Scattering of intermediate-energy positrons by C, N, O atoms and the corresponding diatomic molecules: elastic and total cross-sections

Size: px
Start display at page:

Download "Scattering of intermediate-energy positrons by C, N, O atoms and the corresponding diatomic molecules: elastic and total cross-sections"

Transcription

1 1 October 1999 Ž. Chemical Physics Letters Scattering of intermediate-energy positrons by C,, O atoms and the corresponding diatomic molecules: elastic and total cross-sections David D. Reid a, J.M. Wadehra b,) a Department of Physics and Astronomy, Eastern Michigan UniÕersity, Ypsilanti, MI 48197, USA b Department of Physics and Astronomy, Wayne State UniÕersity, Detroit, MI 48, USA Received 13 July 1999 Abstract Elastic and total Ž elastic plus absorption. cross-sections for the scattering of positrons by carbon, nitrogen and oxygen atoms and the corresponding diatomic molecules Ž C, C, CO,, O and O. in the energy range from 1 to 5 ev are presented. Parameter-free interaction potentials along with the additivity rule are used in the calculations. Good agreement with the experimental data is obtained wherever such comparisons can be made. q 1999 Elsevier Science B.V. All rights reserved. Positron-atom and positron-molecule scattering are topics of fairly intense current interest in both theoretical as well as experimental studies because they involve interactions of matter with antimatter. Several theoretical techniques are known which provide the positron-atom scattering cross-sections fairly accurately at either low or high impact energy. However, in the intermediate impact energy region, one has to resort to approximate theoretical techniques to obtain the scattering cross-sections. In the case of molecular targets, complications also arise from the non-spherical nature of the interaction. A sensitive test of any approximation technique developed for the scattering of intermediate energy electrons by molecules is provided by its application to the corre- ) Corresponding author. Fax: q ; wadehra@physics.wayne.edu sponding case of intermediate energy positron-molecule scattering. Several recent papers have presented w1 5x calculations of total cross-sections for electron scattering by diatomic and polyatomic molecules using the additivity rule of the independent atom model. In this Letter, we are using this method to present the calculations of both the elastic and total Ž elastic plus absorption. cross-sections for the scattering of positrons by diatomic molecules containing atoms of carbon, nitrogen and oxygen. In particular, the target molecules under present consideration are C, C, CO,, O and O and the range of the positron energy is from 1 to 5 ev. Similar calculations for a different set of molecular targets have been presented by Raizada and Baluja wx 6. In our previous work, we have developed parameter-free model potentials for the polarization and absorption interactions which are quite useful for intermediate to high-energy positron scattering from atomic tar r99r$ - see front matter q 1999 Elsevier Science B.V. All rights reserved. Ž. PII: S

2 386 ( ) D.D. Reid, J.M. WadehrarChemical Physics Letters gets Žnoble gases w7,8x and alkali-metal atoms w9 x.. In the present calculations, we have used these model potentials along with the independent atom model to obtain the various cross-sections. The present positron-molecule scattering crosssections are calculated using a partial wave decomposition of the scattering amplitude for a particular atomic target Ž carbon, nitrogen or oxygen.. The independent atom model is used to approximate the molecular scattering amplitude in terms of atomic scattering amplitudes w1 x. Essentially, the molecule is considered to be a collection of independent scattering centers Ž atoms. located at ri for i s 1to. The molecular amplitude fmol for elastic scatter- ing in terms of atomic amplitudes f i, then, is Ý f Ž u. s f Ž u. expž i kpr., mol i i where " k is the momentum transfer of the projectile, that is, ksk sinž ur.. Here u is the scattering angle and Es" k r m is the energy of the projectile of mass m. Using the optical theorem, the total Ž elastic plus absorption. cross-section for the scattering of positrons by the molecule is 4p stots Im fmolž us. k 4p s Ý Im fiž. k Ý i s s. This is the additivity rule for the total cross-sections which implies that the total cross-section for the molecule is simply the sum of the total cross-sections for the individual atoms. The elastic scattering cross-section is obtained from the molecular scattering amplitude as H p s sp < f Ž u. < sin u du, elas mol which after averaging over all orientations of the molecule becomes p sin k r ) ij selas sph Ý fi fj sin u du, k r i, js1 ij where rij is the separation between the ith and jth atoms in the molecule. ote that the elastic crosssections do not follow any additivity rule similar to the one for total cross-sections. In the present calculations, the positron-atom interaction is taken to be a complex function of the form VintŽ r. svst Ž r. qvcp Ž r. qivabs Ž r.. Here V st, the static part of the interaction, is obtained using the analytical Hartree Fock wave functions of the target atom w11 x. V cp, the parameter-free correla- tion polarization part of the interaction, is obtained from the target electron charge density w1 x. Finally, the absorption part of the interaction, V abs, which takes into account the cumulative effect of all the inelastic processes, is the quasifree model developed by us w7 9 x. These potentials are placed in the radial Schrodinger equation which is integrated, via the umerov technique, out to a radial distance of 6 a.u. Several complex phase shifts Ž up to lsl max. are calculated exactly by comparing the radial wave function at two adjacent points. The value of l max depends upon the energy of the incident positron and in the present energy range lmax is taken to be 6. Phase shifts for the higher partial waves are calculated via the Born approximation and their contribution to the atomic scattering amplitude is taken into account via closed-form expressions for long-range interactions w13 x. The results of our calculations for the total and the integrated elastic cross-sections for positrons scattered from various diatomic molecules are presented in the figures and tables. Fig. 1 shows the present results for the total cross-sections for 1 5 ev positrons scattered from diatomic nitrogen. These results are compared with the experimental measurements of Charlton et al. w14 x, Hoffman et al. w15 x, Sueoka and Mori w16 x, and Dutton et al. w17 x. The present results show quite good agreement with the experimental data throughout the entire range of impact energies. Fig. shows the present results for the total cross-sections for positrons scattered from diatomic oxygen. Again, the range of positron energy is from 1 to 5 ev. These results are compared with the experimental measurements of Charlton et al. w14x and Dababneh et al. w18 x. Here, we observe that our results overestimate the experi-

3 ( ) D.D. Reid, J.M. WadehrarChemical Physics Letters Fig. 1. Total cross-sections for positrons scattered from. The experimental data are as follows: open circles, Charlton et al. w14 x; closed circles, Hoffman et al. w15 x; closed squares, Sueoka and Mori w16 x; open squares, Dutton et al. w17 x. Fig. 3. Total cross-sections for positrons scattered from CO. The experimental data are as follows: closed squares, Sueoka and Mori w16 x; closed circles, Kwan et al. w19 x. Fig.. Total cross-sections for positrons scattered from O. The experimental data are as follows: open circles, Charlton et al. w14 x; closed circles, Dababneh et al. w18 x. Fig. 4. Total cross-sections for positrons scattered from C, C, and O. The dotted curve, solid curve and the dashed curve represent the present theoretical cross-sections for C, C and O, respectively.

