DIFFERENTIAL SCATTERING CROSS SECTIONS FOR ELASTIC ELECTRON-MAGNESIUM SCATTERING

Size: px
Start display at page:

Download "DIFFERENTIAL SCATTERING CROSS SECTIONS FOR ELASTIC ELECTRON-MAGNESIUM SCATTERING"

Transcription

1 DIFFERENTIAL SCATTERING CROSS SECTIONS FOR ELASTIC ELECTRON-MAGNESIUM SCATTERING C.V. PANDYA, P.M. PATEL 2, K.L. BALUJA 3 Department of Physics, M.G. Science Institute, Navrangpura, Ahmedabad-38009, India. 2 Department of Physics, V.P. and R.P.T.P. Science College, Vallabhvidyanagar-38820, India. 3 Department of Physics & Astrophysics, University of Delhi, Delhi 007, India cvpandya@rediffmail.com Received July 27, 2009 In the present work, theoretical studies of differential cross sections (DCS) of electron scattering by the Mg atom have been carried out at projectile energies of, 20 and 40 ev. The only experimental parameters required are the first ionization potential and the dipole polarizability of the atom under consideration for the construction of the full optical potential. After generating the full optical potential of the scattering system, we treat it exactly in a partial wave analysis in terms of a set of first-order coupled differential equations for the real and imaginary parts of the complex phase shift functions under the variable phase approach. The calculated DCS are compared with the experimental data and theoretical values. Key words: Electron-magnesium scattering, elastic, inelastic scattering cross sections.. INTRODUCTION Magnesium is a closed shell atom with two 3s electrons, and a core consisting of K and L shells. In order to understand the radiation damage of bio molecules caused by the secondary low-energy electrons, a knowledge of binary electronatom collision processes is required. Magnesium is the central atom in chlorophyll molecules which provides energy for almost all metabolic processes, and is required at a number of steps during the synthesis of DNA, RNA and proteins []. Below any inelastic scattering thresholds, the scattering of electrons from atoms can be well represented as a potential scattering problem by including the static, polarization and exchange potentials. Above these thresholds, the existence of additional exit channels for the incident particle flux means that simple potential scattering models produce an overestimate of the elastic cross sections. A simple way to take into account the open inelastic channels within the framework of a potential scattering problem is to use a simple computational approach of complex optical potential in which the imaginary part represents the absorption of flux. Rom. Journ. Phys., Vol. 56, Nos. 2, P , Bucharest, 20

2 2 Elastic electron-magnesium scattering 73 On theoretical side, most calculations are performed either by first-order perturbative calculations [2, 3] or close coupling models [4 5]. Recently, Zatsarinny et al. [6] have calculated the cross section for electron scattering from magnesium atom using a B-spline R-matrix method in which a B-spline basis is employed to represent the continuum functions in the close-coupling expansion of the scattering wave function. These more elaborate theories take into account the additional channels but at the cost of very substantial increase in the complexity of the problem and the computer resources needed. In the present work, we have employed a very simple calculation technique of complex optical potential approach. The real part of the optical potential consists of static potential [7], the exchange potential [8] which is incorporated by treating the electron cloud as a free gas, and a polarization potential [9]. The imaginary part of the optical potential represents the absorption potential that takes into account the loss of flux due to all energetically possible inelastic channels []. After generating the full optical potential of the scattering system, we treat it exactly in a partial wave analysis in terms of a set of first-order coupled differential equations for the real and imaginary parts of the complex phase shift functions under the Variable Phase Approach [] and the differential cross sections are calculated. Several sets of experimental measurements of differential cross sections (DCS) for electron scattering from neutral Mg are available [2 7]. These provide an excellent opportunity to test various theoretical methods employed for the calculation of electron atom collision processes. 2. THEORY All the major interactions of electron-atom scattering can be represented by a complex, energy dependent, optical potential V opt (r, k) as V opt (r,k) = V st (r) + V ex (r,k) + V pol (r,k) + iv abs (r,k) () where V st (r) is the static potential obtained from the DHFS function [7], V ex (r,k) is the exchange potential obtained from FEG model [8], V pol (r,k) is the polarization potential model [9] and V abs (r,k) is the absorption potential []. The only parameters required for the construction of the full optical potential are the first ionization potential and the dipole polarizability of the atom under consideration. The mean excitation energy is set equal to the first ionization potential []. The parameters used in our calculations are shown in Table. These parameters are taken from NIST Database. Table Parameters used in electron Magnesium scattering calculations Parameters for Mg Average dipole polarizability (α d ) a 0 Ionization potential energy (I.P) ev

3 74 C.V. Pandya, P.M. Patel, K.L.Baluja 3 A partial wave analysis is done by solving the following set of first-order coupled different equations for the real χ and imaginary Imχ l parts of the complex phase shift function under the variable phase approach []. χ / l (kr) = 2/k [2V R (r,k)(a 2 B 2 ) + 2V abs (r,k) AB ], (2) / Imχ l (kr) = 2/k[2V R (r,k) AB 2V abs (r,k) (A 2 B 2 )], (3) where, A = Cosh Imχ l (kr)[cosχ l (kr) j l (kr) Sin χ l (kr) n l (kr)] (4) B = SinhImχ l (kr)[sinχ l (kr) j l (kr) Cos χ l (kr) n l (kr)] (5) here j l (kr) and n l (kr) are the usual Riccati Bessel functions []. The potentials V R (r) and V abs (r) are the real and imaginary parts of the complex optical potential. Equations (2) and (3) are integrated up to a sufficiently large r, different for different l and k values. Thus the final S matrix is written as S l (k)=exp(-2im χ l ) exp (i 2 χ l ) (6) and corresponding DCS s are computed as lmax 2 l= 0 dσ = (2l+ )[ Sl(k) ] Pl(cos θ) dω 4k (7) where P l (cosθ) is a Legendre polynomial of order l RESULT AND DISCUSSION We have calculated differential cross sections for electron impact on Mg at various energies and have compared our calculated values with experimental data of Williams and Trajmar [7] and Predojevic [8], and theoretical results of Mitroy and McCarthy [4] and R-matrix results of Zatsarinny et al. [6]. Mitroy and McCarthy [4] have computed these in the coupled-channels approximation. In these theoretical works the configuration interaction wave functions are used to represent the target states which were included in the trial wave function in the close-coupling expansion. In Fig. we have presented our DCS results along with the experimental results [7, 8] and the close-coupled calculation [4, 6] at ev. Our DCS results show good agreement with the recent experimental measurements of Predojevic et al. [8]. The experimental measurements of Predojevic et al. [8] show two minima in contrast to the observation of Williams and Trajmar [7]. Beyond 20 degree the observed results of Williams and Trajmar [7] lie lower than the other curves shown. It is very encouraging to note that our simple model is capable of reproducing DCS that are in good accord with the observation. Our results are in better agreement with observation than the other theoretical work. In Fig. 2, we have depicted DCS at 20 ev. Our results are again in very good agreement with the observed results of Predojevic et al. [8]. All the curves show two minima which is quite encouraging for theoretical as well as observed results.

