The statistical properties of the primordial fluctuations

Size: px
Start display at page:

Download "The statistical properties of the primordial fluctuations"

Transcription

1 The tatitical propertie of the primordial fluctuation Lecturer: Prof. Paolo Creminelli Trancriber: Alexander Chen July 5, 0 Content Lecture Lecture 4 3 Lecture 3 6

2 Primordial Fluctuation Lecture Lecture Looking at the WMAP, we believe that the aniotropie that we ee i due to the primordial fluctuation. We want to talk about how to calculate them. The quantity we are intereted in i ζ, which i the metric fluctuation in the patial part. We write the patial metric a a (t)e ζ(x,t) δ ij dx i dx j () We are intereted in, and can oberve the -point function ζ k ζ k, or even the 3-point or 4-point function. At the moment we don t oberve anything that i non-gauian, which mean only -point function i nonzero. But future obervation may lead to non-gauianitie, which are predicted by theorie. We will do ingle field inflation, but do it in an unconventional way. We call it effective theory of inflation. The original paper i Cheung et al, The idea i to apply effective field theory to inflation. To decribe a ytem, we have to identify the degree of freedom, the ymmetrie of the ytem, and the dynamic i governed by the lowet dimenional operator. Let apply the ame logic to inflation. During the period of inflation the pacetime i cloe to de- Sitter. Becaue the period of inflation i finite, there i a previleged licing which i decided by the final product of inflation. Thi previleged licing i the flat licing becaue the reulting pacetime ha negligible curvature. Now with thi the time diffeomorphim ymmetry i broken t t + ξ 0, but the pace diffeomorphim ymmetry i preerved. So when we conider the action it hould be invariant under patial diffeomorphim. We can write down the action S = d 4 x [ ] M p g R c(t)g00 + Λ(t) + M (t) a (g 00 + ) + 6 H 3(t)(g 00 + ) +... () The fact that g 00 appear i due to that g 00 i invariant under patial reparametrization. From the above action we can extract the energy momentum tenor a T µν = g δs δg µν (3) For low-roll inflation, the pacetime i de-sitter for firt approximation d = H η ( dη + dx ) (4) To firt approximation the time-dependent component of the action evolve lowly. The above pacetime ha another iometry which i dilation (x, η) λ(x, η). Thi mean that ζ k λ 3 ζ λk i a ymmetry of the ytem. The correlation function mut then go like ζ k ζ k = (π) 3 δ(k + k ) k 3 (5) It i very important that ζ i a contant which i independent of time, o that it i conerved from the end of inflation to the time of recombination. Becaue after the inflation the variation of ζ i on the cale larger than the Hubble radiu, the time dependence can be ignored to firt approximation becaue the time dependence i aborbed in the cale factor a(t).

3 Primordial Fluctuation Lecture Let come back to effective theory. Conider the implet model of inflation S = d 4 x [ g ] ( ϕ) V (ϕ) d 4 x [ g ϕ 0 (t) ] g00 V (ϕ 0 (t)) (6) Thi i made poible by chooing the gauge that we dicued above. In general we conider model with action in the form of a polynomial P (X, ϕ) where X = /( ϕ), then in thi gauge we will have S d 4 x gp ( ) ϕ 0 g00, ϕ 0 (t) For ome reaon it i more convenient to change gauge. Breaking a gauge ymmetry i equivalent to introducing a new degree of freedom. The above action break time diffeomorphim ymmetry, and we want to change into another gauge where thi i not the cae. Conider a U() gauge field with an action 4 F µν F µν m A µ A µ (8) Now the theory i not gauge invariant, but we are not afraid of that, and we can introduce a new field π which tranform a π π Λ. Then the action become 4 F µν F µν m (A µ µ π) (9) Then the action i gauge invariant. We will do exactly the ame thing here, and introduce a new field π(x, t) which tranform a π(x) π(x) ξ 0 (x) (0) Then we will change anything involving g 00 into B(t)g 00 B(t + π(x, t)) (7) (t + π(x, t)) (t + π(x, t)) x µ x ν g µν () The original action will now be turned into d 4 x [ M ( ) ] p g R M p H π ( π) + M 4 ( π + π 3 π ( π) a ) 4 3 M 3 4 π 3 The above formula only contain the term involving π. Thi will be the tarting point. () 3

4 Primordial Fluctuation Lecture Lecture We tart with the effective action S = d 4 x [ M ( p g R M p Ḣ π ( iπ) ) ( a + M 4 π + π 3 π ( iπ) ) ] a 4 3 M 3 4 π (3) where the calar field π can be thought of a a Goldtone boon field ϕ 0 (t + π(x, t)) for the broken time diffeomorphim ymmetry. Let try to ee what thi action implie. We define the peed of ound in the following way c = M 4/M p Ḣ. Then we can write the ame action in term of thi M p Ḣ ( c π c ( π) ) ( a + Mp Ḣ ) ( ) c π 3 π ( π) a 4 3 M 3 4 π 3 (4) We can calculate the -point function of π uing thi action π k π k = (π) 3 δ(k + k ) H k 3 c M p Ḣ c 3 (5) Thi i for the calar field π, but we are intereted in the calar perturbation ζ. Thi can be recovered uing ζ = Hπ. Becaue π i like change in time, we can jut do a change in time δt = π, and the metric i perturbed, and to linear order the above relation i recovered. The -point function i then ζ k ζ k = (π) 3 δ(k + k ) c H 4M p ε k 3 (6) The tilt in the power pectrum i defined by k 3+(n ). The way to calculate it i d n = d log k log H4 = 4 Ḣ Ḣ c H Ḧ ḢH ċ c H c k/a H (7) By cale invariance and becaue we have N e e-fold after inflation, thi tilt will be around /N e, but the exact number depend on model. Let now look at correction to thi picture. The ratio of the cubic lagrangian and the quadratic lagrangian will be a meaure of how good it i to neglect higher order term. Thi ratio i L 3 = (M p Ḣ/c ) π L Mp Ḣ c ζ (8) Thi i a ratio meauring how good the Gauian approximation i, or the interaction term with the free field theory. Thi number multiplied by 0 5 will be what people call f NL. Of coure experiment ha not detected large non-gauianitie, and they have et bound on thi quantity, and f NL of about 00 i what we have today. If we tart with a potential term controlled by ε, then the magnitude of non-gauianity will be NG 3 ε ζ, f NL ε (9) 4

