nis {rrr 0} 0 (imprfct) Digital: dcisins, discrt chics, quantizd, nis {rrr} 0 (usuall prfct) Mssag S, S, r S M Mdulatr (t) channl; adds nis and distrtin M-ar

More information

MAT 182: Calculus II Test on Chapter 9: Sequences and Infinite Series Take-Home Portion Solutions

MAT 182: Calculus II Test on Chapter 9: Sequences and Infinite Series Take-Home Portion Solutions MAT 8: Clculus II Tst o Chptr 9: qucs d Ifiit ris T-Hom Portio olutios. l l l l 0 0 L'Hôpitl's Rul 0 . Bgi by computig svrl prtil sums to dvlop pttr: 6 7 8 7 6 6 9 9 99 99 Th squc of prtil sums is s follows:,,,,,

More information

22 t b r 2, 20 h r, th xp t d bl n nd t fr th b rd r t t. f r r z r t l n l th h r t rl T l t n b rd n n l h d, nd n nh rd f pp t t f r n. H v v d n f

22 t b r 2, 20 h r, th xp t d bl n nd t fr th b rd r t t. f r r z r t l n l th h r t rl T l t n b rd n n l h d, nd n nh rd f pp t t f r n. H v v d n f n r t d n 20 2 : 6 T P bl D n, l d t z d http:.h th tr t. r pd l 22 t b r 2, 20 h r, th xp t d bl n nd t fr th b rd r t t. f r r z r t l n l th h r t rl T l t n b rd n n l h d, nd n nh rd f pp t t f r

More information

Probability & Statistics,

Probability & Statistics, Probability & Statistics, BITS Pilai K K Birla Goa Campus Dr. Jajati Kshari Sahoo Dpartmt of Mathmatics BITS Pilai, K K Birla Goa Campus Poisso Distributio Poisso Distributio: A radom variabl X is said

More information

EEO 401 Digital Signal Processing Prof. Mark Fowler

EEO 401 Digital Signal Processing Prof. Mark Fowler EEO 401 Digital Signal Procssing Prof. Mark Fowlr Dtails of th ot St #19 Rading Assignmnt: Sct. 7.1.2, 7.1.3, & 7.2 of Proakis & Manolakis Dfinition of th So Givn signal data points x[n] for n = 0,, -1

More information

Roadmap. XML Indexing. DataGuide example. DataGuides. Strong DataGuides. Multiple DataGuides for same data. CPS Topics in Database Systems

Roadmap. XML Indexing. DataGuide example. DataGuides. Strong DataGuides. Multiple DataGuides for same data. CPS Topics in Database Systems Roadmap XML Indxing CPS 296.1 Topics in Databas Systms Indx fabric Coopr t al. A Fast Indx for Smistructurd Data. VLDB, 2001 DataGuid Goldman and Widom. DataGuids: Enabling Qury Formulation and Optimization

More information

Search sequence databases 3 10/25/2016

Search sequence databases 3 10/25/2016 Sarch squnc databass 3 10/25/2016 Etrm valu distribution Ø Suppos X is a random variabl with probability dnsity function p(, w sampl a larg numbr S of indpndnt valus of X from this distribution for an

More information

Washington State University

Washington State University he 3 Ktics ad Ractor Dsig Sprg, 00 Washgto Stat Uivrsity Dpartmt of hmical Egrg Richard L. Zollars Exam # You will hav o hour (60 muts) to complt this xam which cosists of four (4) problms. You may us

More information

ELEG 413 Lecture #6. Mark Mirotznik, Ph.D. Professor The University of Delaware

ELEG 413 Lecture #6. Mark Mirotznik, Ph.D. Professor The University of Delaware LG 43 Lctur #6 Mrk Mirtnik, Ph.D. Prfssr Th Univrsity f Dlwr mil: mirtni@c.udl.du Wv Prpgtin nd Plritin TM: Trnsvrs lctrmgntic Wvs A md is prticulr fild cnfigurtin. Fr givn lctrmgntic bundry vlu prblm,

More information

The Reign of Grace and Life. Romans 5:12-21 (5:12-14, 17 focus)

The Reign of Grace and Life. Romans 5:12-21 (5:12-14, 17 focus) Th Rig of Gc d Lif Rom 5:12-21 (5:12-14, 17 focu) Th Ifluc of O h d ud Adolph H J o ph Smith B i t l m t Fid Idi Gdhi Ci Lu Gu ich N itz y l M d i M ch Nlo h Vig T L M uhmmd B m i o t T Ju Chit w I N h

More information

ECE602 Exam 1 April 5, You must show ALL of your work for full credit.

