SUB-BERNOULLI FUNCTIONS, MOMENT INEQUALITIES AND STRONG LAWS FOR NONNEGATIVE AND SYMMETRIZED U-STATISTICS 1. By Cun-Hui Zhang Rutgers University

Size: px
Start display at page:

Download "SUB-BERNOULLI FUNCTIONS, MOMENT INEQUALITIES AND STRONG LAWS FOR NONNEGATIVE AND SYMMETRIZED U-STATISTICS 1. By Cun-Hui Zhang Rutgers University"

Transcription

1 The Aals of Probablty 1999, Vol. 27, No. 1, SUB-BERNOULLI FUNCTIONS, MOMENT INEQUALITIES AND STRONG LAWS FOR NONNEGATIVE AND SYMMETRIZED U-STATISTICS 1 By Cu-Hu Zhag Rutgers Uversty Ths paper cocers momet ad tal probablty equaltes ad the strog law of large umbers for U-statstcs wth oegatve or symmetrzed kerels ad ther multsample ad decoupled versos. Sub- Beroull fuctos are used to obta the momet ad tal probablty equaltes, whch are the used to obta ecessary ad suffcet codtos for the almost sure covergece to zero of ormalzed U-statstcs wth oegatve or completely symmetrzed kerels, wthout further regularty codtos o the kerel or the dstrbuto of the populato, for ormalzg costats satsfyg a smple codto. Momets of U-statstcs are bouded from above ad below by that of maxma of certa kerels, up to scalg costats. The multsample ad decoupled versos of these results are also cosdered. 1. Itroducto. Ths paper cocers momet ad tal probablty equaltes ad the strog law of large umbers (SLLN) for U-statstcs wth oegatve or symmetrzed kerels ad ther multsample ad decoupled versos Overvew. Let X X 1 be a sequeces of d radom varables wth a commo dstrbuto F. For real Borel fuctos hx 1 x k, the U- statstcs wth kerel h are defed by S k / ( k) wth 11 S k = 1 k k hx 1 X k where k = 1 k 1 1 < 2 < < k. Our vestgato s motvated by two problems. The frst oe s the order of ES k : gve a odecreasg oegatve fucto satsfyg certa regularty codtos [e.g., x =x m ], fd fuctoals µ F h such that 12 C k µ F h E ( S k ) C k µ F h 1 where C k ad C k are uversal costats. The secod problem s the SLLN: gve a sequece of ormalzg costats b satsfyg certa regularty codtos (e.g., b = 1/p for some 0 <p<2), fd ecessary ad Receved Jue 1996; revsed August Supported part by the Natoal Scece Foudato ad Natoal Securty Agecy. AMS 1991 subect classfcatos. Prmary 60F15; secodary 60G50. Key words ad phrases. Sub-Beroull fucto, strog law of large umbers, momet equalty, expoetal equalty, tal probablty, U-statstcs. 432

2 STRONG LAWS FOR U-STATISTICS 433 suffcet codtos (asc) o F ad h for 13 S k /bk = b k hx 1 X k 0 1 < 2 < < k We fd that the cocept of sub-beroull fucto, defed (1.10) for k = 2 a specal case ad formally defed Secto 2.1, s very useful our vestgato of the precedg two problems ad some addtoal problems. Bascally, a oegatve Borel fucto φx 1 x k s a sub-beroull fucto of X 1 X k wth parameter θ 1 θ k f ts codtoal expectatos, gve subsets of the X s, are o greater tha the correspodg codtoal expectatos of a product of depedet Beroull varables wth the same parameters. We coect sub-beroull fuctos to oegatve kerels h 0 through some ormalzg kerels ψ = ψ x 1 x k, postve Borel fuctos gve Secto 3.1 for geeral k ad (1.9) ad (1.11) for k = 2, such that φ x 1 x k =h/ψ are sub-beroull fuctos wth parameters k/k/. It wll be show Theorem 3.4 Secto 3.2 that, for all h 0, odecreasg oegatve fuctos g ad tegers m 1 ad k, 14 Eg ( ξ k ) ( S k ξ k ) m Eg ( ξ k ( ) ) k + m Nk E k where ξ k = max 1 k k ψ X 1 X k ad N k s a Posso varable wth EN k = k. It wll also be show Theorem 3.4 that for k 15 P { ξ k >t C k P { S k >t/2 for some uversal C k. These equaltes provde crucal elemets our solutos to (1.2) ad (1.3). Momet equaltes for sub-beroull fuctos also mply a exteso of the Berste equalty from k = 1 to geeral k, Corollary 2.4 Secto 2.3, for decoupled symmetrzed bouded kerels. The symmetrzed, multsample ad/or decoupled versos of the strog law ad momet equaltes are also gve. Some basc equaltes for sub-beroull fuctos are provded for geeral depedet (ot ecessarly detcally dstrbuted) varables. The paper s orgazed as follows. I the rest of ths secto, we dscuss detal the case k = 2 after gvg our otato. I Secto 2, we descrbe sub-beroull fuctos ad some basc equaltes. I Secto 3, we cosder equaltes of type (1.4) ad (1.5). I Secto 4, we provde the SLLN. Secto 5 cotas examples about momet codtos for SLLN Notato. Let X l X l 1 be depedet sequeces of d radom varables from possbly dfferet dstrbutos. The multsample verso of (1.1) s defed by 16 S = 1 1 =1 k k =1 h ( X 1 1 X k ) k a.s.

3 434 C.-H. ZHANG where = 1 k gves the sample szes. The ormalzed sums S / k l=1 l are the k-sample U-statstcs wth the kerel h.for 1 = = k =, 17 S k = 1 k k h ( X 1 1 X k ) where k = 1 k 1 l 1 l k. Whe X X 1 X k are detcally dstrbuted, S k becomes the decoupled verso S k (1.1). Let fx y be a real Borel fucto wth f 2 x y =hx y, ad ε ε ε l 1l 1 be d Rademacher varables depedet of X X l 1l 1, Pε = 1 =Pε = 1 =1/2. Defe 18 = ε fx = ε f X T k k They are the symmetrzed versos of (1.1) ad (1.7). Here ad the sequel, X =X 1 X k, X =X 1 1 X k k, ε = k l=1 ε l ad ε = k l=1 εl l for = 1 k. I addto to the varables troduced above, we shall use the followg otato throughout. Let Y Y l 1l 1 be depedet varables, θ θ l 1l 1 be costats 0 1, ad δ δ l 1l 1 be depedet Beroull oes wth Pδ l For = 1 k, set y = y 1 y k, Y = Y 1 Y k ad Ỹ = T k k k = 1 = θ l ad Pδ = 1 = θ. Y 1 1 Y k k. Set θ =θ 1 θ k ad θ =θ 1 1 θ k k. Set δ = k l=1 δ l ad δ = k l=1 δl l, the same maer as ε ad ε (1.8). Let N θ be a bomal varable wth parameters θ ad N λ be a Posso varable wth EN λ = λ. Also, for all real a, A a = 1fA =. The dstrbutos of X l, l 1, are ot assumed to be detcal, to cover the mult sample case. The varables Y Y l are ot assumed to have the same dstrbuto (ether betwee dfferet or betwee dfferet l), to be used to descrbe basc equaltes for sub-beroull fuctos. The codtoal expectatos ad momets of sub-beroull fuctos are domated by those of products of δ δ l, wth odetcal θ θ l geeral (betwee dfferet l as well as dfferet ). The Rademacher varables ε ε ε l 1l 1 are assumed to be depedet of X X l Y Y l δ δ l 1l 1 throughout. Also, x 1 x m = maxx 1 x m, x 1 x m = mx 1 x m Case k = 2. Let us dscuss k = 2 more detal. Let hx y = hy x 0. For θ>0 ad 1, defe { ( ) hx y c 1 y θ =sup c>0 E θ sup = 0 hx y c { ( ) hx c 0 θ =sup c>0 E 1 X 2 θ 2 hx 1 X 2 c 1 X 1 θ c 1 X 2 θ c

4 STRONG LAWS FOR U-STATISTICS 435 ad 19 ψx y θ =hx y c 1 x θ c 1 y θ c 0 θ It ca be easly see (also cf. Lemma 3.1) that for φ = hx 1 X 2 /ψx 1 X 2 θ φ 1 Eφ X Eδ 1 δ 2 δ = 1 2 Eφ Eδ 1 δ 2 f δ are d Beroull varables wth mea θ. I other words, the codtoal expectatos of φ (1.10) are domated by ther δ 1 δ 2 versos. I ths sese, we call φ a sub-beroull fucto of X 1 X 2. The fucto c 1 y 1/ as (1.9) s the same as m y = supm EhX y m m, a quatty whose essece has bee used to approxmate the ceter of the dstrbuto of a sum of d oegatve radom varables [each dstrbuto ths case s hx y]. I fact, Lemma 2.3 of Klass ad Zhag (1994) shows that PS y cy 1//3 02 ad PS y 3cy 1/ 03 wth S y = =1 hx y. I ths paper, 111 ξ 2 = max ψx X 2/ 1 < { = max max hx X max < c 1X 2/c 0 2/ are used to approxmate the ceter ad momets of (1.1) for k = 2. The maxmum of hx X represets the extreme term; the maxmum of c 1 X 2/ represets the extreme term of =1 hx X the sum over ; whle c 0 2/ represets the overall ceter of the double sum. For more dscussos, see Klass ad Nowck (1997). It wll be show Theorems 3.2 ad 3.4 that (1.4) ad ts two-sample verso 112 E ( S 2 / ξ 2 ) mg ( ξ 2 ) ( Eg ξ 2 ){ E1 + N1 m 2 ad ther extesos to geeral k, hold for all odecreasg oegatve fuctos g ad m 1, where ξ 2 = max 2 ψx 1 X 2 1/ wth ψ beg the X 1 X 2 -verso of ψ (cf. Secto 3.1). These theorems also assert that (1.5) ad ts two-sample verso 113 P { ξ 2 >t 24P { S 2 t/2 ad ther extesos to geeral k, hold for all postve t. Let be a fucto satsfyg 114 x x x 0cx Mc α x c c 1x 0 for some α>0. Ths cludes x =x α. It follows from (1.12) ad (1.13) that 115 C Mα E ξ 2 E S 2 C M α E ξ 2