4 4 Elastic electron-magnesium scattering 75 Differential scattering cross sections ( -6 Cm 2 /sr) Scattering angle (deg). Fig.. Differential scattering cross sections for electron-mg scattering at ev. Differential scattering cross sections ( -6 Cm 2 /sr) Scattering angle(deg). Fig. 2. Differential scattering cross Sections for electron-mg scattering at 20 ev. Differential scattering cross sections ( -6 Cm 2 /sr) Scattering angle(deg). Fig.3. Differential scattering cross sections for electron-mg scattering at 40 ev.

5 76 C.V. Pandya, P.M. Patel, K.L.Baluja 5 The results shown in Fig. 3 are at 40 ev where all the calculations are in reasonable agreement with each other but our calculations are slightly below the experiment measurements [8]. The differences among all the results here are small due to the log nature of the depicted figures. This is a quite satisfactory picture that implies that our simple model is capable of reproducing a very good set of DCS even at moderate energy of 40 ev. 4. CONCLUSIONS We have carried out a study of electron-impact on Mg at three impact energies of, 20 and 40 ev by employing a computationally simple methodology of complex optical potential. The important ingredients of interaction of the scattering system are taken into account by including local versions of static, exchange, polarization and absorption potentials. The presented results compare favorably with the experiment. This methodology can be further exploited to investigate other electron-atom systems. Acknowledgement. University Grants Commission-India is greatly acknowledged. This research is funded to CVP by UGC under research project F. No /06. We are also thankful to O. Zatsarinny for providing us his data. REFERENCES. L. Sanche, Mass Spectrom. Rev. 2, , (2002). 2. R. Srivastava, R.P. McEachran, A.D. Stauffer, J. Phys. B 34, , (200). 3. L. Sharma, R. Srivastava, A.D. Stauffer, Phys. Rev A 78, 0470 (2008). 4. J. Mitroy, I.E. McCarthy, J. Phys. B 22, (989). 5. I.E. McCarthy, K. Ratnavelu, Y. Zhou, J. Phys. B 22, (989). 6. O. Zatsarinny, K. Bartschat, Phys. Rev A 79, (2009). 7. F. Salvat, J.D. Martinez, R. Mayol, J. Parellada, Phy.Rev. A 36, (987). 8. S. Hara, J. Phys. Soc. Jpn, 22, 7 78 (967). 9. N.T. Padial, D.W. Norcross, Phys. Rev. A 29, (984).. G. Staszewska, D.W. Schwenka, D. Thirumalai, D.G. Truhalar, Phys.Rev. A 28, (983).. A. Jain, K. L.Baluja, Phys. Rev. A 45, (992). 2. D.O. Brown, D. Cvejanovic, A. Crowe, J. Phys. B 36, (2003). 3. D.O. Brown, A. Crowe, D.V. Fursa, I. Bray, K. Bartschat, J. Phys. B 38, (2005). 4. D.M. Filipovic, B. Predojevic, V. Pejcev, D. Sevic, B.P. Marinkovic, R. Srivastava, A.D. Stauffer, J. Phys. B 39, (2006). 5. D.M. Filipovic, B. Predojevic, D. Sevic, V. Pejcev, B.P. Marinkovic, R.Srivastava, A.D. Stauffer, Int. J. of Mass Spectrom. 25, (2006). 6. B. Predojevic, V. Pejcev, D.M. Filipovic, D. Sevic, B.P. Marinkovic, J. Phys. B 4, (2008). 7. W. Williams, S. Trajmar, J. Phys. B, (978). 8. B. Predojevic, V. Pejcev, D.M. Filipovic, D. Sevic, B.P. Marinkovic, J. Phys. B 40, (2007).

Total (complete) and ionization cross-sections of argon and krypton by positron impact from 15 to 2000 ev Theoretical investigations

Total (complete) and ionization cross-sections of argon and krypton by positron impact from 15 to 2000 ev Theoretical investigations PRAMANA c Indian Academy of Sciences Vol. 79, No. 3 journal of September 2012 physics pp. 435 442 Total (complete) and ionization cross-sections of argon and krypton by positron impact from 15 to 2000

More information

ELECTRON IMPACT ATOMIC-MOLECULAR COLLISION PROCESSES RELEVANT IN PLANETARY AND ASTROPHYSICAL SYSTEMS - A THEORETICAL STUDY

ELECTRON IMPACT ATOMIC-MOLECULAR COLLISION PROCESSES RELEVANT IN PLANETARY AND ASTROPHYSICAL SYSTEMS - A THEORETICAL STUDY ELECTRON IMPACT ATOMIC-MOLECULAR COLLISION PROCESSES RELEVANT IN PLANETARY AND ASTROPHYSICAL SYSTEMS - A THEORETICAL STUDY By Sumona Gangopadhyay SPU-VVN Department of Physics Sardar Patel University Vallabh

More information

A quasifree model for the absorption effects in positron scattering by atoms

A quasifree model for the absorption effects in positron scattering by atoms J. Phys. B: At. Mol. Opt. Phys. 29 (1996) L127 L133. Printed in the UK LETTER TO THE EDITOR A quasifree model for the absorption effects in positron scattering by atoms David D Reid and J M Wadehra Department

More information

ELASTIC POSITRON SCATTERING FROM ZINC AND CADMIUM IN THE RELATIVISTIC POLARIZED ORBITAL APPROXIMATION

ELASTIC POSITRON SCATTERING FROM ZINC AND CADMIUM IN THE RELATIVISTIC POLARIZED ORBITAL APPROXIMATION Vol. 84 (1993) ACTA PHYSICA POLONICA A No. 6 ELASTIC POSITRON SCATTERING FROM ZINC AND CADMIUM IN THE RELATIVISTIC POLARIZED ORBITAL APPROXIMATION RADOSLAW SZMYTKOWSKI Institute of Theoretical Physics

