Copyright 2000, Kevin Wayne 1

Size: px
Start display at page:

Download "Copyright 2000, Kevin Wayne 1"

Transcription

1 Rcap: Maxmum 3-Sasfably Maxmum 3-Sasfably: Analyss CS 580: Algorhm Dsgn and Analyss Jrmah Block Purdu Unvrsy Sprng 2018 Announcmns: Homwork 6 dadln xndd o Aprl 24 h a 11:59 PM Cours Evaluaon Survy: Lv unl 4/29/2018 a 11:59PM. Your fdback s valud! xacly 3 dsnc lrals pr claus MAX-3SAT. Gvn 3-SAT formula, fnd a ruh assgnmn ha sasfs as many clauss as possbl. C 1 x 2 x 3 x 4 C 2 x 2 x 3 x 4 C 3 x 1 x 2 x 4 C 4 x 1 x 2 x 3 C 5 x 1 x 2 x 4 Smpl da. Flp a con, and s ach varabl ru wh probably ½, ndpndnly for ach varabl. Obsrvaon. Random assgnmn sasfs of h k clauss n xpcaon (proof: lnary of xpcaon) Q. Can w urn hs da no a 7/8-approxmaon algorhm? In gnral, a random varabl can almos always b blow s man. Lmma. Th probably ha a random assgnmn sasfs 7k/8 clauss s a las 1/(8k). Pf. L p j b probably ha xacly j clauss ar sasfd; l p b probably ha 7k/8 clauss ar sasfd Rarrangng rms ylds p 1 / (8k) MAX 3-SAT Th Probablsc Mhod Corollary. For any nsanc of 3-SAT, hr xss a ruh assgnmn ha sasfs a las a 7/8 fracon of all clauss. Pf. Random varabl s a las s xpcaon som of h m. Maxmum 3-Sasfably: Analyss Johnson's algorhm. Rpadly gnra random ruh assgnmns unl on of hm sasfs 7k/8 clauss. Thorm. Johnson's algorhm s a 7/8-approxmaon algorhm. Pf. By prvous lmma, ach raon succds wh probably a las 1/(8k). By h wang-m bound, h xpcd numbr of rals o fnd h sasfyng assgnmn s a mos 8k. Probablsc mhod. W showd h xsnc of a nonobvous propry of 3-SAT by showng ha a random consrucon producs wh posv probably! 4 6 Copyrgh 2000, Kvn Wayn 1

2 Exnsons. Maxmum Sasfably Allow on, wo, or mor lrals pr claus. Fnd max wghd s of sasfd clauss. Thorm. [Asano-Wllamson 2000] Thr xss a approxmaon algorhm for MAX-SAT. Thorm. [Karloff-Zwck 1997, Zwck+compur 2002] Thr xss a 7/8-approxmaon algorhm for vrson of MAX-3SAT whr ach claus has a mos 3 lrals. Thorm. [Håsad 1997] Unlss P = NP, no -approxmaon algorhm for MAX-3SAT (and hnc MAX-SAT) for any > 7/8. RP and ZPP RP. [Mon Carlo] Dcson problms solvabl wh on-sdd rror n poly-m. Can dcras probably of fals ngav On-sdd rror. o by 100 ndpndn rpons If h corrc answr s no, always rurn no. If h corrc answr s ys, rurn ys wh probably ½. ZPP. [Las Vgas] Dcson problms solvabl n xpcd polym. runnng m can b unboundd, bu on avrag s fas Thorm. P ZPP RP NP. Qucksor Sorng. Gvn a s of n dsnc lmns S, rarrang hm n ascndng ordr. RandomzdQucksor(S) { f S = 0 rurn choos a splr a S unformly a random forach (a S) { f (a < a ) pu a n S - ls f (a > a ) pu a n S + } RandomzdQucksor(S - ) oupu a RandomzdQucksor(S + ) } vry unlkly o mprov ovr smpl randomzd algorhm for MAX-3SAT Fundamnal opn qusons. To wha xn dos randomzaon hlp? Dos P = ZPP? Dos ZPP = RP? Dos RP = NP? Rmark. Can mplmn n-plac. O(log n) xra spac Mon Carlo vs. Las Vgas Algorhms Mon Carlo algorhm. Guarand o run n poly-m, lkly o fnd corrc answr. Ex: Conracon algorhm for global mn cu. Las Vgas algorhm. Guarand o fnd corrc answr, lkly o run n poly-m. Ex: Randomzd qucksor, Johnson's MAX-3SAT algorhm. sop algorhm afr a cran pon Rmark. Can always convr a Las Vgas algorhm no Mon Carlo, bu no known mhod o convr h ohr way Randomzd Dvd-and-Conqur Runnng m. Qucksor [Bs cas.] Slc h mdan lmn as h splr: qucksor maks (n log n) comparsons. [Wors cas.] Slc h smalls lmn as h splr: qucksor maks (n 2 ) comparsons. Randomz. Proc agans wors cas by choosng splr a random. Inuon. If w always slc an lmn ha s bggr han 25% of h lmns and smallr han 25% of h lmns, hn qucksor maks (n log n) comparsons. Noaon. Labl lmns so ha x 1 < x 2 < < x n Copyrgh 2000, Kvn Wayn 2

