Outline for Today. A space-efficient data structure for substring searching. Converting from suffix arrays to suffix trees.

Size: px
Start display at page:

Download "Outline for Today. A space-efficient data structure for substring searching. Converting from suffix arrays to suffix trees."

Transcription

1 Suffix Array

2 Outli for Today Rviw from Lat Tim Suffix Array A urpriigly hlpful auxiliary tructur. Cotructig Suffix Tr A pac-fficit data tructur for ubtrig archig. LCP Array Quick rviw of uffix tr. Covrtig from uffix array to uffix tr. Cotructig Suffix Array A xtrmly clvr algorithm for buildig uffix array.

3 Rviw from Lat Tim

4 Suffix Tr A uffix tr for a trig T i a Patricia tri of T 8 whr ach laf i labld with th 7 idx whr th corrpodig uffix tart i T. 4 o 5 0 o 6 o

5 Suffix Tr If T = m, th uffix tr ha xactly m + laf od. For ay T ε, all itral od i th uffix tr hav at lat two childr. Numbr of od i a uffix tr i Θ(m) o 5 0 o 6 o

6 Spac Uag Suffix tr ar mmory hog. Suppo Σ = {A, C, G, T, }. Each itral od d 5 machi word: for ach charactr, w d thr word for th tart/d idx of th labl ad for a child poitr. Thi i till O(m), but it' a hug hidd cotat.

7 Suffix Array

8 Suffix Array A uffix array for a trig T i a array of th uffix of T, tord i ortd ordr. By covtio, prcd all othr charactr o o

9 Rprtig Suffix Array Suffix array ar typically rprtd implicitly by jut torig th idic of th uffix i ortd ordr rathr tha th uffix thmlv. Spac rquird: Θ(m). Mor prcily, pac for T, plu o xtra word for ach charactr o

10 Sarchig a Suffix Array Rcall: P i a ubtrig of T iff it' a prfix of a uffix of T. All match of P i T hav a commo prfix, o thy'll b tord cocutivly. Ca fid all match of P i T by doig a biary arch ovr th uffix array o o

11 Aalyzig th Rutim Th biary arch will rquir O(log m) prob ito th uffix array. Each compario tak tim O(): hav to compar P agait th currt uffix. Tim for biary archig: O( log m). Tim to rport all match aftr that poit: O(z). Total tim: O( log m + z).

12 Why th Slowdow?

13 A Lo of Structur May algorithm o uffix tr ivolv lookig for itral od with variou proprti: Logt rpatd ubtrig: itral od with largt trig dpth. Logt commo xtio: lowt commo actor of two od. Bcau uffix array do ot tor th tr tructur, w lo acc to thi iformatio.

14 Suffix Tr ad Suffix Array o 5 0 o 6 o o o Nifty NiftyFact: Fact:Th Thuffix uffixarray arrayca ca b bcotructd cotructdfrom froma aordrd ordrd DFS DFSovr ovraauffix uffixtr! tr!

15 Suffix Tr ad Suffix Array o 5 0 o 6 o o o

16 Suffix Tr ad Suffix Array o 5 0 o 6 o o o Nifty NiftyFact: Fact:Adjact Adjacttrig trigwith with aacommo commoprfix prfixcorrpod corrpodto to ubtr ubtri ith thuffix uffixtr. tr.

17 Logt Commo Prfix Giv two trig x ad y, th logt commo prfix or (LCP) of x ad y i th logt prfix of x that i alo a prfix of y. Th LCP of x ad y i dotd lcp(x, y). LCP iformatio i fudamtally importat for uffix array. With it, w ca implicitly rcovr much of th tructur prt i uffix tr.

18 Suffix Tr ad Suffix Array o 5 0 o 6 o o o Nifty NiftyFact: Fact:Th Thlowt lowtcommo commo actor actorof ofuffix uffixxxad adyyha ha trig triglabl lablgiv givby bylcp(x, lcp(x,y). y).

19 Computig LCP Iformatio Claim: Thr i a O(m)-tim algorithm for computig LCP iformatio o a uffix array. Lt' how it work.

20 Pairwi LCP Fact: Thr i a algorithm (du to Kaai t al.) that cotruct, i tim O(m), a array of th LCP of adjact uffix array tri. Th algorithm i't that complx, but th corrct argumt i a bit otrivial o o

21 Pairwi LCP Som otatio: SA[i] i th ith uffix i th uffix array. H[i] i th valu of lcp(sa[i], SA[i + ]) Claim: Claim:For Foray ay00<<i i<<j j<<m: m: lcp(sa[i], lcp(sa[i],sa[j]) SA[j])==RMQ RMQHH(i, (i,j j ) ) o o

22 Computig LCP To prproc a uffix array to upport O() LCP quri: U Kaai' O(m)-tim algorithm to build th LCP array. Build a RMQ tructur ovr that array i tim O(m) uig Fichr-Hu. U th prcomputd RMQ tructur to awr LCP quri ovr rag. Rquir O(m) prprocig tim ad oly O() qury tim.

23 Sarchig a Suffix Array Rcall: Ca arch a uffix array of T for all match of a pattr P i tim O( log m + z). If w'v do O(m) prprocig to build th LCP iformatio, w ca pd thi up.

24 Sarchig a Suffix Array Ituitivly, imulat doig a biary arch of th lav of a uffix tr, rmmbrig th dpt ubtr you'v matchd o far. At ach poit, if th biary arch prob a laf outid of th currt ubtr, kip it ad cotiu th biary arch i th dirctio of th currt ubtr. To implmt thi o a actual uffix array, w u LCP iformatio to implicitly kp track of whr th boud o th currt ubtr ar.

25 Sarchig a Suffix Array Claim: Th algorithm w jut ktchd ru i tim O( + log m + z). Proof ida: Th O(log m) trm com from th biary arch ovr th lav of th uffix tr. Th O() trm corrpod to dcdig dpr ito th uffix tr o charactr at a tim. Fially, w hav to pd O(z) tim rportig match.

26 Logt Commo Extio

27 Aothr Applicatio: LCE Rcall: Th logt commo xtio of two trig T₁ ad T₂ at poitio i ad j, dotd LCET₁, T₂ (i, j), i th lgth of th logt ubtrig of T₁ ad of T₂ that bgi at poitio i i T₁ ad poitio j i T₂. a p p d p p a l Uig gralizd uffix tr ad LCA, w hav a O(m), O() -tim olutio to LCE. Claim: Thr' a much air olutio uig LCP.

28 Suffix Array ad LCE Rcall: LCET₁, T₂(i, j) i th lgth of th logt commo prfix of th uffix of T₁ tartig at poitio i ad th uffix of T₂ tartig at poitio j. Suppo w cotruct a gralizd uffix array for T₁ ad T₂ augmtd with LCP iformatio. W ca th u LCP to awr LCE quri i tim O(). W'll d a tabl mappig uffix to thir idic i th tabl to do thi, but that' ot that hard to t up ₁ ₂ ₁ ₂ ₁ ₂ o₁ ₁ ₂ ₁ o₁ ₁ ₂ ₁ t₂ o₂ t₂

29 Uig LCP: Cotructig Suffix Tr

30 Cotructig Suffix Tr Lat tim, I claimd it wa poibl to cotruct uffix tr i tim O(m). W'll do thi by howig th followig: A uffix array for T ca b built i tim O(m). A LCP array for T ca b built i tim O(m). Chck Kaai' papr for dtail. A uffix tr ca b built from a uffix array ad LCP array i tim O(m).

31 From Suffix Array to Suffix Tr

32 Uig LCP o 5 0 o 6 o o o Claim: Claim:Ay Ay0' 0'i ith thuffix uffixarray array rprt rprtdmarcatio dmarcatiopoit poit btw btwubtr ubtrof ofth throot rootod. od.