ECE602 Exam 1 April 5, You must show ALL of your work for full credit. ECE62 Exam April 5, 27 Nam: Solution Scor: / This xam is closd-book. You must show ALL of your work for full crdit. Plas rad th qustions carfully. Plas chck your answrs carfully. Calculators may NOT b

More information

INTEGRATION BY PARTS

INTEGRATION BY PARTS Mathmatics Rvision Guids Intgration by Parts Pag of 7 MK HOME TUITION Mathmatics Rvision Guids Lvl: AS / A Lvl AQA : C Edcl: C OCR: C OCR MEI: C INTEGRATION BY PARTS Vrsion : Dat: --5 Eampls - 6 ar copyrightd

More information

PURE MATHEMATICS A-LEVEL PAPER 1

PURE MATHEMATICS A-LEVEL PAPER 1 -AL P MATH PAPER HONG KONG EXAMINATIONS AUTHORITY HONG KONG ADVANCED LEVEL EXAMINATION PURE MATHEMATICS A-LEVEL PAPER 8 am am ( hours) This papr must b aswrd i Eglish This papr cosists of Sctio A ad Sctio

More information

Modern Physics. Unit 5: Schrödinger s Equation and the Hydrogen Atom Lecture 5.6: Energy Eigenvalues of Schrödinger s Equation for the Hydrogen Atom

Modern Physics. Unit 5: Schrödinger s Equation and the Hydrogen Atom Lecture 5.6: Energy Eigenvalues of Schrödinger s Equation for the Hydrogen Atom Mdrn Physics Unit 5: Schrödingr s Equatin and th Hydrgn Atm Lctur 5.6: Enrgy Eignvalus f Schrödingr s Equatin fr th Hydrgn Atm Rn Rifnbrgr Prfssr f Physics Purdu Univrsity 1 Th allwd nrgis E cm frm th

More information

176 5 t h Fl oo r. 337 P o ly me r Ma te ri al s

176 5 t h Fl oo r. 337 P o ly me r Ma te ri al s A g la di ou s F. L. 462 E l ec tr on ic D ev el op me nt A i ng er A.W.S. 371 C. A. M. A l ex an de r 236 A d mi ni st ra ti on R. H. (M rs ) A n dr ew s P. V. 326 O p ti ca l Tr an sm is si on A p ps

More information

Correlation in tree The (ferromagnetic) Ising model

Correlation in tree The (ferromagnetic) Ising model 5/3/00 :\ jh\slf\nots.oc\7 Chaptr 7 Blf propagato corrlato tr Corrlato tr Th (frromagtc) Isg mol Th Isg mol s a graphcal mol or par ws raom Markov fl cosstg of a urct graph wth varabls assocat wth th vrtcs.

More information

GUC (Dr. Hany Hammad) 4/20/2016

GUC (Dr. Hany Hammad) 4/20/2016 GU (r. Hay Hamma) 4/0/06 Lctur # 0 Filtr sig y Th srti Lss Mth sig Stps Lw-pass prttyp sig. () Scalig a cvrsi. () mplmtati. Usig Stus. Usig High-Lw mpac Sctis. Thry f priic structurs. mag impacs a Trasfr

More information

Cthulhu Through The Ages. Sample file

Cthulhu Through The Ages. Sample file Cthulhu Thrugh Th Ag Sampl fil h t i g d p CREDITS Writt By Mik Ma, Pdr Ziviai, Jh Frch, ad Chad Bwr Editig ad Dvlpmt by Mik Ma ad Duti Wright Cvr Art Paul Carrick Itrir Art Stv Gilbrt, Sam Lamt, Flria

