Unit-2. Properties of Matter. Solutions 2.2 Solids page V sphere. =V cylinder. π.r 2.h= 4 3.π.r 3. h= 4r 3 =4.6 =8 cm

Size: px
Start display at page:

Download "Unit-2. Properties of Matter. Solutions 2.2 Solids page V sphere. =V cylinder. π.r 2.h= 4 3.π.r 3. h= 4r 3 =4.6 =8 cm"

Transcription

1 page - 74 V sphere =V cylinder 1. The radius of a sphere and a cylinder are 6 cm. If their volumes are the same, what is the SA/V ratio of the cylinder? π.r 2.h= 4 3.π.r 3 h= 4r 3 =4.6 =8 cm 3 SA V =2 r +2 h = = 7 12 cm-1

2 page Suppose you have two solid cubes made from the same material. The big cube has a mass of 8 kg, while the small one has a mass of 1 kg. a) If the big cube is 10 cm along one side, what is the length of one side of the smaller cube? a) m big m small =8 V big V small =8 V big = a 3 big V small a 3 small =8 a big a small =2 a big =10 cm a small =5 cm b) If the surface area of the small cube is A, what is the surface area of the big cube, in terms of A? b) a big =2 SA big = a 2 big a small SA small a 2 small SA small =A SA big =4A =4

3 page A student peels a big and a small apple. The big apple has 40 cm 2 skins and the small one has 10 cm 2 skins. Suppose that the apples are nearly spherical. How many times is the radius of the big apple greater than that of small apple? Skin Surface Area (SA) SA big SA small = =4 SA big = r 2 big SA small r 2 small =4 r big r small =2

4 page - 74 for sphere for cube 4. The surface area-to-volume ratio of a sphere is equal to the surface area-to-volume ratio of a cube. (π=3) Calculate the ratio of the volumes of the sphere and the cube. SA = V 3 r 3 r SA 6 = V a 6 = a a= 4.3.r 3 V s 3 = = 4.r3 = 1 V c a 3 8.r 3 2

5 page Cylinders X, Y and Z are all made of the same material.! D= Strength $ # & " Weight % cylinder = CSA V =1 h r r X Y Z Compare their strengths per their weight. D X = 1 ' ) D Y = 1 ) ( D X =D Z <D Y r ) D Z = 1 ) ) *

6 page - 75 m initial m final = 1 8 V initial V final = One side of a cube is a and its strength per its weight is D. (Suppose that the density of the cube remains constant.) How would a and D change when the mass of the cube is increased by 8 times? V initial = a3 = 1 V final a 3 final 8 a final=2a D= CSA V =1 a D initial = 1 a D final= 1 2a D initial =D D final = D 2

7 page Ropes A and B are made of the same material. The radius of cross-section of rope A is r and it can barely carry a load of weight G. Strength of the rope is directly proportional to the cross-sectional area of the rope. To carry the weight G, the cross-sectional area is A To carry the weight 3G, the cross-sectional area must be 3A What must be the radius (r / ) of rope B to carry the load of 3G? Cross-sectional area is directly proportional to the square of the radius. r = 3 r

8 page Answer the following question. a) What happens to the strength per body weight of an animal, as it gets larger? decreases Because the strength per body weight is inversely proportional to the linear dimension. b) When the edges of a cube increase by 3 times, how many times does its surface area increase? 9 times Because the surface area is directly proportional to the square of linear dimension. c) When the edges of a cube increase by 10 times, how many times does its volume increase? 1000 times Because the volume is directly proportional to cube of the linear dimension. d) When the mass of a sphere increases by 64 times, how many times does its radius increase? 4 times Because mass is directly proportional to volume. Volume is directly proportional to the cube of linear dimension.

I.G.C.S.E. Volume & Surface Area. You can access the solutions from the end of each question

I.G.C.S.E. Volume & Surface Area. You can access the solutions from the end of each question I.G.C.S.E. Volume & Surface Area Index: Please click on the question number you want Question 1 Question Question Question 4 Question 5 Question 6 Question 7 Question 8 You can access the solutions from

More information

2.2 Radical Expressions I

2.2 Radical Expressions I 2.2 Radical Expressions I Learning objectives Use the product and quotient properties of radicals to simplify radicals. Add and subtract radical expressions. Solve real-world problems using square root

More information

CONNECTED RATE OF CHANGE PACK

CONNECTED RATE OF CHANGE PACK C4 CONNECTED RATE OF CHANGE PACK 1. A vase with a circular cross-section is shown in. Water is flowing into the vase. When the depth of the water is h cm, the volume of water V cm 3 is given by V = 4 πh(h

More information

Gauss s Law. Chapter 22. Electric Flux Gauss s Law: Definition. Applications of Gauss s Law

Gauss s Law. Chapter 22. Electric Flux Gauss s Law: Definition. Applications of Gauss s Law Electric Flux Gauss s Law: Definition Chapter 22 Gauss s Law Applications of Gauss s Law Uniform Charged Sphere Infinite Line of Charge Infinite Sheet of Charge Two infinite sheets of charge Phys 2435:

More information

The radius of a circle is increasing at a constant rate of the rate of increase in the area of the circle at the instant when the circumference is?