33 Uig LCP o 5 o 6 Th 0proprty Tham amproprty hold holdfor forth th ubarray, xcpt o ubarray, xcpt uig ubarray uigth th ubarray mi miitad itadof of o 5 3 o 6 3

34 a aaaba aaabbabaaaba aaba aabaaabbabaaaba aabbabaaaba aba abaaaba abaaabbabaaaba abbabaaaba ba baaaba baaabbabaaaba bababaaaba bbabaaaba

35 Thi Thii iaalightly lightly modifid modifid Cartia Cartiatr! tr! a aaaba aaabbabaaaba aaba aabaaabbabaaaba aabbabaaaba aba abaaaba abaaabbabaaaba abbabaaaba ba baaaba baaabbabaaaba bababaaaba bbabaaaba

36 a aaaba aaabbabaaaba aaba aabaaabbabaaaba aabbabaaaba aba abaaaba abaaabbabaaaba abbabaaaba ba baaaba baaabbabaaaba bababaaaba bbabaaaba

37 A Liar-Tim Algorithm Cotruct a Cartia tr from th LCP array, fuig togthr od with th am valu if o bcom a part of th othr. Ru a DFS ovr th tr ad add miig childr i th ordr i which thy appar i th uffix array. Aig labl to th dg bad o th LCP valu. Total tim: O(m).

38 Tim-Out For Aoucmt!

39 Problm St Two Problm St Two go out today. It' du xt Tuday (April 9th) at th tart of cla. Play aroud with tri, Aho-Coraick, uffix tr, ad uffix array! Problm St O ha b gradd. Grad ar availabl o GradScop. Solutio ar availabl i hardcopy i lctur. Thy'll b i th filig cabit i th Gat B wig (ar Kith' offic) if you wr't abl to pick thm up. Lua mad om xcllt graph howig th actual prformac of th RMQ data tructur i practic, icludig chart for how commo rror brak th rutim boud. Highly rcommdd!

40 Offic Hour Locatio Look lik w'r o logr allowd to hold offic hour i th Huag Bamt. W'v movd our Moday / Tuday offic hour ito Gat B6. Kith' offic hour will till b i Gat 78.

41 WiCS Caual CS Dir Staford WiCS i holdig th firt of thir biquartrly CS Caual Dir xt Moday, April 8 from 6:30PM 7:30PM at th WCC. Highly rcommdd! Your prpctiv at thi poit i your CS carr would b rally valuabl to popl who ar jut tartig out.

42

43 HackOvrflow HackOvrflow i thi Saturday, April 6, from 0:00AM 0:00PM i th Huag Bamt. It' a grat hackatho for firt-timr. Highly rcommdd!

44 DivrityBa: Itrtd? DivrityBa i a joit ffort by SOLE, SBSE, AISES, ad FLIP with a focu o computr cic. Thy'r lookig for popl to tak o ladrhip poitio. Thi i a phomal orgaizatio ad it would b a grat plac to mak a hug impact. Itrtd? Apply hr:

45

46 Back to CS66!

47 Th Hard Part: Buildig Suffix Array

48 A Naïv Algorithm Hr' a impl algorithm for buildig a uffix array: Cotruct all th uffix of th trig i tim Θ(m ). Sort tho uffix uig haport or mrgort. Mak O(m log m) compario, but ach compario tak O(m) tim. Tim rquird: O(m log m). Total tim: O(m log m). Ca w do bttr?

49 Radix Sort Radix ort i a fat ortig algorithm for trig ad itgr. It' a powrful primitiv for buildig othr algorithm ad data tructur ad com up all th tim i job itrviw. I ca you hav't it bfor (it' oly itrmitttly taught i CS6), lt' tart with a quick radix ort rviw.

50 Aalyzig Radix Sort Suppo thr ar t total trig with maximum lgth k, draw from alphabt Σ. Tim to t up iitial buckt: Θ( Σ ). Tim to ditribut trig lmt ach roud: O(t). Tim to collct trig ach roud: O(t + Σ ). Numbr of roud: O(k) Rutim: O(k(t + Σ )).

51 Spdig Up with Radix Sort What happ if w u radix ort itad of haport i our origial uffix array algorithm? Numbr of trig: Θ(m). Strig lgth: Θ(m). Numbr of charactr: Σ. Rutim i thrfor Θ(m + m Σ ) Aumig Σ = O(m), th rutim i Θ(m ), a log factor fatr tha bfor. Ca w do bttr?

52 Radix Sort Uful obrvatio: it' poibl to ort t trig i tim O(t) if th trig all hav a cotat lgth, ad th alphabt iz i O(t). W'r goig to u thi obrvatio i a littl bit, but mak a ot of it for ow.

53 Th DC3 Algorithm

54 DC3 O of th implt ad fatt algorithm for buildig uffix array i calld DC3 (Diffrc Covr, iz 3). It' a matrpic of a algorithm it' clvr, brilliat, ad ot that hard to cod up. It' alo quit uacd ad tricky. W'r goig to pd th rt of today workig through th dtail. You'll th play aroud with it o th problm t.

55 Som Aumptio Aum th iitial iput alphabt coit of a t of itgr 0,,,, Σ -. If thi i't th ca, w ca alway ort th lttr ad rplac ach with it rak. Aumig that Σ = O(), thi do't affct th rutim.

56 Som Trmiology Dfi Tₖ to b th poitio i T who idic ar qual to k mod 3. T₀ i th t of poitio that ar multipl of thr. T₁ i th t of poitio that follow th poitio i T₀. T₂ i th t of poitio that follow th poitio i T₁. m o o o o m o m

57 DC3, Ituitivly At a high-lvl, DC3 work a follow: Rcurivly gt th ortd ordr of all uffix i T₁ ad T₂. Uig thi iformatio, fficitly ort th uffix i T₀. Mrg th two lit of ortd uffix (th uffix i T₀ ad th uffix i T₁/T₂) togthr to form th full uffix array. Th dtail ar bautiful, but tricky.

58 DC3, Ituitivly At a high-lvl, DC3 work a follow: Rcurivly gt th ortd ordr of all uffix i T₁ ad T₂. Uig thi iformatio, fficitly ort th uffix i T₀. Mrg th two lit of ortd uffix (th uffix i T₀ ad th uffix i T₁/T₂) togthr to form th full uffix array. Th dtail ar bautiful, but tricky.

59 Th Firt Stp Our objctiv i to gt th rlativ rakig of th uffix at poitio T₁ ad T₂. High-lvl ida: Cotruct a w trig bad o uffix tartig at poitio i T₁ ad T₂. Comput th uffix array of that trig, rcurivly. U th rultig uffix array to dduc th ordrig of th uffix from T₁ ad T₂.

60 Embiggig Our Strig Form two w trig from T by droppig off th firt charactr ad firt two charactr ad paddig with xtra markr. Th, cocatat tho trig togthr. m o o o o m o m o o o o m o m o o o m o m

61 Embiggig Our Strig Form two w trig from T by droppig off th firt charactr ad firt two charactr ad paddig with xtra markr. Th, cocatat tho trig togthr. o o o o m o m o o o m o m

62 Um, Why? Claim: Th rlativ ordr of th uffix i th firt half of th trig tartig at poitio i T₁ ad th uffix i th cod half of th trig at poitio i T₂ i th am a th rlativ ordr of tho uffix i T. Ituitio: Strig withi th am half ar rlativly ordrd. Strig acro th two halv ar protctd by th dmarkr. o o o o m o m o o o m o m

63 So, Um... w jut doubld th iz of our iput trig. You'r ot uppod to do that i a divid-ad-coqur algorithm. o o o o m o m o o o m o m

64 Playig with Block Ky Iight: Brak th rultig trig apart ito block of iz thr. Thik about what happ if w compar two uffix tartig at th bgiig of a block: Sic th uffix ar ditict, thr' a mimatch at om poit. All block prior to that poit mut b th am. Th diffrig block of thr i th tibrakr. o o o o m o m o o o m o m

65 Th Rcuriv Stp Th Trick: Trat ach block of thr charactr a it ow charactr. Dtrmi th rlativ ordrig of tho charactr by a O(m)-tim radix ort. Rplac ach block of thr charactr with th rak of it mtacharactr. Rcurivly comput th uffix array of th rultig trig. 0 o o m o o o o om m o m o o o o mo o m o o o o m o m o o o m o m

66 Th Rcuriv Stp Th Trick: Trat ach block of thr charactr a it ow charactr. Dtrmi th rlativ ordrig of tho charactr by a O(m)-tim radix ort. Rplac ach block of thr charactr with th rak of it mtacharactr. Rcurivly comput th uffix array of th rultig trig o o o o m o m o o o m o m

67 Th Rcuriv Stp Oc w hav thi uffix array, w ca u it to gt th uffix from T₁ ad T₂ ito ortd ordr o o o o m o m o o o m o m

68 Th Rcuriv Stp Oc w hav thi uffix array, w ca u it to gt th uffix from T₁ ad T₂ ito ortd ordr m o o o o m o m o o o o m o m o o o m o m

69 Th Rcuriv Stp Oc w hav thi uffix array, w ca u it to gt th uffix from T₁ ad T₂ ito ortd ordr m o o o o m o m o o o o m o m o o o m o m

70 Rakig T₁ ad T₂ W pd a total of O(m) work i thi tp doublig th array, groupig it ito block of iz 3, radix ortig it, ad covrtig th rult of th call ito maigful data. W alo mak a rcuriv call o a array of iz m / 3. Total work: O(m), plu a rcuriv call o a array of iz m / 3.