More information

Elastic scattering of positron by gold atom

Elastic scattering of positron by gold atom J. At. Mol. Sci. doi: 208/jams.022633a Vol. 2, No. 4, pp. 294-304 November 20 Elastic scattering of positron by gold atom Kapil K. Sharma a,, Neerja b, and R. P. Vats a a Department of Physics, M.S (P.G)

More information

Monte Carlo simulation of Secondary Electron Yield for Noble metals Martina Azzolini, Nicola M. Pugno, Simone Taioli, Maurizio Dapor

Monte Carlo simulation of Secondary Electron Yield for Noble metals Martina Azzolini, Nicola M. Pugno, Simone Taioli, Maurizio Dapor Monte Carlo simulation of Secondary Electron Yield for Noble metals Martina Azzolini, Nicola M. Pugno, Simone Taioli, Maurizio Dapor ECLOUD 18 - Elba Island- 3-7 June 2018 OUTLINE Description of the Monte

More information

Absolute angle-differential cross sections for electron-impact excitation of neon within the first 3.5 ev above threshold

Absolute angle-differential cross sections for electron-impact excitation of neon within the first 3.5 ev above threshold Published in "Journal of Physics B: Atomic, Molecular and Optical Physics (): 9, 9" which should be cited to refer to this work. Absolute angle-differential cross sections for electron-impact excitation

More information

a procedure to explore uncertainty and reliability in theoretical cross section data for electron and positron scattering Bobby Antony

a procedure to explore uncertainty and reliability in theoretical cross section data for electron and positron scattering Bobby Antony a procedure to explore uncertainty and reliability in theoretical cross section data for electron and positron scattering Bobby Antony Indian Institute of Technology (ISM) Dhanbad, India Outline Need for

More information

arxiv: v1 [physics.atom-ph] 17 Nov 2018

arxiv: v1 [physics.atom-ph] 17 Nov 2018 Electron-impact excitation and ionization of atomic calcium at intermediate energies arxiv:1811.7176v1 [physics.atom-ph] 17 Nov 18 Oleg Zatsarinny, Henry Parker, and Klaus Bartschat Department of Physics

More information

Electron-impact ionization of SiCl, SiCl 2 and SiCl 4 molecules

Electron-impact ionization of SiCl, SiCl 2 and SiCl 4 molecules J. At. Mol. Sci. doi: 10.4208/jams.022812.032212a Vol. 4, No. 1, pp. 41-48 February 2013 Electron-impact ionization of SiCl, SiCl 2 and SiCl 4 molecules C.V. Pandya Department of Physics, M.G. Science

More information

T-matrix calculations for the electron-impact ionization of hydrogen in the Temkin-Poet model

T-matrix calculations for the electron-impact ionization of hydrogen in the Temkin-Poet model T-matrix calculations for the electron-impact ionization of hydrogen in the Temkin-Poet model M. S. Pindzola, D. Mitnik, and F. Robicheaux Department of Physics, Auburn University, Auburn, Alabama 36849

More information

Total ionization cross-sections of atmospheric molecules due to electron impact

Total ionization cross-sections of atmospheric molecules due to electron impact Indian Journal of Pure & Applied Physics Vol. 48, September 010, pp. 61-65 Total ionization cross-sections of atmospheric molecules due to electron impact Yogesh Kumar 1, * Neelam Tiwari, Mano Kumar 3

More information

Various problems in electron-atom collision theory

Various problems in electron-atom collision theory Various problems in electron-atom collision theory I. Bray, K. Bartschat, D. V. Fursa, A. S. Kadyrov and A. T. Stelbovics Centre for Atomic, Molecular, and Surface Physics, Murdoch University, Perth 615

More information

Absolute differential cross sections for electron elastic scattering and vibrational excitation in nitrogen in the angular range from 120 to 180

Absolute differential cross sections for electron elastic scattering and vibrational excitation in nitrogen in the angular range from 120 to 180 J. Phys. B: At. Mol. Opt. Phys. 33 (2000) L527 L532. Printed in the UK PII: S0953-4075(00)50902-X LETTER TO THE EDITOR Absolute differential cross sections for electron elastic scattering and vibrational

More information

Total Electron Scattering Cross Sections of He, Ne, Ar, Kr and Xe in the Energy Range 100 ev to ev

Total Electron Scattering Cross Sections of He, Ne, Ar, Kr and Xe in the Energy Range 100 ev to ev Total Electron Scattering Cross Sections of He, Ne, Ar, Kr and Xe in the Energy Range 100 ev to 10 000 ev Xiao-Ming Tan, Chuan-Lu Yang, Mei-Shan Wang, Zhi-Hong Zhang, and Qiang Xu School of Physics and

More information

Ionization Of P Atom, P2 And PC Molecules By Electron Impact: Theoretical Studies

Ionization Of P Atom, P2 And PC Molecules By Electron Impact: Theoretical Studies Ionization Of P Atom, P2 And PC Molecules By Electron Impact: Theoretical Studies 1 Asha S Chaudhari, 2 Foram M Joshi, 3 Manish Pindariya, 4 K N Joshipura, 5 Pooja Bhowmik 1 Ph D Student, 2 Assistant Professor,

More information

Low energy positron interactions with rare gas atoms: threshold features and benchmark cross sections

Low energy positron interactions with rare gas atoms: threshold features and benchmark cross sections Journal of Physics: Conference Series Low energy positron interactions with rare gas atoms: threshold features and benchmark cross sections To cite this article: James Sullivan et al 2011 J. Phys.: Conf.

More information

Eikonal method for halo nuclei

Eikonal method for halo nuclei Eikonal method for halo nuclei E. C. Pinilla, P. Descouvemont and D. Baye Université Libre de Bruxelles, Brussels, Belgium 1. Motivation 2. Introduction 3. Four-body eikonal method Elastic scattering 9

More information

Total Electron Scattering Cross Section Calculations for Tetrahydropyran (CH 2 ) 5 O and Tetrahydrofurfuryl Alcohol (C 5 H 10 O 2 ) Bio-Molecules

Total Electron Scattering Cross Section Calculations for Tetrahydropyran (CH 2 ) 5 O and Tetrahydrofurfuryl Alcohol (C 5 H 10 O 2 ) Bio-Molecules ISSN(Online): 319-8753 ISSN (Print): 347-671 (An ISO 397: 7 Certified Organization) Vol. 4, Issue 6, June 15 Total Electron Scattering Cross Section Calculations for Tetrahydropyran (CH O and Tetrahydrofurfuryl