3 Qucksor: BST Rprsnaon of Splrs Qucksor: Expcd Numbr of Comparsons Chrnoff Bounds (abov man) BST rprsnaon. Draw rcursv BST of splrs. x 7 x 6 x 12 x 3 x 11 x 8 x 7 x 1 x 15 x 13 x 17 x 10 x 16 x 14 x 9 x 4 x 5 x 10 S - x 5 S + x 3 x 9 x 2 x 4 x 7 x 12 x 15 x 17 x 1 x 6 x 8 x 14 x 11 frs splr, chosn unformly a random x 13 x 16 Thorm. Expcd # of comparsons s O(n log n). Pf. 2 j 1 2 n 1 n 1 n 1 2n 2 n 1 j n 1 j2 j j 1 j x dx 2 n ln n x 1 probably ha and j ar compard Thorm. [Knuh 1973] Sddv of numbr of comparsons s ~ 0.65N. Ex. If n = 1 mllon, h probably ha randomzd qucksor aks lss han 4n ln n comparsons s a las 99.94%. Chbyshv's nqualy. Pr[ X - k] 1 / k 2. Thorm. Suppos X 1,, X n ar ndpndn 0-1 random varabls. L X = X X n. Thn for any E[X] and for any > 0, w hav Pf. W apply a numbr of smpl ransformaons. For any > 0, Now Pr[ X (1 ) ] 1 (1 ) sum of ndpndn 0-1 random varabls s ghly cnrd on h man Pr[X (1)] Pr X (1) (1) E[ X ] f(x) = X s monoon n x E[ X ] E[ X Markov's nqualy: Pr[X > a] E[X] / a ] E[ X ] dfnon of X ndpndnc Qucksor: BST Rprsnaon of Splrs Obsrvaon. Elmn only compard wh s ancsors and dscndans. x 2 and x 7 ar compard f hr lca = x 2 or x 7. x 2 and x 7 ar no compard f hr lca = x 3 or x 4 or x 5 or x 6. Clam. Pr[x and x j ar compard]. x Chrnoff Bounds Chrnoff Bounds (abov man) Pf. (con) L p = Pr[X = 1]. Thn, E[ X ] for any 0, 1+ Combnng vryhng: Pr[ X (1 ) ] p (1 p ) (1 ) 0 1 p ( 1) E[ X ] (1 ) p ( 1) p ( 1) x 5 x 3 x 9 x 11 x 13 x 16 p = E[X] prvous sld nqualy abov ( 1 ) ( 1) Fnally, choos = ln(1 + ). x 2 x 4 x 7 x 12 x 15 x x 1 x 6 x 8 x Copyrgh 2000, Kvn Wayn 3