71 DC3, Ituitivly At a high-lvl, DC3 work a follow: Rcurivly gt th ortd ordr of all uffix i T₁ ad T₂. Uig thi iformatio, fficitly ort th uffix i T₀. Mrg th two lit of ortd uffix (th uffix i T₀ ad th uffix i T₁/T₂) togthr to form th full uffix array. Th dtail ar bautiful, but tricky.

72 A Bautiful Iight Claim: If w kow th rlativ ordrig of uffix at poitio T₁ ad T₂, w ca dtrmi th rlativ ordr of uffix i poitio T₀. Ida: U a modifid radix ort! m o o o o m o m m o o o o m o m A B C D E

73 A Bautiful Iight Claim: If w kow th rlativ ordrig of uffix at poitio T₁ ad T₂, w ca dtrmi th rlativ ordr of uffix i poitio T₀. Ida: U a modifid radix ort! m m o o o o m o m A B C D E

74 A Bautiful Iight Claim: If w kow th rlativ ordrig of uffix at poitio T₁ ad T₂, w ca dtrmi th rlativ ordr of uffix i poitio T₀. Ida: U a modifid radix ort! o o o m o m m m o o o o m o m A B C D E

75 A Bautiful Iight Claim: If w kow th rlativ ordrig of uffix at poitio T₁ ad T₂, w ca dtrmi th rlativ ordr of uffix i poitio T₀. Ida: U a modifid radix ort! 8 m m o o o o m o m A B C D E

76 A Bautiful Iight Claim: If w kow th rlativ ordrig of uffix at poitio T₁ ad T₂, w ca dtrmi th rlativ ordr of uffix i poitio T₀. Ida: U a modifid radix ort! m o o o o m o m A B C D E m m m 7 9 8

77 Sortig T₀ To ort T₀, w do th followig: For ach poitio i T₀, form a pair of th lttr at that poitio ad th idx of th uffix right aftr it (which i i T₁). Th pair ar ffctivly trig draw from a alphabt of iz Σ + m. Radix ort thm i tim O(m).

78 DC3, Ituitivly At a high-lvl, DC3 work a follow: Rcurivly gt th ortd ordr of all uffix i T₁ ad T₂. Uig thi iformatio, fficitly ort th uffix i T₀. Mrg th two lit of ortd uffix (th uffix i T₀ ad th uffix i T₁/T₂) togthr to form th full uffix array. Th dtail ar bautiful, but tricky.

79 Mrgig th Lit At thi poit, w hav two ortd lit: A ortd lit of all th uffix i T₀. A ortd lit of all th uffix i T₁ ad T₂. W alo kow th rlativ ordr of ay two uffix i T₁ ad T₂. How ca w mrg th lit togthr?

80 Th Mrgig A 8 B 5 4 D E 9 0 C o m o m o m o m m o o o o m o m A B C D E

81 Th Mrgig A 8 B 5 4 D E 9 0 C Ky Ky ida: ida: W W kow kow th th rlativ rlativ ordrig ordrig of of th th uffix uffix at at poitio poitio that that ar ar cogrut cogrut to to or or mod mod o m o m m o o o o m o m A B C D E

82 Th Mrgig A 8 B 5 4 D E 9 0 C m o o o o m o m A B C D E

83 Th Mrgig 3 8 B 5 4 D I I thi thi ca ca it it do't do't mattr, mattr, but but what what would would happ happ if if th th firt firt lttr lttr wr wr th th am? am? W W do't do't kow kow th th rlativ rlativ ordrig ordrig of of th th uffix. uffix. E 9 0 C 6 7 A m o o o o m o m A B C D E

84 Th Mrgig 3 8 B 5 4 D Th Th ca ca b b rakd rakd rgardl of of whthr whthr th th firt firt two two charactr ar ar th th am. am. E 9 0 C 6 7 A o m o o o o m o m A B C D E

85 Th Mrgig E 9 0 C 6 7 A 8 B 5 4 D 3 B 7 E C A D 0 m o o o o m o m A B C D E

86 Th Mrgig Comparig ay two uffix rquir at mot O() work bcau w ca u th xitig rakig of th uffix i T₁ ad T₂ to trucat log uffix. Thr ar a total of m uffix to mrg. Total rutim: O(m).

87 Th Ovrall Rutim Th rcuriv tp to ort T₁ ad T₂ tak tim Θ(m) plu th cot of a rcuriv call o a iput of iz m / 3. Uig T₁ ad T₂ to ort T₀ tak tim Θ(m). Mrgig T₀, T₁, ad T₂ tak tim Θ(m). Rcurrc rlatio: R(m) = R(m / 3) + O(m) Via th Matr Thorm, w that th ovrall rutim i Θ(m).

88 Th Ovrall Algorithm Although thi algorithm ha a lot of tricky dtail, it' actually ot that tough to cod it up. Th origial papr giv a two-pag C++ implmtatio of th tir algorithm. Ad bcau w'r Dct Huma Big, w'r ot goig to ak you to writ it up o your ow.

89 Qutio to Podr Thi algorithm i xtrmly clvr ad ha lot of itrlockig movig part. Why i th umbr 3 o igificat? Why did w hav to doubl th lgth of th trig bfor groupig ito block? You'll xplor om of th qutio i th problm t.

90 How Did Ayo Ivt Thi? Thi algorithm ca m totally magical ad cofuig th firt tim you it. A with mot algorithm, thi o wa bad o a lot of prior work. I 997, Marti Farach publihd a algorithm (ow calld Farach' algorithm) for dirctly buildig a uffix tr i tim O(m). It ivolvd may of th am tchiqu (jut ort uffix at om pcific poitio, u that to fill i th miig uffix, th mrg th rult), but ha a lot mor dtail bcau it work dirctly o uffix tr rathr tha array. Th algorithm itlf i a bit tricky but i totally bautiful. It would mak for a rally fu fial projct!

91 Mor to Explor Thr ar a umbr of othr data tructur i th family of uffix tr ad uffix array. Th uffix automato or DAWG i a miimal-tat DFA for all th uffix of a trig T. It alway ha iz O( T ), ad thi i ot obviou! A factor oracl i a rlaxd automato that match all th ubtrig of om trig T, plu poibly om puriou match. Th Burrow-Whlr traform i a tchiqu rlatd to uffix array that wa origially dvlopd for data comprio. Ay of th would b mak for grat fial projct topic.

92 Summary Suffix tr ar a compact, flxibl, powrful tructur for awrig qutio o trig. Suffix array giv a pac-fficit altrativ to uffix tr that hav a light tim tradoff. LCP array lik uffix tr ad uffix array ad ca b built i tim O(m). Suffix array ca b cotructd i tim O(m). Suffix tr ca b cotructd i tim O(m) from a uffix array ad LCP array.

93 Nxt Tim Balacd Tr B-tr, -3-4 tr, ad rd/black tr. Whr th hck did rd/black tr com from? Thr' a amazig awr to thi qutio. Trut m.