More information

Optical-model potential for electron and positron elastic scattering by atoms

Optical-model potential for electron and positron elastic scattering by atoms PHYSICAL REVIEW A 68, 012708 2003 Optical-model potential for electron and positron elastic scattering by atoms Francesc Salvat* Facultat de Física (ECM), Universitat de Barcelona, Societat Catalana de

More information

Convergent Close-Coupling approach to atomic and molecular collisions

Convergent Close-Coupling approach to atomic and molecular collisions Convergent Close-Coupling approach to atomic and molecular collisions Igor Bray Dmitry Fursa, Alisher Kadyrov, Andris Stelbovics and many students Head, Physics, Astronomy and Medical Imaging Science,

More information

Lecture 6 Scattering theory Partial Wave Analysis. SS2011: Introduction to Nuclear and Particle Physics, Part 2 2

Lecture 6 Scattering theory Partial Wave Analysis. SS2011: Introduction to Nuclear and Particle Physics, Part 2 2 Lecture 6 Scattering theory Partial Wave Analysis SS2011: Introduction to Nuclear and Particle Physics, Part 2 2 1 The Born approximation for the differential cross section is valid if the interaction

More information

Radiation Detection for the Beta- Delayed Alpha and Gamma Decay of 20 Na. Ellen Simmons

Radiation Detection for the Beta- Delayed Alpha and Gamma Decay of 20 Na. Ellen Simmons Radiation Detection for the Beta- Delayed Alpha and Gamma Decay of 20 Na Ellen Simmons 1 Contents Introduction Review of the Types of Radiation Charged Particle Radiation Detection Review of Semiconductor

More information

Scattering of intermediate-energy positrons by C, N, O atoms and the corresponding diatomic molecules: elastic and total cross-sections

Scattering of intermediate-energy positrons by C, N, O atoms and the corresponding diatomic molecules: elastic and total cross-sections 1 October 1999 Ž. Chemical Physics Letters 311 1999 385 389 www.elsevier.nlrlocatercplett Scattering of intermediate-energy positrons by C,, O atoms and the corresponding diatomic molecules: elastic and

More information

Database for Imaging and Transport with Energetic Neutral Atoms (ENAs)

Database for Imaging and Transport with Energetic Neutral Atoms (ENAs) Database for Imaging and Transport with Energetic Neutral Atoms (ENAs) Nicholas Lewkow Harvard-Smithsonian Center for Astrophysics University of Connecticut April 26, 213 Collaborators Vasili Kharchenko

More information

Open Research Online The Open University s repository of research publications and other research outputs

Open Research Online The Open University s repository of research publications and other research outputs Open Research Online The Open University s repository of research publications and other research outputs Elastic scattering of electrons from alanine Journal Item How to cite: Marinković, B. P.; Blanco,

More information

arxiv: v1 [physics.atom-ph] 7 Feb 2013

arxiv: v1 [physics.atom-ph] 7 Feb 2013 Phase Effects in Two-Photon Free-Free Transitions in a Bichromatic Field of Frequencies ω and ω Aurelia Cionga and Gabriela Zloh arxiv:02.76v [physics.atom-ph] 7 Feb 20 Institute for Space Sciences, P.O.

More information

(c) Sketch the ratio of electron to gas pressure for main sequence stars versus effective temperature. [1.5]

(c) Sketch the ratio of electron to gas pressure for main sequence stars versus effective temperature. [1.5] 1. (a) The Saha equation may be written in the form N + n e N = C u+ u T 3/2 exp ( ) χ kt where C = 4.83 1 21 m 3. Discuss its importance in the study of stellar atmospheres. Carefully explain the meaning

More information

Decays and Scattering. Decay Rates Cross Sections Calculating Decays Scattering Lifetime of Particles

Decays and Scattering. Decay Rates Cross Sections Calculating Decays Scattering Lifetime of Particles Decays and Scattering Decay Rates Cross Sections Calculating Decays Scattering Lifetime of Particles 1 Decay Rates There are THREE experimental probes of Elementary Particle Interactions - bound states

More information

The validity of classical trajectory and perturbative quantal methods for electron-impact ionization from excited states in H-like ions

The validity of classical trajectory and perturbative quantal methods for electron-impact ionization from excited states in H-like ions INSTITUTE OF PHYSICS PUBLISHING JOURNAL OF PHYSICS B: ATOMIC, MOLECULAR AND OPTICAL PHYSICS J. Phys. B: At. Mol. Opt. Phys. 38 (25) L199 L26 doi:1.188/953-475/38/12/l1 LETTER TO THE EDITOR The validity

More information

The electron scattering database - Is it fit for purpose? N J Mason, Open University, UK

The electron scattering database - Is it fit for purpose? N J Mason, Open University, UK The electron scattering database - Is it fit for purpose? N J Mason, Open University, UK Electron interactions pervade many areas of science and technology Atmospheric physics and planetary atmospheres

More information

Electron inelastic mean free paths in solids: A theoretical approach

Electron inelastic mean free paths in solids: A theoretical approach Electron inelastic mean free paths in solids: A theoretical approach Siddharth H. Pandya a), B. G. Vaishnav b), and K. N. Joshipura a) a) Department of Physics, Sardar Patel University, Vallabh Vidyanagar-388120

More information

Free free scattering theory in circularly polarized laser field for polarized potential

Free free scattering theory in circularly polarized laser field for polarized potential Free free scattering theory in circularly polarized laser field for polarized potential Kishori Yadav 1, Jeevan Jyoti Nakarmi 2 1 Patan Multiple Campus, 2 Central Department of Physics (T.U) ABSTRACT In

More information

Scattering cross-section (µm 2 )

Scattering cross-section (µm 2 ) Supplementary Figures Scattering cross-section (µm 2 ).16.14.12.1.8.6.4.2 Total scattering Electric dipole, a E (1,1) Magnetic dipole, a M (1,1) Magnetic quardupole, a M (2,1). 44 48 52 56 Wavelength (nm)

More information

24/ Rayleigh and Raman scattering. Stokes and anti-stokes lines. Rotational Raman spectroscopy. Polarizability ellipsoid. Selection rules.