5 436 C.-H. ZHANG wth C M α = 1/24M2Vc α ad C M α = Mcα +E1 + N 1 m 2, where m 1 <α m. The upper boud above follows from (1.12) as S 2 M max S 2 / ξ 2 α 1 ξ 2 ad c α c m for c 1. Iequalty (1.15) for geeral k ad ts oe-sample verso [based o (1.4) ad (1.5)] are gve Corollares 3.3 ad 3.5. Va dfferet methods, Klass ad Nowck (1997) obtaed (1.15) the depedet but o-d case, usg fuctos h x y 0 place of a fxed hx y. Ther results volved the costructo of dfferet costats. Let b = 1/p. Suffcet momet codtos for the SLLN (1.3) were gve by Hoeffdg (1961), Serflg (1980), Se (1974), Techer (1992) ad Gé ad Z (1992). By the Kolmogorov ad Marckewcz Zygmud strog laws, (1.3) holds for k = 1 f ad oly f EhX =0 for p 1 ad EhX p <. However, the case k 2 s qute dfferet. Gé ad Z (1992) gave a example to exhbt that the codto EX p < s ot ecessary for (1.3) whe hx y =xy. I Example 5.2 below, (1.3) holds for b = k/p ad some symmetrc h but EhX 1 X k p1+ε = for all ε>0, where 0 <p<2 ad p 1 = p/k pk 1/2 <p. For the specal case hx y =xy ad EX = 0 wheever EX <, Cuzck, Gé ad Z (1995) obtaed asc for the SLLN (1.3) uder certa regularty codtos o the dstrbuto of X (e.g., X symmetrc, PX >xregularly varyg), ad Zhag (1996) obtaed asc wthout regularty codtos o X. Some extesos of these results for k>2 are also avalable these papers. The SLLN ths paper gve asc for (1.3) for geeral oegatve kerels ad ts symmetrzed ad/or multsample versos. Theorem 1.1. Let S 2 ad S 2 be as (1.1) ad (1.7) ad c 1 θ ad c 0 θ be as (1.9). Suppose hx y =hy x 0, X X 1 X 2 are detcally dstrbuted, ad sup 1 2 b 2 m= m/b 2 m <. The the SLLN (1.3) holds ff T 2 /b 0 a.s., ff ξ 2 /b 2 0 a.s., ff S 2 /b 2 0 a.s., ff T 2 /b 0 a.s., ff ξ 2 /b 2 0 a.s., ff the followg three codtos hold: 116 c 0 1//b P { c 1 X 1/ >b 2 < =1 P { hx 1 X 2 >b 2 c 1X 1 1/ c 1 X 2 1/ < =1 Remark. 119 Codto (1.18) ca be replaced by P { hx 1 X 2 >b 2 c 1X 1 1/ c 1 X 2 1/ < =1 The proof of Theorem 1.1 ad ts extesos for geeral k ad multsample versos are gve Secto 4.

6 STRONG LAWS FOR U-STATISTICS Sub-Beroull fuctos. I the followg three subsectos, we shall (1) defe sub-beroull fuctos ad descrbe the motvato, (2) provde upper bouds for codtoal expectatos of products ad momets of sums of sub-beroull fuctos ad (3) provde some expoetal equaltes Sub-Beroull fuctos. A radom varable φ ( ) Y 1 Y k s called a sub-beroull fucto of a radom vector ( ) Y 1 Y k wth parameter θ 1 θ k f 0 φ 1 ad for all A 1k 21 E [ φy 1 Y k Y l l A c] θ l From ths defto, sub-beroull fuctos are oegatve fuctos of Y 1 Y k whose codtoal expectatos gve subsets of Y 1 Y k are uformly bouded from above by the products of the θ s the complemetary subsets of θ 1 θ k. Cosder the case of k = 1. By defto φ = φ Y are sub-beroull fuctos of Y ff 0 φ 1 ad Eφ θ. Such varables φ are domated momets by Beroull varables δ wth Eδ = θ the sese that Eφ m Eδ m = θ for all m 1. Although ths does ot mply stochastc domace (.e., Pφ >t Pδ >tmay ot hold for all t), t s strog eough to assure 22 ( ) m E φ = =1 1 m m m E m E δ =1 m φ =1 l A ( = E ) m δ =1 for all tegers m 1. Thus, as far as momets of sums are cocered, Beroull varables are the optmal oes amog all sub-beroull varables. We shall show below that products of depedet Beroull varables are optmal for geeral k amog all sub-beroull fuctos Expectatos of products ad momets of sums. Proposto 2.1. Beroull fuctos of Ỹ =Y 1 1 ) ) Suppose φ (Ỹ ad φs (Ỹ, 1 s m, are sub- Y k wth parameters θ =θ 1 θ k k for = 1 k k. The, for all s = 1s ks k, 1 s m, ad A 2, 23 [ m E φ s Ỹ s F A c ] m k l A s θ l l s [ m = E k l=1 ] δ l l s δ = 1 where F A = σy l l A, A s =l k l s l t s<t m l l s A, A c = 2 \ A, ad δ = δ l l s l l s A. Moreover, for all s k, 1

7 438 C.-H. ZHANG 1 s m, 24 ( ) ( m m E φ s Ỹ E s k s l=1 δ l l ) Cosequetly, for = k l=1 1 l wth = 1 k, 25 ( ) m E φ Ỹ k l=1 ( l E =1 ) m δ l Remark. Sce Y l are depedet (betwee dfferet l as well as dfferet ), the deces are allowed to have tes. Proof. Set φ = φ Ỹ. By (2.1), E [ φ s Ỹt s<t m F A c ] = E [ φs Y l l s l A s ] l A s θ l l s Repeated applcatos of ths equalty for s = 1m gve the equalty (2.3). The detty (2.3) follows from P { δ s = 1 δ t = 1s<t m δ = 1 = P { δ s = 1 δ l l s = 1l A s = θ l l s l A s Fally, smlarly to (2.2), (2.4) s proved by frst wrtg the product of sums as sum of products ad the applyg (2.3) wth A = 2 (trval F A c) to each (product) term the sum to allow substtuto of φ s by δ. For the sgle sequece Y, we have the followg aalogous result. Proposto 2.2. Suppose φ Y ad φ s Y, 1 s m, are sub- Beroull fuctos of Y wth parameters θ for = 1 k k. The, for all s = 1s k s k, 1 s m ad A 1, 26 [ m ] E φ s Y s F A c m θ l s l A s [ m = E k l=1 ] δ l s δ = 1 where A s =l k l s t s<t mad 1 k l s A, F A = σy A, A c = 1 \ A, ad δ = δ l s l s A. Moreover, for all s k, 1 s m, 27 ( ) ( m m E φ s Y E s s l=1 k δ l )

8 STRONG LAWS FOR U-STATISTICS 439 Cosequetly, wth T = =1 δ, ( m 28 E φ Y ) E k ( T Remark. The symmetrzed versos of (2.5) ad (2.8) ca be easly produced usg the Khtche equalty. ad Remark. For all odecreasg oegatve g, k ) m EN θ gn θ m θegn θ + 1 EN λ gn λ =λegn λ + 1 These ad Corollary 2.1 of Gleser (1975) mply ( ) m ( ) m ( ) m ET m ENm EN θ m T N θ Nλ λ E E E where θ = λ / = =1 θ / ad T s as (2.8). Thus, the T (2.8) ad the sums o the rght-had sde of (2.5) ca be replaced by Posso varables. The proof of Proposto 2.2 s omtted as t s early detcal to the proof of Proposto Expoetal equaltes. There are several ways of obtag expoetal equaltes for the tal probabltes of U-statstcs from momet equaltes. Here we shall oly preset oe for symmetrzed ad decoupled U-statstcs. Proposto 2.3. Let 0 < θ 1. Suppose φ Ỹ = f 2 Ỹ are sub- Beroull fuctos of Ỹ wth a commo parameter θθ for all = 1 k k. The, 29 ( E exp t ε f Ỹ 1/k) k/2 2E exp ( t 2 N θ /2 ) k where N θ s bomal θ. Cosequetly, { 1/k ε 210 P f Ỹ k/2 k ( t 2 exp t 2 /2 θ + t/2 Corollary 2.4. Suppose f Ỹ c ad Ef 2 Ỹ σ 2 for all = 1 k k. The { 1/k ( ε 211 P f Ỹ t 2 ) /2 k/2 t 2 exp σ 2/k + tc/2σ k 1/k k )

9 440 C.-H. ZHANG For k = 1, (2.11) becomes the Berste equalty. For d X ad completely degeerate kerels f wth f c ad Ef 2 σ 2, Arcoes ad Gé [(1993), page 1501] obtaed the equalty { P k fx k/2 1/k ( t c k exp c k ) t2 σ 2/k +tc/ 2/k+1 ad ts symmetrzed ad/or decoupled versos wth mplctly specfed uversal costats c k ad c k. Ther equaltes gve smaller upper bouds for σ k+1/k /ct =o1 tha (2.11) although the breakdow pot t = σ k+1/k /c s the same. For related expoetal equaltes for the Rademacher chaos, we refer to Ledoux ad Talagrad (1991). Proof of Proposto 2.3. Set T = ε f k Ỹ ad S = k f 2 Ỹ. Let Z be a N0 1 varable depedet of N θ. By the Khtche equalty ad (2.5) of Proposto 2.1, E T 2m ( EZ 2m) k ( ) m ( E S EZ 2m EN m k θ) By the Jese equalty E T 2m/k E ( Z ) 2m. N θ Sce e x e x +e x, the left-had sde of (2.9) s bouded by { λ T E 2 1/k 2m λ 2m 2 2m! 2m! E( ) 2m Z N θ m=0 m=0 = 2E exp ( ) ( λz N θ = 2E exp t 2 N θ /2 ) wth λ = t/. Thus, (2.9) holds. The proof of (2.10) from (2.9) s early detcal to the proof of the Berste equalty Chow ad Techer [(1988), page 111]. By (2.9) ad the Markov equalty, 212 { P k ε f Ỹ k/2 1/k t 2 exp λt (1 + θ { expλ 2 /2 1 ) for all λ>0. Take λ = t/θ + t/2. Sce λ 2 /2 < 2 ad e x 1 x/1 x/2 for 0 x<2, θ { expλ 2 /2 1 θλ2 /2 1 λ 2 /4 θλ2 /2 1 λ/2 = tλ 2 Thus, the rght-had sde of (2.12) s bouded by 2 exp tλ1 + tλ/2 2 exp tλ/2 ad the proof s complete. Proof of Corollary 2.4. Let θ = σ 2 /c 2 1 ad φ = φ Ỹ =θ k 1 c 2 f 2 Ỹ. The φ are sub-beroull fuctos of Ỹ wth parameter θθ, as the φ verso of (2.1) holds for >0 due to φ θ k 1 θ k ad for