Outline for Today. A simple data structure for string searching. A compact, powerful, and flexible data structure for string algorithms.

Outline for Today. A simple data structure for string searching. A compact, powerful, and flexible data structure for string algorithms. Suffix Tr Outli fr Tday Rviw frm Lat Tim A quick rfrhr tri. Suffix Tri A impl data tructur fr trig archig. Suffix Tr A cmpact, pwrful, ad flxibl data tructur fr trig algrithm. Gralizd Suffix Tr A v mr

More information

(1) Then we could wave our hands over this and it would become:

(1) Then we could wave our hands over this and it would become: MAT* K285 Spring 28 Anthony Bnoit 4/17/28 Wk 12: Laplac Tranform Rading: Kohlr & Johnon, Chaptr 5 to p. 35 HW: 5.1: 3, 7, 1*, 19 5.2: 1, 5*, 13*, 19, 45* 5.3: 1, 11*, 19 * Pla writ-up th problm natly and

More information

Solution to 1223 The Evil Warden.

Solution to 1223 The Evil Warden. Solutio to 1 Th Evil Ward. This is o of thos vry rar PoWs (I caot thik of aothr cas) that o o solvd. About 10 of you submittd th basic approach, which givs a probability of 47%. I was shockd wh I foud

More information

Source code. where each α ij is a terminal or nonterminal symbol. We say that. α 1 α m 1 Bα m+1 α n α 1 α m 1 β 1 β p α m+1 α n

Source code. where each α ij is a terminal or nonterminal symbol. We say that. α 1 α m 1 Bα m+1 α n α 1 α m 1 β 1 β p α m+1 α n Adminitrivia Lctur : Paring If you do not hav a group, pla pot a rqut on Piazzza ( th Form projct tam... itm. B ur to updat your pot if you find on. W will aign orphan to group randomly in a fw day. Programming

More information

Lecture 4: Parsing. Administrivia

Lecture 4: Parsing. Administrivia Adminitrivia Lctur 4: Paring If you do not hav a group, pla pot a rqut on Piazzza ( th Form projct tam... itm. B ur to updat your pot if you find on. W will aign orphan to group randomly in a fw day. Programming

More information

A Simple Proof that e is Irrational

A Simple Proof that e is Irrational Two of th most bautiful ad sigificat umbrs i mathmatics ar π ad. π (approximatly qual to 3.459) rprsts th ratio of th circumfrc of a circl to its diamtr. (approximatly qual to.788) is th bas of th atural

More information

KISS: A Bit Too Simple. Greg Rose

KISS: A Bit Too Simple. Greg Rose KI: A Bit Too impl Grg Ros ggr@qualcomm.com Outli KI radom umbr grator ubgrators Efficit attack N KI ad attack oclusio PAGE 2 O approach to PRNG scurity "A radom umbr grator is lik sx: Wh it's good, its

More information

Ordinary Differential Equations

Ordinary Differential Equations Ordiary Diffrtial Equatio Aftr radig thi chaptr, you hould b abl to:. dfi a ordiary diffrtial quatio,. diffrtiat btw a ordiary ad partial diffrtial quatio, ad. Solv liar ordiary diffrtial quatio with fid

More information

ANOVA- Analyisis of Variance

ANOVA- Analyisis of Variance ANOVA- Aalii of Variac CS 700 Comparig altrativ Comparig two altrativ u cofidc itrval Comparig mor tha two altrativ ANOVA Aali of Variac Comparig Mor Tha Two Altrativ Naïv approach Compar cofidc itrval

More information

Strongly Connected Components

Strongly Connected Components Strongly Connctd Componnts Lt G = (V, E) b a dirctd graph Writ if thr is a path from to in G Writ if and is an quivalnc rlation: implis and implis s quivalnc classs ar calld th strongly connctd componnts

More information

H2 Mathematics Arithmetic & Geometric Series ( )

H2 Mathematics Arithmetic & Geometric Series ( ) H Mathmatics Arithmtic & Gomtric Sris (08 09) Basic Mastry Qustios Arithmtic Progrssio ad Sris. Th rth trm of a squc is 4r 7. (i) Stat th first four trms ad th 0th trm. (ii) Show that th squc is a arithmtic

More information

1985 AP Calculus BC: Section I

1985 AP Calculus BC: Section I 985 AP Calculus BC: Sctio I 9 Miuts No Calculator Nots: () I this amiatio, l dots th atural logarithm of (that is, logarithm to th bas ). () Ulss othrwis spcifid, th domai of a fuctio f is assumd to b

More information

Chapter (8) Estimation and Confedence Intervals Examples

Chapter (8) Estimation and Confedence Intervals Examples Chaptr (8) Estimatio ad Cofdc Itrvals Exampls Typs of stimatio: i. Poit stimatio: Exampl (1): Cosidr th sampl obsrvatios, 17,3,5,1,18,6,16,10 8 X i i1 17 3 5 118 6 16 10 116 X 14.5 8 8 8 14.5 is a poit

More information

EECE 301 Signals & Systems Prof. Mark Fowler

EECE 301 Signals & Systems Prof. Mark Fowler EECE 301 Signals & Systms Prof. Mark Fowlr ot St #21 D-T Signals: Rlation btwn DFT, DTFT, & CTFT 1/16 W can us th DFT to implmnt numrical FT procssing This nabls us to numrically analyz a signal to find

More information

Worksheet: Taylor Series, Lagrange Error Bound ilearnmath.net

Worksheet: Taylor Series, Lagrange Error Bound ilearnmath.net Taylor s Thorm & Lagrag Error Bouds Actual Error This is th ral amout o rror, ot th rror boud (worst cas scario). It is th dirc btw th actual () ad th polyomial. Stps:. Plug -valu ito () to gt a valu.

More information

Suffix Trees ind Suffix Arriys

Suffix Trees ind Suffix Arriys Suffix Tr id Suffix Arriy Outli fr Tdiy Suffix Trf A impl diti tructur fr trig irchig. Suffix Tr A pwrful, id fxibl diti tructur fr trig ilgrithm. Suffix Array A cmpict iltritiv t uffix tr. Applfcatf f

More information

ECE594I Notes set 6: Thermal Noise

ECE594I Notes set 6: Thermal Noise C594I ots, M. odwll, copyrightd C594I Nots st 6: Thrmal Nois Mark odwll Uivrsity of Califoria, ata Barbara rodwll@c.ucsb.du 805-893-344, 805-893-36 fax frcs ad Citatios: C594I ots, M. odwll, copyrightd

More information

ECEN 5005 Crystals, Nanocrystals and Device Applications Class 14 Group Theory For Crystals

ECEN 5005 Crystals, Nanocrystals and Device Applications Class 14 Group Theory For Crystals ECEN 5005 Cryta Naocryta ad Dvic Appicatio Ca 14 Group Thory For Cryta Spi Aguar Motu Quatu Stat of Hydrog-ik Ato Sig Ectro Cryta Fid Thory Fu Rotatio Group 1 Spi Aguar Motu Spi itriic aguar otu of ctro

More information

CDS 101: Lecture 5.1 Reachability and State Space Feedback

CDS 101: Lecture 5.1 Reachability and State Space Feedback CDS, Lctur 5. CDS : Lctur 5. Rachability ad Stat Spac Fdback Richard M. Murray ad Hido Mabuchi 5 Octobr 4 Goals: Di rachability o a cotrol systm Giv tsts or rachability o liar systms ad apply to ampls

More information

Discrete Fourier Transform (DFT)

Discrete Fourier Transform (DFT) Discrt Fourir Trasorm DFT Major: All Egirig Majors Authors: Duc guy http://umricalmthods.g.us.du umrical Mthods or STEM udrgraduats 8/3/29 http://umricalmthods.g.us.du Discrt Fourir Trasorm Rcalld th xpotial

More information

Chapter Taylor Theorem Revisited

Chapter Taylor Theorem Revisited Captr 0.07 Taylor Torm Rvisitd Atr radig tis captr, you sould b abl to. udrstad t basics o Taylor s torm,. writ trascdtal ad trigoomtric uctios as Taylor s polyomial,. us Taylor s torm to id t valus o