24/ Rayleigh and Raman scattering. Stokes and anti-stokes lines. Rotational Raman spectroscopy. Polarizability ellipsoid. Selection rules. Subject Chemistry Paper No and Title Module No and Title Module Tag 8/ Physical Spectroscopy 24/ Rayleigh and Raman scattering. Stokes and anti-stokes lines. Rotational Raman spectroscopy. Polarizability

More information

Formation of H-atom in 2s excited state of proton-lithium and proton-sodium scattering

Formation of H-atom in 2s excited state of proton-lithium and proton-sodium scattering PRAMANA c Indian Academy of Sciences Vol. 70, No. 4 journal of April 008 physics pp. 753 758 Formation of H-atom in s excited state of proton-lithium and proton-sodium scattering Y N TIWARI Department

More information

Positronium formation in 2S-state in atomic hydrogen

Positronium formation in 2S-state in atomic hydrogen Indian Journal o Pure & Applied Physics Vol. 46, April 008, pp. 45-50 Positronium ormation in S-state in atomic hydrogen V S Kulhar* Department o Physics, University o Rajasthan, Jaipur 0 055 Received

More information

THEORETICAL STUDY OF INTERMEDIATE- ENERGY ELECTRONS WITH He USING THE SCHWINGER VARIATIONAL PRINCIPLE WITH PLANE WAVES AS A TRIAL BASIS SET

THEORETICAL STUDY OF INTERMEDIATE- ENERGY ELECTRONS WITH He USING THE SCHWINGER VARIATIONAL PRINCIPLE WITH PLANE WAVES AS A TRIAL BASIS SET THEORETICAL STUDY OF INTERMEDIATE- ENERGY ELECTRONS WITH He USING THE SCHWINGER VARIATIONAL PRINCIPLE WITH PLANE WAVES AS A TRIAL BASIS SET Genaro G. Z. Torres (PG), Jorge L. S. Lino (PQ) Núcleo de Pesquisas

More information

ELASTIC SCATTERING OF X-RAYS AND Γ-RAYS BY 2s ELECTRONS IN IONS AND NEUTRAL ATOMS *

ELASTIC SCATTERING OF X-RAYS AND Γ-RAYS BY 2s ELECTRONS IN IONS AND NEUTRAL ATOMS * Romanian Reports in Physics, Vol. 64, No. 4, P. 986 996, 0 ELASTIC SCATTERING OF X-RAYS AND Γ-RAYS BY s ELECTRONS IN IONS AND NEUTRAL ATOMS * K. KARIM, M. L. MUNTEANU, S. SPÂNULESCU,, C. STOICA University

More information

Keywords: Atomic helium; close-coupling; differential cross sections; excitation

Keywords: Atomic helium; close-coupling; differential cross sections; excitation Sains Malaysiana 4()(01): 40 Application of the Non-Orthogonal Laguerre-L Basis to the Calculation of Electron-Helium Scattering at Intermediate Energy (Penggunaan Asas Tak Ortogon Laguerre-L untuk Pengiraan

More information

DISTORTED WAVE METHOD APPLIED TO ELASTIC SCATTERING OF ELECTRONS BY MAGNESIUM ATOM. NTABARI WYCLIFFE DANIEL MURURU [B.Ed (Sc)] I56/CE/12243/2009

DISTORTED WAVE METHOD APPLIED TO ELASTIC SCATTERING OF ELECTRONS BY MAGNESIUM ATOM. NTABARI WYCLIFFE DANIEL MURURU [B.Ed (Sc)] I56/CE/12243/2009 DISTORTED WAVE METHOD APPLIED TO ELASTIC SCATTERING OF ELECTRONS BY MAGNESIUM ATOM NTABARI WYCLIFFE DANIEL MURURU [B.Ed (Sc)] I56/CE/12243/2009 A thesis submitted in partial fulfillment for the Degree

More information

THREE MAIN LIGHT MATTER INTERRACTION

THREE MAIN LIGHT MATTER INTERRACTION Chapters: 3and 4 THREE MAIN LIGHT MATTER INTERRACTION Absorption: converts radiative energy into internal energy Emission: converts internal energy into radiative energy Scattering; Radiative energy is

More information

Evaluated electron and positronmolecule scattering data for modelling particle transport in the energy range ev

Evaluated electron and positronmolecule scattering data for modelling particle transport in the energy range ev Evaluated electron and positronmolecule scattering data for modelling particle transport in the energy range 0-10000 ev Gustavo García Instituto de Física Fundamental Consejo Superior de Investigaciones

More information

Coulomb phase interferences for small-angle inelastic scattering from ions

Coulomb phase interferences for small-angle inelastic scattering from ions J. Phys. B: At. Mol. Opt. Phys. 21 (1988) L25-L30. Printed in the UK LETTER TO THE EDITOR Coulomb phase interferences for small-angle inelastic scattering from ions Jim Mitroy Joint Institute for Laboratory

More information

Fundamentals of Nanoscale Film Analysis

Fundamentals of Nanoscale Film Analysis Fundamentals of Nanoscale Film Analysis Terry L. Alford Arizona State University Tempe, AZ, USA Leonard C. Feldman Vanderbilt University Nashville, TN, USA James W. Mayer Arizona State University Tempe,

More information

Electron-helium scattering within the S-wave model

Electron-helium scattering within the S-wave model PHYSICAL REVIEW A, VOLUME 65, 032701 Electron-helium scattering within the S-wave model Chris Plottke, 1 Igor Bray, 1 Dmitry V. Fursa, 2 and Andris T. Stelbovics 1 1 Centre for Atomic, Molecular and Surface

More information

Photoionization of excited states of neon-like Mg III

Photoionization of excited states of neon-like Mg III PRAMANA cfl Indian Academy of Sciences Vol. 58, No. 4 journal of April 2002 physics pp. 639 646 Photoionization of excited states of neon-like Mg III NARENDRA SINGH and MAN MOHAN Department of Physics

More information

Ultrarelativistic Heavy-Ions

Ultrarelativistic Heavy-Ions Kinematics November 11, 2010 / GSI Outline Introduction 1 Introduction 2 3 3 Notation Introduction A parallel to z-axis (beam): A A = A A transverse to z-axis: A = A A A = A Transverse mass: m = m 2 +

More information

Collisional radiative model

Collisional radiative model Lenka Dosoudilová Lenka Dosoudilová 1 / 14 Motivation Equations Approximative models Emission coefficient Particles J ij = 1 4π n j A ij hν ij, atoms in ground state atoms in excited states resonance metastable

More information

ELASTIC SCATTERING OF LOW-ENERGY POSITRON BY ATOM UDC ; M. R. Nikolić 1, A. R.Tančić 2

ELASTIC SCATTERING OF LOW-ENERGY POSITRON BY ATOM UDC ; M. R. Nikolić 1, A. R.Tančić 2 FACTA UNIVERSITATIS Series: Physics, Chemistry and Technology Vol. 3, N o 2, 2005, pp. 141-149 ELASTIC SCATTERING OF LOW-ENERGY POSITRON BY ATOM UDC 530.145; 539.1 M. R. Nikolić 1, A. R.Tančić 2 1 Faculty

More information

The definitive version is available from

The definitive version is available from Citation for published version: Jay, PM & Coleman, PG 2010, 'Coupling between positronium formation and elastic positron-scattering channels in the rare gases' Physical Review A: Atomic, Molecular, and

More information

Lecture 22 Ion Beam Techniques

Lecture 22 Ion Beam Techniques Lecture 22 Ion Beam Techniques Schroder: Chapter 11.3 1/44 Announcements Homework 6/6: Will be online on later today. Due Wednesday June 6th at 10:00am. I will return it at the final exam (14 th June).