The radius of a circle is increasing at a constant rate of the rate of increase in the area of the circle at the instant when the circumference is? Unit #11: Related Rates Topic: More Related Rates Problems Objective: SWBAT apply derivatives to real life applications. Warm Up #5: The radius of a circle is increasing at a constant rate of. What is

More information

Lecture 3. Electric Field Flux, Gauss Law. Last Lecture: Electric Field Lines

Lecture 3. Electric Field Flux, Gauss Law. Last Lecture: Electric Field Lines Lecture 3. Electric Field Flux, Gauss Law Last Lecture: Electric Field Lines 1 iclicker Charged particles are fixed on grids having the same spacing. Each charge has the same magnitude Q with signs given

More information

4.4 Rational Expressions

4.4 Rational Expressions 4.4 Rational Epressions Learning Objectives Simplify rational epressions. Find ecluded values of rational epressions. Simplify rational models of real-world situations. Introduction A rational epression

More information

LESSON 2: TRIANGULAR PRISMS, CYLINDERS, AND SPHERES. Unit 9: Figures and Solids

LESSON 2: TRIANGULAR PRISMS, CYLINDERS, AND SPHERES. Unit 9: Figures and Solids LESSON 2: TRIANGULAR PRISMS, CYLINDERS, AND SPHERES Unit 9: Figures and Solids base parallel two The sum of the area of the lateral faces (al sides except for the bases) The sum of all the area (lateral

More information

Kansas City Area Teachers of Mathematics 2015 KCATM Math Competition GEOMETRY GRADE 7

Kansas City Area Teachers of Mathematics 2015 KCATM Math Competition GEOMETRY GRADE 7 Kansas City Area Teachers of Mathematics 2015 KCATM Math Competition GEOMETRY GRADE 7 INSTRUCTIONS Do not open this booklet until instructed to do so. Time limit: 20 minutes You may use calculators. Mark

More information

Chapter 8 Exercise 8.1

Chapter 8 Exercise 8.1 Chapter 8 Exercise 8.1 Q. 1. (i) 9 cm (vi) 4(7) + (8)(7) = 56 cm (ii) 45.5 cm (vii) 7.(8.7) = 6.64 cm (iii) 90 cm (viii) (11 + 40)(4) = 3,19 cm (iv) 100 cm (ix) (4)(6) = 1 cm (v) 1 ( ) (5 + 40) = 390 cm

More information

2 Which of the following represents the electric field due to an infinite charged sheet with a uniform charge distribution σ.

2 Which of the following represents the electric field due to an infinite charged sheet with a uniform charge distribution σ. Slide 1 / 21 1 closed surface, in the shape of a cylinder of radius R and Length L, is placed in a region with a constant electric field of magnitude. The total electric flux through the cylindrical surface

More information

Mt. Douglas Secondary

Mt. Douglas Secondary Foundations of Math Section.5 Volume of Similar Figures 47.5 Volume of Similar Figures The cubes shown below are similar. The corresponding sides are in a ratio of :. What is the ratio of the volumes?

More information

4.3 Mixed and Entire Radicals

4.3 Mixed and Entire Radicals 4.3 Mixed and Entire Radicals Index Review of Radicals Radical 3 64 Radicand When the index of the radical is not shown then it is understood to be an index of 2. 64 = 2 64 MULTIPLICATION PROPERTY of RADICALS

More information

1. Base your answer to the following question on The sphere was dropped into water in a graduated cylinder as shown below.

1. Base your answer to the following question on The sphere was dropped into water in a graduated cylinder as shown below. 1. Base your answer to the following question on The sphere was dropped into water in a graduated cylinder as shown below. 3. A student measured the mass and volume of the mineral crystal below and recorded

More information

AP Physics C. Gauss s Law. Free Response Problems

AP Physics C. Gauss s Law. Free Response Problems AP Physics Gauss s Law Free Response Problems 1. A flat sheet of glass of area 0.4 m 2 is placed in a uniform electric field E = 500 N/. The normal line to the sheet makes an angle θ = 60 ẘith the electric

More information

a) 3 cm b) 3 cm c) cm d) cm

a) 3 cm b) 3 cm c) cm d) cm (1) Choose the correct answer: 1) =. a) b) ] - [ c) ] - ] d) ] [ 2) The opposite figure represents the interval. a) [-3, 5 ] b) ] -3, 5 [ c) [ -3, 5 [ d) ] -3, 5 ] -3 5 3) If the volume of the sphere is

More information

Sample Question: A point in empty space is near 3 charges as shown. The distances from the point to each charge are identical.