4 388 ( ) D.D. Reid, J.M. WadehrarChemical Physics Letters Table 1 Elastic cross-sections Žin units of a. for positron scattering from various atoms and diatomic molecules Ž. E ev C O C C CO O O mental results at 1 ev while showing good agreement at higher impact energies. This good agreement, however, is primarily with the results of Dababneh et al. which are consistently higher than those of Charlton et al. above 1 ev. Since the measured cross-section values only extend up to 6 ev positron energy, the present calculations are, to the best of our knowledge, the only values for positron O scattering cross-sections above 6 ev. Fig. 3 shows the present results for the total crosssections for intermediate energy positrons scattered from carbon monoxide. These results are compared with the experimental results of Sueoka and Mori w x w x 16 and Kwan et al. 19. The present results are in good agreement with the experimental data. The experimental results are available only up to 5 ev; however, we expect our results to be accurate even in the high-energy range where no corresponding experimental cross-sections are available for comparison. For all the target molecules, the experimental values of the total cross-sections show a tendency to deviate from the present results as the positron energy is lowered to 1 ev. This is caused by the neglect of multiple scattering effects as well as by the approximations inherent in the independent atom Table Total cross-sections Žin units of a. for positron scattering from various atoms and diatomic molecules E Ž ev. C O C C CO O O

5 ( ) D.D. Reid, J.M. WadehrarChemical Physics Letters model. As an example, the equilibrium internuclear separations of molecules C, C, CO,, O and O are.48,.3,.13,.7,.17 and.8 a, respectively. The fact that the de Broglie wavelength of the incident positron ranges from.3 a at 1 ev to.38 a at 5 ev suggests that the indepen- dent atom model would certainly not be valid at positron energies below 1 ev. We are also able to use the present approach to calculate positron-molecule scattering data for targets andror at impact energies that have not been or cannot be easily measured experimentally. Fig. 4 displays the present predictions for the total crosssections for positron scattering from C, C and O molecules. We are not aware of any experimental measurements for positrons scattered from these three targets. However, given the success of the present results for molecular nitrogen, oxygen and carbon monoxide, we feel that our predicted total cross-sections for C, C and O molecules are also reason- ably accurate in the intermediate energy range. In Tables 1 and we list the numerical values of the total cross-sections as well as our predictions for the integrated elastic cross-sections for positrons scattered from diatomic molecules consisting of atomic carbon, nitrogen and oxygen. It is obvious from the values of the cross-sections in Table 1 that the elastic cross-sections for molecules cannot be obtained from the corresponding atomic cross-sections by any additivity rule. To summarize, we have found, in this Letter, that total cross-sections for scattering of positrons from diatomic molecules containing C, and O atoms can be calculated with good accuracy above 1 ev using parameter-free model potentials along with the independent atom model. References wx 1 D. Raj, Phys. Lett. A 16 Ž wx J. Sun, Y. Jiang, L. Wan, Phys. Lett. A 195 Ž wx 3 Y. Jiang, J. Sun, L. Wan, Phys. Rev. A 5 Ž wx 4 K.. Joshipura, P.M. Patel, J. Phys. B 9 Ž wx 5 Y. Jiang, J. Sun, L. Wan, J. Phys. B 3 Ž wx 6 R. Raizada, K.L. Baluja, Phys. Rev. A 55 Ž wx 7 D.D. Reid, J.M. Wadehra, J. Phys. B 9 Ž L17. wx 8 D.D. Reid, J.M. Wadehra, J. Phys. B 3 Ž wx 9 D.D. Reid, J.M. Wadehra, Phys. Rev. A 57 Ž w1x.f. Mott, H.S.W. Massey, The Theory of Atomic Collisions, 3rd edn., Oxford Univ. Press, Oxford, 1965, p w11x E. Clementi, C. Roetti, At. Data ucl. Data Tables 14 Ž w1x D.D. Reid, J.M. Wadehra, Phys. Rev. A 5 Ž w13x J.M. Wadehra, S.. ahar, Phys. Rev. A 36 Ž w14x M. Charlton, T.C. Griffith, G.R. Heyland, G.L. Wright, J. Phys. B 13 Ž 198. L353. w15x K.R. Hoffman, M.S. Dababneh, Y.-F. Hsieh, W.E. Kauppila, V. Pol, J.H. Smart, T.S. Stein, Phys. Rev. A 5 Ž w16x O. Sueoka, S. Mori, J. Phys. Soc. Jpn 53 Ž w17x J. Dutton, C.J. Evans, H.L. Mansour, J. Phys. B Ž w18x M.S. Dababneh, Y.-F. Hsieh, W.E. Kauppila, C.K. Kwan, S.J. Smith, T.S. Stein, M.. Uddin, Phys. Rev. A 38 Ž w19x C.K. Kwan, Y.-F. Hsieh, W.E. Kauppila, S.J. Smith, T.S. Stein, M.. Uddin, M.S. Dababneh, Phys. Rev. A 7 Ž

A quasifree model for the absorption effects in positron scattering by atoms

A quasifree model for the absorption effects in positron scattering by atoms J. Phys. B: At. Mol. Opt. Phys. 29 (1996) L127 L133. Printed in the UK LETTER TO THE EDITOR A quasifree model for the absorption effects in positron scattering by atoms David D Reid and J M Wadehra Department

More information

Total (complete) and ionization cross-sections of argon and krypton by positron impact from 15 to 2000 ev Theoretical investigations

Total (complete) and ionization cross-sections of argon and krypton by positron impact from 15 to 2000 ev Theoretical investigations PRAMANA c Indian Academy of Sciences Vol. 79, No. 3 journal of September 2012 physics pp. 435 442 Total (complete) and ionization cross-sections of argon and krypton by positron impact from 15 to 2000

More information

Scattering of low- to intermediate-energy positrons from molecular hydrogen

Scattering of low- to intermediate-energy positrons from molecular hydrogen PHYSICAL REVIEW A 70, 062714 (2004) Scattering of low- to intermediate-energy positrons from molecular hydrogen David D. Reid and William B. Klann Department of Physics and Astronomy, Eastern Michigan

More information

Low Energy Cross-Sections for Positron Interactions with Cyclic Hydrocarbons

Low Energy Cross-Sections for Positron Interactions with Cyclic Hydrocarbons Vol. 107 (2005) ACTA PHYSICA POLONICA A No. 4 Proceedings of the 35th Polish Seminar on Positron Annihilation, Turawa, Poland 2004 Low Energy Cross-Sections for Positron Interactions with Cyclic Hydrocarbons