5 Primordial Fluctuation Lecture Thi will be even maller than the 0 3 that our experiment bound i. We can even include quartic term, and the quartic non-gauianity can be calculated a NG 4 ζ ε 3 (0) So thi i even more uppreed. Let u now try to calculate the 3-point function of the calar perturbation. Let review how to do the calculation firt. In ordinary quantum field theory we know the way to calculate the expectation value of a tring of time ordered product of field operator Ω T ϕ(x)ϕ(y) Ω = lim 0 Ũ(T, x 0)ϕ I (x)ũ(x 0, y 0 )ϕ I (y)ũ(y 0, T ) 0 () T + ( iε) In the end we have lim 0 T ϕ(x)ϕ(y)e i T T H I(t)dt 0 T + ( iε) However in de-sitter pace our vacuum can only be defined in the far pat, but not in the future. So at both ide we evolute to the far pat in order to hit the Minkowki vacuum. () 5

6 Primordial Fluctuation Lecture 3 3 Lecture 3 We will calculate the correlation function. Remember that lat time we defined the way of evaluating the correlation function. We will recale the field a Mp Ḣ π c = π (3) c And the interaction term in the hamiltonian will be accordingly modified. To firt order, the 3-point function will jut be the commutator of the 3 π field with the interaction Hamiltonian π k (η = 0)π k π k3 = i 0 dη [ π k (0)π k (0)π k3 (0), H int (η ) ] (4) The olution of the claical equation of motion i π k (η) = π cl k (η)a k + πcl k (η) a k, where π cl k (η) = H c 3 k 3 ( ikc η) e ickη, πk cl H (η) = c 3 k 3 c k ηe ikcη (5) The interaction Hamiltonian in conformal time will be H int = A d 3 x Hη π 3 (6) In the end of the calculation the reult will be π k π k π k3 = (π) 3 δ(k + k + k 3 )6 The integration can eaily be evaluated by 0 iε H 6 i c3 k 3 i dη η e iktcη = 0 ( i)a dη Hη c6 kk k 3η 3 e iktcη + c.c. (7) i (k t c ) 3 (8) Now let look at the reult. If we write ζ = Hπ then the above reult tranlate into ζ k ζ k ζ k3 = (π) 3 δ(k + k + k 3 )P ζ c M p M Ḣ k k k 3 (k + k + k 3 ) 3 (9) where P ζ = H 4 /(4Mp Ḣ c ). The quantity c M3 4/(M p Ḣ ) will be called f NL. At the end of inflation we have reheating, which mean that the inflaton ocillate around the minimum of the inflaton potential and the energy change into other thing. At the beginning we are in matter dominance when Γ H end. Then after Γ H, we enter the period of radiation dominance becaue of decay. We can check that a(t f ) a(de) H /6 a(de) a(t i ) decay Γ /6 (30) There i a conitency relation for 3-point function, and it very generic for ingle-field model. We look at the queezed mode where a k i much maller than the other. Conider the function ζ(x )ζ(x )ζ(x 3 ), then we have ζ(x )ζ(x )ζ(x 3 ) = ζ(x ) ζ(x )ζ(x 3 ) ζ (3) 6

7 Primordial Fluctuation Lecture 3 where ζ(x )ζ(x 3 ) ζ = F ( ) e ζ x x 3 (3) We can expand thi around ζ. After calculation, the bottom line i that lim ζ(k )ζ(k )ζ(k 3 ) = (π) 3 δ(k + k + k 3 )P (k )P (k ) d log k3 P (k ) + O k 0 d log k ( ) k k (33) where k i the wave vector of the hort wavelength wave. Thi ay that baically there i no correlation between the long and hort mode. So if we ee otherwie in the ky, then there mut be more than one field. 7

Bogoliubov Transformation in Classical Mechanics

Bogoliubov Transformation in Classical Mechanics Bogoliubov Tranformation in Claical Mechanic Canonical Tranformation Suppoe we have a et of complex canonical variable, {a j }, and would like to conider another et of variable, {b }, b b ({a j }). How

More information

Symmetry Lecture 9. 1 Gellmann-Nishijima relation

Symmetry Lecture 9. 1 Gellmann-Nishijima relation Symmetry Lecture 9 1 Gellmann-Nihijima relation In the lat lecture we found that the Gell-mann and Nihijima relation related Baryon number, charge, and the third component of iopin. Q = [(1/2)B + T 3 ]

More information

Primordial Non-Gaussianity

Primordial Non-Gaussianity Primordial Non-Gaussianity Sam Passaglia 1 1 University of Chicago KICP In This Discussion Non-Gaussianity in Single-Field Slow-Roll Non-Gaussianity in the EFT of Inflation Observational Constraints Non-Gaussianity

More information

1 Parity. 2 Time reversal. Even. Odd. Symmetry Lecture 9

1 Parity. 2 Time reversal. Even. Odd. Symmetry Lecture 9 Even Odd Symmetry Lecture 9 1 Parity The normal mode of a tring have either even or odd ymmetry. Thi alo occur for tationary tate in Quantum Mechanic. The tranformation i called partiy. We previouly found

More information

Fermi Distribution Function. n(e) T = 0 T > 0 E F

Fermi Distribution Function. n(e) T = 0 T > 0 E F LECTURE 3 Maxwell{Boltzmann, Fermi, and Boe Statitic Suppoe we have a ga of N identical point particle in a box ofvolume V. When we ay \ga", we mean that the particle are not interacting with one another.