4 Chrnoff Bounds (blow man) Load Balancng Load Balancng: Many Jobs Thorm. Suppos X 1,, X n ar ndpndn 0-1 random varabls. L X = X X n. Thn for any E[X] and for any 0 < < 1, w hav Pf da. Smlar. Pr[ X (1 ) ] 2 / 2 Rmark. No qu symmrc snc only maks sns o consdr < 1. Load balancng. Sysm n whch m jobs arrv n a sram and nd o b procssd mmdaly on n dncal procssors. Fnd an assgnmn ha balancs h workload across procssors. Cnralzd conrollr. Assgn jobs n round-robn mannr. Each procssor rcvs a mos m/n jobs. Dcnralzd conrollr. Assgn jobs o procssors unformly a random. How lkly s ha som procssor s assgnd "oo many" jobs? Thorm. Suppos h numbr of jobs m = 16n ln n. Thn on avrag, ach of h n procssors handls = 16 ln n jobs. Wh hgh probably vry procssor wll hav bwn half and wc h avrag load. Pf. L X, Y j b as bfor. Applyng Chrnoff bounds wh = 1 ylds 16nln n ln n 1 1 Pr[ X 2] 2 4 n Pr[ X 1 ] (16nlnn) 1 n 2 Unon bound vry procssor has load bwn half and wc h avrag wh probably 1-2/n Load Balancng Load Balancng Analyss. L X = numbr of jobs assgnd o procssor. L Y j = 1 f job j assgnd o procssor, and 0 ohrws. W hav E[Y j ] = 1/n Thus, X = j Y j,and = E[X ] = 1. c 1 Applyng Chrnoff bounds wh = c - 1 ylds Pr[ X c] c c L (n) b numbr x such ha x x = n, and choos c = (n). c 1 c ( n) 2 ( n) Pr[ X c] c 2 c c ( n) ( n) n Unon bound wh probably 1-1/n no procssor rcvs mor han (n) = (logn / log log n) jobs. Fac: hs bound s asympocally gh: wh hgh probably, som procssor rcvs (logn / log log n) 13.6 Unvrsal Hashng 22 Copyrgh 2000, Kvn Wayn 4

5 Dconary Daa Typ Ad Hoc Hash Funcon Hashng Prformanc Dconary. Gvn a unvrs U of possbl lmns, manan a subs S U so ha nsrng, dlng, and sarchng n S s ffcn. Dconary nrfac. Cra(): Inalz a dconary wh S =. Insr(u): Add lmn u U o S. Dl(u): Dl u from S, f u s currnly n S. Lookup(u): Drmn whhr u s n S. Challng. Unvrs U can b xrmly larg so dfnng an array of sz U s nfasbl. Applcaons. Fl sysms, daabass, Googl, complrs, chcksums P2P nworks, assocav arrays, crypography, wb cachng, c. Ad hoc hash funcon. n h(srng s, n n) { n hash = 0; for (n = 0; < s.lngh(); ++) hash = (31 * hash) + s[]; rurn hash % n; } hash funcon ala Java srng lbrary Drmnsc hashng. If U n 2, hn for any fxd hash funcon h, hr s a subs S U of n lmns ha all hash o sam slo. Thus, (n) m pr sarch n wors-cas. Q. Bu sn' ad hoc hash funcon good nough n pracc? Idalsc hash funcon. Maps m lmns unformly a random o n hash slos. Runnng m dpnds on lngh of chans. Avrag lngh of chan = = m / n. Choos n m on avrag O(1) pr nsr, lookup, or dl. Challng. Achv dalzd randomzd guarans, bu wh a hash funcon whr you can asly fnd ms whr you pu hm. Approach. Us randomzaon n h choc of h. advrsary knows h randomzd algorhm you'r usng, bu dosn' know random chocs ha h algorhm maks Hashng Algorhmc Complxy Aacks Unvrsal Hashng Hash funcon. h : U { 0, 1,, n-1 }. Hashng. Cra an array H of sz n. Whn procssng lmn u, accss array lmn H[h(u)]. Collson. Whn h(u) = h(v) bu u v. A collson s xpcd afr (n) random nsrons. Ths phnomnon s known as h "brhday paradox." Spara channg: H[] sors lnkd ls of lmns u wh h(u) =. H[1] H[2] H[3] H[n] jocularly null suburban browsng srously unravlld consdrang Whn can' w lv wh ad hoc hash funcon? Obvous suaons: arcraf conrol, nuclar racors. Surprsng suaons: dnal-of-srvc aacks. malcous advrsary larns your ad hoc hash funcon (.g., by radng Java API) and causs a bg pl-up n a sngl slo ha grnds prformanc o a hal Ral world xplos. [Crosby-Wallach 2003] Bro srvr: snd carfully chosn packs o DOS h srvr, usng lss bandwdh han a dal-up modm Prl 5.8.0: nsr carfully chosn srngs no assocav array. Lnux krnl: sav fls wh carfully chosn nams. Unvrsal class of hash funcons. [Carr-Wgman 1980s] For any par of lmns u, v U, Pr h H h(u) h(v) 1/n Can slc random h ffcnly. chosn unformly a random Can compu h(u) ffcnly. Ex. U = { a, b, c, d,, f }, n = 2. a b c d f H = {h 1, h 2} Pr h H [h(a) = h(b)] = 1/2 h 1(x) Pr h H [h(a) = h(c)] = 1 no unvrsal h 2(x) Pr h H [h(a) = h(d)] = 0... a b c d f H = {h 1, h 2, h 3, h 4} Pr h H [h(a) = h(b)] = 1/2 h 1(x) Pr h H [h(a) = h(c)] = 1/2 h 2(x) Pr h H [h(a) = h(d)] = 1/2 unvrsal h 3(x) Pr h H [h(a) = h()] = 1/2 Pr h H [h(a) = h(f)] = 0 h 4(x) Copyrgh 2000, Kvn Wayn 5