More information

Total Electron Scattering Cross Sections of He, Ne, Ar, Kr and Xe in the Energy Range 100 ev to ev

Total Electron Scattering Cross Sections of He, Ne, Ar, Kr and Xe in the Energy Range 100 ev to ev Total Electron Scattering Cross Sections of He, Ne, Ar, Kr and Xe in the Energy Range 100 ev to 10 000 ev Xiao-Ming Tan, Chuan-Lu Yang, Mei-Shan Wang, Zhi-Hong Zhang, and Qiang Xu School of Physics and

More information

Electron impact ionization of diatomic molecules

Electron impact ionization of diatomic molecules Eur. Phys. J. D 8, 5 5 (8) DOI:./epjd/e8-- Electron impact ionization of diatomic molecules I. Tóth, R.I. Campeanu, V. Chiş and L. Nagy Eur. Phys. J. D 8, 5 5 (8) DOI:./epjd/e8-- THE EUROPEAN PHYSICAL

More information

ELECTRON ELASTIC COLLISIONS WITHC 3 F 6 MOLECULE PAWEŁMOŻEJKO 1,2 ANDCZESŁAWSZMYTKOWSKI 1

ELECTRON ELASTIC COLLISIONS WITHC 3 F 6 MOLECULE PAWEŁMOŻEJKO 1,2 ANDCZESŁAWSZMYTKOWSKI 1 TASK QUARTERLY 7 No 2(2003), 171 178 ELECTRON ELASTIC COLLISIONS WITHC 3 F 6 MOLECULE PAWEŁMOŻEJKO 1,2 ANDCZESŁAWSZMYTKOWSKI 1 1 AtomicPhysicsDivision, Department of Atomic Physics and Luminescence, Faculty

More information

Positronium formation from valence and inner shells in noble gas atoms

Positronium formation from valence and inner shells in noble gas atoms Nucl. Instrum. and Methods B, accepted for publication, January 26 Positronium formation from valence and inner shells in noble gas atoms L. J. M. Dunlop, G. F. Gribakin Department of Applied Mathematics

More information

Low energy positron interactions with rare gas atoms: threshold features and benchmark cross sections

Low energy positron interactions with rare gas atoms: threshold features and benchmark cross sections Journal of Physics: Conference Series Low energy positron interactions with rare gas atoms: threshold features and benchmark cross sections To cite this article: James Sullivan et al 2011 J. Phys.: Conf.

More information

Lecture 6 Scattering theory Partial Wave Analysis. SS2011: Introduction to Nuclear and Particle Physics, Part 2 2

Lecture 6 Scattering theory Partial Wave Analysis. SS2011: Introduction to Nuclear and Particle Physics, Part 2 2 Lecture 6 Scattering theory Partial Wave Analysis SS2011: Introduction to Nuclear and Particle Physics, Part 2 2 1 The Born approximation for the differential cross section is valid if the interaction

More information

a procedure to explore uncertainty and reliability in theoretical cross section data for electron and positron scattering Bobby Antony

a procedure to explore uncertainty and reliability in theoretical cross section data for electron and positron scattering Bobby Antony a procedure to explore uncertainty and reliability in theoretical cross section data for electron and positron scattering Bobby Antony Indian Institute of Technology (ISM) Dhanbad, India Outline Need for

More information

DIFFERENTIAL SCATTERING CROSS SECTIONS FOR ELASTIC ELECTRON-MAGNESIUM SCATTERING

DIFFERENTIAL SCATTERING CROSS SECTIONS FOR ELASTIC ELECTRON-MAGNESIUM SCATTERING DIFFERENTIAL SCATTERING CROSS SECTIONS FOR ELASTIC ELECTRON-MAGNESIUM SCATTERING C.V. PANDYA, P.M. PATEL 2, K.L. BALUJA 3 Department of Physics, M.G. Science Institute, Navrangpura, Ahmedabad-38009, India.

More information

r sat,l T sr sat,l T rf rh Ž 4.

r sat,l T sr sat,l T rf rh Ž 4. Fluid Phase Equilibria 150 151 1998 215 223 Extended corresponding states for pure polar and non-polar fluids: an improved method for component shape factor prediction Isabel M. Marrucho a, James F. Ely

More information

Elastic scattering of positron by gold atom

Elastic scattering of positron by gold atom J. At. Mol. Sci. doi: 208/jams.022633a Vol. 2, No. 4, pp. 294-304 November 20 Elastic scattering of positron by gold atom Kapil K. Sharma a,, Neerja b, and R. P. Vats a a Department of Physics, M.S (P.G)

More information

Calculating thermodynamic properties from perturbation theory I. An analytic representation of square-well potential hard-sphere perturbation theory

Calculating thermodynamic properties from perturbation theory I. An analytic representation of square-well potential hard-sphere perturbation theory Ž. Fluid Phase Equilibria 154 1999 1 1 Calculating thermodynamic properties from perturbation theory I. An analytic representation of square-well potential hard-sphere perturbation theory Bing-Jian Zhang

More information

Physics Letters A 374 (2010) Contents lists available at ScienceDirect. Physics Letters A.

Physics Letters A 374 (2010) Contents lists available at ScienceDirect. Physics Letters A. Physics Letters A 374 (2010) 1063 1067 Contents lists available at ScienceDirect Physics Letters A www.elsevier.com/locate/pla Macroscopic far-field observation of the sub-wavelength near-field dipole

More information

Lecture 3: Propagators

Lecture 3: Propagators Lecture 3: Propagators 0 Introduction to current particle physics 1 The Yukawa potential and transition amplitudes 2 Scattering processes and phase space 3 Feynman diagrams and QED 4 The weak interaction

More information

Positron scattering by atomic hydrogen at intermediate energies: 1s 3 Is, 1s + 2s and 1s + 2p transitions

Positron scattering by atomic hydrogen at intermediate energies: 1s 3 Is, 1s + 2s and 1s + 2p transitions J. Phys. B: At. Mol. Opt. Phys. 21 (1988) 1893-1906. Printed in the UK Positron scattering by atomic hydrogen at intermediate energies: 1s 3 Is, 1s + 2s and 1s + 2p transitions H R J Walters Department

More information

Nuclear Instruments and Methods in Physics Research B 247 (2006) 68 74

Nuclear Instruments and Methods in Physics Research B 247 (2006) 68 74 Nuclear Instruments and Methods in Physics Research B 247 (2006) 68 74 NIM B Beam Interactions with Materials & Atoms www.elsevier.com/locate/nimb Total cross sections for positron scattering in argon,