10 STRONG LAWS FOR U-STATISTICS 441 = 0 due to Eφ θ k. Set λ = θc 1/k / θ. It follows from (2.10) that the left-had sde of (2.11) s bouded by { θ k/2 P θc k ε f Ỹ k/2 1/k t λ ( 2 exp t 2 /2 λ 2 θ + λt/2 Hece, (2.11) holds as λ 2 θ =θc 2 1/k = σ 2/k ad λ = σ 1/k / θ = c/σ k 1/k. ) 3. Momets of maxma ad sums. I ths secto we provde momet ad tal probablty equaltes for maxma ad sums of products [e.g., (1.4), (1.5), (1.12) ad (1.13)]. We shall provde the ormalzg kerels Secto 3.1, the equaltes the d ad multsample cases Secto 3.1 ad equaltes for depedet ot detcally dstrbuted varables Secto 3.3. Secto 3.4 cotas the proofs of Theorems 3.2 ad 3.4 Secto 3.2. We shall use the followg otato to shorte expressos: k =1k, a =a 1 a, ad for all a k ad A k wth sze A =, a l l A = a l1 a l wth l 1 <l beg the ordered labels A Costructo of ormalzg kerels. Let hy k be a oegatve Borel fucto ad Y k =Y 1 Y k be a radom vector wth ot dstrbuto F Yk. Gve θ k =θ 1 θ k, we shall fd a ormalzg kerel ψy k such that φy k =hy k /ψy k s a sub-beroull fucto of Y k wth parameter θ k. I addto, the ormalzg kerels should be small eough to be used the proof of equaltes both drectos such as (1.4) ad (1.5). We shall classfy the 2 k equaltes of (2.1) accordg to A, the sze of A, ad cosder those wth A =k, = k0. The ormalzg kerel s defed by ψy k =ψy k θ k hf Yk = max h y k =h 0 y k 0 k { h y k =h +1 y k max c A y l l A A=k A k = k 10, h k y k =hy k =c k y k, ad for A k ad A = k 33 ( c A yl l A c) ( = c A yl l A c ) θ k hf Yk { [ ] hy k = f c 0 E h +1 Y k c Y l = y l l A c θ l l A

11 442 C.-H. ZHANG Note that c 0 does ot deped o y k. Defe φ A y k =φ A y k θ k h F Yk by 34 φ A y k = hy k h +1 y k c A y l l A Lemma 3.1. Let θ k, h ad F Yk be as (3.1) (3.4). For all fxed y l l A, the fucto φ A y k (3.4) s a sub-beroull fucto of Y l l A wth the parameter θ l l A, ad Eφ A Y k Y l l A = l A θ l for c A Y l l A > 0. I partcular, φy k = h/ψ = φ 0k y k s a sub- Beroull fucto of Y k wth the parameter θ k. Proof. It mmedately follows from (2.1), (3.2) ad (3.3) that φ A y k s codtoally sub-beroull. Its mea s gve by (3.3) as the codtoal expectato o the rght-had sde s cotuous c for c > Momet equaltes the d ad multsample cases. We shall provde momet equaltes volvg maxma ad sums, exteded (1.4) ad (1.5) wth d X ad ther multsample versos wth depedet d sequeces X l, l 1. Let hx 1 x k be a fxed kerel. For k ad k l=1 1 l defe 35 S = hx S = h X Let θ k =θ 1 θ k ad θ be fxed parameters. Let F X be the ot dstrbuto of X =X 1 X k ad F Xk be the ot dstrbuto of X k = X 1 X k. Defe 36 ξ θ = max ψ ( ) X θθhf Xk ξ k = ξ k k/ 37 ξ θ k = max ψ ( ) X θ k hf X ad 38 where ψ s gve by (3.1). ξ = ξ k l=1 1 1/ l 1 1/ k ξ k = ξ k 1/1/ Theorem 3.2. Let g be a odecreasg oegatve fucto. The, for all k l=1 1 l ad tegers m 1, 39 E ( ) mg ( ) ( ) S / ξ k θ k ξ θ k Eg ξ θ k E ( ) m 1 + N l θ l l=1

12 STRONG LAWS FOR U-STATISTICS 443 Furthermore, for all = 1 k ad real umbers t>0 ad 0 <ε<1, 310 P { ξ >t P { S >εt ( 3 k 2 k ) 1 ε + 2 2k As (1.15), we have the followg corollary. Corollary 3.3. Let be a fucto satsfyg (1.14) for some α m. The, M2Vc α 1 E ξ 3 k 2 k /4 + 2 k E S M ( c α + { E1 + N 1 m k) E ξ Theorem 3.4. Let g be a odecreasg oegatve fucto. The, for all k ad tegers m 1, 311 E ( ( ) mg ( ( ) k + m N S /ξ θ) ξ θ) Eg ξ θ E θ k Furthermore, there exsts a fucto C k ε such that for all k ad real umbers t>0 ad 0 <ε<1, 312 P { ξ k For kk + 1, (1.13) holds wth C k ε = =0 >t C k ε P { S k >εt ( k k + 1 ){1 + E( N )2 k+1 k 1 1 ε 2 Remark. If s a multpler of k!, (3.12) holds for C k ε = k =0 )2 1 ( k ){1 + E( N k k 1 ε 2 Corollary 3.5. Let be a fucto satsfyg (1.14) for some α m. The, Eξ k ES k M2Vc α C ME( ξ k ) { ( ) k + m c α + E Nk k 1/2 k Theorems 3.2 ad 3.4 are proved Secto Geeral depedet varables. I ths secto, we cosder the expectatos of the product of a maxmum ad several sums for depedet varables Y Y l 1l 1, whch may have dfferet dstrbutos. Proposto 3.6. Suppose ψ Ỹ are measurable fuctos of Ỹ ad φ s Ỹ are sub-beroull oes wth parameters θ for k. Let k s =

13 444 C.-H. ZHANG k l=1 Il s for some Is l 1. The, for all odecreasg oegatve fuctos g, k ad m 1 ( ) m 313 Eg ξ φ s Ỹ Eg ( ) ξ k m { E 1 + Tl s k s l=1 where ξ = max ψ Ỹ ad T l s = δ l Is l. Proposto 3.7. Suppose ψ Y are measurable fuctos of Y ad φ s Y are sub-beroull oes wth parameters θ for k. Let k s = I k s k for some I s 1. The, for all odecreasg oegatve fuctos g, k ad m 1, ( ) m 314 Egξ φ s Y Eg ( ) m ( ) k + Ts ξ E k k s where ξ = max ψ Y ad T s = I s δ. Remark. For geeral k l l, we may apply Proposto 3.7 to φ Y = = φ Y /k! ad ψ Y =maxψ Y =, where = 1 k s regarded as a set. Proof of Proposto 3.6. Set ψ = ψ Ỹ ad φ s = φ s Ỹ. Before provdg the full proof of (3.13), we shall frst take a look at the case where k = 1 ad m = 2. Let ψ φ, 1, be depedet radom vectors wth 0 φ 1 ad Eφ = θ. Let be the dex at whch max gψ s reached. We have ( )( 1 )( E max gψ 2 ) φ 1 φ =1 Egψ φ =1 1 1 =1 1 =1 1 =1 1 =1 Egψ φ φ 2 I 2 2 Egψ φ φ 1 I 1 Egψ φ 1 φ 2 I 1 2 Sce g s odecreasg ad oegatve, { Egψ φ 1 φ 2 I 1 2 E max gψ Eφ 1 φ Egψ Eδ 1 δ 2

14 STRONG LAWS FOR U-STATISTICS 445 Smlarly, Egψ φ φ I Egψ Eδ ad Egψ φ 2 0 φ 1. Isertg these equaltes to (3.15), we obta 317 ( 1 )( 2 ) Egψ φ 1 φ 2 1 =1 1 =1 Egψ ( ) 1 + ET 1 + ET 2 + ET 1 T 2 Egψ E ( )( ) 1 + T T2 Egψ as where T = =1 δ. Ths s (3.13) for k = 1 ad m = 2. To proof (3.13) wth geeral k ad m, we shall compare the dces s = 1s k s, 1 s m, wth = 1 k products of the form gψ m φ s s, where s the dex at whch the maxmum ξ s reached. Let =l s 1 l k 1 s m. Gve A ad 1 m, defe A = l s l s A as a A-dmesoal vector of postve tegers. Set A = l s A Is l, whch s the space of combed labels A. Defe π A = π A 1 m =I { l s = l l s A whch dcate dfferet patters of match betwee 1 m ad. Ths facltates the calculato of sums volvg dfferet patters of match betwee ad. Sce A π A = 1, we have, as (3.15), 318 Egξ ( m s s φ s s ) = { m Egψ A = m Egψ A A A φ s s φ s s π A c where 1 m = ad s = 1s k s wth l s = l s for l s A ad l s = l for l s A, gve ad A. Gve A ad A, let o = o 1 o k be the dex at whch the maxmum of ψ s reached over the set A A = 1 k l l k l k A, ad s = 1s k s wth l s = l s for l s A ad l s = o l for l s A. Note that A A s the space of combed dces whch do ot volve the specfed A.Wehave m m Egψ φ s s Egψ o φ s s Let F A A be the σ-feld geerated by Y l l l l s l s A. Sce o s F A A measurable, for all = 1 k A A [ E gψ o m ] [ m φ s s F A A = gψ oe φ s s Y l l s ] l s A

15 446 C.-H. ZHANG o the evet { o =, where s = 1s k s wth l s = l s for l s A ad l s = l for l s A. Sce φ s are sub-beroull fuctos of Ỹ, by (2.3), [ m E φ ] s s Y l l s A E Thus, for the gve A ad A we have as (3.16), Egψ l s m φ s s Egψ oe l s A l s A δ l l s δ l l s Egψ E Isertg ths to (3.18), we fd as (3.17), ( ) m Egξ φ s s Egψ E s s A A A Egψ 319 E A Hece (3.13) holds for geeral k ad m. = Egξ E k l=1 l s A l s A l s A T l s m ( ) 1 + Tl s δ l l s Proof of Proposto 3.7. Let be the locato of the maxmum ξ. Smlarly to the proof of Proposto 3.6, we fd va Proposto 2.2 that Eg ( ) m ( ) ξ φ s Eg ( ) m ( ) ξ E δ k s A ss = Eg ( ( ) ) m Ts ξ E A where s = #l l s A. Sce there are ( k ) subsets of 1k of sze k, m A ( Ts s ) m = Ths completes the proof. k =0 ( )( ) k Ts = k k s ( m k + Ts 3.4. Proofs of Theorems 3.2 ad 3.4. We shall use Propostos 3.6 ad 3.7 to prove (3.9) ad (3.11). The Catell equalty below s appled to sums of sub-beroull varables Lemma 3.1 the proof of (3.10) ad (3.12). Lemma 3.8 (Catell equalty). Let W be a radom varable wth EW = µ ad VarW =σ 2. The PW ε µ ε 2 /σ 2 +µ ε 2 for all ε<µ. k δ l l s )