6 Unvrsal Hashng Dsgnng a Unvrsal Class of Hash Funcons Unvrsal hashng propry. L H b a unvrsal class of hash funcons; l h H b chosn unformly a random from H; and l u U. For any subs S U of sz a mos n, h xpcd numbr of ms n S ha colld wh u s a mos 1. Pf. For any lmn s S, dfn ndcaor random varabl X s = 1 f h(s) = h(u) and 0 ohrws. L X b a random varabl counng h oal numbr of collsons wh u. E hh [X] E[ ss X s ] ss E[X s ] ss Pr[X s 1] 1 ss n S 1 1 n lnary of xpcaon X s s a 0-1 random varabl unvrsal (assums u S) Thorm. H = { h a : a A } s a unvrsal class of hash funcons. Pf. L x = (x 1, x 2,, x r ) and y = (y 1, y 2,, y r ) b wo dsnc lmns of U. W nd o show ha Pr[h a (x) = h a (y)] 1/n. Snc x y, hr xss an ngr j such ha x j y j. W hav h a (x) = h a (y) ff a j ( y j x j ) a (x y ) mod p j z m Can assum a was chosn unformly a random by frs slcng all coordnas a whr j, hn slcng a j a random. Thus, w can assum a s fxd for all coordnas j. Snc p s prm, a j z = m mod p has a mos on soluon among p possbls. s lmma on nx sld Thus Pr[h a (x) = h a (y)] = 1/p 1/n. Exra Slds Dsgnng a Unvrsal Famly of Hash Funcons Numbr Thory Facs Thorm. [Chbyshv 1850] Thr xss a prm bwn n and 2n. Modulus. Choos a prm numbr p n. Ingr ncodng. Idnfy ach lmn u U wh a bas-p ngr of r dgs: x = (x 1, x 2,, x r ). Hash funcon. L A = s of all r-dg, bas-p ngrs. For ach a = (a 1, a 2,, a r ) whr 0 a < p, dfn r h a (x) a x mod p 1 Hash funcon famly. H = { h a : a A }. no nd for randomnss hr Fac. L p b prm, and l z 0 mod p. Thn z = m mod p has a mos on soluon 0 < p. Pf. Suppos and ar wo dffrn soluons. Thn ( - )z = 0 mod p; hnc ( - )z s dvsbl by p. Snc z 0 mod p, w know ha z s no dvsbl by p; follows ha ( - ) s dvsbl by p. Ths mpls =. Bonus fac. Can rplac "a mos on" wh "xacly on" n abov fac. Pf da. Eucld's algorhm Copyrgh 2000, Kvn Wayn 6

Boosting and Ensemble Methods

Boosting and Ensemble Methods Boosng and Ensmbl Mhods PAC Larnng modl Som dsrbuon D ovr doman X Eampls: c* s h arg funcon Goal: Wh hgh probably -d fnd h n H such ha rrorh,c* < d and ar arbrarly small. Inro o ML 2 Wak Larnng

More information

CS 580: Algorithm Design and Analysis

CS 580: Algorithm Design and Analysis CS 580: Algorithm Design and Analysis Jeremiah Blocki Purdue University Spring 2018 Announcements: Homework 6 deadline extended to April 24 th at 11:59 PM Course Evaluation Survey: Live until 4/29/2018