More information

Quantum Mechanics & Spectroscopy Prof. Jason Goodpaster. Problem Set #2 ANSWER KEY (5 questions, 10 points)

Quantum Mechanics & Spectroscopy Prof. Jason Goodpaster. Problem Set #2 ANSWER KEY (5 questions, 10 points) Chm 5 Problm St # ANSWER KEY 5 qustios, poits Qutum Mchics & Spctroscopy Prof. Jso Goodpstr Du ridy, b. 6 S th lst pgs for possibly usful costts, qutios d itgrls. Ths will lso b icludd o our futur ms..

More information

They must have different numbers of electrons orbiting their nuclei. They must have the same number of neutrons in their nuclei.

They must have different numbers of electrons orbiting their nuclei. They must have the same number of neutrons in their nuclei. 37 1 How may utros ar i a uclus of th uclid l? 20 37 54 2 crtai lmt has svral isotops. Which statmt about ths isotops is corrct? Thy must hav diffrt umbrs of lctros orbitig thir ucli. Thy must hav th sam

More information

Multiple Short Term Infusion Homework # 5 PHA 5127

Multiple Short Term Infusion Homework # 5 PHA 5127 Multipl Short rm Infusion Homwork # 5 PHA 527 A rug is aministr as a short trm infusion. h avrag pharmacokintic paramtrs for this rug ar: k 0.40 hr - V 28 L his rug follows a on-compartmnt boy mol. A 300

More information

LECTURE 6 TRANSFORMATION OF RANDOM VARIABLES

LECTURE 6 TRANSFORMATION OF RANDOM VARIABLES LECTURE 6 TRANSFORMATION OF RANDOM VARIABLES TRANSFORMATION OF FUNCTION OF A RANDOM VARIABLE UNIVARIATE TRANSFORMATIONS TRANSFORMATION OF RANDOM VARIABLES If s a rv wth cdf F th Y=g s also a rv. If w wrt

More information

Additional Math (4047) Paper 2 (100 marks) y x. 2 d. d d

Additional Math (4047) Paper 2 (100 marks) y x. 2 d. d d Aitional Math (07) Prpar b Mr Ang, Nov 07 Fin th valu of th constant k for which is a solution of th quation k. [7] Givn that, Givn that k, Thrfor, k Topic : Papr (00 marks) Tim : hours 0 mins Nam : Aitional

More information

Differential Equations

Differential Equations UNIT I Diffrntial Equations.0 INTRODUCTION W li in a world of intrrlatd changing ntitis. Th locit of a falling bod changs with distanc, th position of th arth changs with tim, th ara of a circl changs

More information

Where k is either given or determined from the data and c is an arbitrary constant.

Where k is either given or determined from the data and c is an arbitrary constant. Exponntial growth and dcay applications W wish to solv an quation that has a drivativ. dy ky k > dx This quation says that th rat of chang of th function is proportional to th function. Th solution is

More information

Gradebook & Midterm & Office Hours

Gradebook & Midterm & Office Hours Your commnts So what do w do whn on of th r's is 0 in th quation GmM(1/r-1/r)? Do w nd to driv all of ths potntial nrgy formulas? I don't undrstand springs This was th first lctur I actually larnd somthing

More information

Chapter (8) Estimation and Confedence Intervals Examples

Chapter (8) Estimation and Confedence Intervals Examples Chaptr (8) Estimatio ad Cofdc Itrvals Exampls Typs of stimatio: i. Poit stimatio: Exampl (1): Cosidr th sampl obsrvatios, 17,3,5,1,18,6,16,10 8 X i i1 17 3 5 118 6 16 10 116 X 14.5 8 8 8 14.5 is a poit

More information

1 Minimum Cut Problem

1 Minimum Cut Problem CS 6 Lctur 6 Min Cut and argr s Algorithm Scribs: Png Hui How (05), Virginia Dat: May 4, 06 Minimum Cut Problm Today, w introduc th minimum cut problm. This problm has many motivations, on of which coms

More information

Summer Reading Activities!