More information

S E.H. +S.F. = + 1 2! M 2(t) 4 (g ) ! M 3(t) 4 (g ) 3 + M 1 (t) 3. (g )δK µ µ M 2 (t) 2. δk µ νδk ν µ +... δk µ µ 2 M 3 (t) 2

S E.H. +S.F. = + 1 2! M 2(t) 4 (g ) ! M 3(t) 4 (g ) 3 + M 1 (t) 3. (g )δK µ µ M 2 (t) 2. δk µ νδk ν µ +... δk µ µ 2 M 3 (t) 2 S E.H. +S.F. = d 4 x [ 1 g 2 M PlR 2 + MPlḢg 2 00 MPl(3H 2 2 + Ḣ)+ + 1 2! M 2(t) 4 (g 00 + 1) 2 + 1 3! M 3(t) 4 (g 00 + 1) 3 + M 1 (t) 3 2 (g 00 + 1)δK µ µ M 2 (t) 2 δk µ µ 2 M 3 (t) 2 2 2 ] δk µ νδk ν

More information

Physics 741 Graduate Quantum Mechanics 1 Solutions to Final Exam, Fall 2014

Physics 741 Graduate Quantum Mechanics 1 Solutions to Final Exam, Fall 2014 Phyic 7 Graduate Quantum Mechanic Solution to inal Eam all 0 Each quetion i worth 5 point with point for each part marked eparately Some poibly ueful formula appear at the end of the tet In four dimenion

More information

FY3464 Quantum Field Theory Exercise sheet 10

FY3464 Quantum Field Theory Exercise sheet 10 Exercie heet 10 Scalar QED. a. Write down the Lagrangian of calar QED, i.e. a complex calar field coupled to the photon via D µ = µ + iqa µ. Derive the Noether current and the current to which the photon

More information

Laplace Transformation

Laplace Transformation Univerity of Technology Electromechanical Department Energy Branch Advance Mathematic Laplace Tranformation nd Cla Lecture 6 Page of 7 Laplace Tranformation Definition Suppoe that f(t) i a piecewie continuou

More information

Lecture 9: Shor s Algorithm

Lecture 9: Shor s Algorithm Quantum Computation (CMU 8-859BB, Fall 05) Lecture 9: Shor Algorithm October 7, 05 Lecturer: Ryan O Donnell Scribe: Sidhanth Mohanty Overview Let u recall the period finding problem that wa et up a a function

More information

Massless fermions living in a non-abelian QCD vortex based on arxiv: [hep-ph]

Massless fermions living in a non-abelian QCD vortex based on arxiv: [hep-ph] Male fermion living in a non-abelian QCD vortex baed on arxiv:1001.3730 [hep-ph] Collaborator : S.Yaui KEK and M. Nitta Keio U. K. Itakura KEK Theory Center, IPNS, KEK New frontier in QCD @ Kyoto March

More information

Quantum Field Theory 2011 Solutions

Quantum Field Theory 2011 Solutions Quantum Field Theory 011 Solution Yichen Shi Eater 014 Note that we ue the metric convention + ++). 1. State and prove Noether theorem in the context of a claical Lagrangian field theory defined in Minkowki

More information

PHY 396 K. Solutions for problem set #7.

PHY 396 K. Solutions for problem set #7. PHY 396 K. Solution for problem et #7. Problem 1a: γ µ γ ν ±γ ν γ µ where the ign i + for µ ν and otherwie. Hence for any product Γ of the γ matrice, γ µ Γ 1 nµ Γγ µ where n µ i the number of γ ν µ factor

More information

Linear Motion, Speed & Velocity

Linear Motion, Speed & Velocity Add Important Linear Motion, Speed & Velocity Page: 136 Linear Motion, Speed & Velocity NGSS Standard: N/A MA Curriculum Framework (006): 1.1, 1. AP Phyic 1 Learning Objective: 3.A.1.1, 3.A.1.3 Knowledge/Undertanding

More information

Lecture 8: Period Finding: Simon s Problem over Z N

Lecture 8: Period Finding: Simon s Problem over Z N Quantum Computation (CMU 8-859BB, Fall 205) Lecture 8: Period Finding: Simon Problem over Z October 5, 205 Lecturer: John Wright Scribe: icola Rech Problem A mentioned previouly, period finding i a rephraing

More information

Notes on Phase Space Fall 2007, Physics 233B, Hitoshi Murayama

Notes on Phase Space Fall 2007, Physics 233B, Hitoshi Murayama Note on Phae Space Fall 007, Phyic 33B, Hitohi Murayama Two-Body Phae Space The two-body phae i the bai of computing higher body phae pace. We compute it in the ret frame of the two-body ytem, P p + p

More information

Correction for Simple System Example and Notes on Laplace Transforms / Deviation Variables ECHE 550 Fall 2002

Correction for Simple System Example and Notes on Laplace Transforms / Deviation Variables ECHE 550 Fall 2002 Correction for Simple Sytem Example and Note on Laplace Tranform / Deviation Variable ECHE 55 Fall 22 Conider a tank draining from an initial height of h o at time t =. With no flow into the tank (F in

More information

Pulsed Magnet Crimping

Pulsed Magnet Crimping Puled Magnet Crimping Fred Niell 4/5/00 1 Magnetic Crimping Magnetoforming i a metal fabrication technique that ha been in ue for everal decade. A large capacitor bank i ued to tore energy that i ued to

More information

Mechanics Physics 151

Mechanics Physics 151 Mechanic Phyic 5 Lecture 6 Special Relativity (Chapter 7) What We Did Lat Time Defined covariant form of phyical quantitie Collectively called tenor Scalar, 4-vector, -form, rank- tenor, Found how to Lorentz

More information

Non-Gaussianities from Inflation. Leonardo Senatore, Kendrick Smith & MZ

Non-Gaussianities from Inflation. Leonardo Senatore, Kendrick Smith & MZ Non-Gaussianities from Inflation Leonardo Senatore, Kendrick Smith & MZ Lecture Plan: Lecture 1: Non-Gaussianities: Introduction and different take on inflation and inflation modeling. Lecture II: Non-Gaussianities:

More information

Given the following circuit with unknown initial capacitor voltage v(0): X(s) Immediately, we know that the transfer function H(s) is

Given the following circuit with unknown initial capacitor voltage v(0): X(s) Immediately, we know that the transfer function H(s) is EE 4G Note: Chapter 6 Intructor: Cheung More about ZSR and ZIR. Finding unknown initial condition: Given the following circuit with unknown initial capacitor voltage v0: F v0/ / Input xt 0Ω Output yt -

More information

Eigenvalues and eigenvectors

Eigenvalues and eigenvectors Eigenvalue and eigenvector Defining and computing uggeted problem olution For each matri give below, find eigenvalue and eigenvector. Give a bai and the dimenion of the eigenpace for each eigenvalue. P:

More information

Moment of Inertia of an Equilateral Triangle with Pivot at one Vertex

Moment of Inertia of an Equilateral Triangle with Pivot at one Vertex oment of nertia of an Equilateral Triangle with Pivot at one Vertex There are two wa (at leat) to derive the expreion f an equilateral triangle that i rotated about one vertex, and ll how ou both here.