Sample Question: A point in empty space is near 3 charges as shown. The distances from the point to each charge are identical. A point in empty space is near 3 charges as shown. The distances from the point to each charge are identical. A. Draw a vector showing the direction the electric field points. y +2Q x B. What is the angle

More information

Fall 12 PHY 122 Homework Solutions #2

Fall 12 PHY 122 Homework Solutions #2 Fall 12 PHY 122 Homework Solutions #2 Chapter 21 Problem 40 Two parallel circular rings of radius R have their centers on the x axis separated by a distance l, as shown in Fig. 21 60. If each ring carries

More information

Ch 24 Electric Flux, & Gauss s Law

Ch 24 Electric Flux, & Gauss s Law Ch 24 Electric Flux, & Gauss s Law Electric Flux...is related to the number of field lines penetrating a given surface area. Φ e = E A Φ = phi = electric flux Φ units are N m 2 /C Electric Flux Φ = E A

More information

Pretest. Explain and use formulas for lateral area, surface area, and volume of solids.

Pretest. Explain and use formulas for lateral area, surface area, and volume of solids. Pretest Please complete the pretest for this standard on your own. Try to remember all you can from our first discussion of this topic. Explain and use formulas for lateral area, surface area, and volume

More information

Chapter 2 Gauss Law 1

Chapter 2 Gauss Law 1 Chapter 2 Gauss Law 1 . Gauss Law Gauss law relates the electric fields at points on a (closed) Gaussian surface to the net charge enclosed by that surface Consider the flux passing through a closed surface

More information

Physics Lecture 13

Physics Lecture 13 Physics 113 Jonathan Dowling Physics 113 Lecture 13 EXAM I: REVIEW A few concepts: electric force, field and potential Gravitational Force What is the force on a mass produced by other masses? Kepler s

More information

Chapter 23 Term083 Term082

Chapter 23 Term083 Term082 Chapter 23 Term083 Q6. Consider two large oppositely charged parallel metal plates, placed close to each other. The plates are square with sides L and carry charges Q and Q. The magnitude of the electric

More information

Lesson 6 Plane Geometry Practice Test Answer Explanations

Lesson 6 Plane Geometry Practice Test Answer Explanations Lesson 6 Plane Geometry Practice Test Answer Explanations Question 1 One revolution is equal to one circumference: C = r = 6 = 1, which is approximately 37.68 inches. Multiply that by 100 to get 3,768

More information

E. not enough information given to decide

E. not enough information given to decide Q22.1 A spherical Gaussian surface (#1) encloses and is centered on a point charge +q. A second spherical Gaussian surface (#2) of the same size also encloses the charge but is not centered on it. Compared

More information

Chapter 24. Gauss s Law

Chapter 24. Gauss s Law Chapter 24 Gauss s Law Let s return to the field lines and consider the flux through a surface. The number of lines per unit area is proportional to the magnitude of the electric field. This means that

More information

Physics 2001 Problem Set 9 Solutions

Physics 2001 Problem Set 9 Solutions Physics 2001 Problem Set 9 Solutions Jeff Kissel December 4, 2006 1. A cube of concrete has a side of length l = 0.150 m. Within the volume of the cube, there are two spherical cavities, each with radius

More information

Q1. A) 46 m/s B) 21 m/s C) 17 m/s D) 52 m/s E) 82 m/s. Ans: v = ( ( 9 8) ( 98)

Q1. A) 46 m/s B) 21 m/s C) 17 m/s D) 52 m/s E) 82 m/s. Ans: v = ( ( 9 8) ( 98) Coordinator: Dr. Kunwar S. Wednesday, May 24, 207 Page: Q. A hot-air balloon is ascending (going up) at the rate of 4 m/s and when the balloon is 98 m above the ground a package is dropped from it, vertically

More information

ENLARGING AREAS AND VOLUMES

ENLARGING AREAS AND VOLUMES ENLARGING AREAS AND VOLUMES First of all I m going to investigate the relationship between the scale factor and the enlargement of the area of polygons: I will use my own examples. Scale factor: 2 A 1

More information

May 05, surface area and volume of spheres ink.notebook. Page 171. Page Surface Area and Volume of Spheres.

May 05, surface area and volume of spheres ink.notebook. Page 171. Page Surface Area and Volume of Spheres. 12.6 surface area and volume of spheres ink.notebook Page 171 Page 172 12.6 Surface Area and Volume of Spheres Page 173 Page 174 Page 175 1 Lesson Objectives Standards Lesson Notes Lesson Objectives Standards

More information

2.4 Radical Equations

2.4 Radical Equations 2.4. Radical Equations www.ck12.org 2.4 Radical Equations Learning Objectives Solve a radical equation. Solve radical equations with radicals on both sides. Identify extraneous solutions. Solve real-world

More information

Worksheet for Exploration 24.1: Flux and Gauss's Law

Worksheet for Exploration 24.1: Flux and Gauss's Law Worksheet for Exploration 24.1: Flux and Gauss's Law In this Exploration, we will calculate the flux, Φ, through three Gaussian surfaces: green, red and blue (position is given in meters and electric field