More information

Electron impact ionization of diatomic molecules

Electron impact ionization of diatomic molecules Eur. Phys. J. D 8, 5 5 (8) DOI:./epjd/e8-- Electron impact ionization of diatomic molecules I. Tóth, R.I. Campeanu, V. Chiş and L. Nagy Eur. Phys. J. D 8, 5 5 (8) DOI:./epjd/e8-- THE EUROPEAN PHYSICAL

More information

Chapter 2 Radiation-Matter Interactions

Chapter 2 Radiation-Matter Interactions Chapter 2 Radiation-Matter Interactions The behavior of radiation and matter as a function of energy governs the degradation of astrophysical information along the path and the characteristics of the detectors.

More information

Cross Sections: Key for Modeling

Cross Sections: Key for Modeling Cross Sections: Key for Modeling Vasili Kharchenko Department of Physics, University of Connecticut Harvard-Smithsonian Center for Astrophysics, Cambridge, USA 1. Introduction: a) non-thermal atoms and

More information

Atomic collision parameters for electron de-excitation of the 4S 3P transition of sodium

Atomic collision parameters for electron de-excitation of the 4S 3P transition of sodium J. Phys. B: At. Mol. Opt. Phys. 32 (1999) 2439 2459. Printed in the UK PII: S0953-4075(99)01945-8 Atomic collision parameters for electron de-excitation of the 4S 3P transition of sodium M Shurgalin, A

More information

CARLO SIMULATION. The ionization cross-section was taken from the available data 8,9 and is also shown in Fig. 3.

CARLO SIMULATION. The ionization cross-section was taken from the available data 8,9 and is also shown in Fig. 3. EEE Transactions on Nuclear Science, Vol. NS-30, No. 1, February 1983 389 UNDMENSONAL MONTE CARLO SMULATON OF THE SECONDARY SCNTLLATON OF XENON Teresa H.V.T. Dias,* A.D. Stauffer** and C.A.N. Conde* *Physics

More information

Solution of time-dependent Boltzmann equation for electrons in non-thermal plasma

Solution of time-dependent Boltzmann equation for electrons in non-thermal plasma Solution of time-dependent Boltzmann equation for electrons in non-thermal plasma Z. Bonaventura, D. Trunec Department of Physical Electronics Faculty of Science Masaryk University Kotlářská 2, Brno, CZ-61137,

More information

Time-dependent close-coupling calculations for the electron-impact ionization of carbon and neon

Time-dependent close-coupling calculations for the electron-impact ionization of carbon and neon Time-dependent close-coupling calculations for the electron-impact ionization of carbon and neon M. S. Pindzola, J. Colgan, and F. Robicheaux Department of Physics, Auburn University, Auburn, Alabama 36849

More information

Calculations of electron-molecule scattering cross sections using the Rmatrix method

Calculations of electron-molecule scattering cross sections using the Rmatrix method Calculations of electron-molecule scattering cross sections using the Rmatrix method Jimena Gorfinkiel Department of Physical Sciences The Open University Milton Keynes, UK Jimena.Gorfinkiel@open.ac.uk

More information

Bethe-Block. Stopping power of positive muons in copper vs βγ = p/mc. The slight dependence on M at highest energies through T max

Bethe-Block. Stopping power of positive muons in copper vs βγ = p/mc. The slight dependence on M at highest energies through T max Bethe-Block Stopping power of positive muons in copper vs βγ = p/mc. The slight dependence on M at highest energies through T max can be used for PID but typically de/dx depend only on β (given a particle

More information

Supplementary Information

Supplementary Information 1 Supplementary Information 3 Supplementary Figures 4 5 6 7 8 9 10 11 Supplementary Figure 1. Absorbing material placed between two dielectric media The incident electromagnetic wave propagates in stratified

More information

Interaction X-rays - Matter

Interaction X-rays - Matter Interaction X-rays - Matter Pair production hν > M ev Photoelectric absorption hν MATTER hν Transmission X-rays hν' < hν Scattering hν Decay processes hν f Compton Thomson Fluorescence Auger electrons

More information

ELECTRON ELASTIC COLLISIONS WITHC 3 F 6 MOLECULE PAWEŁMOŻEJKO 1,2 ANDCZESŁAWSZMYTKOWSKI 1

ELECTRON ELASTIC COLLISIONS WITHC 3 F 6 MOLECULE PAWEŁMOŻEJKO 1,2 ANDCZESŁAWSZMYTKOWSKI 1 TASK QUARTERLY 7 No 2(2003), 171 178 ELECTRON ELASTIC COLLISIONS WITHC 3 F 6 MOLECULE PAWEŁMOŻEJKO 1,2 ANDCZESŁAWSZMYTKOWSKI 1 1 AtomicPhysicsDivision, Department of Atomic Physics and Luminescence, Faculty

More information

Applied Nuclear Physics (Fall 2006) Lecture 19 (11/22/06) Gamma Interactions: Compton Scattering

Applied Nuclear Physics (Fall 2006) Lecture 19 (11/22/06) Gamma Interactions: Compton Scattering .101 Applied Nuclear Physics (Fall 006) Lecture 19 (11//06) Gamma Interactions: Compton Scattering References: R. D. Evans, Atomic Nucleus (McGraw-Hill New York, 1955), Chaps 3 5.. W. E. Meyerhof, Elements

More information

COPYRIGHTED MATERIAL. Index

COPYRIGHTED MATERIAL. Index 347 Index a AC fields 81 119 electric 81, 109 116 laser 81, 136 magnetic 112 microwave 107 109 AC field traps see Traps AC Stark effect 82, 84, 90, 96, 97 101, 104 109 Adiabatic approximation 3, 10, 32

More information

Long range interaction --- between ions/electrons and ions/electrons; Coulomb 1/r Intermediate range interaction --- between