More information

Citation for published version (APA): Meerburg, P. D. (2011). Exploring the early universe through the CMB sky Amsterdam: Ipskamp/ P.D.

Citation for published version (APA): Meerburg, P. D. (2011). Exploring the early universe through the CMB sky Amsterdam: Ipskamp/ P.D. UvA-DARE Digital Academic Repoitory) Exploring the early univere through the CMB ky Meerburg, P.D. Link to publication Citation for publihed verion APA): Meerburg, P. D. 20). Exploring the early univere

More information

The Secret Life of the ax + b Group

The Secret Life of the ax + b Group The Secret Life of the ax + b Group Linear function x ax + b are prominent if not ubiquitou in high chool mathematic, beginning in, or now before, Algebra I. In particular, they are prime exhibit in any

More information

Nonlinear Single-Particle Dynamics in High Energy Accelerators

Nonlinear Single-Particle Dynamics in High Energy Accelerators Nonlinear Single-Particle Dynamic in High Energy Accelerator Part 6: Canonical Perturbation Theory Nonlinear Single-Particle Dynamic in High Energy Accelerator Thi coure conit of eight lecture: 1. Introduction

More information

The Electric Potential Energy

The Electric Potential Energy Lecture 6 Chapter 28 Phyic II The Electric Potential Energy Coure webite: http://aculty.uml.edu/andriy_danylov/teaching/phyicii New Idea So ar, we ued vector quantitie: 1. Electric Force (F) Depreed! 2.

More information

Elastic Collisions Definition Examples Work and Energy Definition of work Examples. Physics 201: Lecture 10, Pg 1

Elastic Collisions Definition Examples Work and Energy Definition of work Examples. Physics 201: Lecture 10, Pg 1 Phyic 131: Lecture Today Agenda Elatic Colliion Definition i i Example Work and Energy Definition of work Example Phyic 201: Lecture 10, Pg 1 Elatic Colliion During an inelatic colliion of two object,

More information

4-4 E-field Calculations using Coulomb s Law

4-4 E-field Calculations using Coulomb s Law 1/21/24 ection 4_4 -field calculation uing Coulomb Law blank.doc 1/1 4-4 -field Calculation uing Coulomb Law Reading Aignment: pp. 9-98 1. xample: The Uniform, Infinite Line Charge 2. xample: The Uniform

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION DOI: 10.1038/NPHOTON.014.108 Supplementary Information "Spin angular momentum and tunable polarization in high harmonic generation" Avner Fleicher, Ofer Kfir, Tzvi Dikin, Pavel Sidorenko, and Oren Cohen

More information

PHYS 110B - HW #6 Spring 2004, Solutions by David Pace Any referenced equations are from Griffiths Problem statements are paraphrased

PHYS 110B - HW #6 Spring 2004, Solutions by David Pace Any referenced equations are from Griffiths Problem statements are paraphrased PHYS B - HW #6 Spring 4, Solution by David Pace Any referenced equation are from Griffith Problem tatement are paraphraed. Problem. from Griffith Show that the following, A µo ɛ o A V + A ρ ɛ o Eq..4 A

More information

Non-Gaussianities in String Inflation. Gary Shiu

Non-Gaussianities in String Inflation. Gary Shiu Non-Gaussianities in String Inflation Gary Shiu University of Wisconsin, Madison Frontiers in String Theory Workshop Banff, February 13, 2006 Collaborators: X.G. Chen, M.X. Huang, S. Kachru Introduction

More information

7.2 INVERSE TRANSFORMS AND TRANSFORMS OF DERIVATIVES 281

7.2 INVERSE TRANSFORMS AND TRANSFORMS OF DERIVATIVES 281 72 INVERSE TRANSFORMS AND TRANSFORMS OF DERIVATIVES 28 and i 2 Show how Euler formula (page 33) can then be ued to deduce the reult a ( a) 2 b 2 {e at co bt} {e at in bt} b ( a) 2 b 2 5 Under what condition

More information

Symmetries! of the! primordial perturbations!

Symmetries! of the! primordial perturbations! Paolo Creminelli, ICTP Trieste! Symmetries! of the! primordial perturbations! PC, 1108.0874 (PRD)! with J. Noreña and M. Simonović, 1203.4595! ( with G. D'Amico, M. Musso and J. Noreña, 1106.1462 (JCAP)!

More information

(3) A bilinear map B : S(R n ) S(R m ) B is continuous (for the product topology) if and only if there exist C, N and M such that

(3) A bilinear map B : S(R n ) S(R m ) B is continuous (for the product topology) if and only if there exist C, N and M such that The material here can be found in Hörmander Volume 1, Chapter VII but he ha already done almot all of ditribution theory by thi point(!) Johi and Friedlander Chapter 8. Recall that S( ) i a complete metric

More information

Practice Problems - Week #7 Laplace - Step Functions, DE Solutions Solutions

Practice Problems - Week #7 Laplace - Step Functions, DE Solutions Solutions For Quetion -6, rewrite the piecewie function uing tep function, ketch their graph, and find F () = Lf(t). 0 0 < t < 2. f(t) = (t 2 4) 2 < t In tep-function form, f(t) = u 2 (t 2 4) The graph i the olid

More information

Math 273 Solutions to Review Problems for Exam 1

Math 273 Solutions to Review Problems for Exam 1 Math 7 Solution to Review Problem for Exam True or Fale? Circle ONE anwer for each Hint: For effective tudy, explain why if true and give a counterexample if fale (a) T or F : If a b and b c, then a c