More information

Coupling of giant resonances to soft E1 and E2 modes in 8 B

Coupling of giant resonances to soft E1 and E2 modes in 8 B Physics Letters B 547 (2002) 205 209 www.elsevier.com/locate/npe Coupling of giant resonances to soft E1 and E2 modes in 8 B C.A. Bertulani National Superconducting Cyclotron Laboratory, Michigan State

More information

PROBING CRYSTAL STRUCTURE

PROBING CRYSTAL STRUCTURE PROBING CRYSTAL STRUCTURE Andrew Baczewski PHY 491, October 10th, 2011 OVERVIEW First - we ll briefly discuss Friday s quiz. Today, we will answer the following questions: How do we experimentally probe

More information

Fun With Carbon Monoxide. p. 1/2

Fun With Carbon Monoxide. p. 1/2 Fun With Carbon Monoxide p. 1/2 p. 1/2 Fun With Carbon Monoxide E = 0.25 ± 0.05 ev Electron beam results p. 1/2 Fun With Carbon Monoxide E = 0.25 ± 0.05 ev Electron beam results C V (J/K-mole) 35 30 25

More information

The definitive version is available from

The definitive version is available from Citation for published version: Jay, PM & Coleman, PG 2010, 'Coupling between positronium formation and elastic positron-scattering channels in the rare gases' Physical Review A: Atomic, Molecular, and

More information

Absolute differential cross sections for electron elastic scattering and vibrational excitation in nitrogen in the angular range from 120 to 180

Absolute differential cross sections for electron elastic scattering and vibrational excitation in nitrogen in the angular range from 120 to 180 J. Phys. B: At. Mol. Opt. Phys. 33 (2000) L527 L532. Printed in the UK PII: S0953-4075(00)50902-X LETTER TO THE EDITOR Absolute differential cross sections for electron elastic scattering and vibrational

More information

Anomalous Quantum Reflection of Bose-Einstein Condensates from a Silicon Surface: The Role of Dynamical Excitations

Anomalous Quantum Reflection of Bose-Einstein Condensates from a Silicon Surface: The Role of Dynamical Excitations Anomalous Quantum Reflection of Bose-Einstein Condensates from a Silicon Surface: The Role of Dynamical Excitations R. G. Scott, 1 A. M. Martin, 2 T. M. Fromhold, 1 and F. W. Sheard 1 1 School of Physics

More information

MANIPAL INSTITUTE OF TECHNOLOGY

MANIPAL INSTITUTE OF TECHNOLOGY SCHEME OF EVAUATION MANIPA INSTITUTE OF TECHNOOGY MANIPA UNIVERSITY, MANIPA SECOND SEMESTER B.Tech. END-SEMESTER EXAMINATION - MAY SUBJECT: ENGINEERING PHYSICS (PHY/) Time: 3 Hrs. Max. Marks: 5 Note: Answer

More information

Physics 216 Problem Set 4 Spring 2010 DUE: MAY 25, 2010

Physics 216 Problem Set 4 Spring 2010 DUE: MAY 25, 2010 Physics 216 Problem Set 4 Spring 2010 DUE: MAY 25, 2010 1. (a) Consider the Born approximation as the first term of the Born series. Show that: (i) the Born approximation for the forward scattering amplitude

More information

Scattering Partial-Wave Equations and Resonance Equations

Scattering Partial-Wave Equations and Resonance Equations Scattering Partial-Wave Equations and Resonance Equations UCRL-14193, 1 May 1965(Revised Aug 010) L. David Roper http://arts.bev.net/roperldavid/ Web address: http://www.roperld.com/science/ucrl14193_roperld.pdf

More information

AC-induced DC voltage in HTS coil

AC-induced DC voltage in HTS coil Ž. Physica C 310 1998 111 115 AC-induced voltage in HTS coil I.A. Al-Omari b, N. Shaked a, A. Friedman a,), Y. Wolfus a, A. Shaulov a, M. Sinvani a, Y. Yeshurun a a Institute for SuperconductiÕity, Department

More information

Computations of Scattering Cross Sections for He, Ne, Ar, Kr, Xe and Rn

Computations of Scattering Cross Sections for He, Ne, Ar, Kr, Xe and Rn Computations of Scattering Cross Sections for He, Ne, Ar, Kr, Xe and Rn Full Length Research Article * ABDU, S. G. 1 1 Department of Physics, Kaduna State University, Kaduna-Nigeria *(sgabdul@kasu.edu.ng)

More information

ELECTRON IMPACT ATOMIC-MOLECULAR COLLISION PROCESSES RELEVANT IN PLANETARY AND ASTROPHYSICAL SYSTEMS - A THEORETICAL STUDY

ELECTRON IMPACT ATOMIC-MOLECULAR COLLISION PROCESSES RELEVANT IN PLANETARY AND ASTROPHYSICAL SYSTEMS - A THEORETICAL STUDY ELECTRON IMPACT ATOMIC-MOLECULAR COLLISION PROCESSES RELEVANT IN PLANETARY AND ASTROPHYSICAL SYSTEMS - A THEORETICAL STUDY By Sumona Gangopadhyay SPU-VVN Department of Physics Sardar Patel University Vallabh

More information

HEAVY PARTICLE COLLISION PROCESSES. Alain Dubois

HEAVY PARTICLE COLLISION PROCESSES. Alain Dubois HEAVY PARTICLE COLLISION PROCESSES Alain Dubois Laboratoire de Chimie Physique - Matière et Rayonnement Université Pierre et Marie Curie - CNRS Paris FRANCE Heavy particle collision processes I - Introduction

More information

Chemistry 483 Lecture Topics Fall 2009

Chemistry 483 Lecture Topics Fall 2009 Chemistry 483 Lecture Topics Fall 2009 Text PHYSICAL CHEMISTRY A Molecular Approach McQuarrie and Simon A. Background (M&S,Chapter 1) Blackbody Radiation Photoelectric effect DeBroglie Wavelength Atomic

More information

ELASTIC SCATTERING OF LOW-ENERGY POSITRON BY ATOM UDC ; M. R. Nikolić 1, A. R.Tančić 2

ELASTIC SCATTERING OF LOW-ENERGY POSITRON BY ATOM UDC ; M. R. Nikolić 1, A. R.Tančić 2 FACTA UNIVERSITATIS Series: Physics, Chemistry and Technology Vol. 3, N o 2, 2005, pp. 141-149 ELASTIC SCATTERING OF LOW-ENERGY POSITRON BY ATOM UDC 530.145; 539.1 M. R. Nikolić 1, A. R.Tančić 2 1 Faculty

More information

Calculations of electron-molecule scattering cross sections using the Rmatrix method

