Spinor Geometry Based Robots Spatial Rotations Terminal Control

Size: px
Start display at page:

Download "Spinor Geometry Based Robots Spatial Rotations Terminal Control"

Transcription

1 Mthemtcl Models nd Methods n Moden Scence Spno Geomet Bsed Robots Sptl Rottons Temnl Contol A Mlnkov T. Ntshvl Deptment o Robotcs Insttute o Mechncs o Mchnes Mndel st. Tbls 86 Geog lende.mlnkov@gm.com t_ntshvl@hoo.com Abstct: In the tcle usng spno epesentton o othogonl tnsomtons the epessons between second ode comple unt tnsomtons mtes nd el othogonl mtes o sptl ottons n thee dmensonl Euclden spce L e eceved tht llows esl clcultng o coespondng Eule s ngles. The obtned esults hve enbled educng the ctull thee-dmensonl poblem o sptl moton contol to the onedmensonl poblem; contol knemtcl unctons o Eule s ngles nd contol spno mt o otton wee constucted b mens o whch contol pocess o sptl ottons s completel detemned. Kewods: contol spno mt hemtn unctonls; sptl ottons; temnl contol. Poblem omulton Methods o epesentton o thee-dmensonl ottons used n solvng o vous engneeng poblems e usull conned to the descpton o ndvdul concete ottons centeed t the ogn zeo cente. Among these methods s n ptcul the well known method o othogonl el mtces whose elements e unctons o Eule ngles [ ]. At the sme tme t should be sd tht the poblem o descbng so-clled genelzed ottons [] evokes much gete nteest both om the theoetcl stndpont nd om the stndpont o pplctons n the st plce we men n pplcton n obotcs nd n ptcul n the plnnng o tjectoes n the cse o obstcles. Unde genelzed ottons we men the set o ll possble ottons wth both zeo nd nonzeo centes whch tnsom the ntl theedmensonl pont to the nte one. The bsc poblem sng n ths contet cn be omulted s ollows: Gven two thee-dmensonl ponts nd t s equed to dene the set o ll possble tnsomtons nd centes o ottons whch bng bout the tnsomton o the pont to the pont. It s obvous tht ths poblem cn be esl etended to the cse whee nsted o two ponts we consde two nte sets o ponts { } nd { } m whch coesponds to the cse o ottons o sold.. Poblem soluton.. Spnol Repesentton o sptl ottons Let L be lne Euclden spce wth othonomlzed bss vectos e e e. To ech vecto e e e o the spce L we ssgn tceless Hemtn mt X whose elements e the so-clled spno components o the vecto. When we pss om the usul Euclden components o the vecto to the spno ones we theeb dent the vecto wth Hemtn unctonls on the two-dmensonl lne spce С ove the eld o comple numbes С [4]. Denote b LС the set o ll Hemtn unctonls on С nd consde the ollowng decomposton X σ σ σ whee σ σ σ e Pul mtces [4]. ISBN:

2 Mthemtcl Models nd Methods n Moden Scence Fom decomposton t ollows tht the set LС s lne thee-dmensonl spce ove the eld o el numbes nd thus t cn be dented wth L. Note tht to ech bss vecto o the two-dmensonl spce C we cn ssgn the bss elements σ σ σ o the spce LС nd lso the othonomlzed bss vecto e e e due to the dentcton o L nd LС : ech o the mtces σ s epesented s some lne combnton o tenso poducts o bss vectos o the spce C [4]. The oegong esonng mples tht o n mt С С whch s mt o tnsomton between two bss vectos o the spce C thee lso ests tnsomton mt o the coespondng othonomlzed bss vectos n the spce L. Poposton The mt o tnsomton o the bss elements n C s unt. Poo. I on the spce C we consde Hemtn unctonls o the om X o then the wll coespond to the ou-dmensonl Fom 5 we hve vectos o pseudo-euclden spce wth sgntue nd wth bss vectos Re 6 σ ; σ σ σ. nd Now tnsomtons o the bss vectos o the twodmensonl spce C led to tnsomtons o the bss vectos whle the tnsomton mtces emn the sme s n the cse o unctonls o om. The othogonl complement σ o the st bss vecto σ s n nt-euclden spce becuse o the pseudo-euclden popet o the spce dened b vectos nd te chngng the sgns o the scl poducts thee-dmensonl Euclden spce tht concdes wth LС. The nowng o the cton o mtces o bss vecto tnsomton n С to the subspce σ mens tht these mtces sts the condton C T T σ C σ.e. C C Q.E.D. The poblem posed n Subsecton cn be now eomulted n tems o the spno spce С : Gven two tceless mtces o Hemtn unctonls X и Y t s equed to dene: set o unt mtces C whch sts the eqult T Y C XC ; 4 one-dmensonl subspces whch e nvnt wth espect to tnsomtons epesented b mtces C.e. set o espectve otton centes. Note tht snce the tnsomton C s unt the vecto noms dened b the detemnnts o mtces o the Hemtn unctonls X nd Y concde nd theeoe 4 denes otton. Fom eqult 4 we cn obtn the ollowng sstem o lne homogeneous equtons wth espect to the unknown vbles nd :. 5 Fo bt soluton o 5 s gven b.5 Im. 7 Usng the one o the popetes o untt o the mt С det C we cn dene ethe Re o Im. Note tht one o these pmetes emns bt. Thus 6 denes otton o nd. The nvnce o the otton cenete zz z z wth espect to the tnsomton C s wtten s condton C T ZC Z whence we obtn z z ; z z ; z z. It s not dcult to ve tht the detemnnt o ths sstem consdeed o the unknown vlues z z nd z s dentcll zeo nd theeoe o gven nd nd thee lws est nontvl solutons wtten n the om ISBN:

3 Mthemtcl Models nd Methods n Moden Scence ; z z whee z s bt. 8 z z Thus 7 togethe wth the nomlzton popet dene genelzed otton tnsomng to wth espect to the set o centes whch s dened b 8... Reltons Between Tnsomtons n C nd L We cn estblsh the coespondence between the elements o the tnsomton mt C n C nd the elements o the othogonl el mt o otton A n L. ; ;. Epessons enble to clculte the elements o the mt A though the gven coodntes o thee ponts ntl temnl nd the cente whch dene otton. On the othe hnd tkng nto ccount tht the mt A o bsc epesentton cn be wtten n the om [] A ϕ ψ θ snϕ snψ ϕ snψ θ snϕ snψ snϕ ψ θ ϕ snψ snϕ snψ θ ϕ ψ ϕ snθ snψ snθ ψ snθ snϕ snθ θ whee π<ϕ π θ π и π<ψ π e Eule ngles t esl ollows tht epessons enble to dene Eule ngles s well θ ; snϕ snθ nd snψ snθ The mt A s b denton the mt o tnsomton between two othonomlzed bss.. Contol o Sptl Rottons Hvng epessons 7 nd t s es to vectos o the spce L nd ts ows e clculte the Eule ngles whch ensue otton o decompostons o the new bss vectos n tems o the ntl bss vectos. Hence due to the the pont to the pont. I t s ssumed tht to the ntl pont thee dentcton o the spces LС nd L we hve coespond the zeo Eule ngles θ φ ψ T C σ C σ 9 then the contol o otton conssts n mkng 9 tmedependent chnge o the Eule ngles om the ntl whee σ e the Pul mtces coespondng to the vlues θ ; φ; ψ to the temnl vlues ntl bss σ e the Pul mtces o the new θ ; φ ; ψ clculted b omuls. bss nd e the elements o the mt A -. Fomul cn be wtten eplctl n the om o In genel om the contol pocess cn be epesented s chnge unctons o the Eule ollowng thee ngles θ t ; φ t ; ψ t whch must sts the equltes condtons * * θ t ; φ t ; ψ t θ t θ ; φ t φ ; ψ t ψ * *. whee t nd t e the ntl nd temnl * * moments o tme. The bove-sd ntull mples the poblem on whch edl eld the ollowng epessons o denng the contol unctons θ t ; φ t ; ψ t. clcultng the elements o the mt A b the It should be emphszed tht dependences θ t ; elements o the mt C: φ t ; ψ t hve knemtcs chcte snce the ; tke nto ccount nethe moments no elstctes ; ; no n othe dnmc chctestcs o the pocess ; nd theeoe te denng them thee ses ; ; poblem o sntheszng on the bss o these ISBN:

4 unctons the dnmc dptve contol. Ths ssue s dscussed n [4]. Wth ntl nd nl stte vectos nd coespondngl thee s lso the ntemedte ottng vecto whch t the ntl moment o tme t t concdes wth the ntl otton vecto nd t the temnl moment o tme t t wth the temnl vecto. The movng ngle between the vectos nd s equl t the ntl moment o tme t t to zeo nd t the moment o tme t t to whee * nd s the dot poduct o the vectos nd. It s obvous tht the movng ngle between the vectos nd s equl to. Let us dene the coodntes o the vecto ssumng tht t oms the ngles nd wth the vectos nd nd s locted n the plne. To ths end we ntoduce the vecto whch s the s poduct o the vectos nd. Then the bove condtons cn be wtten n the om o the ollowng sstem o lne equtons: ; ;. It s not dcult to see tht the vecto dened om sstem stses the ollowng condtons:. o whch ollows om the second equton o sstem snce n ths cse * snce dung otton. whch s possble onl povded tht ;. o whch ollows om the thd condton o sstem snce n ths cse whch s possble onl povded tht ;. whch ollows om the second nd thd equtons o sstem. Theeoe the vecto dened om sstem coesponds to Fg..e. t cn ctull be egded s the vecto ottng condton om the vecto condton to the vecto condton. Note tht n ths cse the ngle chnges n wthn. The equtons o sstem cn be wtten n the coodnte om s ollows:. It s not dcult to see tht ts detemnnt s equl to. Othe detemnnts o Kme's omuls o sstem wll be equl to ; ;. Mthemtcl Models nd Methods n Moden Scence ISBN:

5 Mthemtcl Models nd Methods n Moden Scence I we ntoduce the new vectos ; ; nd ; ; whch equl to the vecto poducts [ ] nd [ ] espectvel then the coodntes o the ottng vecto wll be pesented n the ollowng om: ω ω t t t In these epessons the ngle s n ndependent vble nd cn be teted s tme uncton whch mens tht the coodntes o the vecto e lso tme unctons. We would lke to emphsze tht the poblem o snthess o sptl moton contol thus educes to denng uncton t o the concete om whch s connected wth the otton pocess dnmcs nd ws dscussed n [4]. Hee we ssume tht t s sucentl smooth nd stses the condtons t t и t t. Fo denteness we ssume tht t ωt whee ω π s the constnt ngul veloct. As hs led been noted the vecto s ottng vecto nd theeoe t ech moment o tme t cn be consdeed s temnl vecto o the cuent moment o the otton pocess. I n omuls 7 we eplce the coodntes o the pont b epessons 4 then we obtn epesenttons o the pmetes o the spno mt С the othogonl mt А omuls nd Eule ngles n tems o tme unctons. Thus we obtn tme-dependent knemtcs epesentton o the otton o the pont to the pont. Howeve st we should pedetemne the mt С so tht t the ntl moment o tme the spno equton o otton 4 would hve the om T X C XC whch s evdentl possble onl C s unt mt. Ths cn be done b n ppopte choce o the pmetes nd. Indeed settng ; we obtn Re ; Im. B substtutng the lst omuls nd 4 o coespondng elements o o C t t t t t t t 4 whee t t. t Note tht detct o n t. It s obvous tht t the ntl moment o tme t the mtc t t o snce n tht cse t nd ; ;. Fo t t we hve t ; ;. Fom the bove-sd t ollows tht the obtned spno mt o otton 4 s dened coectl. But n tht cse the Eule ngles too e dened coectl. The lso tun out to be the unctons o tme t t t θ t c ; t t ϕ t csn : tsnθ t t ψ t csn. 5 tsnθ t Epessons 5 solve the poblem we hve omulted on denng the knemtcs unctons θ t ; φ t ; ψ t.. On the othe hnd t should be noted tht the poposed theo llows one to educe n ctull thee-dmensonl poblem o sptl moton contol to one-dmensonl poblem. Indeed o ths t s sucent to snthesze n one w o nothe uncton t stsng the coespondng bound condtons [5]. Then t s obvous tht the contol pocess s completel dened b the spno mt o otton 4 nd the Eule ngle unctons 5.. Concluson Let us consde numecl emple llusttng nd concludng the bove esonng. Assume tht the ntl vecto 45 nd the temnl vecto 5.5 e gven btl. The ngle between them s equl to ISBN:

6 Mthemtcl Models nd Methods n Moden Scence Assumng o the ske o smplct tht ω wth step equl to lets us clculte n two deent ws thee ntemedte postons o the ottng vecto ; ;. Usng omuls 4 we obtn the ollowng coodntes o the ottng vecto o thee ngle vlues: nd ngle 5.88 ; nd ngle 5.77 nd ngle The pocedue o veng whethe the Eule ngles hve been clculted conssts n the ollowng: usng the obtned coodntes o the ntemedte postons o the vecto ; ; o ech o thee ngle vlues gven bove we should clculte the Eule ngles b omuls 6 nd the thee-dmensonl othogonl mt A o the bsc epesentton nd then gn the ntemedte coodntes o the ottng vecto b the omul A whee s the ntl otton vecto. The obtned vlues should concde n both cses. The esults o the coespondng clcultons e pesented n Tble. The mt A ws clculted o the Eule thee ngle vlues b omuls 5. The coodnte vlues o the ottng vecto ; ; wee clculted b multplng mt A b the ntl otton vecto 45: A. Fom Tble we see tht the coodntes o the ottng vecto concde wth the coodntes clculted b omuls. Angle Coodntes o ottng vecto omuls Tble No m o Reeences: [] K. S. Fu. R.C. Gonzlez nd K Le. Robotcs: Contol Sensng Vson nd Intellgence McGw- Hll Book Compn 987 [] Y.Tokung T.Hkukw T.Inoue Algothm nd Desgn o n Robot J.o Robotcs nd MechtoncsVol.No. 999 pp.7-8. [] Mlnkov A.A. Pngshvl A.I. Rodon I.D. A Spno Model o -Dmensonl Genelzed Rottons Automton nd Remote Contol 5 6 p. -7 [4] Mlnkov А.А.. New Pocedue o Robots Sptl Rottons Temnl Contol. th Intentonl Coneence on Appled Mechncs nd Mechncl Engneeng. Co Egpt 8 [5] I. M. Gelund R.A. Mnlos nd Z.Y. Shpo Repesenttons o the Goup o Rottons nd the Loenz Goup. Fzmtgz Moscow 958 n Russn. ISBN:

Rigid Body Dynamics. CSE169: Computer Animation Instructor: Steve Rotenberg UCSD, Winter 2018

Rigid Body Dynamics. CSE169: Computer Animation Instructor: Steve Rotenberg UCSD, Winter 2018 Rg Bo Dnmcs CSE169: Compute Anmton nstucto: Steve Roteneg UCSD, Wnte 2018 Coss Pouct k j Popetes of the Coss Pouct Coss Pouct c c c 0 0 0 c Coss Pouct c c c c c c 0 0 0 0 0 0 Coss Pouct 0 0 0 ˆ ˆ 0 0 0

More information

Chapter I Vector Analysis

Chapter I Vector Analysis . Chpte I Vecto nlss . Vecto lgeb j It s well-nown tht n vecto cn be wtten s Vectos obe the followng lgebc ules: scl s ) ( j v v cos ) ( e Commuttv ) ( ssoctve C C ) ( ) ( v j ) ( ) ( ) ( ) ( (v) he lw

More information

6.6 The Marquardt Algorithm

6.6 The Marquardt Algorithm 6.6 The Mqudt Algothm lmttons of the gdent nd Tylo expnson methods ecstng the Tylo expnson n tems of ch-sque devtves ecstng the gdent sech nto n tetve mtx fomlsm Mqudt's lgothm utomtclly combnes the gdent

More information

Uniform Circular Motion

Uniform Circular Motion Unfom Ccul Moton Unfom ccul Moton An object mong t constnt sped n ccle The ntude of the eloct emns constnt The decton of the eloct chnges contnuousl!!!! Snce cceleton s te of chnge of eloct:!! Δ Δt The

More information

The Shape of the Pair Distribution Function.

The Shape of the Pair Distribution Function. The Shpe of the P Dstbuton Functon. Vlentn Levshov nd.f. Thope Deptment of Phscs & stonom nd Cente fo Fundmentl tels Resech chgn Stte Unvest Sgnfcnt pogess n hgh-esoluton dffcton epements on powde smples

More information

Lecture 5 Single factor design and analysis

Lecture 5 Single factor design and analysis Lectue 5 Sngle fcto desgn nd nlss Completel ndomzed desgn (CRD Completel ndomzed desgn In the desgn of expements, completel ndomzed desgns e fo studng the effects of one pm fcto wthout the need to tke

More information

E-Companion: Mathematical Proofs

E-Companion: Mathematical Proofs E-omnon: Mthemtcl Poo Poo o emm : Pt DS Sytem y denton o t ey to vey tht t ncee n wth d ncee n We dene } ] : [ { M whee / We let the ttegy et o ech etle n DS e ]} [ ] [ : { M w whee M lge otve nume oth

More information

Scalars and Vectors Scalar

Scalars and Vectors Scalar Scalas and ectos Scala A phscal quantt that s completel chaacteed b a eal numbe (o b ts numecal value) s called a scala. In othe wods a scala possesses onl a magntude. Mass denst volume tempeatue tme eneg

More information

Chapter Newton-Raphson Method of Solving a Nonlinear Equation

Chapter Newton-Raphson Method of Solving a Nonlinear Equation Chpter 0.04 Newton-Rphson Method o Solvng Nonlner Equton Ater redng ths chpter, you should be ble to:. derve the Newton-Rphson method ormul,. develop the lgorthm o the Newton-Rphson method,. use the Newton-Rphson

More information

Review of linear algebra. Nuno Vasconcelos UCSD

Review of linear algebra. Nuno Vasconcelos UCSD Revew of lner lgebr Nuno Vsconcelos UCSD Vector spces Defnton: vector spce s set H where ddton nd sclr multplcton re defned nd stsf: ) +( + ) (+ )+ 5) λ H 2) + + H 6) 3) H, + 7) λ(λ ) (λλ ) 4) H, - + 8)

More information

PHYS 2421 Fields and Waves

PHYS 2421 Fields and Waves PHYS 242 Felds nd Wves Instucto: Joge A. López Offce: PSCI 29 A, Phone: 747-7528 Textook: Unvesty Physcs e, Young nd Feedmn 23. Electc potentl enegy 23.2 Electc potentl 23.3 Clcultng electc potentl 23.4

More information

Chapter Newton-Raphson Method of Solving a Nonlinear Equation

Chapter Newton-Raphson Method of Solving a Nonlinear Equation Chpter.4 Newton-Rphson Method of Solvng Nonlner Equton After redng ths chpter, you should be ble to:. derve the Newton-Rphson method formul,. develop the lgorthm of the Newton-Rphson method,. use the Newton-Rphson

More information

7.5-Determinants in Two Variables

7.5-Determinants in Two Variables 7.-eteminnts in Two Vibles efinition of eteminnt The deteminnt of sque mti is el numbe ssocited with the mti. Eve sque mti hs deteminnt. The deteminnt of mti is the single ent of the mti. The deteminnt

More information

Lecture 9-3/8/10-14 Spatial Description and Transformation

Lecture 9-3/8/10-14 Spatial Description and Transformation Letue 9-8- tl Deton nd nfomton Homewo No. Due 9. Fme ngement onl. Do not lulte...8..7.8 Otonl et edt hot oof tht = - Homewo No. egned due 9 tud eton.-.. olve oblem:.....7.8. ee lde 6 7. e Mtlb on. f oble.

More information

4. Eccentric axial loading, cross-section core

4. Eccentric axial loading, cross-section core . Eccentrc xl lodng, cross-secton core Introducton We re strtng to consder more generl cse when the xl force nd bxl bendng ct smultneousl n the cross-secton of the br. B vrtue of Snt-Vennt s prncple we

More information

Jens Siebel (University of Applied Sciences Kaiserslautern) An Interactive Introduction to Complex Numbers

Jens Siebel (University of Applied Sciences Kaiserslautern) An Interactive Introduction to Complex Numbers Jens Sebel (Unversty of Appled Scences Kserslutern) An Interctve Introducton to Complex Numbers 1. Introducton We know tht some polynoml equtons do not hve ny solutons on R/. Exmple 1.1: Solve x + 1= for

More information

COMP 465: Data Mining More on PageRank

COMP 465: Data Mining More on PageRank COMP 465: Dt Mnng Moe on PgeRnk Sldes Adpted Fo: www.ds.og (Mnng Mssve Dtsets) Powe Iteton: Set = 1/ 1: = 2: = Goto 1 Exple: d 1/3 1/3 5/12 9/24 6/15 = 1/3 3/6 1/3 11/24 6/15 1/3 1/6 3/12 1/6 3/15 Iteton