More information

Chapter 4. The Laplace Transform Method

Chapter 4. The Laplace Transform Method Chapter 4. The Laplace Tranform Method The Laplace Tranform i a tranformation, meaning that it change a function into a new function. Actually, it i a linear tranformation, becaue it convert a linear combination

More information

2 States of a System. 2.1 States / Configurations 2.2 Probabilities of States. 2.3 Counting States 2.4 Entropy of an ideal gas

2 States of a System. 2.1 States / Configurations 2.2 Probabilities of States. 2.3 Counting States 2.4 Entropy of an ideal gas 2 State of a Sytem Motly chap 1 and 2 of Kittel &Kroemer 2.1 State / Configuration 2.2 Probabilitie of State Fundamental aumption Entropy 2.3 Counting State 2.4 Entropy of an ideal ga Phyic 112 (S2012)

More information

Demonstration of Riemann Hypothesis

Demonstration of Riemann Hypothesis Demontration of Riemann Hypothei Diego arin June 2, 204 Abtract We define an infinite ummation which i proportional to the revere of Riemann Zeta function ζ(). Then we demontrate that uch function can

More information

Electrodynamics Part 1 12 Lectures

Electrodynamics Part 1 12 Lectures NASSP Honour - Electrodynamic Firt Semeter 2014 Electrodynamic Part 1 12 Lecture Prof. J.P.S. Rah Univerity of KwaZulu-Natal rah@ukzn.ac.za 1 Coure Summary Aim: To provide a foundation in electrodynamic,

More information

CHE302 LECTURE V LAPLACE TRANSFORM AND TRANSFER FUNCTION. Professor Dae Ryook Yang

CHE302 LECTURE V LAPLACE TRANSFORM AND TRANSFER FUNCTION. Professor Dae Ryook Yang CHE3 ECTURE V APACE TRANSFORM AND TRANSFER FUNCTION Profeor Dae Ryook Yang Fall Dept. of Chemical and Biological Engineering Korea Univerity CHE3 Proce Dynamic and Control Korea Univerity 5- SOUTION OF

More information

Cosmology and the origin of structure

Cosmology and the origin of structure 1 Cosmology and the origin of structure ocy I: The universe observed ocy II: Perturbations ocy III: Inflation Primordial perturbations CB: a snapshot of the universe 38, AB correlations on scales 38, light

More information

6.302 Feedback Systems Recitation 6: Steady-State Errors Prof. Joel L. Dawson S -

6.302 Feedback Systems Recitation 6: Steady-State Errors Prof. Joel L. Dawson S - 6302 Feedback ytem Recitation 6: teadytate Error Prof Joel L Dawon A valid performance metric for any control ytem center around the final error when the ytem reache teadytate That i, after all initial

More information

Scale-invariance from spontaneously broken conformal invariance

Scale-invariance from spontaneously broken conformal invariance Scale-invariance from spontaneously broken conformal invariance Austin Joyce Center for Particle Cosmology University of Pennsylvania Hinterbichler, Khoury arxiv:1106.1428 Hinterbichler, AJ, Khoury arxiv:1202.6056

More information

p. (The electron is a point particle with radius r = 0.)

p. (The electron is a point particle with radius r = 0.) - pin ½ Recall that in the H-atom olution, we howed that the fact that the wavefunction Ψ(r) i ingle-valued require that the angular momentum quantum nbr be integer: l = 0,,.. However, operator algebra

More information

Tuning of High-Power Antenna Resonances by Appropriately Reactive Sources

Tuning of High-Power Antenna Resonances by Appropriately Reactive Sources Senor and Simulation Note Note 50 Augut 005 Tuning of High-Power Antenna Reonance by Appropriately Reactive Source Carl E. Baum Univerity of New Mexico Department of Electrical and Computer Engineering

More information

Overflow from last lecture: Ewald construction and Brillouin zones Structure factor

Overflow from last lecture: Ewald construction and Brillouin zones Structure factor Lecture 5: Overflow from lat lecture: Ewald contruction and Brillouin zone Structure factor Review Conider direct lattice defined by vector R = u 1 a 1 + u 2 a 2 + u 3 a 3 where u 1, u 2, u 3 are integer

More information

Learning Multiplicative Interactions

Learning Multiplicative Interactions CSC2535 2011 Lecture 6a Learning Multiplicative Interaction Geoffrey Hinton Two different meaning of multiplicative If we take two denity model and multiply together their probability ditribution at each

More information

Molecular Dynamics Simulations of Nonequilibrium Effects Associated with Thermally Activated Exothermic Reactions

Molecular Dynamics Simulations of Nonequilibrium Effects Associated with Thermally Activated Exothermic Reactions Original Paper orma, 5, 9 7, Molecular Dynamic Simulation of Nonequilibrium Effect ociated with Thermally ctivated Exothermic Reaction Jerzy GORECKI and Joanna Natalia GORECK Intitute of Phyical Chemitry,

More information

(f~) (pa) = 0 (p -n/2) as p

(f~) (pa) = 0 (p -n/2) as p 45 OSCILLA~ORY INTEGRALS Michael Cowling and Shaun Diney We are intereted in the behaviour at infinity of the Fourier tranform ~ of the urface meaure ~ living on a mooth compact ~n Rnl, hyperurface S and

More information

primordial avec les perturbations cosmologiques *

primordial avec les perturbations cosmologiques * Tests de l Univers primordial avec les perturbations cosmologiques * Filippo Vernizzi Batz-sur-Mer, 16 octobre, 2008 * Soustitré en anglais What is the initial condition? Standard single field inflation

More information

Introduction to Laplace Transform Techniques in Circuit Analysis

Introduction to Laplace Transform Techniques in Circuit Analysis Unit 6 Introduction to Laplace Tranform Technique in Circuit Analyi In thi unit we conider the application of Laplace Tranform to circuit analyi. A relevant dicuion of the one-ided Laplace tranform i found

More information

/University of Washington Department of Chemistry Chemistry 453 Winter Quarter 2009