Calculations of electron-molecule scattering cross sections using the Rmatrix method Calculations of electron-molecule scattering cross sections using the Rmatrix method Jimena Gorfinkiel Department of Physical Sciences The Open University Milton Keynes, UK Jimena.Gorfinkiel@open.ac.uk

More information

Coulomb phase interferences for small-angle inelastic scattering from ions

Coulomb phase interferences for small-angle inelastic scattering from ions J. Phys. B: At. Mol. Opt. Phys. 21 (1988) L25-L30. Printed in the UK LETTER TO THE EDITOR Coulomb phase interferences for small-angle inelastic scattering from ions Jim Mitroy Joint Institute for Laboratory

More information

Problem 1: Spin 1 2. particles (10 points)

Problem 1: Spin 1 2. particles (10 points) Problem 1: Spin 1 particles 1 points 1 Consider a system made up of spin 1/ particles. If one measures the spin of the particles, one can only measure spin up or spin down. The general spin state of a

More information

Molecular dynamics simulations of EXAFS in germanium

Molecular dynamics simulations of EXAFS in germanium Cent. Eur. J. Phys. 93 2011 710-715 DOI: 10.2478/s11534-010-0074-0 Central European Journal of Physics Molecular dynamics simulations of EXAFS in germanium Research Article Janis Timoshenko Alexei Kuzmin

More information

1. Cold Collision Basics

1. Cold Collision Basics ICAP Summer School, Seoul, S. Korea, July 18, 2016 1. Cold Collision Basics Paul S. Julienne Joint Quantum Institute NIST and The University of Maryland Thanks to many colleagues in theory and experiment

More information

INTERMOLECULAR FORCES

INTERMOLECULAR FORCES INTERMOLECULAR FORCES Their Origin and Determination By GEOFFREY C. MAITLAND Senior Research Scientist Schlumberger Cambridge Research, Cambridge MAURICE RIGBY Lecturer in the Department of Chemistry King's

More information

Chemistry 881 Lecture Topics Fall 2001

Chemistry 881 Lecture Topics Fall 2001 Chemistry 881 Lecture Topics Fall 2001 Texts PHYSICAL CHEMISTRY A Molecular Approach McQuarrie and Simon MATHEMATICS for PHYSICAL CHEMISTRY, Mortimer i. Mathematics Review (M, Chapters 1,2,3 & 4; M&S,

More information

Calculations of the Pion-Nucleus Inelastic Cross Sections Using the Microscopic Optical Potential

Calculations of the Pion-Nucleus Inelastic Cross Sections Using the Microscopic Optical Potential NUCLEAR THEORY, Vol. 32 (2013) eds. A.I. Georgieva, N. Minkov, Heron Press, Sofia Calculations of the Pion-Nucleus Inelastic Cross Sections Using the Microscopic Optical Potential K.V. Lukyanov 1, V.K.

More information

Measurements of absolute total cross sections for electron scatteringfrom triatomic polar molecules: SO 2 and H 2 S

Measurements of absolute total cross sections for electron scatteringfrom triatomic polar molecules: SO 2 and H 2 S Radiation Physics and Chemistry 68 (2003) 307 311 Measurements of absolute total cross sections for electron scatteringfrom triatomic polar molecules: SO 2 and H 2 S Czes"aw Szmytkowski*, Pawe" Mo zejko,

More information

More On Carbon Monoxide

More On Carbon Monoxide More On Carbon Monoxide E = 0.25 ± 0.05 ev Electron beam results Jerry Gilfoyle The Configurations of CO 1 / 26 More On Carbon Monoxide E = 0.25 ± 0.05 ev Electron beam results Jerry Gilfoyle The Configurations

More information

The pathway to reorientation in ammonium fluoride

The pathway to reorientation in ammonium fluoride 14 April 2000 Ž. Chemical Physics Letters 320 2000 487 491 www.elsevier.nlrlocatercplett The pathway to reorientation in ammonium fluoride A. Alavi a, R.M. Lynden-Bell a,), R.J.C. Brown b a Atomistic Simulation

More information

A Feynman Kac path-integral implementation for Poisson s equation using an h-conditioned Green s function

A Feynman Kac path-integral implementation for Poisson s equation using an h-conditioned Green s function Mathematics and Computers in Simulation 62 (2003) 347 355 A Feynman Kac path-integral implementation for Poisson s equation using an h-conditioned Green s function Chi-Ok Hwang a,, Michael Mascagni a,

More information

Total Electron Scattering Cross Section by Diatomic Molecules

Total Electron Scattering Cross Section by Diatomic Molecules Total Electron Scattering Cross Section by Diatomic Molecules Nia Metyana Wardani 1* Muhammad Nur 1* Asep Yoyo Wardaya 1,2 1.Physics Department, Faculty of Science and Mathematics, Diponegoro University,

More information

On intramolecular and intermolecular hydrogen bonding

On intramolecular and intermolecular hydrogen bonding Ž. Fluid Phase Equilibria 156 1999 51 56 On intramolecular and intermolecular hydrogen bonding Doukeni Missopolinou, Costas Panayiotou ) Department of Chemical Engineering, UniÕersity of Thessaloniki,

More information

Physics of atoms and molecules

Physics of atoms and molecules Physics of atoms and molecules 2nd edition B.H. Bransden and C.J. Joachain Prentice Hall An imprint of Pearson Education Harlow, England London New York Boston San Francisco Toronto Sydney Singapore Hong

More information

Electron Atom / Molecule Scattering and Applications

Electron Atom / Molecule Scattering and Applications Chapter 1 Electron Atom / Molecule Scattering and Applications 1.1 Introduction The persistent interest in the investigation of the electron-atom/molecule collisions is driven by the increasing in importance

More information

Study of heavy ion elastic scattering within quantum optical model

Study of heavy ion elastic scattering within quantum optical model Study of heavy ion elastic scattering within quantum optical model Caracaș Ioana Alexandra Dinuț Claudiu Ionuț University of Bucharest, Department of Physics Supervisors: Vladimir Rachkov, Mikhail Naumenko

More information

Vibrational and Rotational Analysis of Hydrogen Halides

Vibrational and Rotational Analysis of Hydrogen Halides Vibrational and Rotational Analysis of Hydrogen Halides Goals Quantitative assessments of HBr molecular characteristics such as bond length, bond energy, etc CHEM 164A Huma n eyes Near-Infrared Infrared

More information

Calculations of electron impact ionization cross section for simple biomolecules: Formic and acetic acids

Calculations of electron impact ionization cross section for simple biomolecules: Formic and acetic acids Eur. Phys. J. Special Topics 144, 233 237 (2007) c EDP Sciences, Springer-Verlag 2007 DOI: 10.1140/epjst/e2007-00133-8 THE EUROPEAN PHYSICAL JOURNAL SPECIAL TOPICS Calculations of electron impact ionization