More information

SOME REMARKS ON HORIZONTAL, SLANT, PARABOLIC AND POLYNOMIAL ASYMPTOTE

SOME REMARKS ON HORIZONTAL, SLANT, PARABOLIC AND POLYNOMIAL ASYMPTOTE D I D A C T I C S O F A T H E A T I C S No (4) 3 SOE REARKS ON HORIZONTAL, SLANT, PARABOLIC AND POLYNOIAL ASYPTOTE Tdeusz Jszk Abstct I the techg o clculus, we cosde hozotl d slt symptote I ths ppe the

More information

Set of square-integrable function 2 L : function space F

Set of square-integrable function 2 L : function space F Set of squae-ntegable functon L : functon space F Motvaton: In ou pevous dscussons we have seen that fo fee patcles wave equatons (Helmholt o Schödnge) can be expessed n tems of egenvalue equatons. H E,

More information

Rigid Bodies: Equivalent Systems of Forces

Rigid Bodies: Equivalent Systems of Forces Engneeng Statcs, ENGR 2301 Chapte 3 Rgd Bodes: Equvalent Sstems of oces Intoducton Teatment of a bod as a sngle patcle s not alwas possble. In geneal, the se of the bod and the specfc ponts of applcaton

More information

Capítulo. Three Dimensions

Capítulo. Three Dimensions Capítulo Knematcs of Rgd Bodes n Thee Dmensons Mecánca Contents ntoducton Rgd Bod Angula Momentum n Thee Dmensons Pncple of mpulse and Momentum Knetc Eneg Sample Poblem 8. Sample Poblem 8. Moton of a Rgd

More information

Section 35 SHM and Circular Motion

Section 35 SHM and Circular Motion Section 35 SHM nd Cicul Motion Phsics 204A Clss Notes Wht do objects do? nd Wh do the do it? Objects sometimes oscillte in simple hmonic motion. In the lst section we looed t mss ibting t the end of sping.

More information

MATHEMATICS II PUC VECTOR ALGEBRA QUESTIONS & ANSWER

MATHEMATICS II PUC VECTOR ALGEBRA QUESTIONS & ANSWER MATHEMATICS II PUC VECTOR ALGEBRA QUESTIONS & ANSWER I One M Queston Fnd the unt veto n the deton of Let ˆ ˆ 9 Let & If Ae the vetos & equl? But vetos e not equl sne the oespondng omponents e dstnt e detons

More information

Engineering Mechanics. Force resultants, Torques, Scalar Products, Equivalent Force systems

Engineering Mechanics. Force resultants, Torques, Scalar Products, Equivalent Force systems Engneeng echancs oce esultants, Toques, Scala oducts, Equvalent oce sstems Tata cgaw-hll Companes, 008 Resultant of Two oces foce: acton of one bod on anothe; chaacteed b ts pont of applcaton, magntude,

More information

VECTORS VECTORS VECTORS VECTORS. 2. Vector Representation. 1. Definition. 3. Types of Vectors. 5. Vector Operations I. 4. Equal and Opposite Vectors

VECTORS VECTORS VECTORS VECTORS. 2. Vector Representation. 1. Definition. 3. Types of Vectors. 5. Vector Operations I. 4. Equal and Opposite Vectors 1. Defnton A vetor s n entt tht m represent phsl quntt tht hs mgntude nd dreton s opposed to slr tht ls dreton.. Vetor Representton A vetor n e represented grphll n rrow. The length of the rrow s the mgntude

More information

ESCI 342 Atmospheric Dynamics I Lesson 1 Vectors and Vector Calculus

ESCI 342 Atmospheric Dynamics I Lesson 1 Vectors and Vector Calculus ESI 34 tmospherc Dnmcs I Lesson 1 Vectors nd Vector lculus Reference: Schum s Outlne Seres: Mthemtcl Hndbook of Formuls nd Tbles Suggested Redng: Mrtn Secton 1 OORDINTE SYSTEMS n orthonorml coordnte sstem

More information

Remember: When an object falls due to gravity its potential energy decreases.

Remember: When an object falls due to gravity its potential energy decreases. Chapte 5: lectc Potental As mentoned seveal tmes dung the uate Newton s law o gavty and Coulomb s law ae dentcal n the mathematcal om. So, most thngs that ae tue o gavty ae also tue o electostatcs! Hee

More information

A Study on Root Properties of Super Hyperbolic GKM algebra

A Study on Root Properties of Super Hyperbolic GKM algebra Stuy on Root Popetes o Supe Hypebol GKM lgeb G.Uth n M.Pyn Deptment o Mthemts Phypp s College Chenn Tmlnu In. bstt: In ths ppe the Supe hypebol genelze K-Mooy lgebs o nente type s ene n the mly s lso elte.

More information

Class Summary. be functions and f( D) , we define the composition of f with g, denoted g f by

Class Summary. be functions and f( D) , we define the composition of f with g, denoted g f by Clss Summy.5 Eponentil Functions.6 Invese Functions nd Logithms A function f is ule tht ssigns to ech element D ectly one element, clled f( ), in. Fo emple : function not function Given functions f, g:

More information

UNIT10 PLANE OF REGRESSION

UNIT10 PLANE OF REGRESSION UIT0 PLAE OF REGRESSIO Plane of Regesson Stuctue 0. Intoducton Ojectves 0. Yule s otaton 0. Plane of Regesson fo thee Vaales 0.4 Popetes of Resduals 0.5 Vaance of the Resduals 0.6 Summay 0.7 Solutons /

More information

EN2210: Continuum Mechanics. Homework 4: Balance laws, work and energy, virtual work Due 12:00 noon Friday February 4th

EN2210: Continuum Mechanics. Homework 4: Balance laws, work and energy, virtual work Due 12:00 noon Friday February 4th EN: Contnuum Mechncs Homewok 4: Blnce lws, wok nd enegy, vtul wok Due : noon Fdy Feuy 4th chool of Engneeng Bown Unvesty. how tht the locl mss lnce equton t cn e e-wtten n sptl fom s xconst v y v t yconst

More information

Radial geodesics in Schwarzschild spacetime

Radial geodesics in Schwarzschild spacetime Rdil geodesics in Schwzschild spcetime Spheiclly symmetic solutions to the Einstein eqution tke the fom ds dt d dθ sin θdϕ whee is constnt. We lso hve the connection components, which now tke the fom using

More information

The Schur-Cohn Algorithm

The Schur-Cohn Algorithm Modelng, Estmton nd Otml Flterng n Sgnl Processng Mohmed Njm Coyrght 8, ISTE Ltd. Aendx F The Schur-Cohn Algorthm In ths endx, our m s to resent the Schur-Cohn lgorthm [] whch s often used s crteron for

More information

LINEAR MOMENTUM. product of the mass m and the velocity v r of an object r r

LINEAR MOMENTUM. product of the mass m and the velocity v r of an object r r LINEAR MOMENTUM Imagne beng on a skateboad, at est that can move wthout cton on a smooth suace You catch a heavy, slow-movng ball that has been thown to you you begn to move Altenatvely you catch a lght,