/University of Washington Department of Chemistry Chemistry 453 Winter Quarter 2009 Lecture 0 /6/09 /Univerity of Wahington Department of Chemitry Chemitry 453 Winter Quarter 009. Wave Function and Molecule Can quantum mechanic explain the tructure of molecule by determining wave function

More information

Quantum Field Theory III

Quantum Field Theory III Quantum Field Theory III Prof. Erick Weinberg March 9, 0 Lecture 5 Let s say something about SO(0. We know that in SU(5 the standard model fits into 5 0(. In SO(0 we know that it contains SU(5, in two

More information

KEY. D. 1.3 kg m. Solution: Using conservation of energy on the swing, mg( h) = 1 2 mv2 v = 2mg( h)

KEY. D. 1.3 kg m. Solution: Using conservation of energy on the swing, mg( h) = 1 2 mv2 v = 2mg( h) Phy 5 - Fall 206 Extra credit review eion - Verion A KEY Thi i an extra credit review eion. t will be worth 30 point of extra credit. Dicu and work on the problem with your group. You may ue your text

More information

A Constraint Propagation Algorithm for Determining the Stability Margin. The paper addresses the stability margin assessment for linear systems

A Constraint Propagation Algorithm for Determining the Stability Margin. The paper addresses the stability margin assessment for linear systems A Contraint Propagation Algorithm for Determining the Stability Margin of Linear Parameter Circuit and Sytem Lubomir Kolev and Simona Filipova-Petrakieva Abtract The paper addree the tability margin aement

More information

1 Routh Array: 15 points

1 Routh Array: 15 points EE C28 / ME34 Problem Set 3 Solution Fall 2 Routh Array: 5 point Conider the ytem below, with D() k(+), w(t), G() +2, and H y() 2 ++2 2(+). Find the cloed loop tranfer function Y () R(), and range of k

More information

Singular perturbation theory

Singular perturbation theory Singular perturbation theory Marc R. Rouel June 21, 2004 1 Introduction When we apply the teady-tate approximation (SSA) in chemical kinetic, we typically argue that ome of the intermediate are highly

More information

Lecture 7 Grain boundary grooving

Lecture 7 Grain boundary grooving Lecture 7 Grain oundary grooving The phenomenon. A polihed polycrytal ha a flat urface. At room temperature, the urface remain flat for a long time. At an elevated temperature atom move. The urface grow

More information

4.6 Principal trajectories in terms of amplitude and phase function

4.6 Principal trajectories in terms of amplitude and phase function 4.6 Principal trajectorie in term of amplitude and phae function We denote with C() and S() the coinelike and inelike trajectorie relative to the tart point = : C( ) = S( ) = C( ) = S( ) = Both can be

More information

0 of the same magnitude. If we don t use an OA and ignore any damping, the CTF is

0 of the same magnitude. If we don t use an OA and ignore any damping, the CTF is 1 4. Image Simulation Influence of C Spherical aberration break the ymmetry that would otherwie exit between overfocu and underfocu. One reult i that the fringe in the FT of the CTF are generally farther

More information

Reading assignment: In this chapter we will cover Sections Definition and the Laplace transform of simple functions

Reading assignment: In this chapter we will cover Sections Definition and the Laplace transform of simple functions Chapter 4 Laplace Tranform 4 Introduction Reading aignment: In thi chapter we will cover Section 4 45 4 Definition and the Laplace tranform of imple function Given f, a function of time, with value f(t

More information

1. The F-test for Equality of Two Variances

1. The F-test for Equality of Two Variances . The F-tet for Equality of Two Variance Previouly we've learned how to tet whether two population mean are equal, uing data from two independent ample. We can alo tet whether two population variance are

More information

Signatures of Trans-Planckian Dissipation in Inflationary Spectra

Signatures of Trans-Planckian Dissipation in Inflationary Spectra Signatures of Trans-Planckian Dissipation in Inflationary Spectra 3. Kosmologietag Bielefeld Julian Adamek ITPA University Würzburg 8. May 2008 Julian Adamek 1 / 18 Trans-Planckian Dissipation in Inflationary

More information

CHBE320 LECTURE V LAPLACE TRANSFORM AND TRANSFER FUNCTION. Professor Dae Ryook Yang

CHBE320 LECTURE V LAPLACE TRANSFORM AND TRANSFER FUNCTION. Professor Dae Ryook Yang CHBE3 ECTURE V APACE TRANSFORM AND TRANSFER FUNCTION Profeor Dae Ryook Yang Spring 8 Dept. of Chemical and Biological Engineering 5- Road Map of the ecture V aplace Tranform and Tranfer function Definition

More information

Lectures on Exact Solutions of Landau 1+1 Hydrodynamics Cheuk-Yin Wong Oak Ridge National Laboratory

Lectures on Exact Solutions of Landau 1+1 Hydrodynamics Cheuk-Yin Wong Oak Ridge National Laboratory 1 Dene Matter Summer School, Dubna, July 4, 015 Lecture on Exact Solution of Landau 1+1 Hydrodynamic Cheuk-Yin Wong Oak Ridge National Laboratory 1. Introduction. Exact analytical olution diplayed Analogou

More information

Chapter 5 Consistency, Zero Stability, and the Dahlquist Equivalence Theorem

Chapter 5 Consistency, Zero Stability, and the Dahlquist Equivalence Theorem Chapter 5 Conitency, Zero Stability, and the Dahlquit Equivalence Theorem In Chapter 2 we dicued convergence of numerical method and gave an experimental method for finding the rate of convergence (aka,

More information

Sampling and the Discrete Fourier Transform

Sampling and the Discrete Fourier Transform Sampling and the Dicrete Fourier Tranform Sampling Method Sampling i mot commonly done with two device, the ample-and-hold (S/H) and the analog-to-digital-converter (ADC) The S/H acquire a CT ignal at

More information

ME 375 FINAL EXAM Wednesday, May 6, 2009

ME 375 FINAL EXAM Wednesday, May 6, 2009 ME 375 FINAL EXAM Wedneday, May 6, 9 Diviion Meckl :3 / Adam :3 (circle one) Name_ Intruction () Thi i a cloed book examination, but you are allowed three ingle-ided 8.5 crib heet. A calculator i NOT allowed.