More information

Direct reactions methodologies for use at fragmentation beam energies

Direct reactions methodologies for use at fragmentation beam energies 1 Direct reactions methodologies for use at fragmentation beam energies TU Munich, February 14 th 2008 Jeff Tostevin, Department of Physics Faculty of Engineering and Physical Sciences University of Surrey,

More information

Trap-based positron beams

Trap-based positron beams Applied Surface Science 194 (2002) 56 60 Trap-based positron beams R.G. Greaves a,*, S.J. Gilbert b, C.M. Surko b a First Point Scientific Inc., 5330 Derry Avenue, Suite J, Agoura Hills, CA 91301, USA

More information

Applied Surface Science CREST, Japan Science and Technology Corporation JST, Japan

Applied Surface Science CREST, Japan Science and Technology Corporation JST, Japan Ž. Applied Surface Science 130 13 1998 78 83 Selective chemical reaction of HBO molecules on the ž / Si 111-7 = 7 surface studied by scanning tunneling microscopy Koji Miyake a,), Masahiko Ishida a, Hidemi

More information

Magnetic sublevel population in 1s 2p excitation of helium by fast electrons and protons

Magnetic sublevel population in 1s 2p excitation of helium by fast electrons and protons INSTITUTE OF PHYSICS PUBLISHING JOURNAL OF PHYSICS B: ATOMIC, MOLECULAR AND OPTICAL PHYSICS J. Phys. B: At. Mol. Opt. Phys. 34 (1) 2575 2580 www.iop.org/journals/jb PII: S0953-4075(01)21564-8 Magnetic

More information

ABSTRACT Electron collision excitation strengths of inelastic transitions among the 52 Ðne-structure levels of the

ABSTRACT Electron collision excitation strengths of inelastic transitions among the 52 Ðne-structure levels of the THE ASTROPHYSICAL JOURNAL, 530:1091È1104, 2000 February 20 ( 2000. The American Astronomical Society. All rights reserved. Printed in U.S.A. ELECTRON COLLISION EXCITATION OF FINE-STRUCTURE LEVELS IN S

More information

Evaluation of a Characteristic Atomic Radius by an Ab Initio Method

Evaluation of a Characteristic Atomic Radius by an Ab Initio Method Evaluation of a Characteristic Atomic Radius by an Ab Initio Method ZHONG-ZHI YANG Department of Chemistry, Liaoning Normal University, Dalian, 116029, and Institute of Theoretical Chemistry, Jilin University,

More information

Convergent Close-Coupling approach to atomic and molecular collisions

Convergent Close-Coupling approach to atomic and molecular collisions Convergent Close-Coupling approach to atomic and molecular collisions Igor Bray Dmitry Fursa, Alisher Kadyrov, Andris Stelbovics and many students Head, Physics, Astronomy and Medical Imaging Science,

More information

Recent positron-atom cross section measurements and calculations

Recent positron-atom cross section measurements and calculations Eur. Phys. J. D (2014) 68: 297 DOI: 10.1140/epjd/e2014-50436-4 Colloquium THE EUROPEAN PHYSICAL JOURNAL D Recent positron-atom cross section measurements and calculations Luca Chiari 1,a,b and Antonio

More information

Photodetachment of H in an electric field between two parallel interfaces

Photodetachment of H in an electric field between two parallel interfaces Vol 17 No 4, April 2008 c 2008 Chin. Phys. Soc. 1674-1056/2008/17(04)/1231-06 Chinese Physics B and IOP Publishing Ltd Photodetachment of H in an electric field between two parallel interfaces Wang De-Hua(

More information

The photonic band structure of macro- ionic crystal

The photonic band structure of macro- ionic crystal 21 August 2000 Physics Letters A 273 2000 203 207 www.elsevier.nlrlocaterpla The photonic band structure of macro- ionic crystal Weiyi Zhang ), Zhenlin Wang, An Hu, Naiben Ming National Laboratory of Solid

More information

ELASTIC SCATTERING OF X-RAYS AND Γ-RAYS BY 2s ELECTRONS IN IONS AND NEUTRAL ATOMS *

ELASTIC SCATTERING OF X-RAYS AND Γ-RAYS BY 2s ELECTRONS IN IONS AND NEUTRAL ATOMS * Romanian Reports in Physics, Vol. 64, No. 4, P. 986 996, 0 ELASTIC SCATTERING OF X-RAYS AND Γ-RAYS BY s ELECTRONS IN IONS AND NEUTRAL ATOMS * K. KARIM, M. L. MUNTEANU, S. SPÂNULESCU,, C. STOICA University

More information

Ionization Potentials and Quantum Defects of 1s 2 np 2 P Rydberg States of Lithium Atom

Ionization Potentials and Quantum Defects of 1s 2 np 2 P Rydberg States of Lithium Atom Commun. Theor. Phys. (Beijing, China) 50 (2008) pp. 733 737 c Chinese Physical Society Vol. 50, No. 3, September 15, 2008 Ionization Potentials and Quantum Defects of 1s 2 np 2 P Rydberg States of Lithium

More information

Total ionization cross-sections of atmospheric molecules due to electron impact

Total ionization cross-sections of atmospheric molecules due to electron impact Indian Journal of Pure & Applied Physics Vol. 48, September 010, pp. 61-65 Total ionization cross-sections of atmospheric molecules due to electron impact Yogesh Kumar 1, * Neelam Tiwari, Mano Kumar 3

More information

Atoms, Molecules and Solids (selected topics)

Atoms, Molecules and Solids (selected topics) Atoms, Molecules and Solids (selected topics) Part I: Electronic configurations and transitions Transitions between atomic states (Hydrogen atom) Transition probabilities are different depending on the

More information

Two-photon transitions in confined hydrogenic atoms

Two-photon transitions in confined hydrogenic atoms RESEARCH Revista Mexicana de Física 64 (2018) 42 50 JANUARY-FEBRUARY 2018 Two-photon transitions in confined hydrogenic atoms Shalini Lumb a, Sonia Lumb b, and Vinod Prasad c a Department of Physics, Maitreyi

More information

Scattering of positronium by H, He, Ne, and Ar

Scattering of positronium by H, He, Ne, and Ar arxiv:physics/000104v1 [physics.atom-ph] 11 Jan 000 Scattering of positronium by H, He, Ne, and Ar P. K. Biswas and Sadhan K. Adhikari Instituto de Física Teórica, Universidade Estadual Paulista, 01.405-900

More information

Bohr Model of Atom: electrons move around nucleus in orbits similar to how planets orbit the sun energy levels for electrons are quantized