More information

Rank One Update And the Google Matrix by Al Bernstein Signal Science, LLC

Rank One Update And the Google Matrix by Al Bernstein Signal Science, LLC Introducton Rnk One Updte And the Google Mtrx y Al Bernsten Sgnl Scence, LLC www.sgnlscence.net here re two dfferent wys to perform mtrx multplctons. he frst uses dot product formulton nd the second uses

More information

A Heuristic Algorithm for the Scheduling Problem of Parallel Machines with Mold Constraints

A Heuristic Algorithm for the Scheduling Problem of Parallel Machines with Mold Constraints A Heustc Algothm fo the Schedulng Poblem of Pllel Mchnes wth Mold Constnts TZUNG-PEI HONG 1, PEI-CHEN SUN 2, nd SHIN-DAI LI 2 1 Deptment of Compute Scence nd Infomton Engneeng Ntonl Unvesty of Kohsung

More information

DYNAMICS VECTOR MECHANICS FOR ENGINEERS: Kinematics of Rigid Bodies in Three Dimensions. Seventh Edition CHAPTER

DYNAMICS VECTOR MECHANICS FOR ENGINEERS: Kinematics of Rigid Bodies in Three Dimensions. Seventh Edition CHAPTER Edton CAPTER 8 VECTOR MECANCS FOR ENGNEERS: DYNAMCS Fednand P. Bee E. Russell Johnston, J. Lectue Notes: J. Walt Ole Teas Tech Unvest Knematcs of Rgd Bodes n Thee Dmensons 003 The McGaw-ll Companes, nc.

More information

Rotations.

Rotations. oons j.lbb@phscs.o.c.uk To s summ Fmes of efeence Invnce une nsfomons oon of wve funcon: -funcons Eule s ngles Emple: e e - - Angul momenum s oon geneo Genec nslons n Noehe s heoem Fmes of efeence Conse

More information

Physics 1502: Lecture 2 Today s Agenda

Physics 1502: Lecture 2 Today s Agenda 1 Lectue 1 Phsics 1502: Lectue 2 Tod s Agend Announcements: Lectues posted on: www.phs.uconn.edu/~cote/ HW ssignments, solutions etc. Homewok #1: On Mstephsics this Fid Homewoks posted on Msteingphsics

More information

Lecture 10. Solution of Nonlinear Equations - II

Lecture 10. Solution of Nonlinear Equations - II Fied point Poblems Lectue Solution o Nonline Equtions - II Given unction g : R R, vlue such tht gis clled ied point o the unction g, since is unchnged when g is pplied to it. Whees with nonline eqution

More information

The Formulas of Vector Calculus John Cullinan

The Formulas of Vector Calculus John Cullinan The Fomuls of Vecto lculus John ullinn Anlytic Geomety A vecto v is n n-tuple of el numbes: v = (v 1,..., v n ). Given two vectos v, w n, ddition nd multipliction with scl t e defined by Hee is bief list

More information

Electric Potential. and Equipotentials

Electric Potential. and Equipotentials Electic Potentil nd Euipotentils U Electicl Potentil Review: W wok done y foce in going fom to long pth. l d E dl F W dl F θ Δ l d E W U U U Δ Δ l d E W U U U U potentil enegy electic potentil Potentil

More information

RELATIVE KINEMATICS. q 2 R 12. u 1 O 2 S 2 S 1. r 1 O 1. Figure 1

RELATIVE KINEMATICS. q 2 R 12. u 1 O 2 S 2 S 1. r 1 O 1. Figure 1 RELAIVE KINEMAICS he equtions of motion fo point P will be nlyzed in two diffeent efeence systems. One efeence system is inetil, fixed to the gound, the second system is moving in the physicl spce nd the

More information

π,π is the angle FROM a! TO b

π,π is the angle FROM a! TO b Mth 151: 1.2 The Dot Poduct We hve scled vectos (o, multiplied vectos y el nume clled scl) nd dded vectos (in ectngul component fom). Cn we multiply vectos togethe? The nswe is YES! In fct, thee e two

More information

ORDINARY DIFFERENTIAL EQUATIONS

ORDINARY DIFFERENTIAL EQUATIONS 6 ORDINARY DIFFERENTIAL EQUATIONS Introducton Runge-Kutt Metods Mult-step Metods Sstem o Equtons Boundr Vlue Problems Crcterstc Vlue Problems Cpter 6 Ordnr Derentl Equtons / 6. Introducton In mn engneerng

More information

The Number of Rows which Equal Certain Row

The Number of Rows which Equal Certain Row Interntonl Journl of Algebr, Vol 5, 011, no 30, 1481-1488 he Number of Rows whch Equl Certn Row Ahmd Hbl Deprtment of mthemtcs Fcult of Scences Dmscus unverst Dmscus, Sr hblhmd1@gmlcom Abstrct Let be X

More information

Unit_III Complex Numbers: Some Basic Results: 1. If z = x +iy is a complex number, then the complex number z = x iy is

Unit_III Complex Numbers: Some Basic Results: 1. If z = x +iy is a complex number, then the complex number z = x iy is Unt_III Comple Nmbes: In the sstem o eal nmbes R we can sole all qadatc eqatons o the om a b c, a, and the dscmnant b 4ac. When the dscmnant b 4ac

More information

ME306 Dynamics, Spring HW1 Solution Key. AB, where θ is the angle between the vectors A and B, the proof

ME306 Dynamics, Spring HW1 Solution Key. AB, where θ is the angle between the vectors A and B, the proof ME6 Dnms, Spng HW Slutn Ke - Pve, gemetll.e. usng wngs sethes n nltll.e. usng equtns n nequltes, tht V then V. Nte: qunttes n l tpee e vets n n egul tpee e sls. Slutn: Let, Then V V V We wnt t pve tht:

More information

DCDM BUSINESS SCHOOL NUMERICAL METHODS (COS 233-8) Solutions to Assignment 3. x f(x)

DCDM BUSINESS SCHOOL NUMERICAL METHODS (COS 233-8) Solutions to Assignment 3. x f(x) DCDM BUSINESS SCHOOL NUMEICAL METHODS (COS -8) Solutons to Assgnment Queston Consder the followng dt: 5 f() 8 7 5 () Set up dfference tble through fourth dfferences. (b) Wht s the mnmum degree tht n nterpoltng

More information

Homework 3 MAE 118C Problems 2, 5, 7, 10, 14, 15, 18, 23, 30, 31 from Chapter 5, Lamarsh & Baratta. The flux for a point source is:

Homework 3 MAE 118C Problems 2, 5, 7, 10, 14, 15, 18, 23, 30, 31 from Chapter 5, Lamarsh & Baratta. The flux for a point source is: . Homewok 3 MAE 8C Poblems, 5, 7, 0, 4, 5, 8, 3, 30, 3 fom Chpte 5, msh & Btt Point souces emit nuetons/sec t points,,, n 3 fin the flux cuent hlf wy between one sie of the tingle (blck ot). The flux fo

More information

This immediately suggests an inverse-square law for a "piece" of current along the line.