More information

Lecture 3. Electric Field Flux, Gauss Law

Lecture 3. Electric Field Flux, Gauss Law Lecture 3. Electric Field Flux, Gauss Law Attention: the list of unregistered iclickers will be posted on our Web page after this lecture. From the concept of electric field flux to the calculation of

More information

the Cartesian coordinate system (which we normally use), in which we characterize points by two coordinates (x, y) and

the Cartesian coordinate system (which we normally use), in which we characterize points by two coordinates (x, y) and 2.5.2 Standard coordinate systems in R 2 and R Similarly as for functions of one variable, integrals of functions of two or three variables may become simpler when changing coordinates in an appropriate

More information

Gauss s Law. 3.1 Quiz. Conference 3. Physics 102 Conference 3. Physics 102 General Physics II. Monday, February 10th, Problem 3.

Gauss s Law. 3.1 Quiz. Conference 3. Physics 102 Conference 3. Physics 102 General Physics II. Monday, February 10th, Problem 3. Physics 102 Conference 3 Gauss s Law Conference 3 Physics 102 General Physics II Monday, February 10th, 2014 3.1 Quiz Problem 3.1 A spherical shell of radius R has charge Q spread uniformly over its surface.

More information

Related Rates Problems. of h.

Related Rates Problems. of h. Basic Related Rates Problems 1. If V is the volume of a cube and x the length of an edge. Express dv What is dv in terms of dx. when x is 5 and dx = 2? 2. If V is the volume of a sphere and r is the radius.

More information

EXAM 1 PHYS 103 FALL 2011 A NAME: SECTION

EXAM 1 PHYS 103 FALL 2011 A NAME: SECTION EXAM 1 PHYS 103 FALL 2011 A NAME: SECTION As a student at NJIT I, will conduct myself in a professional manner and will comply with the provisions of the NJIT Academic Honor Code. I also understand that

More information

1-4 Extrema and Average Rates of Change

1-4 Extrema and Average Rates of Change Use the graph of each function to estimate intervals to the nearest 0.5 unit on which the function is increasing, decreasing, or constant. Support the answer numerically. 6. 3. When the graph is viewed

More information

Work, Power and Machines

Work, Power and Machines CHAPTER 13.1 & 13.2 Work, Power and Machines Section one: Work, Power, and Machines Objective one: Calculate Work Objective Two: Differentiate Work and Power Objective Three: Discover that machines make

More information

CHAPTER 5. Work, Power and Machines

CHAPTER 5. Work, Power and Machines CHAPTER 5 Work, Power and Machines Section one: Work, Power, and Machines Objective one: Calculate Work Objective Two: Differentiate Work and Power Objective Three: Discover that machines make work easier

More information

Electric Flux and Gauss s Law

Electric Flux and Gauss s Law Electric Flux and Gauss s Law Electric Flux Figure (1) Consider an electric field that is uniform in both magnitude and direction, as shown in Figure 1. The total number of lines penetrating the surface

More information

International GCSE Mathematics Formulae sheet Higher Tier. In any triangle ABC. Sine Rule = = Cosine Rule a 2 = b 2 + c 2 2bccos A

International GCSE Mathematics Formulae sheet Higher Tier. In any triangle ABC. Sine Rule = = Cosine Rule a 2 = b 2 + c 2 2bccos A Arithmetic series Sum to n terms, S n = n 2 The quadratic equation International GCSE Mathematics Formulae sheet Higher Tier [2a + (n 1)d] Area The solutions of ax 2 + bx + c = 0 where a ¹ 0 are given

More information

Chapter 12 Gravity. Copyright 2010 Pearson Education, Inc.

Chapter 12 Gravity. Copyright 2010 Pearson Education, Inc. Chapter 12 Gravity Units of Chapter 12 Newton s Law of Universal Gravitation Gravitational Attraction of Spherical Bodies Kepler s Laws of Orbital Motion Gravitational Potential Energy Energy Conservation

More information

Copyright 2010 Pearson Education, Inc. GRAVITY. Chapter 12

Copyright 2010 Pearson Education, Inc. GRAVITY. Chapter 12 GRAVITY Chapter 12 Units of Chapter 12 Newton s Law of Universal Gravitation Gravitational Attraction of Spherical Bodies Kepler s Laws of Orbital Motion Gravitational Potential Energy Energy Conservation

More information

HOMEWORK SOLUTIONS MATH 1910 Sections 6.4, 6.5, 7.1 Fall 2016

HOMEWORK SOLUTIONS MATH 1910 Sections 6.4, 6.5, 7.1 Fall 2016 HOMEWORK SOLUTIONS MATH 9 Sections 6.4, 6.5, 7. Fall 6 Problem 6.4. Sketch the region enclosed by x = 4 y +, x = 4y, and y =. Use the Shell Method to calculate the volume of rotation about the x-axis SOLUTION.

More information

Chapter 5 Centripetal Force and Gravity. Copyright 2010 Pearson Education, Inc.