More information

Consider a system of 2 simultaneous first order linear equations

Consider a system of 2 simultaneous first order linear equations Soluon of sysms of frs ordr lnar quaons onsdr a sysm of smulanous frs ordr lnar quaons a b c d I has h alrna mar-vcor rprsnaon a b c d Or, n shorhand A, f A s alrady known from con W know ha h abov sysm

More information

Advanced Queueing Theory. M/G/1 Queueing Systems

Advanced Queueing Theory. M/G/1 Queueing Systems Advand Quung Thory Ths slds ar rad by Dr. Yh Huang of Gorg Mason Unvrsy. Sudns rgsrd n Dr. Huang's ourss a GMU an ma a sngl mahn-radabl opy and prn a sngl opy of ah sld for hr own rfrn, so long as ah sld

More information

Summary: Solving a Homogeneous System of Two Linear First Order Equations in Two Unknowns

Summary: Solving a Homogeneous System of Two Linear First Order Equations in Two Unknowns Summary: Solvng a Homognous Sysm of Two Lnar Frs Ordr Equaons n Two Unknowns Gvn: A Frs fnd h wo gnvalus, r, and hr rspcv corrspondng gnvcors, k, of h coffcn mar A Dpndng on h gnvalus and gnvcors, h gnral

More information

The Variance-Covariance Matrix

The Variance-Covariance Matrix Th Varanc-Covaranc Marx Our bggs a so-ar has bn ng a lnar uncon o a s o daa by mnmzng h las squars drncs rom h o h daa wh mnsarch. Whn analyzng non-lnar daa you hav o us a program l Malab as many yps o

More information

CPSC 211 Data Structures & Implementations (c) Texas A&M University [ 259] B-Trees

CPSC 211 Data Structures & Implementations (c) Texas A&M University [ 259] B-Trees CPSC 211 Daa Srucurs & Implmnaions (c) Txas A&M Univrsiy [ 259] B-Trs Th AVL r and rd-black r allowd som variaion in h lnghs of h diffrn roo-o-laf pahs. An alrnaiv ida is o mak sur ha all roo-o-laf pahs

More information

Final Exam : Solutions

Final Exam : Solutions Comp : Algorihm and Daa Srucur Final Exam : Soluion. Rcuriv Algorihm. (a) To bgin ind h mdian o {x, x,... x n }. Sinc vry numbr xcp on in h inrval [0, n] appar xacly onc in h li, w hav ha h mdian mu b

More information

t=0 t>0: + vr - i dvc Continuation

t=0 t>0: + vr - i dvc Continuation hapr Ga Dlay and rcus onnuaon s rcu Equaon >: S S Ths dffrnal quaon, oghr wh h nal condon, fully spcfs bhaor of crcu afr swch closs Our n challng: larn how o sol such quaons TUE/EE 57 nwrk analys 4/5 NdM

More information

Copyright 2000, Kevin Wayne 1

Copyright 2000, Kevin Wayne 1 Global Minimum Cut Contraction Algorithm CS 580: Algorithm Design and Analysis Jeremiah Blocki Purdue University Spring 2018 Announcements: Homework 6 deadline extended to April 24 th at 11:59 PM Course

More information

State Observer Design

State Observer Design Sa Obsrvr Dsgn A. Khak Sdgh Conrol Sysms Group Faculy of Elcrcal and Compur Engnrng K. N. Toos Unvrsy of Tchnology Fbruary 2009 1 Problm Formulaon A ky assumpon n gnvalu assgnmn and sablzng sysms usng

More information

CS 580: Algorithm Design and Analysis

CS 580: Algorithm Design and Analysis CS 580: Algorithm Design and Analysis Jeremiah Blocki Purdue University Spring 2018 Reminder: Homework 6 has been released. Chapter 13 Randomized Algorithms Slides by Kevin Wayne. Copyright @ 2005 Pearson-Addison

More information

Chapter 13. Randomized Algorithms. Slides by Kevin Wayne Pearson-Addison Wesley. All rights reserved.

Chapter 13. Randomized Algorithms. Slides by Kevin Wayne Pearson-Addison Wesley. All rights reserved. Chapter 13 Randomized Algorithms Slides by Kevin Wayne. Copyright @ 2005 Pearson-Addison Wesley. All rights reserved. 1 Randomization Algorithmic design patterns. Greedy. Divide-and-conquer. Dynamic programming.