16 STRONG LAWS FOR U-STATISTICS 447 Proof of Theorem 3.2. Let φ = h X /ψ X θ k hf X. By Lemma 3.1, φ are sub-beroull varables wth parameter θ k. By (3.5) ad (3.7), S / ξ θ k φ, so that (3.9) follows drectly from Proposto 3.6. Let us prove (3.10). Let = 1 k ad A k be fxed wth A = k. Defe 320 ξ A = max { ( l c A X l l A ) l 1 l l A c where c A y =c A y 1/ 1 1/ k hf X as (3.3). Let l l A c be the dex at whch the maxmum (3.20) s reached. Defe 321 A = ( ) φ A X A wth φ A y k =φ A y k 1/ 1 1/ k hf X as (3.4), where A = { 1 k l 1 l l A l = l l Ac By Lemma 3.1, E A ξ A =1 for ξ A > 0, ad by Lemma 3.1 ad (2.5), E [ 2 ] A ξ A EN 2 l 1/ l ( EN1) 2 k = 2 k l A Thus, by Lemma 3.8 wth W = A P { A >ε ξ A 1 ε 2 2 k 1+1 ε 2 o the set ξ A > 0. Sce S / ξ A A by (3.4), ths mples P { ξ A >t 2k 1+1 ε 2 P { S 1 ε 2 >εt Sce ξ s the maxmum of ξ A over all A k ad there are ( k ) of these wth A =k, P { ξ >t P { S >εt k ( ) k 2 k 1+1 ε 2 1 ε 2 Ths completes the proof. =0 Proof of Theorem 3.4. Let φ = hx /ψx θθhf Xk. By Lemma 3.1, φ are sub-beroull varables. By (3.5) ad (3.6), S /ξ θ φ, so that (3.11) follows drectly from Proposto 3.7. We shall oly prove (3.12) for kk + 1 wth the explct C kε. The proof of (3.10) ca be used to prove (3.12) f ξ k ca be decoupled. Let us dvde 1 to k + 1 blocks B l as evely as possble. Let A k wth A =k ad blocks, say B 1 B, be fxed. Let ξ A be the maxmum

17 448 C.-H. ZHANG of c A X over l=1 B l, reached at 1, ad A be the sum as (3.21), wth fxed frst compoets of = 1 k, l = l l, over +1 k k k+1 l=+1 B l k. The, by Lemma 3.8 ad (2.8) P { A >ε ξ µ ε2 A v +µ ε2 where µ =k/k ( ) k ad v E ( N λ )2 µ k 2, wth beg the sze of k+1 l=+1 B l ad λ = k/. Cosder the smallest possble µ wth = sk+1+ ad = sk+1, B l =s+1for l, for some s. I ths case, k/ /k 1 by algebra for s k, whch holds as kk + 1. Thus, µ k/k /k k 1. I the case of largest possble λ, wth =s+1k+1 ad = sk+1+k+1 ad the the smallest possble s = k, kk + 1, wehaveλ = k/ k + 1. Therefore, 1+v E( N k+1 k )2 = 1+v, say. As the proof of Theorem 3.4, by Lemma 3.8, P { { ξa >t v 1 + P { S k 1 ε 2 >εt ) ways to select these Now, ξ k s the maxmum of ξ A over totally ( k+1 blocks ad the over = 0k, so that P { ξ k >t P { k ( ){ S k >εt k The proof s complete. =0 v 1 ε 2 4. SLLN. Let fx 1 x k be a real Borel fucto. Let f 2 x 1 x k = hx 1 x k. I ths secto we gve asc for the SLLN (1.3), ts multsample verso 41 S k /b k 0 a.s. ad ther symmetrzed versos S k T k /bk/2 0 a.s. where s gve by (1.7), ad T k assume throughout ths secto that b k 44 k sup 1 T k /b k/2 0 a.s. m= ad T k m k 1 b k m < are gve by (1.8). We shall We shall also assume that the fucto f s permutato varat, fx 1 x k =fx 1 x k for all 1 k k k.

18 STRONG LAWS FOR U-STATISTICS 449 Theorem 4.1. Let S k be gve by (1.7) ad ξ k by (3.8). Let ε > 0, 1 3. Let be a sequece of postve tegers such that 1 <γ 1 +1 / γ 2 <, 1. The (4.1) ad (4.3) are equvalet to each other ad to each ad all of the followg statemets: 45 ξ k /b k 0 as =1 P { S k >ε 1 b k < P { T k >ε 2 b k/2 < =1 =1 P { ξ k >ε 3 b k < Remark. These are the multsample versos of the SLLN, sce X 1 X k are allowed to have dfferet dstrbutos. Theorem 4.2. Let S k be gve by (1.1) ad ξ k by (3.6). Let ε > 0 ad be as Theorem 4.1. Suppose X X 1 X k are d radom varables. The, (1.3), (4.2) ad (4.6) (ad other statemets Theorem 4.1) are equvalet to each other ad to each ad all of the followg statemets: 49 ξ k /bk 0 as =1 =1 =1 P { S k >ε 1 b k < P { T k >ε 2 b k/2 < P { ξ k >ε 3 b k < We state Lemma 3.5 ad Proposto 4.2 of Zhag (1996) here as t s appled some crucal parts the proofs. Lemma 4.3. Let η be oegatve radom varables ad A be evets. The η I A I A0 η + I A c A +1 η = 0 = 0 = 0 =+1

19 450 C.-H. ZHANG For dsot sets of postve tegers A 1 A l, defe the sum of crossblock terms S k A 1 A l = hx I { A 1 A l k where A 1 A l s the set of vectors 1 k such that 1 k l=1 A ad 1 k A for all 1 l. For example, S k A /( A) k s the U-statstc based o the set of varables X A, where A s the sze of the set A. Proposto 4.4. Let A, 0 l, be dsot sets of postve tegers ad a be real umbers dexed by vectors = 1 k. The a I { A 1 A l A 0 A 1 A l = l 1 l =0 0<m 1 < <m l a I { 1 k A 0 A m1 A m for all sets of ftely may vectors. I partcular, S k A 1 A k = k 1 k =0 0<m 1 < <m k S k A 0 A m1 A m Note that ( k l=1 A l ) 1 k S A 1 A k are multsample U-statstcs. Proof of Theorem 4.1. We shall prove , ad WeuseM to deote a arbtrary postve costat. We may choose ay value of ε (large or small), sce (4.1) has othg to do wth the scalg. () By Lemma 3.8 wth W = T k 2 / S k gve S k Khtche equalty, {( T k ) 2 P 1/2 S k k S 1/ /4 ad the See the proof of (3.10) ad Gé ad Z [(1994), page 122] for detals. () See (3.10) Theorem 3.2. () Ths part s very close to the proof of Theorems 2.2 (suffcecy) ad 3.1 Zhag (1996). Let ε 3 = 1 ad ε>0. By the Doob

20 STRONG LAWS FOR U-STATISTICS 451 equalty for the reverse martgale T k { P max < +1 ( T k ) 2 b k max < +1 ( 2k +1 4 ε 2 b k / k,, codtoally o ξ k >ε 2 ξ k +1 1/ 1/ b k ( 2k ) E ε 2 b k ) ( T k E k max < +1 ( T k k ) 2 I { ξ k b k 4γ2k 2 E ( T k ) 2I { ε 2 b k ξ k b k = 4γ2k 2 k ε 2 b k Eh X 1 I { ξ k where X 1 =X 1 1 Xk 1. Thus, { ( P max T k ) 2/b k < >ε 2 +1 =1 b k ) 2 I { ξ k +1 b k P { ξ +1 1/ 1/ >b k k + M Eh X b k 1 I { ξ k b k By (4.8), the frst sum o the rght s fte. By (4.4) ad Lemma 4.3, k b k Eh X 1 I { ξ k b k, M + M k +1 Eh X b k 1 I { ξ k >b k ξ k +1 b k It follows from (4.8) ad (3.9) of Theorem 3.2 (wth ξ θ k It >b k ) that the rght-had sde above s bouded by = ξ k ad gt = M + M S k E I { ξ b k k +1 M + M M + M E >b k ξ k +1 b k +1 S k I { ξ ξ k k >b k P { ξ k >b k < (v) Ths s a cosequece of Proposto 4.4 ad the Borel Catell lemma. For detals, see Step 3 of the proof of Theorem 4.1 of Zhag (1996), page 1608.

21 452 C.-H. ZHANG (v) The proof s smpler tha (). (v) See (v). (v) The Borel Catell lemma. Proof of Theorem 4.2. By Proposto 4.4, 13 46, as (v) of the proof of Theorem 4.1. Sce hx 1 x k 0, by de la Peña ad Motgomery-Smth (1995). The proofs of , , ad , are detcal to those of , ad , respectvely. Proof of Theorem 1.1. () (1.18). Let 2 m < 2 +1 be the dex at whch Pξ k >b k reaches ts maxmum over 2 <2 +1. Takg = m 2 (4.12) wth ε 3 = 1 ad the = m 2+1,wefd P { ξ k >bk < =1 For k = 2 ad b 2 c 02/, hx 1 X 2 >b 2 c 1X 1 2/ c 1 X 2 2/ ad (1.9) mply φ X 1 X 2 =1, wth φ x y =hx y/ψx y 2/, so that the left-had sde of (1.18) s bouded by =2 Eφ X 1 X 2 I { ξ 2 = =2 2 1 E 2 >b2 φ X I { ξ 2 >b2 =2 2E ( ) 2+N P{ ξ 2 >b2 < The equalty above s a cosequece of Proposto 3.7, wth gx =Ix > b 2. Also, (1.16) follows from ξ2 /b 2 0 a.s. ad (1.17) follows from (4.13), as (4.13) mples 1 Pmax 1 c 1 X 2/ >b 2 <. () (1.16) By the Borel Catell lemma (1.16) We obta by takg m to be the dex of the mmum the block 2 <2 +1 the proof of (). 5. Examples. For 0 <p<2, Gé ad Z (1992) proved that EfX 1 X k p < s suffcet for (4.2) wth b = 1/p. Here we gve a example to show that the pth momet codto s some sese far away from ecessary. By the equvalece of (4.1) ad (4.3) ad the Kolmogorov ad Marckewcz Zygmud strog laws, we have the followg example. Example 5.1. Let Y l Y l 1 be depedet sequeces of d radom varables. Suppose EY l p l <,0<pl 2, 1 l k, p 1 + +p k < 2k. The k/p k l=1 =1 ε l Y l 0 a.s., where k/p = 1/p /p k. Example 5.2. Take 0 <p<2 ad set p 1 = p/k pk 1/2 <p. Defe fx 1 x k = k x 2/p 1 k 1 x 2 x k, the permutato symmetrzed verso of