More information

Consider serial transmission. In Proakis notation, we receive

Consider serial transmission. In Proakis notation, we receive 5..3 Dciio-Dirctd Pha Trackig [P 6..4] 5.-1 Trackr commoly work o radom data igal (plu oi), o th kow-igal modl do ot apply. W till kow much about th tructur o th igal, though, ad w ca xploit it. Coidr

More information

Discrete Fourier Transform. Nuno Vasconcelos UCSD

Discrete Fourier Transform. Nuno Vasconcelos UCSD Discrt Fourir Trasform uo Vascoclos UCSD Liar Shift Ivariat (LSI) systms o of th most importat cocpts i liar systms thory is that of a LSI systm Dfiitio: a systm T that maps [ ito y[ is LSI if ad oly if

More information

Gradebook & Midterm & Office Hours

Gradebook & Midterm & Office Hours Your commnts So what do w do whn on of th r's is 0 in th quation GmM(1/r-1/r)? Do w nd to driv all of ths potntial nrgy formulas? I don't undrstand springs This was th first lctur I actually larnd somthing

More information

Motivation. We talk today for a more flexible approach for modeling the conditional probabilities.

Motivation. We talk today for a more flexible approach for modeling the conditional probabilities. Baysia Ntworks Motivatio Th coditioal idpdc assuptio ad by aïv Bays classifirs ay s too rigid spcially for classificatio probls i which th attributs ar sowhat corrlatd. W talk today for a or flibl approach

More information

Review Exercises. 1. Evaluate using the definition of the definite integral as a Riemann Sum. Does the answer represent an area? 2

Review Exercises. 1. Evaluate using the definition of the definite integral as a Riemann Sum. Does the answer represent an area? 2 MATHEMATIS --RE Itgral alculus Marti Huard Witr 9 Rviw Erciss. Evaluat usig th dfiitio of th dfiit itgral as a Rima Sum. Dos th aswr rprst a ara? a ( d b ( d c ( ( d d ( d. Fid f ( usig th Fudamtal Thorm

More information

2. SIMPLE SOIL PROPETIES

2. SIMPLE SOIL PROPETIES 2. SIMPLE SOIL PROPETIES 2.1 EIGHT-OLUME RELATIONSHIPS It i oft rquir of th gotchical gir to collct, claify a ivtigat oil ampl. B it for ig of fouatio or i calculatio of arthork volum, trmiatio of oil

More information

CDS 101: Lecture 5.1 Reachability and State Space Feedback

CDS 101: Lecture 5.1 Reachability and State Space Feedback CDS, Lctur 5. CDS : Lctur 5. Rachability ad Stat Spac Fdback Richard M. Murray 7 Octobr 3 Goals: Di rachability o a cotrol systm Giv tsts or rachability o liar systms ad apply to ampls Dscrib th dsig o

More information

APPENDIX: STATISTICAL TOOLS

APPENDIX: STATISTICAL TOOLS I. Nots o radom samplig Why do you d to sampl radomly? APPENDI: STATISTICAL TOOLS I ordr to masur som valu o a populatio of orgaisms, you usually caot masur all orgaisms, so you sampl a subst of th populatio.

More information

On a problem of J. de Graaf connected with algebras of unbounded operators de Bruijn, N.G.

On a problem of J. de Graaf connected with algebras of unbounded operators de Bruijn, N.G. O a problm of J. d Graaf coctd with algbras of uboudd oprators d Bruij, N.G. Publishd: 01/01/1984 Documt Vrsio Publishr s PDF, also kow as Vrsio of Rcord (icluds fial pag, issu ad volum umbrs) Plas chck

More information

Probability & Statistics,

Probability & Statistics, Probability & Statistics, BITS Pilai K K Birla Goa Campus Dr. Jajati Kshari Sahoo Dpartmt of Mathmatics BITS Pilai, K K Birla Goa Campus Poisso Distributio Poisso Distributio: A radom variabl X is said

More information

07 - SEQUENCES AND SERIES Page 1 ( Answers at he end of all questions ) b, z = n

07 - SEQUENCES AND SERIES Page 1 ( Answers at he end of all questions ) b, z = n 07 - SEQUENCES AND SERIES Pag ( Aswrs at h d of all qustios ) ( ) If = a, y = b, z = c, whr a, b, c ar i A.P. ad = 0 = 0 = 0 l a l

More information

Addition of angular momentum

Addition of angular momentum Addition of angular momntum April, 0 Oftn w nd to combin diffrnt sourcs of angular momntum to charactriz th total angular momntum of a systm, or to divid th total angular momntum into parts to valuat th

More information

Lectures 9 IIR Systems: First Order System

Lectures 9 IIR Systems: First Order System EE3054 Sigals ad Systms Lcturs 9 IIR Systms: First Ordr Systm Yao Wag Polytchic Uivrsity Som slids icludd ar xtractd from lctur prstatios prpard by McCllla ad Schafr Lics Ifo for SPFirst Slids This work

More information

cycle that does not cross any edges (including its own), then it has at least

cycle that does not cross any edges (including its own), then it has at least W prov th following thorm: Thorm If a K n is drawn in th plan in such a way that it has a hamiltonian cycl that dos not cross any dgs (including its own, thn it has at last n ( 4 48 π + O(n crossings Th

More information

Triple Play: From De Morgan to Stirling To Euler to Maclaurin to Stirling

Triple Play: From De Morgan to Stirling To Euler to Maclaurin to Stirling Tripl Play: From D Morga to Stirlig To Eulr to Maclauri to Stirlig Augustus D Morga (186-1871) was a sigificat Victoria Mathmaticia who mad cotributios to Mathmatics History, Mathmatical Rcratios, Mathmatical

More information

Problem Value Score Earned No/Wrong Rec -3 Total

Problem Value Score Earned No/Wrong Rec -3 Total GEORGIA INSTITUTE OF TECHNOLOGY SCHOOL of ELECTRICAL & COMPUTER ENGINEERING ECE6 Fall Quiz # Writt Eam Novmr, NAME: Solutio Kys GT Usram: LAST FIRST.g., gtiit Rcitatio Sctio: Circl t dat & tim w your Rcitatio

More information

PURE MATHEMATICS A-LEVEL PAPER 1

PURE MATHEMATICS A-LEVEL PAPER 1 -AL P MATH PAPER HONG KONG EXAMINATIONS AUTHORITY HONG KONG ADVANCED LEVEL EXAMINATION PURE MATHEMATICS A-LEVEL PAPER 8 am am ( hours) This papr must b aswrd i Eglish This papr cosists of Sctio A ad Sctio

More information

Addition of angular momentum

Addition of angular momentum Addition of angular momntum April, 07 Oftn w nd to combin diffrnt sourcs of angular momntum to charactriz th total angular momntum of a systm, or to divid th total angular momntum into parts to valuat

More information

ph People Grade Level: basic Duration: minutes Setting: classroom or field site

ph People Grade Level: basic Duration: minutes Setting: classroom or field site ph Popl Adaptd from: Whr Ar th Frogs? in Projct WET: Curriculum & Activity Guid. Bozman: Th Watrcours and th Council for Environmntal Education, 1995. ph Grad Lvl: basic Duration: 10 15 minuts Stting:

More information

Time : 1 hr. Test Paper 08 Date 04/01/15 Batch - R Marks : 120

Time : 1 hr. Test Paper 08 Date 04/01/15 Batch - R Marks : 120 Tim : hr. Tst Papr 8 D 4//5 Bch - R Marks : SINGLE CORRECT CHOICE TYPE [4, ]. If th compl umbr z sisfis th coditio z 3, th th last valu of z is qual to : z (A) 5/3 (B) 8/3 (C) /3 (D) o of ths 5 4. Th itgral,

More information

EEO 401 Digital Signal Processing Prof. Mark Fowler

EEO 401 Digital Signal Processing Prof. Mark Fowler EEO 401 Digital Signal Procssing Prof. Mark Fowlr Dtails of th ot St #19 Rading Assignmnt: Sct. 7.1.2, 7.1.3, & 7.2 of Proakis & Manolakis Dfinition of th So Givn signal data points x[n] for n = 0,, -1