Chapter 5 Centripetal Force and Gravity. Copyright 2010 Pearson Education, Inc. Chapter 5 Centripetal Force and Gravity v Centripetal Acceleration v Velocity is a Vector v It has Magnitude and Direction v If either changes, the velocity vector changes. Tumble Buggy Demo v Centripetal

More information

Class 29: Reciprocal Space 3: Ewald sphere, Simple Cubic, FCC and BCC in Reciprocal Space

Class 29: Reciprocal Space 3: Ewald sphere, Simple Cubic, FCC and BCC in Reciprocal Space Class 29: Reciprocal Space 3: Ewald sphere, Simple Cubic, FCC and BCC in Reciprocal Space We have seen that diffraction occurs when, in reciprocal space, Let us now plot this information. Let us designate

More information

A uniform rod of length L and Mass M is attached at one end to a frictionless pivot. If the rod is released from rest from the horizontal position,

A uniform rod of length L and Mass M is attached at one end to a frictionless pivot. If the rod is released from rest from the horizontal position, A dentist s drill starts from rest. After 3.20 s of constant angular acceleration, it turns at a rate of 2.51 10 4 rev/min. (a) Find the drill s angular acceleration. (b) Determine the angle (in radians)

More information

10.1 Inverses of Simple Quadratic and Cubic Functions

10.1 Inverses of Simple Quadratic and Cubic Functions COMMON CORE Locker LESSON 0. Inverses of Simple Quadratic and Cubic Functions Name Class Date 0. Inverses of Simple Quadratic and Cubic Functions Essential Question: What functions are the inverses of

More information

Kg hg dag g dg cg mg. Km hm dam m dm cm mm

Kg hg dag g dg cg mg. Km hm dam m dm cm mm Metric System Conversions Mass (g = gram) 0 0 0 0 0 0 Kg hg dag g dg cg mg 0 0 0 0 0 0 Distance or Length ( m = metre) 0 0 0 0 0 0 Km hm dam m dm cm mm 0 0 0 0 0 0 Area (m = square metre) 00 00 00 00 00

More information

( ) ) in 2 ( ) ) in 3

( ) ) in 2 ( ) ) in 3 Chapter 1 Test Review Question Answers 1. Find the total surface area and volume of a cube in which the diagonal measures yards. x + x ) = ) x = x x A T.S. = bh) = ) ) = 1 yd V = BH = bh)h = ) ) ) = yd.

More information

Department of Physics. PHYS MAJOR 2 EXAM Test Code: 015. Monday 1 st May 2006 Exam Duration: 2hrs (from 6:30pm to 8:30pm)

Department of Physics. PHYS MAJOR 2 EXAM Test Code: 015. Monday 1 st May 2006 Exam Duration: 2hrs (from 6:30pm to 8:30pm) Department of Physics PHYS1005 MJOR EXM Test Code: 015 Monday 1 st May 006 Exam Duration: hrs (from 6:30pm to 8:30pm) Name: Student Number: Section Number: Version 15 Page 1 1. Each of the four capacitors

More information

How can you find the meaning of a rational exponent?

How can you find the meaning of a rational exponent? . Rational Exponents Is there life on other planets? Are planets like Fomalhaut b, shown here, similar to Earth? Will we ever be able to travel through space to find out? These questions have been asked

More information

Physics 208 Test 2 Spring 2000

Physics 208 Test 2 Spring 2000 Spring 2000 Problems 1-5. Multiple Choice/Short Answer (5 points each / 25 points total) no explanation required, but no partial credit either. However, a bonus of up to two points may be awarded if an

More information

Moment of Inertia. Terminology. Definitions Moment of inertia of a body with mass, m, about the x axis: Transfer Theorem - 1. ( )dm. = y 2 + z 2.

Moment of Inertia. Terminology. Definitions Moment of inertia of a body with mass, m, about the x axis: Transfer Theorem - 1. ( )dm. = y 2 + z 2. Terinology Moent of Inertia ME 202 Moent of inertia (MOI) = second ass oent Instead of ultiplying ass by distance to the first power (which gives the first ass oent), we ultiply it by distance to the second

More information

4.1 Inverse Variation Models

4.1 Inverse Variation Models 4.1. Inverse Variation Models www.ck1.org 4.1 Inverse Variation Models Learning Objectives Distinguish direct and inverse variation. Graph inverse variation equations. Write inverse variation equations.