22 STRONG LAWS FOR U-STATISTICS 453 the kerel x 2/p 1 1 x 2 x k. Let X be a oegatve varable wth EX 2 < but EX 2+ε = for all ε>0. The k/p k ε 1 ε 2 ε k fx 1 X k 0 a.s., whle EfX 1 X k p1+ε = for all ε>0. Proof. It s clear that EfX 1 X k p1+ε = for all ε>0. By the equvalece of (4.2) ad (4.3), t suffces to show k/p k ε 1 ε 2 ε k fx 1 1 X k k 0 a.s., whch s a cosequece of Example 5.1 wth Y 1 = X 1 2/p 1, Y l = X l for 2 l k ad p 2 = =p k = 2. Ackowledgemet. I thak the referee for may valuable suggestos. REFERENCES Arcoes, M. ad Gé, E. (1993). Lmt theorems for U-processes. A. Probab Chow, Y. S. ad Techer, H. (1988). Probablty Theory. Sprger, New York. Cuzck, J., Gé, E. ad Z, J. (1995). Laws of large umbers for quadratc forms, maxma of products ad trucated sums of..d. radom varables. A. Probab de la Peña, V. ad Motgomery-Smth, S. J. (1995). Decouplg equaltes for the tal probabltes of multvarate U-statstcs. A. Probab Gé, E. ad Z, J. (1992). Marckewcz type laws of large umbers ad covergece of momets for U-statstcs. I Probablty Baach Spaces 8 (R. M. Dudley, M. G. Hah ad J. Kuelbs, eds.) Brkhäuser, Bosto. Gé, E. ad Z, J. (1994). A remark o covergece dstrbuto of U-statstcs. A. Probab Gleser. L. J. (1975). O the dstrbuto of the umber of successes depedet trals. A. Probab Hoeffdg, W. (1961). The strog law of large umbers for U-statstcs. Isttute of Statstcs Mmeo Ser. 302, Uv. North Carola, Chapel Hll. Klass, M. J. ad Nowck (1997). Order of magtude bouds for expectatos of 2 -fuctos of o-egatve radom blear forms ad geeralzed U-statstcs. A. Probab Klass, M. J. ad Zhag, C.-H. (1994). O the almost sure mmal growth rate of partal sum maxma. A. Probab Ledoux, M. ad Talagrad, M. (1991). Probablty Baach spaces. Sprger, New York. Serflg, R. J. (1980). Approxmato Theorems of Mathematcal Statstcs. Wley, New York. Se, P. K. (1974). O L p -covergece of U-statstcs. A. Ist. Statst. Math Techer, H. (1992). Covergece of self-ormalzed geeralzed U-statstcs. J. Theoret. Probab Zhag, C.-H. (1996). Strog laws of large umbers for sums of products. A. Probab Rutgers Uversty Departmet of Statstcs Hll Ceter for Mathematcal Sceces Busch Campus Pscataway, New Jersey E-mal: czhag@stat.rutgers.edu

Complete Convergence and Some Maximal Inequalities for Weighted Sums of Random Variables

Complete Convergence and Some Maximal Inequalities for Weighted Sums of Random Variables Joural of Sceces, Islamc Republc of Ira 8(4): -6 (007) Uversty of Tehra, ISSN 06-04 http://sceces.ut.ac.r Complete Covergece ad Some Maxmal Iequaltes for Weghted Sums of Radom Varables M. Am,,* H.R. Nl

More information

Parameter, Statistic and Random Samples

Parameter, Statistic and Random Samples Parameter, Statstc ad Radom Samples A parameter s a umber that descrbes the populato. It s a fxed umber, but practce we do ot kow ts value. A statstc s a fucto of the sample data,.e., t s a quatty whose

More information

Complete Convergence for Weighted Sums of Arrays of Rowwise Asymptotically Almost Negative Associated Random Variables

Complete Convergence for Weighted Sums of Arrays of Rowwise Asymptotically Almost Negative Associated Random Variables A^VÇÚO 1 32 ò 1 5 Ï 2016 c 10 Chese Joural of Appled Probablty ad Statstcs Oct., 2016, Vol. 32, No. 5, pp. 489-498 do: 10.3969/j.ss.1001-4268.2016.05.005 Complete Covergece for Weghted Sums of Arrays of

More information

Chapter 5 Properties of a Random Sample

Chapter 5 Properties of a Random Sample Lecture 6 o BST 63: Statstcal Theory I Ku Zhag, /0/008 Revew for the prevous lecture Cocepts: t-dstrbuto, F-dstrbuto Theorems: Dstrbutos of sample mea ad sample varace, relatoshp betwee sample mea ad sample

More information

9 U-STATISTICS. Eh =(m!) 1 Eh(X (1),..., X (m ) ) i.i.d

9 U-STATISTICS. Eh =(m!) 1 Eh(X (1),..., X (m ) ) i.i.d 9 U-STATISTICS Suppose,,..., are P P..d. wth CDF F. Our goal s to estmate the expectato t (P)=Eh(,,..., m ). Note that ths expectato requres more tha oe cotrast to E, E, or Eh( ). Oe example s E or P((,

More information

Chapter 4 Multiple Random Variables

Chapter 4 Multiple Random Variables Revew for the prevous lecture: Theorems ad Examples: How to obta the pmf (pdf) of U = g (, Y) ad V = g (, Y) Chapter 4 Multple Radom Varables Chapter 44 Herarchcal Models ad Mxture Dstrbutos Examples:

More information

Extreme Value Theory: An Introduction

Extreme Value Theory: An Introduction (correcto d Extreme Value Theory: A Itroducto by Laures de Haa ad Aa Ferrera Wth ths webpage the authors ted to form the readers of errors or mstakes foud the book after publcato. We also gve extesos for

More information

X ε ) = 0, or equivalently, lim

X ε ) = 0, or equivalently, lim Revew for the prevous lecture Cocepts: order statstcs Theorems: Dstrbutos of order statstcs Examples: How to get the dstrbuto of order statstcs Chapter 5 Propertes of a Radom Sample Secto 55 Covergece

More information

Special Instructions / Useful Data

Special Instructions / Useful Data JAM 6 Set of all real umbers P A..d. B, p Posso Specal Istructos / Useful Data x,, :,,, x x Probablty of a evet A Idepedetly ad detcally dstrbuted Bomal dstrbuto wth parameters ad p Posso dstrbuto wth

More information

Non-uniform Turán-type problems

Non-uniform Turán-type problems Joural of Combatoral Theory, Seres A 111 2005 106 110 wwwelsevercomlocatecta No-uform Turá-type problems DhruvMubay 1, Y Zhao 2 Departmet of Mathematcs, Statstcs, ad Computer Scece, Uversty of Illos at

More information

Lecture 3 Probability review (cont d)

Lecture 3 Probability review (cont d) STATS 00: Itroducto to Statstcal Iferece Autum 06 Lecture 3 Probablty revew (cot d) 3. Jot dstrbutos If radom varables X,..., X k are depedet, the ther dstrbuto may be specfed by specfyg the dvdual dstrbuto

More information

The Mathematical Appendix

The Mathematical Appendix The Mathematcal Appedx Defto A: If ( Λ, Ω, where ( λ λ λ whch the probablty dstrbutos,,..., Defto A. uppose that ( Λ,,..., s a expermet type, the σ-algebra o λ λ λ are defed s deoted by ( (,,...,, σ Ω.

More information

Marcinkiewicz strong laws for linear statistics of ρ -mixing sequences of random variables

Marcinkiewicz strong laws for linear statistics of ρ -mixing sequences of random variables Aas da Academa Braslera de Cêcas 2006 784: 65-62 Aals of the Brazla Academy of Sceces ISSN 000-3765 www.scelo.br/aabc Marckewcz strog laws for lear statstcs of ρ -mxg sequeces of radom varables GUANG-HUI

More information

Strong Convergence of Weighted Averaged Approximants of Asymptotically Nonexpansive Mappings in Banach Spaces without Uniform Convexity

Strong Convergence of Weighted Averaged Approximants of Asymptotically Nonexpansive Mappings in Banach Spaces without Uniform Convexity BULLETIN of the MALAYSIAN MATHEMATICAL SCIENCES SOCIETY Bull. Malays. Math. Sc. Soc. () 7 (004), 5 35 Strog Covergece of Weghted Averaged Appromats of Asymptotcally Noepasve Mappgs Baach Spaces wthout

More information

Law of Large Numbers

Law of Large Numbers Toss a co tmes. Law of Large Numbers Suppose 0 f f th th toss came up H toss came up T s are Beroull radom varables wth p ½ ad E( ) ½. The proporto of heads s. Itutvely approaches ½ as. week 2 Markov s

More information

{ }{ ( )} (, ) = ( ) ( ) ( ) Chapter 14 Exercises in Sampling Theory. Exercise 1 (Simple random sampling): Solution:

{ }{ ( )} (, ) = ( ) ( ) ( ) Chapter 14 Exercises in Sampling Theory. Exercise 1 (Simple random sampling): Solution: Chapter 4 Exercses Samplg Theory Exercse (Smple radom samplg: Let there be two correlated radom varables X ad A sample of sze s draw from a populato by smple radom samplg wthout replacemet The observed

More information

ρ < 1 be five real numbers. The

ρ < 1 be five real numbers. The Lecture o BST 63: Statstcal Theory I Ku Zhag, /0/006 Revew for the prevous lecture Deftos: covarace, correlato Examples: How to calculate covarace ad correlato Theorems: propertes of correlato ad covarace

More information

MATH 247/Winter Notes on the adjoint and on normal operators.