Long range interaction --- between ions/electrons and ions/electrons; Coulomb 1/r Intermediate range interaction --- between Collisional Processes Long range interaction --- between ions/electrons and ions/electrons; Coulomb 1/r Intermediate range interaction --- between ions/electrons and neutral atoms/molecules; Induced dipole

More information

Vibrationally elastic and inelastic scattering of electrons by hydrogen sulphide molecules

Vibrationally elastic and inelastic scattering of electrons by hydrogen sulphide molecules J. Phys. B: At. Mol. Opt. Phys. 29 (1996) 4213 4226. Printed in the UK Vibrationally elastic and inelastic scattering of electrons by hydrogen sulphide molecules Tamio Nishimura and Yukikazu Itikawa Institute

More information

Inner-shell excitation of alkali-metal atoms

Inner-shell excitation of alkali-metal atoms Pram~na - J. Phys., Vol. 35, No. 1, July 1990, pp. 89-94. Printed in India. Inner-shell excitation of alkali-metal atoms S N TIWARY* International Centre for Theoretical Physics, Miramare, Trieste, Italy

More information

Computations of Scattering Cross Sections for He, Ne, Ar, Kr, Xe and Rn

Computations of Scattering Cross Sections for He, Ne, Ar, Kr, Xe and Rn Computations of Scattering Cross Sections for He, Ne, Ar, Kr, Xe and Rn Full Length Research Article * ABDU, S. G. 1 1 Department of Physics, Kaduna State University, Kaduna-Nigeria *(sgabdul@kasu.edu.ng)

More information

Radiation processes and mechanisms in astrophysics I. R Subrahmanyan Notes on ATA lectures at UWA, Perth 18 May 2009

Radiation processes and mechanisms in astrophysics I. R Subrahmanyan Notes on ATA lectures at UWA, Perth 18 May 2009 Radiation processes and mechanisms in astrophysics I R Subrahmanyan Notes on ATA lectures at UWA, Perth 18 May 009 Light of the night sky We learn of the universe around us from EM radiation, neutrinos,

More information

1. Cold Collision Basics

1. Cold Collision Basics ICAP Summer School, Seoul, S. Korea, July 18, 2016 1. Cold Collision Basics Paul S. Julienne Joint Quantum Institute NIST and The University of Maryland Thanks to many colleagues in theory and experiment

More information

Electron Atom / Molecule Scattering and Applications

Electron Atom / Molecule Scattering and Applications Chapter 1 Electron Atom / Molecule Scattering and Applications 1.1 Introduction The persistent interest in the investigation of the electron-atom/molecule collisions is driven by the increasing in importance

More information

Notes on x-ray scattering - M. Le Tacon, B. Keimer (06/2015)

Notes on x-ray scattering - M. Le Tacon, B. Keimer (06/2015) Notes on x-ray scattering - M. Le Tacon, B. Keimer (06/2015) Interaction of x-ray with matter: - Photoelectric absorption - Elastic (coherent) scattering (Thomson Scattering) - Inelastic (incoherent) scattering

More information

Monte Carlo study of medium-energy electron penetration in aluminium and silver

Monte Carlo study of medium-energy electron penetration in aluminium and silver NUKLEONIKA 015;60():361366 doi: 10.1515/nuka-015-0035 ORIGINAL PAPER Monte Carlo study of medium-energy electron penetration in aluminium and silver Asuman Aydın, Ali Peker Abstract. Monte Carlo simulations

More information

Positron binding to atomic zinc

Positron binding to atomic zinc J. Phys. B: At. Mol. Opt. Phys. 32 (1999) 1375 1383. Printed in the UK PII: S0953-4075(99)99402-6 Positron binding to atomic zinc J Mitroy and G Ryzhikh Atomic and Molecular Physics Laboratories, Research

More information

Scattering in Cold- Cathode Discharges

Scattering in Cold- Cathode Discharges Simulating Electron Scattering in Cold- Cathode Discharges Alexander Khrabrov, Igor Kaganovich*, Vladimir I. Demidov**, George Petrov*** *Princeton Plasma Physics Laboratory ** Wright-Patterson Air Force

More information

Calculations of electron impact ionization cross section for simple biomolecules: Formic and acetic acids

Calculations of electron impact ionization cross section for simple biomolecules: Formic and acetic acids Eur. Phys. J. Special Topics 144, 233 237 (2007) c EDP Sciences, Springer-Verlag 2007 DOI: 10.1140/epjst/e2007-00133-8 THE EUROPEAN PHYSICAL JOURNAL SPECIAL TOPICS Calculations of electron impact ionization

More information

This is the author s version of a work that was submitted for publication prior to peer-review. This is known as the pre-print.

This is the author s version of a work that was submitted for publication prior to peer-review. This is known as the pre-print. This is the author s version of a work that was submitted for publication prior to peer-review. This is known as the pre-print. Citation for author s submitted version Zhang, Yong-Hui, Tang, Li-Yan, Zhang,

More information

Errors in electron - molecule collision calculations (at low energies)

Errors in electron - molecule collision calculations (at low energies) e - Errors in electron - molecule collision calculations (at low energies) Jonathan Tennyson University College London Outer region Inner region IAEA May 2013 Electron processes: at low impact energies

More information

THE INFLUENCE OF EXTERNAL MAGNETIC FIELD ON THE RADIATION EMITTED BY NEGATIVE GLOW OF A DC GLOW DISCHARGE

THE INFLUENCE OF EXTERNAL MAGNETIC FIELD ON THE RADIATION EMITTED BY NEGATIVE GLOW OF A DC GLOW DISCHARGE PLASMA PHYSICS THE INFLUENCE OF EXTERNAL MAGNETIC FIELD ON THE RADIATION EMITTED BY NEGATIVE GLOW OF A DC GLOW DISCHARGE M. TOMA, I. A. RUSU, D. O. DOROHOI Plasma Physics Department, A. I. Cuza University,

More information

Positronium collisions with rare-gas atoms

Positronium collisions with rare-gas atoms Positronium collisions with rare-gas atoms Gribakin, G. F., Swann, A. R., Wilde, R. S., & Fabrikant, I. I. (2016). Positronium collisions with rare-gas atoms. Journal of Physics B: Atomic Molecular and

More information

DIFFUSENESS OF WOODS SAXON POTENTIAL AND SUB-BARRIER FUSION

DIFFUSENESS OF WOODS SAXON POTENTIAL AND SUB-BARRIER FUSION Modern Physics Letters A Vol. 26, No. 28 (20) 229 234 c World Scientific Publishing Company DOI: 0.42/S0277303654 DIFFUSENESS OF WOODS SAXON POTENTIAL AND SUB-BARRIER FUSION MANJEET SINGH, SUKHVINDER S.