Summer Reading Activities! HOOT FLUSH SCAT CHOMP From Bstslling Author Summr Rading Activitis! Flush Word Find Can you find all 14 words in th puzzl blow? S W I M E N J L P H S P A R R D A Z A G A Z E I B H O T L V S C N U D H I

More information

The Phase Probability for Some Excited Binomial States

The Phase Probability for Some Excited Binomial States Egypt. J. Sl., Vl. 5, N., 3 Th Pha Prbability fr S Excitd Biial Stat. Darwih Faculty f Educati, Suz Caal Uivrity at Al-Arih, Egypt. I thi papr, th pha prprti i Pgg-Bartt frali ar cidrd. Th pha ditributi

More information

On Hamiltonian Tetrahedralizations Of Convex Polyhedra

On Hamiltonian Tetrahedralizations Of Convex Polyhedra O Ht Ttrrzts O Cvx Pyr Frs C 1 Q-Hu D 2 C A W 3 1 Dprtt Cputr S T Uvrsty H K, H K, C. E: @s.u. 2 R & TV Trsss Ctr, Hu, C. E: q@163.t 3 Dprtt Cputr S, Mr Uvrsty Nwu St. J s, Nwu, C A1B 35. E: w@r.s.u. Astrt

More information

Chapter 6 Folding. Folding

Chapter 6 Folding. Folding Chaptr 6 Folding Wintr 1 Mokhtar Abolaz Folding Th folding transformation is usd to systmatically dtrmin th control circuits in DSP architctur whr multipl algorithm oprations ar tim-multiplxd to a singl

More information

0 t b r 6, 20 t l nf r nt f th l t th t v t f th th lv, ntr t n t th l l l nd d p rt nt th t f ttr t n th p nt t th r f l nd d tr b t n. R v n n th r

0 t b r 6, 20 t l nf r nt f th l t th t v t f th th lv, ntr t n t th l l l nd d p rt nt th t f ttr t n th p nt t th r f l nd d tr b t n. R v n n th r n r t d n 20 22 0: T P bl D n, l d t z d http:.h th tr t. r pd l 0 t b r 6, 20 t l nf r nt f th l t th t v t f th th lv, ntr t n t th l l l nd d p rt nt th t f ttr t n th p nt t th r f l nd d tr b t n.

More information

Unit 6: Solving Exponential Equations and More

Unit 6: Solving Exponential Equations and More Habrman MTH 111 Sction II: Eonntial and Logarithmic Functions Unit 6: Solving Eonntial Equations and Mor EXAMPLE: Solv th quation 10 100 for. Obtain an act solution. This quation is so asy to solv that

More information

PHYS-333: Problem set #2 Solutions

PHYS-333: Problem set #2 Solutions PHYS-333: Problm st #2 Solutions Vrsion of March 5, 2016. 1. Visual binary 15 points): Ovr a priod of 10 yars, two stars sparatd by an angl of 1 arcsc ar obsrvd to mov through a full circl about a point

More information

A Simple Proof that e is Irrational

A Simple Proof that e is Irrational Two of th most bautiful ad sigificat umbrs i mathmatics ar π ad. π (approximatly qual to 3.459) rprsts th ratio of th circumfrc of a circl to its diamtr. (approximatly qual to.788) is th bas of th atural

More information

From Elimination to Belief Propagation

From Elimination to Belief Propagation School of omputr Scinc Th lif Propagation (Sum-Product lgorithm Probabilistic Graphical Modls (10-708 Lctur 5, Sp 31, 2007 Rcptor Kinas Rcptor Kinas Kinas X 5 ric Xing Gn G T X 6 X 7 Gn H X 8 Rading: J-hap

More information

Consider serial transmission. In Proakis notation, we receive

Consider serial transmission. In Proakis notation, we receive 5..3 Dciio-Dirctd Pha Trackig [P 6..4] 5.-1 Trackr commoly work o radom data igal (plu oi), o th kow-igal modl do ot apply. W till kow much about th tructur o th igal, though, ad w ca xploit it. Coidr

More information