MATH 247/Winter Notes on the adjoint and on normal operators. MATH 47/Wter 00 Notes o the adjot ad o ormal operators I these otes, V s a fte dmesoal er product space over, wth gve er * product uv, T, S, T, are lear operators o V U, W are subspaces of V Whe we say

More information

Entropy ISSN by MDPI

Entropy ISSN by MDPI Etropy 2003, 5, 233-238 Etropy ISSN 1099-4300 2003 by MDPI www.mdp.org/etropy O the Measure Etropy of Addtve Cellular Automata Hasa Aı Arts ad Sceces Faculty, Departmet of Mathematcs, Harra Uversty; 63100,

More information

Introduction to Probability

Introduction to Probability Itroducto to Probablty Nader H Bshouty Departmet of Computer Scece Techo 32000 Israel e-mal: bshouty@cstechoacl 1 Combatorcs 11 Smple Rules I Combatorcs The rule of sum says that the umber of ways to choose

More information

Extend the Borel-Cantelli Lemma to Sequences of. Non-Independent Random Variables

Extend the Borel-Cantelli Lemma to Sequences of. Non-Independent Random Variables ppled Mathematcal Sceces, Vol 4, 00, o 3, 637-64 xted the Borel-Catell Lemma to Sequeces of No-Idepedet Radom Varables olah Der Departmet of Statstc, Scece ad Research Campus zad Uversty of Tehra-Ira der53@gmalcom

More information

UNIVERSITY OF OSLO DEPARTMENT OF ECONOMICS

UNIVERSITY OF OSLO DEPARTMENT OF ECONOMICS UNIVERSITY OF OSLO DEPARTMENT OF ECONOMICS Postpoed exam: ECON430 Statstcs Date of exam: Jauary 0, 0 Tme for exam: 09:00 a.m. :00 oo The problem set covers 5 pages Resources allowed: All wrtte ad prted

More information

arxiv:math/ v1 [math.gm] 8 Dec 2005

arxiv:math/ v1 [math.gm] 8 Dec 2005 arxv:math/05272v [math.gm] 8 Dec 2005 A GENERALIZATION OF AN INEQUALITY FROM IMO 2005 NIKOLAI NIKOLOV The preset paper was spred by the thrd problem from the IMO 2005. A specal award was gve to Yure Boreko

More information

Research Article Some Strong Limit Theorems for Weighted Product Sums of ρ-mixing Sequences of Random Variables

Research Article Some Strong Limit Theorems for Weighted Product Sums of ρ-mixing Sequences of Random Variables Hdaw Publshg Corporato Joural of Iequaltes ad Applcatos Volume 2009, Artcle ID 174768, 10 pages do:10.1155/2009/174768 Research Artcle Some Strog Lmt Theorems for Weghted Product Sums of ρ-mxg Sequeces

More information

PROJECTION PROBLEM FOR REGULAR POLYGONS

PROJECTION PROBLEM FOR REGULAR POLYGONS Joural of Mathematcal Sceces: Advaces ad Applcatos Volume, Number, 008, Pages 95-50 PROJECTION PROBLEM FOR REGULAR POLYGONS College of Scece Bejg Forestry Uversty Bejg 0008 P. R. Cha e-mal: sl@bjfu.edu.c

More information

D KL (P Q) := p i ln p i q i

D KL (P Q) := p i ln p i q i Cheroff-Bouds 1 The Geeral Boud Let P 1,, m ) ad Q q 1,, q m ) be two dstrbutos o m elemets, e,, q 0, for 1,, m, ad m 1 m 1 q 1 The Kullback-Lebler dvergece or relatve etroy of P ad Q s defed as m D KL

More information

STRONG CONSISTENCY OF LEAST SQUARES ESTIMATE IN MULTIPLE REGRESSION WHEN THE ERROR VARIANCE IS INFINITE

STRONG CONSISTENCY OF LEAST SQUARES ESTIMATE IN MULTIPLE REGRESSION WHEN THE ERROR VARIANCE IS INFINITE Statstca Sca 9(1999), 289-296 STRONG CONSISTENCY OF LEAST SQUARES ESTIMATE IN MULTIPLE REGRESSION WHEN THE ERROR VARIANCE IS INFINITE J Mgzhog ad Che Xru GuZhou Natoal College ad Graduate School, Chese

More information

X X X E[ ] E X E X. is the ()m n where the ( i,)th. j element is the mean of the ( i,)th., then

X X X E[ ] E X E X. is the ()m n where the ( i,)th. j element is the mean of the ( i,)th., then Secto 5 Vectors of Radom Varables Whe workg wth several radom varables,,..., to arrage them vector form x, t s ofte coveet We ca the make use of matrx algebra to help us orgaze ad mapulate large umbers

More information

Research Article A New Iterative Method for Common Fixed Points of a Finite Family of Nonexpansive Mappings

Research Article A New Iterative Method for Common Fixed Points of a Finite Family of Nonexpansive Mappings Hdaw Publshg Corporato Iteratoal Joural of Mathematcs ad Mathematcal Sceces Volume 009, Artcle ID 391839, 9 pages do:10.1155/009/391839 Research Artcle A New Iteratve Method for Commo Fxed Pots of a Fte

More information

Chapter 4 Multiple Random Variables

Chapter 4 Multiple Random Variables Revew o BST 63: Statstcal Theory I Ku Zhag, /0/008 Revew for Chapter 4-5 Notes: Although all deftos ad theorems troduced our lectures ad ths ote are mportat ad you should be famlar wth, but I put those

More information

Summary of the lecture in Biostatistics

Summary of the lecture in Biostatistics Summary of the lecture Bostatstcs Probablty Desty Fucto For a cotuos radom varable, a probablty desty fucto s a fucto such that: 0 dx a b) b a dx A probablty desty fucto provdes a smple descrpto of the

More information

Assignment 5/MATH 247/Winter Due: Friday, February 19 in class (!) (answers will be posted right after class)

Assignment 5/MATH 247/Winter Due: Friday, February 19 in class (!) (answers will be posted right after class) Assgmet 5/MATH 7/Wter 00 Due: Frday, February 9 class (!) (aswers wll be posted rght after class) As usual, there are peces of text, before the questos [], [], themselves. Recall: For the quadratc form

More information

Functions of Random Variables

Functions of Random Variables Fuctos of Radom Varables Chapter Fve Fuctos of Radom Varables 5. Itroducto A geeral egeerg aalyss model s show Fg. 5.. The model output (respose) cotas the performaces of a system or product, such as weght,

More information

A Remark on the Uniform Convergence of Some Sequences of Functions

A Remark on the Uniform Convergence of Some Sequences of Functions Advaces Pure Mathematcs 05 5 57-533 Publshed Ole July 05 ScRes. http://www.scrp.org/joural/apm http://dx.do.org/0.436/apm.05.59048 A Remark o the Uform Covergece of Some Sequeces of Fuctos Guy Degla Isttut

More information

Estimation of Stress- Strength Reliability model using finite mixture of exponential distributions

Estimation of Stress- Strength Reliability model using finite mixture of exponential distributions Iteratoal Joural of Computatoal Egeerg Research Vol, 0 Issue, Estmato of Stress- Stregth Relablty model usg fte mxture of expoetal dstrbutos K.Sadhya, T.S.Umamaheswar Departmet of Mathematcs, Lal Bhadur

More information

STK4011 and STK9011 Autumn 2016

STK4011 and STK9011 Autumn 2016 STK4 ad STK9 Autum 6 Pot estmato Covers (most of the followg materal from chapter 7: Secto 7.: pages 3-3 Secto 7..: pages 3-33 Secto 7..: pages 35-3 Secto 7..3: pages 34-35 Secto 7.3.: pages 33-33 Secto

More information

The Occupancy and Coupon Collector problems

The Occupancy and Coupon Collector problems Chapter 4 The Occupacy ad Coupo Collector problems By Sarel Har-Peled, Jauary 9, 08 4 Prelmares [ Defto 4 Varace ad Stadard Devato For a radom varable X, let V E [ X [ µ X deote the varace of X, where

More information

Point Estimation: definition of estimators

Point Estimation: definition of estimators Pot Estmato: defto of estmators Pot estmator: ay fucto W (X,..., X ) of a data sample. The exercse of pot estmato s to use partcular fuctos of the data order to estmate certa ukow populato parameters.

More information

STRONG CONSISTENCY FOR SIMPLE LINEAR EV MODEL WITH v/ -MIXING

STRONG CONSISTENCY FOR SIMPLE LINEAR EV MODEL WITH v/ -MIXING Joural of tatstcs: Advaces Theory ad Alcatos Volume 5, Number, 6, Pages 3- Avalable at htt://scetfcadvaces.co. DOI: htt://d.do.org/.864/jsata_7678 TRONG CONITENCY FOR IMPLE LINEAR EV MODEL WITH v/ -MIXING

More information

Class 13,14 June 17, 19, 2015

Class 13,14 June 17, 19, 2015 Class 3,4 Jue 7, 9, 05 Pla for Class3,4:. Samplg dstrbuto of sample mea. The Cetral Lmt Theorem (CLT). Cofdece terval for ukow mea.. Samplg Dstrbuto for Sample mea. Methods used are based o CLT ( Cetral

More information

Chapter 14 Logistic Regression Models

Chapter 14 Logistic Regression Models Chapter 4 Logstc Regresso Models I the lear regresso model X β + ε, there are two types of varables explaatory varables X, X,, X k ad study varable y These varables ca be measured o a cotuous scale as

More information

Part 4b Asymptotic Results for MRR2 using PRESS. Recall that the PRESS statistic is a special type of cross validation procedure (see Allen (1971))

Part 4b Asymptotic Results for MRR2 using PRESS. Recall that the PRESS statistic is a special type of cross validation procedure (see Allen (1971)) art 4b Asymptotc Results for MRR usg RESS Recall that the RESS statstc s a specal type of cross valdato procedure (see Alle (97)) partcular to the regresso problem ad volves fdg Y $,, the estmate at the

More information

Ideal multigrades with trigonometric coefficients

Ideal multigrades with trigonometric coefficients Ideal multgrades wth trgoometrc coeffcets Zarathustra Brady December 13, 010 1 The problem A (, k) multgrade s defed as a par of dstct sets of tegers such that (a 1,..., a ; b 1,..., b ) a j = =1 for all

More information

Chapter 4 (Part 1): Non-Parametric Classification (Sections ) Pattern Classification 4.3) Announcements

Chapter 4 (Part 1): Non-Parametric Classification (Sections ) Pattern Classification 4.3) Announcements Aoucemets No-Parametrc Desty Estmato Techques HW assged Most of ths lecture was o the blacboard. These sldes cover the same materal as preseted DHS Bometrcs CSE 90-a Lecture 7 CSE90a Fall 06 CSE90a Fall

More information

Journal of Mathematical Analysis and Applications

Journal of Mathematical Analysis and Applications J. Math. Aal. Appl. 365 200) 358 362 Cotets lsts avalable at SceceDrect Joural of Mathematcal Aalyss ad Applcatos www.elsever.com/locate/maa Asymptotc behavor of termedate pots the dfferetal mea value

More information

Almost Sure Convergence of Pair-wise NQD Random Sequence

Almost Sure Convergence of Pair-wise NQD Random Sequence www.ccseet.org/mas Moder Appled Scece Vol. 4 o. ; December 00 Almost Sure Covergece of Par-wse QD Radom Sequece Yachu Wu College of Scece Gul Uversty of Techology Gul 54004 Cha Tel: 86-37-377-6466 E-mal:

More information

CHAPTER 4 RADICAL EXPRESSIONS

CHAPTER 4 RADICAL EXPRESSIONS 6 CHAPTER RADICAL EXPRESSIONS. The th Root of a Real Number A real umber a s called the th root of a real umber b f Thus, for example: s a square root of sce. s also a square root of sce ( ). s a cube

More information

Arithmetic Mean and Geometric Mean

Arithmetic Mean and Geometric Mean Acta Mathematca Ntresa Vol, No, p 43 48 ISSN 453-6083 Arthmetc Mea ad Geometrc Mea Mare Varga a * Peter Mchalča b a Departmet of Mathematcs, Faculty of Natural Sceces, Costate the Phlosopher Uversty Ntra,