This immediately suggests an inverse-square law for a piece of current along the line. Electomgnetic Theoy (EMT) Pof Rui, UNC Asheville, doctophys on YouTube Chpte T Notes The iot-svt Lw T nvese-sque Lw fo Mgnetism Compe the mgnitude of the electic field t distnce wy fom n infinite line

More information

NS-IBTS indices calculation procedure

NS-IBTS indices calculation procedure ICES Dt Cente DATRAS 1.1 NS-IBTS indices 2013 DATRAS Pocedue Document NS-IBTS indices clcultion pocedue Contents Genel... 2 I Rw ge dt CA -> Age-length key by RFA fo defined ge nge ALK... 4 II Rw length

More information

r a + r b a + ( r b + r c)

r a + r b a + ( r b + r c) AP Phsics C Unit 2 2.1 Nme Vectos Vectos e used to epesent quntities tht e chcteized b mgnitude ( numeicl vlue with ppopite units) nd diection. The usul emple is the displcement vecto. A quntit with onl

More information

13.5. Torsion of a curve Tangential and Normal Components of Acceleration

13.5. Torsion of a curve Tangential and Normal Components of Acceleration 13.5 osion of cuve ngentil nd oml Components of Acceletion Recll: Length of cuve '( t) Ac length function s( t) b t u du '( t) Ac length pmetiztion ( s) with '( s) 1 '( t) Unit tngent vecto '( t) Cuvtue:

More information

Chapter I Matrices, Vectors, & Vector Calculus 1-1, 1-9, 1-10, 1-11, 1-17, 1-18, 1-25, 1-27, 1-36, 1-37, 1-41.

Chapter I Matrices, Vectors, & Vector Calculus 1-1, 1-9, 1-10, 1-11, 1-17, 1-18, 1-25, 1-27, 1-36, 1-37, 1-41. Chapte I Matces, Vectos, & Vecto Calculus -, -9, -0, -, -7, -8, -5, -7, -36, -37, -4. . Concept of a Scala Consde the aa of patcles shown n the fgue. he mass of the patcle at (,) can be epessed as. M (,

More information

1. A body will remain in a state of rest, or of uniform motion in a straight line unless it

1. A body will remain in a state of rest, or of uniform motion in a straight line unless it Pncples of Dnamcs: Newton's Laws of moton. : Foce Analss 1. A bod wll eman n a state of est, o of unfom moton n a staght lne unless t s acted b etenal foces to change ts state.. The ate of change of momentum

More information

IMA Preprint Series # 2202

IMA Preprint Series # 2202 FRIENDY EQUIIBRIUM INTS IN EXTENSIVE GMES WITH CMETE INFRMTIN By Ezo Mch IM epnt Sees # My 8 INSTITUTE FR MTHEMTICS ND ITS ICTINS UNIVERSITY F MINNEST nd Hll 7 Chuch Steet S.E. Mnnepols Mnnesot 5555 6

More information

Chapter 7. Kleene s Theorem. 7.1 Kleene s Theorem. The following theorem is the most important and fundamental result in the theory of FA s:

Chapter 7. Kleene s Theorem. 7.1 Kleene s Theorem. The following theorem is the most important and fundamental result in the theory of FA s: Chpte 7 Kleene s Theoem 7.1 Kleene s Theoem The following theoem is the most impotnt nd fundmentl esult in the theoy of FA s: Theoem 6 Any lnguge tht cn e defined y eithe egul expession, o finite utomt,

More information

Dennis Bricker, 2001 Dept of Industrial Engineering The University of Iowa. MDP: Taxi page 1

Dennis Bricker, 2001 Dept of Industrial Engineering The University of Iowa. MDP: Taxi page 1 Denns Brcker, 2001 Dept of Industrl Engneerng The Unversty of Iow MDP: Tx pge 1 A tx serves three djcent towns: A, B, nd C. Ech tme the tx dschrges pssenger, the drver must choose from three possble ctons:

More information

Effects of polarization on the reflected wave

Effects of polarization on the reflected wave Lecture Notes. L Ros PPLIED OPTICS Effects of polrzton on the reflected wve Ref: The Feynmn Lectures on Physcs, Vol-I, Secton 33-6 Plne of ncdence Z Plne of nterfce Fg. 1 Y Y r 1 Glss r 1 Glss Fg. Reflecton

More information

9.4 The response of equilibrium to temperature (continued)

9.4 The response of equilibrium to temperature (continued) 9.4 The esponse of equilibium to tempetue (continued) In the lst lectue, we studied how the chemicl equilibium esponds to the vition of pessue nd tempetue. At the end, we deived the vn t off eqution: d

More information

MULTIPOLE FIELDS. Multipoles, 2 l poles. Monopoles, dipoles, quadrupoles, octupoles... Electric Dipole R 1 R 2. P(r,θ,φ) e r

MULTIPOLE FIELDS. Multipoles, 2 l poles. Monopoles, dipoles, quadrupoles, octupoles... Electric Dipole R 1 R 2. P(r,θ,φ) e r MULTIPOLE FIELDS Mutpoes poes. Monopoes dpoes quadupoes octupoes... 4 8 6 Eectc Dpoe +q O θ e R R P(θφ) -q e The potenta at the fed pont P(θφ) s ( θϕ )= q R R Bo E. Seneus : Now R = ( e) = + cosθ R = (

More information

Previously. Extensions to backstepping controller designs. Tracking using backstepping Suppose we consider the general system

Previously. Extensions to backstepping controller designs. Tracking using backstepping Suppose we consider the general system 436-459 Advnced contol nd utomtion Extensions to bckstepping contolle designs Tcking Obseves (nonline dmping) Peviously Lst lectue we looked t designing nonline contolles using the bckstepping technique

More information

Model Fitting and Robust Regression Methods

Model Fitting and Robust Regression Methods Dertment o Comuter Engneerng Unverst o Clorn t Snt Cruz Model Fttng nd Robust Regresson Methods CMPE 64: Imge Anlss nd Comuter Vson H o Fttng lnes nd ellses to mge dt Dertment o Comuter Engneerng Unverst

More information

Chapter Runge-Kutta 2nd Order Method for Ordinary Differential Equations

Chapter Runge-Kutta 2nd Order Method for Ordinary Differential Equations Cter. Runge-Kutt nd Order Metod or Ordnr Derentl Eutons Ater redng ts cter ou sould be ble to:. understnd te Runge-Kutt nd order metod or ordnr derentl eutons nd ow to use t to solve roblems. Wt s te Runge-Kutt

More information

Angular Momentum in Spherical Symmetry

Angular Momentum in Spherical Symmetry Angu Moentu n Sphec Set Angu Moentu n Sphec Set 6 Quntu Mechncs Pof. Y. F. Chen Angu Moentu n Sphec Set The concept of ngu oentu ps cuc oe n the theedenson 3D Schödnge we equton. The ethod of septon w

More information

DEPARTMENT OF CIVIL AND ENVIRONMENTAL ENGINEERING FLUID MECHANICS III Solutions to Problem Sheet 3

DEPARTMENT OF CIVIL AND ENVIRONMENTAL ENGINEERING FLUID MECHANICS III Solutions to Problem Sheet 3 DEPATMENT OF CIVIL AND ENVIONMENTAL ENGINEEING FLID MECHANICS III Solutions to Poblem Sheet 3 1. An tmospheic vote is moelle s combintion of viscous coe otting s soli boy with ngul velocity Ω n n iottionl

More information

CENTROID (AĞIRLIK MERKEZİ )

CENTROID (AĞIRLIK MERKEZİ ) CENTOD (ĞLK MEKEZİ ) centrod s geometrcl concept rsng from prllel forces. Tus, onl prllel forces possess centrod. Centrod s tougt of s te pont were te wole wegt of pscl od or sstem of prtcles s lumped.