Bohr Model of Atom: electrons move around nucleus in orbits similar to how planets orbit the sun energy levels for electrons are quantized Chemistry I: Quantum Mechanics Notes Bohr Model of Atom: electrons move around nucleus in orbits similar to how planets orbit the sun energy levels for electrons are quantized Major developments that put

More information

THEORETICAL STUDY OF INTERMEDIATE- ENERGY ELECTRONS WITH He USING THE SCHWINGER VARIATIONAL PRINCIPLE WITH PLANE WAVES AS A TRIAL BASIS SET

THEORETICAL STUDY OF INTERMEDIATE- ENERGY ELECTRONS WITH He USING THE SCHWINGER VARIATIONAL PRINCIPLE WITH PLANE WAVES AS A TRIAL BASIS SET THEORETICAL STUDY OF INTERMEDIATE- ENERGY ELECTRONS WITH He USING THE SCHWINGER VARIATIONAL PRINCIPLE WITH PLANE WAVES AS A TRIAL BASIS SET Genaro G. Z. Torres (PG), Jorge L. S. Lino (PQ) Núcleo de Pesquisas

More information

Mie theory for light scattering by a spherical particle in an absorbing medium

Mie theory for light scattering by a spherical particle in an absorbing medium Mie theory for light scattering by a spherical particle in an absorbing medium Qiang Fu and Wenbo Sun Analytic equations are developed for the single-scattering properties of a spherical particle embedded

More information

1 Molecular collisions

1 Molecular collisions 1 Molecular collisions The present exercise starts with the basics of molecular collisions as presented in Chapter 4 of the lecture notes. After that, particular attention is devoted to several specific

More information

One and Two Photon Ionization along the Fe Isonuclear Sequence

One and Two Photon Ionization along the Fe Isonuclear Sequence I R A M P 8(), December 017, pp. 81-91 One and Two Photon Ionization along the Fe Isonuclear Sequence International Science Press ISSN: 9-3159 One and Two Photon Ionization along the Fe Isonuclear Sequence

More information

Comparison of different mixing rules for prediction of density and residual internal energy of binary and ternary Lennard Jones mixtures

Comparison of different mixing rules for prediction of density and residual internal energy of binary and ternary Lennard Jones mixtures Fluid Phase Equilibria 178 (2001) 87 95 Comparison of different mixing rules for prediction of density and residual internal energy of binary and ternary Lennard Jones mixtures Jian Chen a,, Jian-Guo Mi

More information

Heavy Atom Quantum Diffraction by Scattering from. Surfaces. Eli Pollak Chemical Physics Department Weizmann Institute of Science

Heavy Atom Quantum Diffraction by Scattering from. Surfaces. Eli Pollak Chemical Physics Department Weizmann Institute of Science Heavy Atom Quantum Diffraction by Scattering from Coworkers: Dr. Jeremy M. Moix Surfaces Eli Pollak Chemical Physics Department Weizmann Institute of Science Grants: Israel Science Foundation Weizmann-UK

More information

ELASTIC POSITRON SCATTERING FROM ZINC AND CADMIUM IN THE RELATIVISTIC POLARIZED ORBITAL APPROXIMATION

ELASTIC POSITRON SCATTERING FROM ZINC AND CADMIUM IN THE RELATIVISTIC POLARIZED ORBITAL APPROXIMATION Vol. 84 (1993) ACTA PHYSICA POLONICA A No. 6 ELASTIC POSITRON SCATTERING FROM ZINC AND CADMIUM IN THE RELATIVISTIC POLARIZED ORBITAL APPROXIMATION RADOSLAW SZMYTKOWSKI Institute of Theoretical Physics

More information

CHAPTER 1: PHYSICAL QUANTITIES AMD MEASUREMENT

CHAPTER 1: PHYSICAL QUANTITIES AMD MEASUREMENT CHAPTER 1: PHYSICAL UANTITIES AMD MEASUREMENT 11 Physical uantities and Units a) State basic quantities and their respective SI units: length (m), time (s), mass (kg), electrical current (A), temperature

More information

Scaling behavior of one-dimensional Pt chains migration on Pt 110 1=2 surface

Scaling behavior of one-dimensional Pt chains migration on Pt 110 1=2 surface 17 April 2000 Physics Letters A 268 2000 413 417 www.elsevier.nlrlocaterphysleta Scaling behavior of one-dimensional Pt chains migration on ž / ž / Pt 110 1=2 surface GuoCe Zhuang a,b,), Wei Wang a a National

More information

Chapter 9. Rutherford Scattering, Radioactive Decay, Energetic Atomic Collisions

Chapter 9. Rutherford Scattering, Radioactive Decay, Energetic Atomic Collisions 260 Chapter 9. Rutherford Scattering, Radioactive Decay, Energetic Atomic Collisions 1. Rutherford Scattering We reexamine Rutherford scattering, (Reference 9.1) with in the context of neutral solid mass

More information

Low-energy positron interactions with atoms and molecules

Low-energy positron interactions with atoms and molecules INSTITUTE OF PHYSICS PUBLISHING JOURNAL OF PHYSICS B: ATOMIC, MOLECULAR AND OPTICAL PHYSICS J. Phys. B: At. Mol. Opt. Phys. 38 (2005) R57 R126 doi:10.1088/0953-4075/38/6/r01 TOPICAL REVIEW Low-energy positron

More information

Differential and integral cross sections for electron elastic scattering by ammonia for incident energies ranging from 10 ev to 20 KeV

Differential and integral cross sections for electron elastic scattering by ammonia for incident energies ranging from 10 ev to 20 KeV RESEARCH Revista Mexicana de Física 64 (2018) 498 506 SEPTEMBER-OCTOBER 2018 Differential and integral cross sections for electron elastic scattering by ammonia for incident energies ranging from 10 ev

More information

Lecture 22 Highlights Phys 402

Lecture 22 Highlights Phys 402 Lecture 22 Highlights Phys 402 Scattering experiments are one of the most important ways to gain an understanding of the microscopic world that is described by quantum mechanics. The idea is to take a

More information

Positronium collisions with rare-gas atoms

Positronium collisions with rare-gas atoms Positronium collisions with rare-gas atoms Gribakin, G. F., Swann, A. R., Wilde, R. S., & Fabrikant, I. I. (2016). Positronium collisions with rare-gas atoms. Journal of Physics B: Atomic Molecular and

More information

24/ Rayleigh and Raman scattering. Stokes and anti-stokes lines. Rotational Raman spectroscopy. Polarizability ellipsoid. Selection rules.