More information

Higher order derivatives

Higher order derivatives Robrto s Nots on Diffrntial Calculus Chaptr 4: Basic diffrntiation ruls Sction 7 Highr ordr drivativs What you nd to know alrady: Basic diffrntiation ruls. What you can larn hr: How to rpat th procss of

More information

1973 AP Calculus BC: Section I

1973 AP Calculus BC: Section I 97 AP Calculus BC: Scio I 9 Mius No Calculaor No: I his amiaio, l dos h aural logarihm of (ha is, logarihm o h bas ).. If f ( ) =, h f ( ) = ( ). ( ) + d = 7 6. If f( ) = +, h h s of valus for which f

More information

COMPSCI 230 Discrete Math Trees March 21, / 22

COMPSCI 230 Discrete Math Trees March 21, / 22 COMPSCI 230 Dict Math Mach 21, 2017 COMPSCI 230 Dict Math Mach 21, 2017 1 / 22 Ovviw 1 A Simpl Splling Chck Nomnclatu 2 aval Od Dpth-it aval Od Badth-it aval Od COMPSCI 230 Dict Math Mach 21, 2017 2 /

More information

First derivative analysis

First derivative analysis Robrto s Nots on Dirntial Calculus Chaptr 8: Graphical analysis Sction First drivativ analysis What you nd to know alrady: How to us drivativs to idntiy th critical valus o a unction and its trm points

More information

Where k is either given or determined from the data and c is an arbitrary constant.

Where k is either given or determined from the data and c is an arbitrary constant. Exponntial growth and dcay applications W wish to solv an quation that has a drivativ. dy ky k > dx This quation says that th rat of chang of th function is proportional to th function. Th solution is

More information

MONTGOMERY COLLEGE Department of Mathematics Rockville Campus. 6x dx a. b. cos 2x dx ( ) 7. arctan x dx e. cos 2x dx. 2 cos3x dx

MONTGOMERY COLLEGE Department of Mathematics Rockville Campus. 6x dx a. b. cos 2x dx ( ) 7. arctan x dx e. cos 2x dx. 2 cos3x dx MONTGOMERY COLLEGE Dpartmt of Mathmatics Rockvill Campus MATH 8 - REVIEW PROBLEMS. Stat whthr ach of th followig ca b itgratd by partial fractios (PF), itgratio by parts (PI), u-substitutio (U), or o of

More information

Session : Plasmas in Equilibrium

Session : Plasmas in Equilibrium Sssio : Plasmas i Equilibrium Ioizatio ad Coductio i a High-prssur Plasma A ormal gas at T < 3000 K is a good lctrical isulator, bcaus thr ar almost o fr lctros i it. For prssurs > 0.1 atm, collisio amog

More information

(Reference: sections in Silberberg 5 th ed.)

(Reference: sections in Silberberg 5 th ed.) ALE. Atomic Structur Nam HEM K. Marr Tam No. Sctio What is a atom? What is th structur of a atom? Th Modl th structur of a atom (Rfrc: sctios.4 -. i Silbrbrg 5 th d.) Th subatomic articls that chmists

More information

1 Minimum Cut Problem

1 Minimum Cut Problem CS 6 Lctur 6 Min Cut and argr s Algorithm Scribs: Png Hui How (05), Virginia Dat: May 4, 06 Minimum Cut Problm Today, w introduc th minimum cut problm. This problm has many motivations, on of which coms

More information

The second condition says that a node α of the tree has exactly n children if the arity of its label is n.

The second condition says that a node α of the tree has exactly n children if the arity of its label is n. CS 6110 S14 Hanout 2 Proof of Conflunc 27 January 2014 In this supplmntary lctur w prov that th λ-calculus is conflunt. This is rsult is u to lonzo Church (1903 1995) an J. arkly Rossr (1907 1989) an is

More information

u t u 0 ( 7) Intuitively, the maximum principles can be explained by the following observation. Recall

u t u 0 ( 7) Intuitively, the maximum principles can be explained by the following observation. Recall Oct. Heat Equatio M aximum priciple I thi lecture we will dicu the maximum priciple ad uiquee of olutio for the heat equatio.. Maximum priciple. The heat equatio alo ejoy maximum priciple a the Laplace

More information

Introduction to Quantum Information Processing. Overview. A classical randomised algorithm. q 3,3 00 0,0. p 0,0. Lecture 10.

Introduction to Quantum Information Processing. Overview. A classical randomised algorithm. q 3,3 00 0,0. p 0,0. Lecture 10. Itroductio to Quatum Iformatio Procssig Lctur Michl Mosca Ovrviw! Classical Radomizd vs. Quatum Computig! Dutsch-Jozsa ad Brsti- Vazirai algorithms! Th quatum Fourir trasform ad phas stimatio A classical

More information

Bifurcation Theory. , a stationary point, depends on the value of α. At certain values

Bifurcation Theory. , a stationary point, depends on the value of α. At certain values Dnamic Macroconomic Thor Prof. Thomas Lux Bifurcation Thor Bifurcation: qualitativ chang in th natur of th solution occurs if a paramtr passs through a critical point bifurcation or branch valu. Local

More information

Total Prime Graph. Abstract: We introduce a new type of labeling known as Total Prime Labeling. Graphs which admit a Total Prime labeling are

Total Prime Graph. Abstract: We introduce a new type of labeling known as Total Prime Labeling. Graphs which admit a Total Prime labeling are Itratoal Joural Of Computatoal Egrg Rsarch (crol.com) Vol. Issu. 5 Total Prm Graph M.Rav (a) Ramasubramaa 1, R.Kala 1 Dpt.of Mathmatcs, Sr Shakth Isttut of Egrg & Tchology, Combator 641 06. Dpt. of Mathmatcs,

More information

y = 2xe x + x 2 e x at (0, 3). solution: Since y is implicitly related to x we have to use implicit differentiation: 3 6y = 0 y = 1 2 x ln(b) ln(b)

y = 2xe x + x 2 e x at (0, 3). solution: Since y is implicitly related to x we have to use implicit differentiation: 3 6y = 0 y = 1 2 x ln(b) ln(b) 4. y = y = + 5. Find th quation of th tangnt lin for th function y = ( + ) 3 whn = 0. solution: First not that whn = 0, y = (1 + 1) 3 = 8, so th lin gos through (0, 8) and thrfor its y-intrcpt is 8. y

More information

DTFT Properties. Example - Determine the DTFT Y ( e ) of n. Let. We can therefore write. From Table 3.1, the DTFT of x[n] is given by 1

DTFT Properties. Example - Determine the DTFT Y ( e ) of n. Let. We can therefore write. From Table 3.1, the DTFT of x[n] is given by 1 DTFT Proprtis Exampl - Dtrmi th DTFT Y of y α µ, α < Lt x α µ, α < W ca thrfor writ y x x From Tabl 3., th DTFT of x is giv by ω X ω α ω Copyright, S. K. Mitra Copyright, S. K. Mitra DTFT Proprtis DTFT

More information

[ ] 1+ lim G( s) 1+ s + s G s s G s Kacc SYSTEM PERFORMANCE. Since. Lecture 10: Steady-state Errors. Steady-state Errors. Then

[ ] 1+ lim G( s) 1+ s + s G s s G s Kacc SYSTEM PERFORMANCE. Since. Lecture 10: Steady-state Errors. Steady-state Errors. Then SYSTEM PERFORMANCE Lctur 0: Stady-tat Error Stady-tat Error Lctur 0: Stady-tat Error Dr.alyana Vluvolu Stady-tat rror can b found by applying th final valu thorm and i givn by lim ( t) lim E ( ) t 0 providd

More information

Summer Reading Activities!