More information

MATHEMATICS IV 2 MARKS. 5 2 = e 3, 4

MATHEMATICS IV 2 MARKS. 5 2 = e 3, 4 MATHEMATICS IV MARKS. If + + 6 + c epesents cicle with dius 6, find the vlue of c. R 9 f c ; g, f 6 9 c 6 c c. Find the eccenticit of the hpeol Eqution of the hpeol Hee, nd + e + e 5 e 5 e. Find the distnce

More information

LOCAL FRACTIONAL LAPLACE SERIES EXPANSION METHOD FOR DIFFUSION EQUATION ARISING IN FRACTAL HEAT TRANSFER

LOCAL FRACTIONAL LAPLACE SERIES EXPANSION METHOD FOR DIFFUSION EQUATION ARISING IN FRACTAL HEAT TRANSFER Yn, S.-P.: Locl Frctonl Lplce Seres Expnson Method for Dffuson THERMAL SCIENCE, Yer 25, Vol. 9, Suppl., pp. S3-S35 S3 LOCAL FRACTIONAL LAPLACE SERIES EXPANSION METHOD FOR DIFFUSION EQUATION ARISING IN

More information

Topics for Review for Final Exam in Calculus 16A

Topics for Review for Final Exam in Calculus 16A Topics fo Review fo Finl Em in Clculus 16A Instucto: Zvezdelin Stnkov Contents 1. Definitions 1. Theoems nd Poblem Solving Techniques 1 3. Eecises to Review 5 4. Chet Sheet 5 1. Definitions Undestnd the

More information

19 The Born-Oppenheimer Approximation

19 The Born-Oppenheimer Approximation 9 The Bon-Oppenheme Appoxmaton The full nonelatvstc Hamltonan fo a molecule s gven by (n a.u.) Ĥ = A M A A A, Z A + A + >j j (883) Lets ewte the Hamltonan to emphasze the goal as Ĥ = + A A A, >j j M A

More information

MUTUAL INDUCTANCE OF FINITE LENGTH TWISTED-WIRE PAIR

MUTUAL INDUCTANCE OF FINITE LENGTH TWISTED-WIRE PAIR PONAN UNIVE RSIT OF TE CHNOLOG ACADE MIC JOURNALS No 69 Electcl Engneeng 0 Kstof BUDNIK* Wojcec MACHCŃSKI* MUTUAL INDUCTANCE OF FINITE LENGTH TWISTED-WIRE PAIR Twstng of bfl le s commonl use n vous fels

More information

Chapter Fifiteen. Surfaces Revisited

Chapter Fifiteen. Surfaces Revisited Chapte Ffteen ufaces Revsted 15.1 Vecto Descpton of ufaces We look now at the vey specal case of functons : D R 3, whee D R s a nce subset of the plane. We suppose s a nce functon. As the pont ( s, t)

More information

Physics 2A Chapter 11 - Universal Gravitation Fall 2017

Physics 2A Chapter 11 - Universal Gravitation Fall 2017 Physcs A Chapte - Unvesal Gavtaton Fall 07 hese notes ae ve pages. A quck summay: he text boxes n the notes contan the esults that wll compse the toolbox o Chapte. hee ae thee sectons: the law o gavtaton,

More information

Physics 201 Lecture 4

Physics 201 Lecture 4 Phscs 1 Lectue 4 ltoda: hapte 3 Lectue 4 v Intoduce scalas and vectos v Peom basc vecto aleba (addton and subtacton) v Inteconvet between atesan & Pola coodnates Stat n nteestn 1D moton poblem: ace 9.8

More information

2/24/2014. The point mass. Impulse for a single collision The impulse of a force is a vector. The Center of Mass. System of particles

2/24/2014. The point mass. Impulse for a single collision The impulse of a force is a vector. The Center of Mass. System of particles /4/04 Chapte 7 Lnea oentu Lnea oentu of a Sngle Patcle Lnea oentu: p υ It s a easue of the patcle s oton It s a vecto, sla to the veloct p υ p υ p υ z z p It also depends on the ass of the object, sla

More information

Quiz: Experimental Physics Lab-I

Quiz: Experimental Physics Lab-I Mxmum Mrks: 18 Totl tme llowed: 35 mn Quz: Expermentl Physcs Lb-I Nme: Roll no: Attempt ll questons. 1. In n experment, bll of mss 100 g s dropped from heght of 65 cm nto the snd contner, the mpct s clled

More information

Haddow s Experiment:

Haddow s Experiment: schemtc drwng of Hddow's expermentl set-up movng pston non-contctng moton sensor bems of sprng steel poston vres to djust frequences blocks of sold steel shker Hddow s Experment: terr frm Theoretcl nd

More information

CSJM University Class: B.Sc.-II Sub:Physics Paper-II Title: Electromagnetics Unit-1: Electrostatics Lecture: 1 to 4

CSJM University Class: B.Sc.-II Sub:Physics Paper-II Title: Electromagnetics Unit-1: Electrostatics Lecture: 1 to 4 CSJM Unvesty Class: B.Sc.-II Sub:Physcs Pape-II Ttle: Electomagnetcs Unt-: Electostatcs Lectue: to 4 Electostatcs: It deals the study of behavo of statc o statonay Chages. Electc Chage: It s popety by

More information

Principle Component Analysis

Principle Component Analysis Prncple Component Anlyss Jng Go SUNY Bufflo Why Dmensonlty Reducton? We hve too mny dmensons o reson bout or obtn nsghts from o vsulze oo much nose n the dt Need to reduce them to smller set of fctors

More information

Chapter 28 Sources of Magnetic Field

Chapter 28 Sources of Magnetic Field Chpte 8 Souces of Mgnetic Field - Mgnetic Field of Moving Chge - Mgnetic Field of Cuent Element - Mgnetic Field of Stight Cuent-Cying Conducto - Foce Between Pllel Conductos - Mgnetic Field of Cicul Cuent

More information

8 Baire Category Theorem and Uniform Boundedness

8 Baire Category Theorem and Uniform Boundedness 8 Bae Categoy Theoem and Unfom Boundedness Pncple 8.1 Bae s Categoy Theoem Valdty of many esults n analyss depends on the completeness popety. Ths popety addesses the nadequacy of the system of atonal