More information

Econometric Methods. Review of Estimation

Econometric Methods. Review of Estimation Ecoometrc Methods Revew of Estmato Estmatg the populato mea Radom samplg Pot ad terval estmators Lear estmators Ubased estmators Lear Ubased Estmators (LUEs) Effcecy (mmum varace) ad Best Lear Ubased Estmators

More information

Rademacher Complexity. Examples

Rademacher Complexity. Examples Algorthmc Foudatos of Learg Lecture 3 Rademacher Complexty. Examples Lecturer: Patrck Rebesch Verso: October 16th 018 3.1 Itroducto I the last lecture we troduced the oto of Rademacher complexty ad showed

More information

Lecture 3. Sampling, sampling distributions, and parameter estimation

Lecture 3. Sampling, sampling distributions, and parameter estimation Lecture 3 Samplg, samplg dstrbutos, ad parameter estmato Samplg Defto Populato s defed as the collecto of all the possble observatos of terest. The collecto of observatos we take from the populato s called

More information

The Primitive Idempotents in

The Primitive Idempotents in Iteratoal Joural of Algebra, Vol, 00, o 5, 3 - The Prmtve Idempotets FC - I Kulvr gh Departmet of Mathematcs, H College r Jwa Nagar (rsa)-5075, Ida kulvrsheora@yahoocom K Arora Departmet of Mathematcs,

More information

Lecture 4 Sep 9, 2015

Lecture 4 Sep 9, 2015 CS 388R: Radomzed Algorthms Fall 205 Prof. Erc Prce Lecture 4 Sep 9, 205 Scrbe: Xagru Huag & Chad Voegele Overvew I prevous lectures, we troduced some basc probablty, the Cheroff boud, the coupo collector

More information

Eulerian numbers revisited : Slices of hypercube

Eulerian numbers revisited : Slices of hypercube Eulera umbers revsted : Slces of hypercube Kgo Kobayash, Hajme Sato, Mamoru Hosh, ad Hroyosh Morta Abstract I ths talk, we provde a smple proof o a terestg equalty coectg the umber of permutatos of,...,

More information

A Study on Generalized Generalized Quasi hyperbolic Kac Moody algebra QHGGH of rank 10

A Study on Generalized Generalized Quasi hyperbolic Kac Moody algebra QHGGH of rank 10 Global Joural of Mathematcal Sceces: Theory ad Practcal. ISSN 974-3 Volume 9, Number 3 (7), pp. 43-4 Iteratoal Research Publcato House http://www.rphouse.com A Study o Geeralzed Geeralzed Quas (9) hyperbolc

More information

Large and Moderate Deviation Principles for Kernel Distribution Estimator

Large and Moderate Deviation Principles for Kernel Distribution Estimator Iteratoal Mathematcal Forum, Vol. 9, 2014, o. 18, 871-890 HIKARI Ltd, www.m-hkar.com http://dx.do.org/10.12988/mf.2014.4488 Large ad Moderate Devato Prcples for Kerel Dstrbuto Estmator Yousr Slaou Uversté

More information

CHAPTER VI Statistical Analysis of Experimental Data

CHAPTER VI Statistical Analysis of Experimental Data Chapter VI Statstcal Aalyss of Expermetal Data CHAPTER VI Statstcal Aalyss of Expermetal Data Measuremets do ot lead to a uque value. Ths s a result of the multtude of errors (maly radom errors) that ca

More information

Introduction to local (nonparametric) density estimation. methods

Introduction to local (nonparametric) density estimation. methods Itroducto to local (oparametrc) desty estmato methods A slecture by Yu Lu for ECE 66 Sprg 014 1. Itroducto Ths slecture troduces two local desty estmato methods whch are Parze desty estmato ad k-earest

More information

Discrete Mathematics and Probability Theory Fall 2016 Seshia and Walrand DIS 10b

Discrete Mathematics and Probability Theory Fall 2016 Seshia and Walrand DIS 10b CS 70 Dscrete Mathematcs ad Probablty Theory Fall 206 Sesha ad Walrad DIS 0b. Wll I Get My Package? Seaky delvery guy of some compay s out delverg packages to customers. Not oly does he had a radom package

More information

Maps on Triangular Matrix Algebras

Maps on Triangular Matrix Algebras Maps o ragular Matrx lgebras HMED RMZI SOUROUR Departmet of Mathematcs ad Statstcs Uversty of Vctora Vctora, BC V8W 3P4 CND sourour@mathuvcca bstract We surveys results about somorphsms, Jorda somorphsms,

More information

1 Solution to Problem 6.40

1 Solution to Problem 6.40 1 Soluto to Problem 6.40 (a We wll wrte T τ (X 1,...,X where the X s are..d. wth PDF f(x µ, σ 1 ( x µ σ g, σ where the locato parameter µ s ay real umber ad the scale parameter σ s > 0. Lettg Z X µ σ we

More information

UNIVERSITY OF OSLO DEPARTMENT OF ECONOMICS

UNIVERSITY OF OSLO DEPARTMENT OF ECONOMICS UNIVERSITY OF OSLO DEPARTMENT OF ECONOMICS Exam: ECON430 Statstcs Date of exam: Frday, December 8, 07 Grades are gve: Jauary 4, 08 Tme for exam: 0900 am 00 oo The problem set covers 5 pages Resources allowed:

More information

Qualifying Exam Statistical Theory Problem Solutions August 2005

Qualifying Exam Statistical Theory Problem Solutions August 2005 Qualfyg Exam Statstcal Theory Problem Solutos August 5. Let X, X,..., X be d uform U(,),

More information

A tighter lower bound on the circuit size of the hardest Boolean functions

A tighter lower bound on the circuit size of the hardest Boolean functions Electroc Colloquum o Computatoal Complexty, Report No. 86 2011) A tghter lower boud o the crcut sze of the hardest Boolea fuctos Masak Yamamoto Abstract I [IPL2005], Fradse ad Mlterse mproved bouds o the

More information

THE ROYAL STATISTICAL SOCIETY 2016 EXAMINATIONS SOLUTIONS HIGHER CERTIFICATE MODULE 5

THE ROYAL STATISTICAL SOCIETY 2016 EXAMINATIONS SOLUTIONS HIGHER CERTIFICATE MODULE 5 THE ROYAL STATISTICAL SOCIETY 06 EAMINATIONS SOLUTIONS HIGHER CERTIFICATE MODULE 5 The Socety s provdg these solutos to assst cadtes preparg for the examatos 07. The solutos are teded as learg ads ad should

More information

THE ROYAL STATISTICAL SOCIETY HIGHER CERTIFICATE

THE ROYAL STATISTICAL SOCIETY HIGHER CERTIFICATE THE ROYAL STATISTICAL SOCIETY 00 EXAMINATIONS SOLUTIONS HIGHER CERTIFICATE PAPER I STATISTICAL THEORY The Socety provdes these solutos to assst caddates preparg for the examatos future years ad for the

More information

ENGI 4421 Joint Probability Distributions Page Joint Probability Distributions [Navidi sections 2.5 and 2.6; Devore sections

ENGI 4421 Joint Probability Distributions Page Joint Probability Distributions [Navidi sections 2.5 and 2.6; Devore sections ENGI 441 Jot Probablty Dstrbutos Page 7-01 Jot Probablty Dstrbutos [Navd sectos.5 ad.6; Devore sectos 5.1-5.] The jot probablty mass fucto of two dscrete radom quattes, s, P ad p x y x y The margal probablty

More information

CS286.2 Lecture 4: Dinur s Proof of the PCP Theorem

CS286.2 Lecture 4: Dinur s Proof of the PCP Theorem CS86. Lecture 4: Dur s Proof of the PCP Theorem Scrbe: Thom Bohdaowcz Prevously, we have prove a weak verso of the PCP theorem: NP PCP 1,1/ (r = poly, q = O(1)). Wth ths result we have the desred costat

More information

Lecture 02: Bounding tail distributions of a random variable

Lecture 02: Bounding tail distributions of a random variable CSCI-B609: A Theorst s Toolkt, Fall 206 Aug 25 Lecture 02: Boudg tal dstrbutos of a radom varable Lecturer: Yua Zhou Scrbe: Yua Xe & Yua Zhou Let us cosder the ubased co flps aga. I.e. let the outcome

More information

CIS 800/002 The Algorithmic Foundations of Data Privacy October 13, Lecture 9. Database Update Algorithms: Multiplicative Weights

CIS 800/002 The Algorithmic Foundations of Data Privacy October 13, Lecture 9. Database Update Algorithms: Multiplicative Weights CIS 800/002 The Algorthmc Foudatos of Data Prvacy October 13, 2011 Lecturer: Aaro Roth Lecture 9 Scrbe: Aaro Roth Database Update Algorthms: Multplcatve Weghts We ll recall aga) some deftos from last tme:

More information

International Journal of Mathematical Archive-5(8), 2014, Available online through ISSN

International Journal of Mathematical Archive-5(8), 2014, Available online through   ISSN Iteratoal Joural of Mathematcal Archve-5(8) 204 25-29 Avalable ole through www.jma.fo ISSN 2229 5046 COMMON FIXED POINT OF GENERALIZED CONTRACTION MAPPING IN FUZZY METRIC SPACES Hamd Mottagh Golsha* ad

More information

Research Article Multidimensional Hilbert-Type Inequalities with a Homogeneous Kernel

Research Article Multidimensional Hilbert-Type Inequalities with a Homogeneous Kernel Hdaw Publshg Corporato Joural of Iequaltes ad Applcatos Volume 29, Artcle ID 3958, 2 pages do:.55/29/3958 Research Artcle Multdmesoal Hlbert-Type Iequaltes wth a Homogeeous Kerel Predrag Vuovć Faculty

More information

ANALYSIS ON THE NATURE OF THE BASIC EQUATIONS IN SYNERGETIC INTER-REPRESENTATION NETWORK

ANALYSIS ON THE NATURE OF THE BASIC EQUATIONS IN SYNERGETIC INTER-REPRESENTATION NETWORK Far East Joural of Appled Mathematcs Volume, Number, 2008, Pages Ths paper s avalable ole at http://www.pphm.com 2008 Pushpa Publshg House ANALYSIS ON THE NATURE OF THE ASI EQUATIONS IN SYNERGETI INTER-REPRESENTATION

More information

Probabilistic Meanings of Numerical Characteristics for Single Birth Processes

Probabilistic Meanings of Numerical Characteristics for Single Birth Processes A^VÇÚO 32 ò 5 Ï 206 c 0 Chese Joural of Appled Probablty ad Statstcs Oct 206 Vol 32 No 5 pp 452-462 do: 03969/jss00-426820605002 Probablstc Meags of Numercal Characterstcs for Sgle Brth Processes LIAO