Summer Reading Activities! HOOT FLUSH SCAT CHOMP From Bstslling Author Summr Rading Activitis! Flush Word Find Can you find all 14 words in th puzzl blow? S W I M E N J L P H S P A R R D A Z A G A Z E I B H O T L V S C N U D H I

More information

ELG3150 Assignment 3

ELG3150 Assignment 3 ELG350 Aigmt 3 Aigmt 3: E5.7; P5.6; P5.6; P5.9; AP5.; DP5.4 E5.7 A cotrol ytm for poitioig th had of a floppy dik driv ha th clodloop trafr fuctio 0.33( + 0.8) T ( ) ( + 0.6)( + 4 + 5) Plot th pol ad zro

More information

Chapter 9. Key Ideas Hypothesis Test (Two Populations)

Chapter 9. Key Ideas Hypothesis Test (Two Populations) Chapter 9 Key Idea Hypothei Tet (Two Populatio) Sectio 9-: Overview I Chapter 8, dicuio cetered aroud hypothei tet for the proportio, mea, ad tadard deviatio/variace of a igle populatio. However, ofte

More information

EEO 401 Digital Signal Processing Prof. Mark Fowler

EEO 401 Digital Signal Processing Prof. Mark Fowler EEO 401 Digital Signal Procssing Prof. Mark Fowlr ot St #18 Introduction to DFT (via th DTFT) Rading Assignmnt: Sct. 7.1 of Proakis & Manolakis 1/24 Discrt Fourir Transform (DFT) W v sn that th DTFT is

More information

Engineering Differential Equations Practice Final Exam Solutions Fall 2011

Engineering Differential Equations Practice Final Exam Solutions Fall 2011 9.6 Enginring Diffrntial Equation Practic Final Exam Solution Fall 0 Problm. (0 pt.) Solv th following initial valu problm: x y = xy, y() = 4. Thi i a linar d.. bcau y and y appar only to th firt powr.

More information

L 1 = L G 1 F-matrix: too many F ij s even at quadratic-only level

L 1 = L G 1 F-matrix: too many F ij s even at quadratic-only level 5.76 Lctur #6 //94 Pag of 8 pag Lctur #6: Polyatomic Vibration III: -Vctor and H O Lat tim: I got tuck on L G L mut b L L L G F-matrix: too many F ij vn at quadratic-only lvl It obviou! Intrnal coordinat:

More information

Pipe flow friction, small vs. big pipes

Pipe flow friction, small vs. big pipes Friction actor (t/0 t o pip) Friction small vs larg pips J. Chaurtt May 016 It is an intrsting act that riction is highr in small pips than largr pips or th sam vlocity o low and th sam lngth. Friction

More information

COLLECTION OF SUPPLEMENTARY PROBLEMS CALCULUS II

COLLECTION OF SUPPLEMENTARY PROBLEMS CALCULUS II COLLECTION OF SUPPLEMENTARY PROBLEMS I. CHAPTER 6 --- Trscdtl Fuctios CALCULUS II A. FROM CALCULUS BY J. STEWART:. ( How is th umbr dfid? ( Wht is pproimt vlu for? (c ) Sktch th grph of th turl potil fuctios.

More information

Supplementary Materials

Supplementary Materials 6 Supplmntary Matrials APPENDIX A PHYSICAL INTERPRETATION OF FUEL-RATE-SPEED FUNCTION A truck running on a road with grad/slop θ positiv if moving up and ngativ if moving down facs thr rsistancs: arodynamic

More information

They must have different numbers of electrons orbiting their nuclei. They must have the same number of neutrons in their nuclei.

They must have different numbers of electrons orbiting their nuclei. They must have the same number of neutrons in their nuclei. 37 1 How may utros ar i a uclus of th uclid l? 20 37 54 2 crtai lmt has svral isotops. Which statmt about ths isotops is corrct? Thy must hav diffrt umbrs of lctros orbitig thir ucli. Thy must hav th sam

More information

Chapter 2 Infinite Series Page 1 of 11. Chapter 2 : Infinite Series

Chapter 2 Infinite Series Page 1 of 11. Chapter 2 : Infinite Series Chatr Ifiit Sris Pag of Sctio F Itgral Tst Chatr : Ifiit Sris By th d of this sctio you will b abl to valuat imror itgrals tst a sris for covrgc by alyig th itgral tst aly th itgral tst to rov th -sris

More information

10. Joint Moments and Joint Characteristic Functions

10. Joint Moments and Joint Characteristic Functions 0 Joit Momts ad Joit Charactristic Fctios Followig sctio 6 i this sctio w shall itrodc varios paramtrs to compactly rprst th iformatio cotaid i th joit pdf of two rvs Giv two rvs ad ad a fctio g x y dfi

More information

Derivation of Electron-Electron Interaction Terms in the Multi-Electron Hamiltonian

Derivation of Electron-Electron Interaction Terms in the Multi-Electron Hamiltonian Drivation of Elctron-Elctron Intraction Trms in th Multi-Elctron Hamiltonian Erica Smith Octobr 1, 010 1 Introduction Th Hamiltonian for a multi-lctron atom with n lctrons is drivd by Itoh (1965) by accounting

More information

From Elimination to Belief Propagation

From Elimination to Belief Propagation School of omputr Scinc Th lif Propagation (Sum-Product lgorithm Probabilistic Graphical Modls (10-708 Lctur 5, Sp 31, 2007 Rcptor Kinas Rcptor Kinas Kinas X 5 ric Xing Gn G T X 6 X 7 Gn H X 8 Rading: J-hap

More information

Diploma Macro Paper 2

Diploma Macro Paper 2 Diploma Macro Papr 2 Montary Macroconomics Lctur 6 Aggrgat supply and putting AD and AS togthr Mark Hays 1 Exognous: M, G, T, i*, π Goods markt KX and IS (Y, C, I) Mony markt (LM) (i, Y) Labour markt (P,

More information

Computing and Communications -- Network Coding

Computing and Communications -- Network Coding 89 90 98 00 Computing and Communications -- Ntwork Coding Dr. Zhiyong Chn Institut of Wirlss Communications Tchnology Shanghai Jiao Tong Univrsity China Lctur 5- Nov. 05 0 Classical Information Thory Sourc

More information

The Matrix Exponential

The Matrix Exponential Th Matrix Exponntial (with xrciss) by D. Klain Vrsion 207.0.05 Corrctions and commnts ar wlcom. Th Matrix Exponntial For ach n n complx matrix A, dfin th xponntial of A to b th matrix A A k I + A + k!

More information

Chapter Five. More Dimensions. is simply the set of all ordered n-tuples of real numbers x = ( x 1

Chapter Five. More Dimensions. is simply the set of all ordered n-tuples of real numbers x = ( x 1 Chatr Fiv Mor Dimsios 51 Th Sac R W ar ow rard to mov o to sacs of dimsio gratr tha thr Ths sacs ar a straightforward gralizatio of our Euclida sac of thr dimsios Lt b a ositiv itgr Th -dimsioal Euclida

More information

Final Exam : Solutions

Final Exam : Solutions Comp : Algorihm and Daa Srucur Final Exam : Soluion. Rcuriv Algorihm. (a) To bgin ind h mdian o {x, x,... x n }. Sinc vry numbr xcp on in h inrval [0, n] appar xacly onc in h li, w hav ha h mdian mu b

More information

u x v x dx u x v x v x u x dx d u x v x u x v x dx u x v x dx Integration by Parts Formula

u x v x dx u x v x v x u x dx d u x v x u x v x dx u x v x dx Integration by Parts Formula 7. Intgration by Parts Each drivativ formula givs ris to a corrsponding intgral formula, as w v sn many tims. Th drivativ product rul yilds a vry usful intgration tchniqu calld intgration by parts. Starting

More information

Differential Equations

Differential Equations Prfac Hr ar m onlin nots for m diffrntial quations cours that I tach hr at Lamar Univrsit. Dspit th fact that ths ar m class nots, th should b accssibl to anon wanting to larn how to solv diffrntial quations

More information

Isolated Word Recogniser

Isolated Word Recogniser Lecture 5 Iolated Word Recogitio Hidde Markov Model of peech State traitio ad aligmet probabilitie Searchig all poible aligmet Dyamic Programmig Viterbi Aligmet Iolated Word Recogitio 8. Iolated Word Recogier

More information

Linear Algebra Existence of the determinant. Expansion according to a row.