More information

Sept 11, 2015 LB 273, Physics I Prof. Vashti Sawtelle Prof. Leanne Doughty Topic: Ch1 Units/Dimensions & Es6ma6on Cartoon: Bob Thaves Frank and

Sept 11, 2015 LB 273, Physics I Prof. Vashti Sawtelle Prof. Leanne Doughty Topic: Ch1 Units/Dimensions & Es6ma6on Cartoon: Bob Thaves Frank and Sept 11, 2015 LB 273, Physics I Prof. Vashti Sawtelle Prof. Leanne Doughty Topic: Ch1 Units/Dimensions & Es6ma6on Cartoon: Bob Thaves Frank and Ernest 1 Foothold ideas: Dimensional and unit analysis We

More information

Introduction to Differentials

Introduction to Differentials Introduction to Differentials David G Radcliffe 13 March 2007 1 Increments Let y be a function of x, say y = f(x). The symbol x denotes a change or increment in the value of x. Note that a change in the

More information

Solutions to PS 2 Physics 201

Solutions to PS 2 Physics 201 Solutions to PS Physics 1 1. ke dq E = i (1) r = i = i k eλ = i k eλ = i k eλ k e λ xdx () (x x) (x x )dx (x x ) + x dx () (x x ) x ln + x x + x x (4) x + x ln + x (5) x + x To find the field for x, we

More information

week 3 chapter 28 - Gauss s Law

week 3 chapter 28 - Gauss s Law week 3 chapter 28 - Gauss s Law Here is the central idea: recall field lines... + + q 2q q (a) (b) (c) q + + q q + +q q/2 + q (d) (e) (f) The number of electric field lines emerging from minus the number

More information

Unit #13 - Integration to Find Areas and Volumes, Volumes of Revolution

Unit #13 - Integration to Find Areas and Volumes, Volumes of Revolution Unit #1 - Integration to Find Areas and Volumes, Volumes of Revolution Some problems and solutions selected or adapted from Hughes-Hallett Calculus. Areas In Questions #1-8, find the area of one strip

More information

Numbers in Science Exploring Measurements, Significant Digits, and Dimensional Analysis

Numbers in Science Exploring Measurements, Significant Digits, and Dimensional Analysis Numbers in Science Exploring Measurements, Significant Digits, and Dimensional Analysis TAKING MEASUREMENTS The accuracy of a measurement depends on two factors: the skill of the individual taking the

More information

Equations: Heat: Q = mcδt Hooke s Law: F = kx Resultant: R 2 = Rx 2 + Ry 2 Tan θ= Ry/Rx

Equations: Heat: Q = mcδt Hooke s Law: F = kx Resultant: R 2 = Rx 2 + Ry 2 Tan θ= Ry/Rx Final Phys 103 95 pts 9 November 2011 Name Equations: Heat: Q = mcδt Hooke s Law: F = kx Resultant: R 2 = Rx 2 + Ry 2 Tan θ= Ry/Rx Practical Questions 1) (5 pts) Measure the length of the provided cylinder

More information

University of Illinois at Chicago Department of Physics

University of Illinois at Chicago Department of Physics University of Illinois at Chicago Department of Physics Electromagnetism Qualifying Examination January 4, 2017 9.00 am - 12.00 pm Full credit can be achieved from completely correct answers to 4 questions.

More information

Please choose the letter corresponding to the best answer to each problem (5 pts each).

Please choose the letter corresponding to the best answer to each problem (5 pts each). Please choose the letter corresponding to the best answer to each problem (5 pts each). 1. A 10-m uniform horizontal beam of weight 75 N is supported by two vertical posts. The left post is at the left

More information

Topic 17 Changing The Subject of a Formula

Topic 17 Changing The Subject of a Formula Topic 17 Changing The Subject of a Formula Definition: When you write a formula like: 1. = Lb is called the subject of the formula.. = r h is called the subject of the formula.. E = mc E is called the

More information

Days 3 & 4 Notes: Related Rates

Days 3 & 4 Notes: Related Rates AP Calculus Unit 4 Applications of the Derivative Part 1 Days 3 & 4 Notes: Related Rates Implicitly differentiate the following formulas with respect to time. State what each rate in the differential equation

More information

Answer Keys for Calvert Math

Answer Keys for Calvert Math Answer Keys for Calvert Math Lessons CMAKF- Contents Math Textbook... Math Workbook... Math Manual... Answer Keys Math Textbook Lessons Math Textbook Answer Key Lessons. Area and Circumference of Circles

More information

Chapter 8 Rotational Motion and Dynamics Reading Notes

Chapter 8 Rotational Motion and Dynamics Reading Notes Name: Chapter 8 Rotational Motion and Dynamics Reading Notes Section 8-1: Angular quantities A circle can be split into pieces called degrees. There are 360 degrees in a circle. A circle can be split into

More information

TALLER DE HIDROSTÁTICA

TALLER DE HIDROSTÁTICA TALLER DE HIDROSTÁTICA 1) Substance A has a density of 3 g/cm 3 and substance B has a density of 4 g/cm 3. In order to obtain equal masses of these two substances, what must be the ratio of the volume

More information

Physics 131: Lecture 21. Today s Agenda

Physics 131: Lecture 21. Today s Agenda Physics 131: Lecture 21 Today s Agenda Rotational dynamics Torque = I Angular Momentum Physics 201: Lecture 10, Pg 1 Newton s second law in rotation land Sum of the torques will equal the moment of inertia