More information

( ) = ( ) ( ) Chapter 13 Asymptotic Theory and Stochastic Regressors. Stochastic regressors model

( ) = ( ) ( ) Chapter 13 Asymptotic Theory and Stochastic Regressors. Stochastic regressors model Chapter 3 Asmptotc Theor ad Stochastc Regressors The ature of eplaator varable s assumed to be o-stochastc or fed repeated samples a regresso aalss Such a assumpto s approprate for those epermets whch

More information

CHAPTER 3 POSTERIOR DISTRIBUTIONS

CHAPTER 3 POSTERIOR DISTRIBUTIONS CHAPTER 3 POSTERIOR DISTRIBUTIONS If scece caot measure the degree of probablt volved, so much the worse for scece. The practcal ma wll stck to hs apprecatve methods utl t does, or wll accept the results

More information

18.413: Error Correcting Codes Lab March 2, Lecture 8

18.413: Error Correcting Codes Lab March 2, Lecture 8 18.413: Error Correctg Codes Lab March 2, 2004 Lecturer: Dael A. Spelma Lecture 8 8.1 Vector Spaces A set C {0, 1} s a vector space f for x all C ad y C, x + y C, where we take addto to be compoet wse

More information

Mu Sequences/Series Solutions National Convention 2014

Mu Sequences/Series Solutions National Convention 2014 Mu Sequeces/Seres Solutos Natoal Coveto 04 C 6 E A 6C A 6 B B 7 A D 7 D C 7 A B 8 A B 8 A C 8 E 4 B 9 B 4 E 9 B 4 C 9 E C 0 A A 0 D B 0 C C Usg basc propertes of arthmetc sequeces, we fd a ad bm m We eed

More information

The Arithmetic-Geometric mean inequality in an external formula. Yuki Seo. October 23, 2012

The Arithmetic-Geometric mean inequality in an external formula. Yuki Seo. October 23, 2012 Sc. Math. Japocae Vol. 00, No. 0 0000, 000 000 1 The Arthmetc-Geometrc mea equalty a exteral formula Yuk Seo October 23, 2012 Abstract. The classcal Jese equalty ad ts reverse are dscussed by meas of terally

More information

Hájek-Rényi Type Inequalities and Strong Law of Large Numbers for NOD Sequences

Hájek-Rényi Type Inequalities and Strong Law of Large Numbers for NOD Sequences Appl Math If Sc 7, No 6, 59-53 03 59 Appled Matheatcs & Iforato Sceces A Iteratoal Joural http://dxdoorg/0785/as/070647 Háje-Réy Type Iequaltes ad Strog Law of Large Nuers for NOD Sequeces Ma Sogl Departet

More information

Lecture Notes to Rice Chapter 5

Lecture Notes to Rice Chapter 5 ECON 430 Revsed Sept. 06 Lecture Notes to Rce Chapter 5 By H. Goldste. Chapter 5 gves a troducto to probablstc approxmato methods, but s suffcet for the eeds of a adequate study of ecoometrcs. The commo

More information

Homework 1: Solutions Sid Banerjee Problem 1: (Practice with Asymptotic Notation) ORIE 4520: Stochastics at Scale Fall 2015

Homework 1: Solutions Sid Banerjee Problem 1: (Practice with Asymptotic Notation) ORIE 4520: Stochastics at Scale Fall 2015 Fall 05 Homework : Solutos Problem : (Practce wth Asymptotc Notato) A essetal requremet for uderstadg scalg behavor s comfort wth asymptotc (or bg-o ) otato. I ths problem, you wll prove some basc facts

More information

Investigating Cellular Automata

Investigating Cellular Automata Researcher: Taylor Dupuy Advsor: Aaro Wootto Semester: Fall 4 Ivestgatg Cellular Automata A Overvew of Cellular Automata: Cellular Automata are smple computer programs that geerate rows of black ad whte

More information

= lim. (x 1 x 2... x n ) 1 n. = log. x i. = M, n

= lim. (x 1 x 2... x n ) 1 n. = log. x i. = M, n .. Soluto of Problem. M s obvously cotuous o ], [ ad ], [. Observe that M x,..., x ) M x,..., x ) )..) We ext show that M s odecreasg o ], [. Of course.) mles that M s odecreasg o ], [ as well. To show

More information

A NEW LOG-NORMAL DISTRIBUTION

A NEW LOG-NORMAL DISTRIBUTION Joural of Statstcs: Advaces Theory ad Applcatos Volume 6, Number, 06, Pages 93-04 Avalable at http://scetfcadvaces.co. DOI: http://dx.do.org/0.864/jsata_700705 A NEW LOG-NORMAL DISTRIBUTION Departmet of

More information

. The set of these sums. be a partition of [ ab, ]. Consider the sum f( x) f( x 1)

. The set of these sums. be a partition of [ ab, ]. Consider the sum f( x) f( x 1) Chapter 7 Fuctos o Bouded Varato. Subject: Real Aalyss Level: M.Sc. Source: Syed Gul Shah (Charma, Departmet o Mathematcs, US Sargodha Collected & Composed by: Atq ur Rehma (atq@mathcty.org, http://www.mathcty.org

More information

Solving Constrained Flow-Shop Scheduling. Problems with Three Machines

Solving Constrained Flow-Shop Scheduling. Problems with Three Machines It J Cotemp Math Sceces, Vol 5, 2010, o 19, 921-929 Solvg Costraed Flow-Shop Schedulg Problems wth Three Maches P Pada ad P Rajedra Departmet of Mathematcs, School of Advaced Sceces, VIT Uversty, Vellore-632

More information

COMPROMISE HYPERSPHERE FOR STOCHASTIC DOMINANCE MODEL

COMPROMISE HYPERSPHERE FOR STOCHASTIC DOMINANCE MODEL Sebasta Starz COMPROMISE HYPERSPHERE FOR STOCHASTIC DOMINANCE MODEL Abstract The am of the work s to preset a method of rakg a fte set of dscrete radom varables. The proposed method s based o two approaches:

More information

Chapter 9 Jordan Block Matrices

Chapter 9 Jordan Block Matrices Chapter 9 Jorda Block atrces I ths chapter we wll solve the followg problem. Gve a lear operator T fd a bass R of F such that the matrx R (T) s as smple as possble. f course smple s a matter of taste.

More information

v 1 -periodic 2-exponents of SU(2 e ) and SU(2 e + 1)

v 1 -periodic 2-exponents of SU(2 e ) and SU(2 e + 1) Joural of Pure ad Appled Algebra 216 (2012) 1268 1272 Cotets lsts avalable at ScVerse SceceDrect Joural of Pure ad Appled Algebra joural homepage: www.elsever.com/locate/jpaa v 1 -perodc 2-expoets of SU(2

More information

Continuous Distributions

Continuous Distributions 7//3 Cotuous Dstrbutos Radom Varables of the Cotuous Type Desty Curve Percet Desty fucto, f (x) A smooth curve that ft the dstrbuto 3 4 5 6 7 8 9 Test scores Desty Curve Percet Probablty Desty Fucto, f

More information

THE PROBABILISTIC STABILITY FOR THE GAMMA FUNCTIONAL EQUATION

THE PROBABILISTIC STABILITY FOR THE GAMMA FUNCTIONAL EQUATION Joural of Scece ad Arts Year 12, No. 3(2), pp. 297-32, 212 ORIGINAL AER THE ROBABILISTIC STABILITY FOR THE GAMMA FUNCTIONAL EQUATION DOREL MIHET 1, CLAUDIA ZAHARIA 1 Mauscrpt receved: 3.6.212; Accepted

More information

Lecture 3: Randomly Stopped Processes

Lecture 3: Randomly Stopped Processes STAT 498: Selected Topcs Stochastc Processes Wter 2018 Lecture 3: Radomly Stopped Processes Lecturer: Fag Ha Ja 29 Dsclamer: These otes have ot bee subjected to the usual scruty reserved for formal publcatos.

More information

ON THE LAWS OF LARGE NUMBERS FOR DEPENDENT RANDOM VARIABLES

ON THE LAWS OF LARGE NUMBERS FOR DEPENDENT RANDOM VARIABLES Joural of Sees Islam Republ of Ira 4(3): 7-75 (003) Uversty of Tehra ISSN 06-04 ON THE LAWS OF LARGE NUMBERS FOR DEPENDENT RANDOM VARIABLES HR Nl Sa * ad A Bozorga Departmet of Mathemats Brjad Uversty

More information

TESTS BASED ON MAXIMUM LIKELIHOOD

TESTS BASED ON MAXIMUM LIKELIHOOD ESE 5 Toy E. Smth. The Basc Example. TESTS BASED ON MAXIMUM LIKELIHOOD To llustrate the propertes of maxmum lkelhood estmates ad tests, we cosder the smplest possble case of estmatg the mea of the ormal

More information

Bounds for the Connective Eccentric Index

Bounds for the Connective Eccentric Index It. J. Cotemp. Math. Sceces, Vol. 7, 0, o. 44, 6-66 Bouds for the Coectve Eccetrc Idex Nlaja De Departmet of Basc Scece, Humates ad Socal Scece (Mathematcs Calcutta Isttute of Egeerg ad Maagemet Kolkata,

More information

1 Onto functions and bijections Applications to Counting

1 Onto functions and bijections Applications to Counting 1 Oto fuctos ad bectos Applcatos to Coutg Now we move o to a ew topc. Defto 1.1 (Surecto. A fucto f : A B s sad to be surectve or oto f for each b B there s some a A so that f(a B. What are examples of

More information

Approximation for Collective Epidemic Model

Approximation for Collective Epidemic Model Advaces Appled Mathematcal Bosceces. ISSN 2248-9983 Volume 5, Number 2 (2014), pp. 97-101 Iteratoal Research Publcato House http://www.rphouse.com Approxmato for Collectve Epdemc Model Dr.Mrs.T.Vasath

More information

THE ROYAL STATISTICAL SOCIETY GRADUATE DIPLOMA

THE ROYAL STATISTICAL SOCIETY GRADUATE DIPLOMA THE ROYAL STATISTICAL SOCIETY 3 EXAMINATIONS SOLUTIONS GRADUATE DIPLOMA PAPER I STATISTICAL THEORY & METHODS The Socety provdes these solutos to assst caddates preparg for the examatos future years ad

More information

5 Short Proofs of Simplified Stirling s Approximation

5 Short Proofs of Simplified Stirling s Approximation 5 Short Proofs of Smplfed Strlg s Approxmato Ofr Gorodetsky, drtymaths.wordpress.com Jue, 20 0 Itroducto Strlg s approxmato s the followg (somewhat surprsg) approxmato of the factoral,, usg elemetary fuctos:

More information