Linear Algebra Existence of the determinant. Expansion according to a row. Lir Algbr 2270 1 Existc of th dtrmit. Expsio ccordig to row. W dfi th dtrmit for 1 1 mtrics s dt([]) = (1) It is sy chck tht it stisfis D1)-D3). For y othr w dfi th dtrmit s follows. Assumig th dtrmit

More information

Statistics 3858 : Likelihood Ratio for Exponential Distribution

Statistics 3858 : Likelihood Ratio for Exponential Distribution Statistics 3858 : Liklihood Ratio for Expotial Distributio I ths two xampl th rjctio rjctio rgio is of th form {x : 2 log (Λ(x)) > c} for a appropriat costat c. For a siz α tst, usig Thorm 9.5A w obtai

More information

The Matrix Exponential

The Matrix Exponential Th Matrix Exponntial (with xrciss) by Dan Klain Vrsion 28928 Corrctions and commnts ar wlcom Th Matrix Exponntial For ach n n complx matrix A, dfin th xponntial of A to b th matrix () A A k I + A + k!

More information

orbiting electron turns out to be wrong even though it Unfortunately, the classical visualization of the

orbiting electron turns out to be wrong even though it Unfortunately, the classical visualization of the Lctur 22-1 Byond Bohr Modl Unfortunatly, th classical visualization of th orbiting lctron turns out to b wrong vn though it still givs us a simpl way to think of th atom. Quantum Mchanics is ndd to truly

More information

Mor Tutorial at www.dumblittldoctor.com Work th problms without a calculator, but us a calculator to chck rsults. And try diffrntiating your answrs in part III as a usful chck. I. Applications of Intgration

More information

Lecture 37 (Schrödinger Equation) Physics Spring 2018 Douglas Fields

Lecture 37 (Schrödinger Equation) Physics Spring 2018 Douglas Fields Lctur 37 (Schrödingr Equation) Physics 6-01 Spring 018 Douglas Filds Rducd Mass OK, so th Bohr modl of th atom givs nrgy lvls: E n 1 k m n 4 But, this has on problm it was dvlopd assuming th acclration

More information

Search sequence databases 3 10/25/2016

Search sequence databases 3 10/25/2016 Sarch squnc databass 3 10/25/2016 Etrm valu distribution Ø Suppos X is a random variabl with probability dnsity function p(, w sampl a larg numbr S of indpndnt valus of X from this distribution for an

More information

SOLUTION: The 95% confidence interval for the population mean µ is x ± t 0.025; 49

SOLUTION: The 95% confidence interval for the population mean µ is x ± t 0.025; 49 C22.0103 Sprig 2011 Homework 7 olutio 1. Baed o a ample of 50 x-value havig mea 35.36 ad tadard deviatio 4.26, fid a 95% cofidece iterval for the populatio mea. SOLUTION: The 95% cofidece iterval for the

More information

NET/JRF, GATE, IIT JAM, JEST, TIFR

NET/JRF, GATE, IIT JAM, JEST, TIFR Istitut for NET/JRF, GATE, IIT JAM, JEST, TIFR ad GRE i PHYSICAL SCIENCES Mathmatical Physics JEST-6 Q. Giv th coditio φ, th solutio of th quatio ψ φ φ is giv by k. kφ kφ lφ kφ lφ (a) ψ (b) ψ kφ (c) ψ

More information

Option 3. b) xe dx = and therefore the series is convergent. 12 a) Divergent b) Convergent Proof 15 For. p = 1 1so the series diverges.

Option 3. b) xe dx = and therefore the series is convergent. 12 a) Divergent b) Convergent Proof 15 For. p = 1 1so the series diverges. Optio Chaptr Ercis. Covrgs to Covrgs to Covrgs to Divrgs Covrgs to Covrgs to Divrgs 8 Divrgs Covrgs to Covrgs to Divrgs Covrgs to Covrgs to Covrgs to Covrgs to 8 Proof Covrgs to π l 8 l a b Divrgt π Divrgt

More information

Introduction to Arithmetic Geometry Fall 2013 Lecture #20 11/14/2013

Introduction to Arithmetic Geometry Fall 2013 Lecture #20 11/14/2013 18.782 Introduction to Arithmtic Gomtry Fall 2013 Lctur #20 11/14/2013 20.1 Dgr thorm for morphisms of curvs Lt us rstat th thorm givn at th nd of th last lctur, which w will now prov. Thorm 20.1. Lt φ:

More information

Thomas J. Osler. 1. INTRODUCTION. This paper gives another proof for the remarkable simple

Thomas J. Osler. 1. INTRODUCTION. This paper gives another proof for the remarkable simple 5/24/5 A PROOF OF THE CONTINUED FRACTION EXPANSION OF / Thomas J Oslr INTRODUCTION This ar givs aothr roof for th rmarkabl siml cotiud fractio = 3 5 / Hr is ay ositiv umbr W us th otatio x= [ a; a, a2,

More information

Course: INS335 R - DEMOCRATIZATION Responsible Faculty: Kanet, Roger E --- Survey Comparisons --- Responses Individual INS All. Med.

Course: INS335 R - DEMOCRATIZATION Responsible Faculty: Kanet, Roger E --- Survey Comparisons --- Responses Individual INS All. Med. Fall 0 (w Gral) Cours Ealuatios Fall 0 Uirsity of Miami Arts ad cics Cours: I5 R - DEMOCRATIZATIO Rsposibl Faculty: Rogr at Dpartmt: I Rsposs / Expctd: 8 / (7%) Orall : 7 5 - Poit Lirt cal (UM) (79 rsposs)

More information

u 3 = u 3 (x 1, x 2, x 3 )

u 3 = u 3 (x 1, x 2, x 3 ) Lctur 23: Curvilinar Coordinats (RHB 8.0 It is oftn convnint to work with variabls othr than th Cartsian coordinats x i ( = x, y, z. For xampl in Lctur 5 w mt sphrical polar and cylindrical polar coordinats.

More information

Quasi-Classical States of the Simple Harmonic Oscillator

Quasi-Classical States of the Simple Harmonic Oscillator Quasi-Classical Stats of th Simpl Harmonic Oscillator (Draft Vrsion) Introduction: Why Look for Eignstats of th Annihilation Oprator? Excpt for th ground stat, th corrspondnc btwn th quantum nrgy ignstats

More information

2617 Mark Scheme June 2005 Mark Scheme 2617 June 2005

2617 Mark Scheme June 2005 Mark Scheme 2617 June 2005 Mark Schm 67 Ju 5 GENERAL INSTRUCTIONS Marks i th mark schm ar plicitly dsigatd as M, A, B, E or G. M marks ("mthod" ar for a attmpt to us a corrct mthod (ot mrly for statig th mthod. A marks ("accuracy"

More information

Course 8 Properties of Regular Languages

Course 8 Properties of Regular Languages Course 8 Properties of Regular Laguages The structure ad the cotet of the lecture is based o http://www.eecs.wsu.edu/~aath/cpts37/lectures/idex.htm Topics ) How to prove whether a give laguage is ot regular?

More information

CS 361 Meeting 12 10/3/18

CS 361 Meeting 12 10/3/18 CS 36 Mting 2 /3/8 Announcmnts. Homwork 4 is du Friday. If Friday is Mountain Day, homwork should b turnd in at my offic or th dpartmnt offic bfor 4. 2. Homwork 5 will b availabl ovr th wknd. 3. Our midtrm

More information

Propositional Logic. Combinatorial Problem Solving (CPS) Albert Oliveras Enric Rodríguez-Carbonell. May 17, 2018

Propositional Logic. Combinatorial Problem Solving (CPS) Albert Oliveras Enric Rodríguez-Carbonell. May 17, 2018 Propositional Logic Combinatorial Problm Solving (CPS) Albrt Olivras Enric Rodríguz-Carbonll May 17, 2018 Ovrviw of th sssion Dfinition of Propositional Logic Gnral Concpts in Logic Rduction to SAT CNFs

More information