More information

Inflation and the origin of structure in the Universe

Inflation and the origin of structure in the Universe Phi in the Sky, Porto 0 th July 004 Inflation and the origin of structure in the Universe David Wands Institute of Cosmology and Gravitation University of Portsmouth outline! motivation! the Primordial

More information

into a discrete time function. Recall that the table of Laplace/z-transforms is constructed by (i) selecting to get

into a discrete time function. Recall that the table of Laplace/z-transforms is constructed by (i) selecting to get Lecture 25 Introduction to Some Matlab c2d Code in Relation to Sampled Sytem here are many way to convert a continuou time function, { h( t) ; t [0, )} into a dicrete time function { h ( k) ; k {0,,, }}

More information

Radiation in energy balance models. 1. A hierarchy of climate models. Lecture 25

Radiation in energy balance models. 1. A hierarchy of climate models. Lecture 25 Lecture 5 Radiation in energy balance model Objective: 1. A hierarchy of climate model.. Example of imple energy balance model. Required reading: L0: 8.5 1. A hierarchy of climate model. Climate model

More information

Study of a Freely Falling Ellipse with a Variety of Aspect Ratios and Initial Angles

Study of a Freely Falling Ellipse with a Variety of Aspect Ratios and Initial Angles Study of a Freely Falling Ellipe with a Variety of Apect Ratio and Initial Angle Dedy Zulhidayat Noor*, Ming-Jyh Chern*, Tzyy-Leng Horng** *Department of Mechanical Engineering, National Taiwan Univerity

More information

Inflationary Massive Gravity

Inflationary Massive Gravity New perspectives on cosmology APCTP, 15 Feb., 017 Inflationary Massive Gravity Misao Sasaki Yukawa Institute for Theoretical Physics, Kyoto University C. Lin & MS, PLB 75, 84 (016) [arxiv:1504.01373 ]

More information

Mechanics Physics 151

Mechanics Physics 151 Mechanic Phyic 151 Lecture 7 Scattering Problem (Chapter 3) What We Did Lat Time Dicued Central Force Problem l Problem i reduced to one equation mr = + f () r 3 mr Analyzed qualitative behavior Unbounded,

More information

The Quantum to Classical Transition in Inflationary Cosmology

The Quantum to Classical Transition in Inflationary Cosmology The Quantum to Classical Transition in Inflationary Cosmology C. D. McCoy Department of Philosophy University of California San Diego Foundations of Physics Munich, 31 July 2013 Questions to Address 1.

More information

ME 375 EXAM #1 Tuesday February 21, 2006

ME 375 EXAM #1 Tuesday February 21, 2006 ME 375 EXAM #1 Tueday February 1, 006 Diviion Adam 11:30 / Savran :30 (circle one) Name Intruction (1) Thi i a cloed book examination, but you are allowed one 8.5x11 crib heet. () You have one hour to

More information

Reading assignment: In this chapter we will cover Sections Definition and the Laplace transform of simple functions

Reading assignment: In this chapter we will cover Sections Definition and the Laplace transform of simple functions Chapter 4 Laplace Tranform 4 Introduction Reading aignment: In thi chapter we will cover Section 4 45 4 Definition and the Laplace tranform of imple function Given f, a function of time, with value f(t

More information

How a charge conserving alternative to Maxwell s displacement current entails a Darwin-like approximation to the solutions of Maxwell s equations

How a charge conserving alternative to Maxwell s displacement current entails a Darwin-like approximation to the solutions of Maxwell s equations How a charge conerving alternative to Maxwell diplacement current entail a Darwin-like approximation to the olution of Maxwell equation 12 ab Alan M Wolky 1 Argonne National Laboratory 9700 South Ca Ave

More information

1. Basic introduction to electromagnetic field. wave properties and particulate properties.

1. Basic introduction to electromagnetic field. wave properties and particulate properties. Lecture Baic Radiometric Quantitie. The Beer-Bouguer-Lambert law. Concept of extinction cattering plu aborption and emiion. Schwarzchild equation. Objective:. Baic introduction to electromagnetic field:

More information

General Field Equation for Electromagnetism and Gravitation

General Field Equation for Electromagnetism and Gravitation International Journal of Modern Phyic and Application 07; 4(5: 44-48 http://www.aacit.org/journal/ijmpa ISSN: 375-3870 General Field Equation for Electromagnetim and Gravitation Sadegh Mouavi Department

More information

Lecture #9 Continuous time filter

Lecture #9 Continuous time filter Lecture #9 Continuou time filter Oliver Faut December 5, 2006 Content Review. Motivation......................................... 2 2 Filter pecification 2 2. Low pa..........................................

More information

These are practice problems for the final exam. You should attempt all of them, but turn in only the even-numbered problems!

These are practice problems for the final exam. You should attempt all of them, but turn in only the even-numbered problems! Math 33 - ODE Due: 7 December 208 Written Problem Set # 4 Thee are practice problem for the final exam. You hould attempt all of them, but turn in only the even-numbered problem! Exercie Solve the initial

More information

General Relativity (sort of)

General Relativity (sort of) The Okefenokee Swamp Some book about relativity: Taylor & Wheeler Spacetime Phyic = TW1 (imple preentation, but deep inight) Taylor & Wheeler Introduction to Black Hole = TW (CO-level math, deep inight)

More information

in a circular cylindrical cavity K. Kakazu Department of Physics, University of the Ryukyus, Okinawa , Japan Y. S. Kim

in a circular cylindrical cavity K. Kakazu Department of Physics, University of the Ryukyus, Okinawa , Japan Y. S. Kim Quantization of electromagnetic eld in a circular cylindrical cavity K. Kakazu Department of Phyic, Univerity of the Ryukyu, Okinawa 903-0, Japan Y. S. Kim Department of Phyic, Univerity of Maryland, College

More information

Lecture 2: The z-transform

Lecture 2: The z-transform 5-59- Control Sytem II FS 28 Lecture 2: The -Tranform From the Laplace Tranform to the tranform The Laplace tranform i an integral tranform which take a function of a real variable t to a function of a

More information

Department of Mechanical Engineering Massachusetts Institute of Technology Modeling, Dynamics and Control III Spring 2002

Department of Mechanical Engineering Massachusetts Institute of Technology Modeling, Dynamics and Control III Spring 2002 Department of Mechanical Engineering Maachuett Intitute of Technology 2.010 Modeling, Dynamic and Control III Spring 2002 SOLUTIONS: Problem Set # 10 Problem 1 Etimating tranfer function from Bode Plot.