24/ Rayleigh and Raman scattering. Stokes and anti-stokes lines. Rotational Raman spectroscopy. Polarizability ellipsoid. Selection rules. Subject Chemistry Paper No and Title Module No and Title Module Tag 8/ Physical Spectroscopy 24/ Rayleigh and Raman scattering. Stokes and anti-stokes lines. Rotational Raman spectroscopy. Polarizability

More information

X-ray absorption at the L 2,3 edge of an anisotropic single crystal: Cadmium 0001

X-ray absorption at the L 2,3 edge of an anisotropic single crystal: Cadmium 0001 PHYSICAL REVIEW B VOLUME 54, NUMBER 4 5 JULY 996-II X-ray absorption at the L 2,3 edge of an anisotropic single crystal: Cadmium 000 P. Le Fèvre Laboratoire pour l Utilisation du Rayonnement Electromagnetique

More information

Selected Topics in Mathematical Physics Prof. Balakrishnan Department of Physics Indian Institute of Technology, Madras

Selected Topics in Mathematical Physics Prof. Balakrishnan Department of Physics Indian Institute of Technology, Madras Selected Topics in Mathematical Physics Prof. Balakrishnan Department of Physics Indian Institute of Technology, Madras Module - 11 Lecture - 29 Green Function for (Del Squared plus K Squared): Nonrelativistic

More information

First-principles calculations for vacancy formation energies in Cu and Al; non-local e ect beyond the LSDA and lattice distortion

First-principles calculations for vacancy formation energies in Cu and Al; non-local e ect beyond the LSDA and lattice distortion Computational Materials Science 14 (1999) 56±61 First-principles calculations for vacancy formation energies in Cu and Al; non-local e ect beyond the LSDA and lattice distortion T. Hoshino a, *, N. Papanikolaou

More information

Evaluation of the second Born amplitude as a twodimensional integral for H+ + H(1s) + H(1s) + H+

Evaluation of the second Born amplitude as a twodimensional integral for H+ + H(1s) + H(1s) + H+ J. Phys. B: At. Mol. Phys. 14 (1981) L767-L771. Printed in Great Britain LETTER TO THE EDITOR Evaluation of the second Born amplitude as a twodimensional integral for H+ + H(1s) + H(1s) + H+ J M Wadehrat,

More information

Jack Simons, Henry Eyring Scientist and Professor Chemistry Department University of Utah

Jack Simons, Henry Eyring Scientist and Professor Chemistry Department University of Utah 1. Born-Oppenheimer approx.- energy surfaces 2. Mean-field (Hartree-Fock) theory- orbitals 3. Pros and cons of HF- RHF, UHF 4. Beyond HF- why? 5. First, one usually does HF-how? 6. Basis sets and notations

More information

An exact solution for 2+1 dimensional critical collapse

An exact solution for 2+1 dimensional critical collapse An exact solution for + dimensional critical collapse David Garfinkle Department of Physics, Oakland University, Rochester, Michigan 839 We find an exact solution in closed form for the critical collapse

More information

LASER-ASSISTED ELECTRON-ATOM COLLISIONS

LASER-ASSISTED ELECTRON-ATOM COLLISIONS Laser Chem. Vol. 11, pp. 273-277 Reprints available directly from the Publisher Photocopying permitted by license only 1991 Harwood Academic Publishers GmbH Printed in Singapore LASER-ASSISTED ELECTRON-ATOM

More information

Study of Ozone in Tribhuvan University, Kathmandu, Nepal. Prof. S. Gurung Central Department of Physics, Tribhuvan University, Kathmandu, Nepal

Study of Ozone in Tribhuvan University, Kathmandu, Nepal. Prof. S. Gurung Central Department of Physics, Tribhuvan University, Kathmandu, Nepal Study of Ozone in Tribhuvan University, Kathmandu, Nepal Prof. S. Gurung Central Department of Physics, Tribhuvan University, Kathmandu, Nepal 1 Country of the Mt Everest 2 View of the Mt Everest 3 4 5

More information

Investigation of pulse shapes and time constants for NaI scintillation pulses produced by low energy electrons from beta decay

Investigation of pulse shapes and time constants for NaI scintillation pulses produced by low energy electrons from beta decay 11 November 1999 Ž. Physics Letters B 467 1999 132 136 Investigation of pulse shapes and time constants for NaI scintillation pulses produced by low energy electrons from beta decay N.J.T. Smith a, P.F.

More information

EFFECTIVE CROSS SECTIONS FOR THE EXCHANGE EXCITATION OF ATOMS AND IONS BY ELECTRON IMPACT

EFFECTIVE CROSS SECTIONS FOR THE EXCHANGE EXCITATION OF ATOMS AND IONS BY ELECTRON IMPACT SOVET PHYSCS JETP VOLUME 25, NUMBER 1 JULY, 1967 EFFECTVE CROSS SECTONS FOR THE EXCHANGE EXCTATON OF ATOMS AND ONS BY ELECTRON MPACT. L. BEGMAN and L. A. VANSHTEN P. N. Lebedev Physics nstitute, Academy

More information

Rotational Raman Spectra of Diatomic Molecules

Rotational Raman Spectra of Diatomic Molecules Rotational Raman Spectra of Diatomic Molecules Week of March 15, 2010 Modern Physics Laboratory (Physics 6180/7180) The University of Toledo Instructor: Randy Ellingson Chandrasekhra Venkata Raman 1888-1970

More information

Energy dependence of breakup cross sections of the halo nucleus 8 B and effective interactions

Energy dependence of breakup cross sections of the halo nucleus 8 B and effective interactions PHYSICAL REVIEW C VOLUME 57, NUMBER 1 JANUARY 1998 Energy dependence of breakup cross sections of the halo nucleus 8 B and effective interactions C. A. Bertulani * Instituto de Física, Universidade Federal

More information

Positron scattering and annihilation on noble-gas atoms

Positron scattering and annihilation on noble-gas atoms Positron scattering and annihilation on noble-gas atoms Green, D. G., Ludlow, J. A., & Gribakin, G. F. (2014). Positron scattering and annihilation on noble-gas atoms. Physical Review A (Atomic, Molecular,

More information

Structural characterization. Part 1

Structural characterization. Part 1 Structural characterization Part 1 Experimental methods X-ray diffraction Electron diffraction Neutron diffraction Light diffraction EXAFS-Extended X- ray absorption fine structure XANES-X-ray absorption

More information

Optical-model potential for electron and positron elastic scattering by atoms

Optical-model potential for electron and positron elastic scattering by atoms PHYSICAL REVIEW A 68, 012708 2003 Optical-model potential for electron and positron elastic scattering by atoms Francesc Salvat* Facultat de Física (ECM), Universitat de Barcelona, Societat Catalana de

More information