More information

Introduction to Mechanics Unit Conversions Order of Magnitude

Introduction to Mechanics Unit Conversions Order of Magnitude Introduction to Mechanics Unit Conversions Order of Magnitude Lana Sheridan De Anza College Sept 28, 2017 Last time symbols for scaling units scientific notation precision and accuracy dimensional analysis

More information

PHYS 211 Lecture 21 - Moments of inertia 21-1

PHYS 211 Lecture 21 - Moments of inertia 21-1 PHYS 211 Lecture 21 - Moments of inertia 21-1 Lecture 21 - Moments of inertia Text: similar to Fowles and Cassiday, Chap. 8 As discussed previously, the moment of inertia I f a single mass m executing

More information

Lesson 4.1 (Part 1): Roots & Pythagorean Theorem

Lesson 4.1 (Part 1): Roots & Pythagorean Theorem Lesson 4.1 (Part 1): Roots & Pythagorean Theorem Objectives Students will understand how roots are used to undo powers. how the Pythagorean theorem is used in applications. Students will be able to use

More information

1. Attempt any ten of the following : 20

1. Attempt any ten of the following : 20 *17204* 17204 21314 3 Hours/100 Marks Seat No. Instructions : (1) All questions are compulsory. (2) Answer each next main question on a new page. (3) Illustrate your answers with neat sketches wherever

More information

Chapter 1. Solving Algebraic Equations for a Variable

Chapter 1. Solving Algebraic Equations for a Variable www.ck1.org CHAPTER 1 Solving Algebraic Equations for a Variable Here you ll learn how to isolate the variable in an equation or formula. Problem: You are planning a trip to Spain in the summer. In the

More information

PHYS 1405 Conceptual Physics I Laboratory # 8 Density and Buoyancy. Investigation: How can we identify a substance by figuring out its density?

PHYS 1405 Conceptual Physics I Laboratory # 8 Density and Buoyancy. Investigation: How can we identify a substance by figuring out its density? PHYS 1405 Conceptual Physics I Laboratory # 8 Density and Buoyancy Investigation: How can we identify a substance by figuring out its density? What to measure: Volume, mass. Measuring devices: Calipers,

More information

AP Physics C. Electric Potential and Capacitance. Free Response Problems

AP Physics C. Electric Potential and Capacitance. Free Response Problems AP Physics C Electric Potential and Capacitance Free Response Problems 1. Two stationary point charges + are located on the y-axis at a distance L from the origin, as shown above. A third charge +q is

More information

INTERNATIONAL INDIAN SCHOOL, RIYADH. 11cm. Find the surface area of the cuboid (240cm 2 )

INTERNATIONAL INDIAN SCHOOL, RIYADH. 11cm. Find the surface area of the cuboid (240cm 2 ) INTERNATIONAL INDIAN SCHOOL, RIYADH CLASS: IX SUBJECT: MATHEMATICS 1. SURFACE AREAS AND VOLUMES 1. The diagonal of a cube is 12cm. Find its volume. 2. If the lateral surface area of a cube is 1600cm 2,

More information

Electric Potential II

Electric Potential II Electric Potential II Physics 2415 Lecture 7 Michael Fowler, UVa Today s Topics Field lines and equipotentials Partial derivatives Potential along a line from two charges Electric breakdown of air Potential

More information

Worksheet How are the stars we see at night related to the Sun? How are they different?

Worksheet How are the stars we see at night related to the Sun? How are they different? Worksheet 4.1 1. Below is a drawing of a pair of sunspots on the surface of the Sun. Scientists have found that sunspots are like magnetic poles of a bar magnet. Draw what you predict the magnetic field

More information

D. 2πmv 2 (Total 1 mark)

D. 2πmv 2 (Total 1 mark) 1. A particle of mass m is moving with constant speed v in uniform circular motion. What is the total work done by the centripetal force during one revolution? A. Zero B. 2 mv 2 C. mv 2 D. 2πmv 2 2. A

More information

Fall 2004 Physics 3 Tu-Th Section

Fall 2004 Physics 3 Tu-Th Section Fall 2004 Physics 3 Tu-Th Section Claudio Campagnari Lecture 9: 21 Oct. 2004 Web page: http://hep.ucsb.edu/people/claudio/ph3-04/ 1 Last time: Gauss's Law To formulate Gauss's law, introduced a few new

More information

Physics 2A Chapter 1: Introduction and Mathematical Concepts

Physics 2A Chapter 1: Introduction and Mathematical Concepts Physics 2A Chapter 1: Introduction and Mathematical Concepts Anyone who has never made a mistake has never tried anything new. Albert Einstein Experience is the name that everyone gives to his mistakes.