More information

EE 508 Lecture 16. Filter Transformations. Lowpass to Bandpass Lowpass to Highpass Lowpass to Band-reject

EE 508 Lecture 16. Filter Transformations. Lowpass to Bandpass Lowpass to Highpass Lowpass to Band-reject EE 508 Lecture 6 Filter Tranformation Lowpa to Bandpa Lowpa to Highpa Lowpa to Band-reject Review from Lat Time Theorem: If the perimeter variation and contact reitance are neglected, the tandard deviation

More information

Physics 2. Angular Momentum. Prepared by Vince Zaccone For Campus Learning Assistance Services at UCSB

Physics 2. Angular Momentum. Prepared by Vince Zaccone For Campus Learning Assistance Services at UCSB Phyic Angular Momentum For Campu earning Angular Momentum Thi i the rotational equivalent of linear momentum. t quantifie the momentum of a rotating object, or ytem of object. To get the angular momentum,

More information

MATEMATIK Datum: Tid: eftermiddag. A.Heintz Telefonvakt: Anders Martinsson Tel.:

MATEMATIK Datum: Tid: eftermiddag. A.Heintz Telefonvakt: Anders Martinsson Tel.: MATEMATIK Datum: 20-08-25 Tid: eftermiddag GU, Chalmer Hjälpmedel: inga A.Heintz Telefonvakt: Ander Martinon Tel.: 073-07926. Löningar till tenta i ODE och matematik modellering, MMG5, MVE6. Define what

More information

Astro 321 Set 4: Inflationary Perturbations. Wayne Hu

Astro 321 Set 4: Inflationary Perturbations. Wayne Hu Astro 321 Set 4: Inflationary Perturbations Wayne Hu Outline Review of canonical single-field slow roll inflation Scalar field Comoving curvature Gravitational waves EFT of inflation Application to P (X,

More information

NULL HELIX AND k-type NULL SLANT HELICES IN E 4 1

NULL HELIX AND k-type NULL SLANT HELICES IN E 4 1 REVISTA DE LA UNIÓN MATEMÁTICA ARGENTINA Vol. 57, No. 1, 2016, Page 71 83 Publihed online: March 3, 2016 NULL HELIX AND k-type NULL SLANT HELICES IN E 4 1 JINHUA QIAN AND YOUNG HO KIM Abtract. We tudy

More information

PAPER 310 COSMOLOGY. Attempt no more than THREE questions. There are FOUR questions in total. The questions carry equal weight.

PAPER 310 COSMOLOGY. Attempt no more than THREE questions. There are FOUR questions in total. The questions carry equal weight. MATHEMATICAL TRIPOS Part III Wednesday, 1 June, 2016 9:00 am to 12:00 pm PAPER 310 COSMOLOGY Attempt no more than THREE questions. There are FOUR questions in total. The questions carry equal weight. STATIONERY

More information

Online supplementary information

Online supplementary information Electronic Supplementary Material (ESI) for Soft Matter. Thi journal i The Royal Society of Chemitry 15 Online upplementary information Governing Equation For the vicou flow, we aume that the liquid thickne

More information

Advanced Digital Signal Processing. Stationary/nonstationary signals. Time-Frequency Analysis... Some nonstationary signals. Time-Frequency Analysis

Advanced Digital Signal Processing. Stationary/nonstationary signals. Time-Frequency Analysis... Some nonstationary signals. Time-Frequency Analysis Advanced Digital ignal Proceing Prof. Nizamettin AYDIN naydin@yildiz.edu.tr Time-Frequency Analyi http://www.yildiz.edu.tr/~naydin 2 tationary/nontationary ignal Time-Frequency Analyi Fourier Tranform

More information

ds/cft Contents Lecturer: Prof. Juan Maldacena Transcriber: Alexander Chen August 7, Lecture Lecture 2 5

ds/cft Contents Lecturer: Prof. Juan Maldacena Transcriber: Alexander Chen August 7, Lecture Lecture 2 5 ds/cft Lecturer: Prof. Juan Maldacena Transcriber: Alexander Chen August 7, 2011 Contents 1 Lecture 1 2 2 Lecture 2 5 1 ds/cft Lecture 1 1 Lecture 1 We will first review calculation of quantum field theory

More information

Physics 6A. Angular Momentum. Prepared by Vince Zaccone For Campus Learning Assistance Services at UCSB

Physics 6A. Angular Momentum. Prepared by Vince Zaccone For Campus Learning Assistance Services at UCSB Phyic 6A Angular Momentum For Campu earning Angular Momentum Thi i the rotational equivalent of linear momentum. t quantifie the momentum of a rotating object, or ytem of object. f we imply tranlate the

More information

EECS2200 Electric Circuits. RLC Circuit Natural and Step Responses

EECS2200 Electric Circuits. RLC Circuit Natural and Step Responses 5--4 EECS Electric Circuit Chapter 6 R Circuit Natural and Step Repone Objective Determine the repone form of the circuit Natural repone parallel R circuit Natural repone erie R circuit Step repone of

More information

V = 4 3 πr3. d dt V = d ( 4 dv dt. = 4 3 π d dt r3 dv π 3r2 dv. dt = 4πr 2 dr

V = 4 3 πr3. d dt V = d ( 4 dv dt. = 4 3 π d dt r3 dv π 3r2 dv. dt = 4πr 2 dr 0.1 Related Rate In many phyical ituation we have a relationhip between multiple quantitie, and we know the rate at which one of the quantitie i changing. Oftentime we can ue thi relationhip a a convenient

More information