More information

Supplementary Figure 1: Comparison of SE spectra from annealed and unannealed P3HT samples. See Supplementary Note 1 for discussion.

Supplementary Figure 1: Comparison of SE spectra from annealed and unannealed P3HT samples. See Supplementary Note 1 for discussion. Supplementary Figure 1: Comparison of SE spectra from annealed and unannealed P3HT samples. See Supplementary Note 1 for discussion. Supplementary Figure 2: SE spectra from blend films. a) and b) compare

More information

(10%) (c) What other peaks can appear in the pulse-height spectrum if the detector were not small? Give a sketch and explain briefly.

(10%) (c) What other peaks can appear in the pulse-height spectrum if the detector were not small? Give a sketch and explain briefly. Sample questions for Quiz 3, 22.101 (Fall 2006) Following questions were taken from quizzes given in previous years by S. Yip. They are meant to give you an idea of the kind of questions (what was expected

More information

Secondary Ion Mass Spectrometry (SIMS)

Secondary Ion Mass Spectrometry (SIMS) CHEM53200: Lecture 10 Secondary Ion Mass Spectrometry (SIMS) Major reference: Surface Analysis Edited by J. C. Vickerman (1997). 1 Primary particles may be: Secondary particles can be e s, neutral species

More information

The interaction of radiation with matter

The interaction of radiation with matter Basic Detection Techniques 2009-2010 http://www.astro.rug.nl/~peletier/detectiontechniques.html Detection of energetic particles and gamma rays The interaction of radiation with matter Peter Dendooven

More information

Neutron Interactions Part I. Rebecca M. Howell, Ph.D. Radiation Physics Y2.5321

Neutron Interactions Part I. Rebecca M. Howell, Ph.D. Radiation Physics Y2.5321 Neutron Interactions Part I Rebecca M. Howell, Ph.D. Radiation Physics rhowell@mdanderson.org Y2.5321 Why do we as Medical Physicists care about neutrons? Neutrons in Radiation Therapy Neutron Therapy

More information

Ionization Energy Loss of Charged Projectiles in Matter. Steve Ahlen Boston University

Ionization Energy Loss of Charged Projectiles in Matter. Steve Ahlen Boston University Ionization Energy Loss of Charged Projectiles in Matter Steve Ahlen Boston University Almost all particle detection and measurement techniques in high energy physics are based on the energy deposited by

More information

Electron temperature is the temperature that describes, through Maxwell's law, the kinetic energy distribution of the free electrons.

Electron temperature is the temperature that describes, through Maxwell's law, the kinetic energy distribution of the free electrons. 10.3.1.1 Excitation and radiation of spectra 10.3.1.1.1 Plasmas A plasma of the type occurring in spectrochemical radiation sources may be described as a gas which is at least partly ionized and contains

More information

Photoionized Gas Ionization Equilibrium

Photoionized Gas Ionization Equilibrium Photoionized Gas Ionization Equilibrium Ionization Recombination H nebulae - case A and B Strömgren spheres H + He nebulae Heavy elements, dielectronic recombination Ionization structure 1 Ionization Equilibrium

More information

2. Passage of Radiation Through Matter

2. Passage of Radiation Through Matter 2. Passage of Radiation Through Matter Passage of Radiation Through Matter: Contents Energy Loss of Heavy Charged Particles by Atomic Collision (addendum) Cherenkov Radiation Energy loss of Electrons and

More information

Surrogate reactions: the Weisskopf-Ewing approximation and its limitations

Surrogate reactions: the Weisskopf-Ewing approximation and its limitations International Conference on Nuclear Data for Science and Technology 2007 DOI: 10.1051/ndata:07537 Invited Surrogate reactions: the Weisskopf-Ewing approximation and its limitations J. Escher 1,a, L.A.

More information

Physics of atoms and molecules

Physics of atoms and molecules Physics of atoms and molecules 2nd edition B.H. Bransden and C.J. Joachain Prentice Hall An imprint of Pearson Education Harlow, England London New York Boston San Francisco Toronto Sydney Singapore Hong

More information

Electron impact excitation and dissociation of halogen-containing molecules

Electron impact excitation and dissociation of halogen-containing molecules NUKLEONIKA 2003;48(2):89 93 ORIGINAL PAPER Electron impact excitation and dissociation of halogen-containing molecules Masashi Kitajima, Ryoji Suzuki, Hiroshi Tanaka, Lukáš Pichl, Hyuck Cho Abstract A

More information

Single-particle and cluster excitations

Single-particle and cluster excitations Single-particle and cluster excitations TALENT Module Nb. 6 A. M. Moro Universidad de Sevilla 9/32 Inelastic scattering: cluster model Some nuclei permit a description in terms of two or more clusters:

More information

HEAVY PARTICLE COLLISION PROCESSES. Alain Dubois

HEAVY PARTICLE COLLISION PROCESSES. Alain Dubois HEAVY PARTICLE COLLISION PROCESSES Alain Dubois Laboratoire de Chimie Physique - Matière et Rayonnement Université Pierre et Marie Curie - CNRS Paris FRANCE Heavy particle collision processes I - Introduction

More information

Two-photon transitions in confined hydrogenic atoms

Two-photon transitions in confined hydrogenic atoms RESEARCH Revista Mexicana de Física 64 (2018) 42 50 JANUARY-FEBRUARY 2018 Two-photon transitions in confined hydrogenic atoms Shalini Lumb a, Sonia Lumb b, and Vinod Prasad c a Department of Physics, Maitreyi

More information

Deuteron induced reactions

Deuteron induced reactions INT, March 2015 slide 1/23 Deuteron induced reactions Grégory Potel Aguilar (NSCL, LLNL) Filomena Nunes (NSCL) Ian Thompson (LLNL) INT, March 2015 Introduction NT, March 2015 slide 2/23 We present a formalism

More information

Quantum Mechanics II Lecture 11 (www.sp.phy.cam.ac.uk/~dar11/pdf) David Ritchie

Quantum Mechanics II Lecture 11 (www.sp.phy.cam.ac.uk/~dar11/pdf) David Ritchie Quantum Mechanics II Lecture (www.sp.phy.cam.ac.u/~dar/pdf) David Ritchie Michaelmas. So far we have found solutions to Section 4:Transitions Ĥ ψ Eψ Solutions stationary states time dependence with time

More information