More information

Sect Formulas and Applications of Geometry:

Sect Formulas and Applications of Geometry: 72 Sect 2.6 - Formulas and Applications of Geometry: Concept # Solving Literal Equations for a particular variable. Now, we will examine solving formulas for a particular variable. Sometimes it is useful

More information

PHY114 S11 Term Exam 1

PHY114 S11 Term Exam 1 PHY114 S11 Term Exam 1 S. G. Rajeev Feb 15 2011 12:30 pm to 1:45 pm PLEASE write your workshop number and your workshop leader s name at the top of your book, so that you can collect your graded exams

More information

The CENTRE for EDUCATION in MATHEMATICS and COMPUTING Fryer Contest. Thursday, April 12, 2012

The CENTRE for EDUCATION in MATHEMATICS and COMPUTING Fryer Contest. Thursday, April 12, 2012 The CENTRE for EDUCATION in MATHEMATICS and COMPUTING www.cemc.uwaterloo.ca 2012 Fryer Contest Thursday, April 12, 2012 (in North America and South America) Friday, April 13, 2012 (outside of North America

More information

APPLICATIONS OF GAUSS S LAW

APPLICATIONS OF GAUSS S LAW APPLICATIONS OF GAUSS S LAW Although Gauss s Law is always correct it is generally only useful in cases with strong symmetries. The basic problem is that it gives the integral of E rather than E itself.

More information

Lecture 21 Gravitational and Central Forces

Lecture 21 Gravitational and Central Forces Lecture 21 Gravitational and Central Forces 21.1 Newton s Law of Universal Gravitation According to Newton s Law of Universal Graviation, the force on a particle i of mass m i exerted by a particle j of

More information

10.1 Inverses of Simple Quadratic and Cubic Functions

10.1 Inverses of Simple Quadratic and Cubic Functions Name Class Date 10.1 Inverses of Simple Quadratic and Cubic Functions Essential Question: What functions are the inverses of quadratic functions and cubic functions, and how can ou find them? Resource

More information

Final Examination MATH 2321Fall 2010

Final Examination MATH 2321Fall 2010 Final Examination MATH 2321Fall 2010 #1 #2 #3 #4 #5 #6 #7 #8 #9 #10 Total Extra Credit Name: Instructor: Students are allowed to bring a 8 1 2 11 page of formulas. Answers must be supported by detailed

More information

MHS. Applied Math. Sample Questions. Exam to go from grade 11 to grade 12

MHS. Applied Math. Sample Questions. Exam to go from grade 11 to grade 12 MHS Applied Math Exam to go from grade 11 to grade 1 Sample Questions 1. OP + PA + AR = 1. OPAR. AR 3. OR. Given two vectors u and v in the box below, how can we correctly find their sum, u + v, using

More information

The Mohr Stress Diagram. Edvard Munch as a young geologist!

The Mohr Stress Diagram. Edvard Munch as a young geologist! The Mohr Stress Diagram Edvard Munch as a young geologist! Material in the chapter is covered in Chapter 7 in Fossen s text The Mohr Stress Diagram A means by which two stresses acting on a plane of known

More information

Physics 131: Lecture 21. Today s Agenda

Physics 131: Lecture 21. Today s Agenda Physics 131: Lecture 1 Today s Agenda Rotational dynamics Torque = I Angular Momentum Physics 01: Lecture 10, Pg 1 Newton s second law in rotation land Sum of the torques will equal the moment of inertia

More information

E From Hollow and Solid Spheres

E From Hollow and Solid Spheres E From Hollow and Solid Spheres PHYS 272 - David Blasing Wednesday June 19th 1 / 32 Validity Note on Gauss s Law E From Hollow Sphere Clicker Questions Note: What we are doing today is only an approximation

More information

Jordan University of Science & Technology PHYS 101A Final exam First semester 2007

Jordan University of Science & Technology PHYS 101A Final exam First semester 2007 Student Name Student ID Jordan University of Science & Technology PHYS 101A Final exam First semester 2007 Approximate your answer to those given for each question. Use this table to fill in your answer

More information

Physics 9 WS E3 (rev. 1.0) Page 1

Physics 9 WS E3 (rev. 1.0) Page 1 Physics 9 WS E3 (rev. 1.0) Page 1 E-3. Gauss s Law Questions for discussion 1. Consider a pair of point charges ±Q, fixed in place near one another as shown. a) On the diagram above, sketch the field created

More information

Review Unit Multiple Choice Identify the choice that best completes the statement or answers the question.

Review Unit Multiple Choice Identify the choice that best completes the statement or answers the question. Review Unit 3 1201 Multiple Choice Identify the choice that best completes the statement or answers the question. 1. Which of the following numbers is not both a perfect square and a perfect cube? a. 531

More information

1. Short Answer (25 points total)

1. Short Answer (25 points total) Physics 116b First Practice Examination Due September 19, 2001 Name: Please circle your section: Section 1 Section 2 Section 3 Section 4 I nstructions This is practice for a one hour, closed book examination.

More information

Please fill in your Student ID number (UIN): IMPORTANT. Read these directions carefully:

Please fill in your Student ID number (UIN): IMPORTANT. Read these directions carefully: Physics 208: Electricity and Magnetism. Common Exam 1, 26 September 2016 Printyournameneatly: Last name: First name: Sign your name: Please fill in your Student ID number (UIN): Your classroom instructor:

More information