More information

SIMEON BALL AND AART BLOKHUIS

SIMEON BALL AND AART BLOKHUIS A BOUND FOR THE MAXIMUM WEIGHT OF A LINEAR CODE SIMEON BALL AND AART BLOKHUIS Absrac. I s shown ha h paramrs of a lnar cod ovr F q of lngh n, dmnson k, mnmum wgh d and maxmum wgh m sasfy a cran congrunc

More information

ELEN E4830 Digital Image Processing

ELEN E4830 Digital Image Processing ELEN E48 Dgal Imag Procssng Mrm Eamnaon Sprng Soluon Problm Quanzaon and Human Encodng r k u P u P u r r 6 6 6 6 5 6 4 8 8 4 P r 6 6 P r 4 8 8 6 8 4 r 8 4 8 4 7 8 r 6 6 6 6 P r 8 4 8 P r 6 6 8 5 P r /

More information

Homework: Introduction to Motion

Homework: Introduction to Motion Homwork: Inroducon o Moon Dsanc vs. Tm Graphs Nam Prod Drcons: Answr h foowng qusons n h spacs provdd. 1. Wha do you do o cra a horzona n on a dsancm graph? 2. How do you wak o cra a sragh n ha sops up?

More information

innovations shocks white noise

innovations shocks white noise Innovaons Tm-srs modls ar consrucd as lnar funcons of fundamnal forcasng rrors, also calld nnovaons or shocks Ths basc buldng blocks sasf var σ Srall uncorrlad Ths rrors ar calld wh nos In gnral, f ou

More information

Copyright 2000, Kevin Wayne 1

Copyright 2000, Kevin Wayne 1 CS 580: Algorithm Design and Analysis.8 Knapsack Problem Jeremiah Blocki Purdue University Spring 08 Reminder: Homework 6 has been released. Weighted Vertex Cover Polynomial Time Approximation Scheme Theorem.

More information

Frequency Response. Response of an LTI System to Eigenfunction

Frequency Response. Response of an LTI System to Eigenfunction Frquncy Rsons Las m w Rvsd formal dfnons of lnary and m-nvaranc Found an gnfuncon for lnar m-nvaran sysms Found h frquncy rsons of a lnar sysm o gnfuncon nu Found h frquncy rsons for cascad, fdbac, dffrnc

More information

13. RANDOMIZED ALGORITHMS

13. RANDOMIZED ALGORITHMS 13. RANDOMIZED ALGORITHMS content resolution global min cut linearity of expectation max 3-satisfiability universal hashing Chernoff bounds load balancing Lecture slides by Kevin Wayne Copyright 2005 Pearson-Addison

More information

CSE 245: Computer Aided Circuit Simulation and Verification

CSE 245: Computer Aided Circuit Simulation and Verification CSE 45: Compur Aidd Circui Simulaion and Vrificaion Fall 4, Sp 8 Lcur : Dynamic Linar Sysm Oulin Tim Domain Analysis Sa Equaions RLC Nwork Analysis by Taylor Expansion Impuls Rspons in im domain Frquncy

More information

Lecture 1: Numerical Integration The Trapezoidal and Simpson s Rule

Lecture 1: Numerical Integration The Trapezoidal and Simpson s Rule Lcur : Numrical ngraion Th Trapzoidal and Simpson s Rul A problm Th probabiliy of a normally disribud (man µ and sandard dviaion σ ) vn occurring bwn h valus a and b is B A P( a x b) d () π whr a µ b -

More information

9. Simple Rules for Monetary Policy

9. Simple Rules for Monetary Policy 9. Smpl Ruls for Monar Polc John B. Talor, Ma 0, 03 Woodford, AR 00 ovrvw papr Purpos s o consdr o wha xn hs prscrpon rsmbls h sor of polc ha conomc hor would rcommnd Bu frs, l s rvw how hs sor of polc

More information

Lucas Test is based on Euler s theorem which states that if n is any integer and a is coprime to n, then a φ(n) 1modn.