More information

3.1 Magnetic Fields. Oersted and Ampere

3.1 Magnetic Fields. Oersted and Ampere 3.1 Mgnetic Fields Oested nd Ampee The definition of mgnetic induction, B Fields of smll loop (dipole) Mgnetic fields in mtte: ) feomgnetism ) mgnetiztion, (M ) c) mgnetic susceptiility, m d) mgnetic field,

More information

defined on a domain can be expanded into the Taylor series around a point a except a singular point. Also, f( z)

defined on a domain can be expanded into the Taylor series around a point a except a singular point. Also, f( z) 08 Tylo eie nd Mcluin eie A holomophic function f( z) defined on domin cn be expnded into the Tylo eie ound point except ingul point. Alo, f( z) cn be expnded into the Mcluin eie in the open dik with diu

More information

PHYS 705: Classical Mechanics. Derivation of Lagrange Equations from D Alembert s Principle

PHYS 705: Classical Mechanics. Derivation of Lagrange Equations from D Alembert s Principle 1 PHYS 705: Classcal Mechancs Devaton of Lagange Equatons fom D Alembet s Pncple 2 D Alembet s Pncple Followng a smla agument fo the vtual dsplacement to be consstent wth constants,.e, (no vtual wok fo

More information

Introduction to Robotics (Fag 3480)

Introduction to Robotics (Fag 3480) Intouton to Robot (Fg 8) Vå Robet Woo (Hw Engneeeng n pple Sene-B) Ole Jkob Elle PhD (Mofe fo IFI/UIO) Føtemnuen II Inttutt fo Infomtkk Unvetetet Olo Sekjonlee Teknolog Intevenjonenteet Olo Unvetetkehu

More information

Chapter Linear Regression

Chapter Linear Regression Chpte 6.3 Le Regesso Afte edg ths chpte, ou should be ble to. defe egesso,. use sevel mmzg of esdul cte to choose the ght cteo, 3. deve the costts of le egesso model bsed o lest sques method cteo,. use

More information

Discrete Model Parametrization

Discrete Model Parametrization Poceedings of Intentionl cientific Confeence of FME ession 4: Automtion Contol nd Applied Infomtics Ppe 9 Discete Model Pmetition NOKIEVIČ, Pet Doc,Ing,Cc Deptment of Contol ystems nd Instumenttion, Fculty

More information

Kinematics Quantities. Linear Motion. Coordinate System. Kinematics Quantities. Velocity. Position. Don t Forget Units!

Kinematics Quantities. Linear Motion. Coordinate System. Kinematics Quantities. Velocity. Position. Don t Forget Units! Knemtc Quntte Lner Phyc 11 Eyre Tme Intnt t Fundmentl Tme Interl t Dened Poton Fundmentl Dplcement Dened Aerge g Dened Aerge Accelerton g Dened Knemtc Quntte Scler: Mgntude Tme Intnt, Tme Interl nd Speed

More information

Engineering Tensors. Friday November 16, h30 -Muddy Charles. A BEH430 review session by Thomas Gervais.

Engineering Tensors. Friday November 16, h30 -Muddy Charles. A BEH430 review session by Thomas Gervais. ngneerng Tensors References: BH4 reew sesson b Thoms Gers tgers@mt.ed Long, RR, Mechncs of Solds nd lds, Prentce-Hll, 96, pp - Deen, WD, nlss of trnsport phenomen, Oford, 998, p. 55-56 Goodbod, M, Crtesn

More information

Remember: Project Proposals are due April 11.

Remember: Project Proposals are due April 11. Bonformtcs ecture Notes Announcements Remember: Project Proposls re due Aprl. Clss 22 Aprl 4, 2002 A. Hdden Mrov Models. Defntons Emple - Consder the emple we tled bout n clss lst tme wth the cons. However,

More information

HERMITE SERIES SOLUTIONS OF LINEAR FREDHOLM INTEGRAL EQUATIONS

HERMITE SERIES SOLUTIONS OF LINEAR FREDHOLM INTEGRAL EQUATIONS Mhemcl nd Compuonl Applcons, Vol 6, o, pp 97-56, Assocon fo Scenfc Resech ERMITE SERIES SOLUTIOS OF LIEAR FREDOLM ITEGRAL EQUATIOS Slh Ylçınbş nd Müge Angül Depmen of Mhemcs, Fcul of Scence nd As, Cell

More information

Lecture 4: Piecewise Cubic Interpolation

Lecture 4: Piecewise Cubic Interpolation Lecture notes on Vrtonl nd Approxmte Methods n Appled Mthemtcs - A Perce UBC Lecture 4: Pecewse Cubc Interpolton Compled 6 August 7 In ths lecture we consder pecewse cubc nterpolton n whch cubc polynoml

More information

Rotary motion

Rotary motion ectue 8 RTARY TN F THE RGD BDY Notes: ectue 8 - Rgd bod Rgd bod: j const numbe of degees of feedom 6 3 tanslatonal + 3 ota motons m j m j Constants educe numbe of degees of feedom non-fee object: 6-p

More information

General Physics II. number of field lines/area. for whole surface: for continuous surface is a whole surface

General Physics II. number of field lines/area. for whole surface: for continuous surface is a whole surface Genel Physics II Chpte 3: Guss w We now wnt to quickly discuss one of the moe useful tools fo clculting the electic field, nmely Guss lw. In ode to undestnd Guss s lw, it seems we need to know the concept

More information

Abhilasha Classes Class- XII Date: SOLUTION (Chap - 9,10,12) MM 50 Mob no

Abhilasha Classes Class- XII Date: SOLUTION (Chap - 9,10,12) MM 50 Mob no hlsh Clsses Clss- XII Dte: 0- - SOLUTION Chp - 9,0, MM 50 Mo no-996 If nd re poston vets of nd B respetvel, fnd the poston vet of pont C n B produed suh tht C B vet r C B = where = hs length nd dreton

More information

SOLVING SYSTEMS OF EQUATIONS, DIRECT METHODS

SOLVING SYSTEMS OF EQUATIONS, DIRECT METHODS ELM Numecl Alyss D Muhem Mecmek SOLVING SYSTEMS OF EQUATIONS DIRECT METHODS ELM Numecl Alyss Some of the cotets e dopted fom Luee V. Fusett Appled Numecl Alyss usg MATLAB. Petce Hll Ic. 999 ELM Numecl

More information

(a) Counter-Clockwise (b) Clockwise ()N (c) No rotation (d) Not enough information

(a) Counter-Clockwise (b) Clockwise ()N (c) No rotation (d) Not enough information m m m00 kg dult, m0 kg bby. he seesw stts fom est. Which diection will it ottes? ( Counte-Clockwise (b Clockwise ( (c o ottion ti (d ot enough infomtion Effect of Constnt et oque.3 A constnt non-zeo toque

More information

INTRODUCTION. consider the statements : I there exists x X. f x, such that. II there exists y Y. such that g y

INTRODUCTION. consider the statements : I there exists x X. f x, such that. II there exists y Y. such that g y INRODUCION hs dssetaton s the eadng of efeences [1], [] and [3]. Faas lemma s one of the theoems of the altenatve. hese theoems chaacteze the optmalt condtons of seveal mnmzaton poblems. It s nown that

More information