Lucas Test is based on Euler s theorem which states that if n is any integer and a is coprime to n, then a φ(n) 1modn. Modul 10 Addtonal Topcs 10.1 Lctur 1 Prambl: Dtrmnng whthr a gvn ntgr s prm or compost s known as prmalty tstng. Thr ar prmalty tsts whch mrly tll us whthr a gvn ntgr s prm or not, wthout gvng us th factors

More information

Lecture 4 : Backpropagation Algorithm. Prof. Seul Jung ( Intelligent Systems and Emotional Engineering Laboratory) Chungnam National University

Lecture 4 : Backpropagation Algorithm. Prof. Seul Jung ( Intelligent Systems and Emotional Engineering Laboratory) Chungnam National University Lcur 4 : Bacpropagaon Algorhm Pro. Sul Jung Inllgn Sm and moonal ngnrng Laboraor Chungnam Naonal Unvr Inroducon o Bacpropagaon algorhm 969 Mn and Papr aac. 980 Parr and Wrbo dcovrd bac propagaon algorhm.

More information

13. RANDOMIZED ALGORITHMS

13. RANDOMIZED ALGORITHMS Randomization Lecture slides by Kevin Wayne Copyright 2005 Pearson-Addison Wesley http://www.cs.princeton.edu/~wayne/kleinberg-tardos Algorithmic design patterns. Greedy. Divide-and-conquer. Dynamic programming.

More information

EE243 Advanced Electromagnetic Theory Lec # 10: Poynting s Theorem, Time- Harmonic EM Fields

EE243 Advanced Electromagnetic Theory Lec # 10: Poynting s Theorem, Time- Harmonic EM Fields Appl M Fall 6 Nuruhr Lcur # r 9/6/6 4 Avanc lcromagnc Thory Lc # : Poynng s Thorm Tm- armonc M Fls Poynng s Thorm Consrvaon o nrgy an momnum Poynng s Thorm or Lnar sprsv Ma Poynng s Thorm or Tm-armonc

More information

CIVL 8/ D Boundary Value Problems - Triangular Elements (T6) 1/8

CIVL 8/ D Boundary Value Problems - Triangular Elements (T6) 1/8 CIVL 8/7 -D Boundar Valu Problm - rangular Elmn () /8 SI-ODE RIAGULAR ELEMES () A quadracall nrpolad rangular lmn dfnd b nod, hr a h vrc and hr a h mddl a ach d. h mddl nod, dpndng on locaon, ma dfn a

More information

NAME: ANSWER KEY DATE: PERIOD. DIRECTIONS: MULTIPLE CHOICE. Choose the letter of the correct answer.

NAME: ANSWER KEY DATE: PERIOD. DIRECTIONS: MULTIPLE CHOICE. Choose the letter of the correct answer. R A T T L E R S S L U G S NAME: ANSWER KEY DATE: PERIOD PREAP PHYSICS REIEW TWO KINEMATICS / GRAPHING FORM A DIRECTIONS: MULTIPLE CHOICE. Chs h r f h rr answr. Us h fgur bw answr qusns 1 and 2. 0 10 20

More information

Combinatorial Networks Week 1, March 11-12

Combinatorial Networks Week 1, March 11-12 1 Nots on March 11 Combinatorial Ntwors W 1, March 11-1 11 Th Pigonhol Principl Th Pigonhol Principl If n objcts ar placd in hols, whr n >, thr xists a box with mor than on objcts 11 Thorm Givn a simpl

More information

Ma/CS 6a Class 15: Flows and Bipartite Graphs

Ma/CS 6a Class 15: Flows and Bipartite Graphs //206 Ma/CS 6a Cla : Flow and Bipari Graph By Adam Shffr Rmindr: Flow Nwork A flow nwork i a digraph G = V, E, oghr wih a ourc vrx V, a ink vrx V, and a capaciy funcion c: E N. Capaciy Sourc 7 a b c d

More information

Section 6.1. Question: 2. Let H be a subgroup of a group G. Then H operates on G by left multiplication. Describe the orbits for this operation.

Section 6.1. Question: 2. Let H be a subgroup of a group G. Then H operates on G by left multiplication. Describe the orbits for this operation. MAT 444 H Barclo Spring 004 Homwork 6 Solutions Sction 6 Lt H b a subgroup of a group G Thn H oprats on G by lft multiplication Dscrib th orbits for this opration Th orbits of G ar th right costs of H

More information

Wave Superposition Principle

Wave Superposition Principle Physcs 36: Was Lcur 5 /7/8 Wa Suroson Prncl I s qu a common suaon for wo or mor was o arr a h sam on n sac or o xs oghr along h sam drcon. W wll consdr oday sral moran cass of h combnd ffcs of wo or mor

More information

Microscopic Flow Characteristics Time Headway - Distribution

Microscopic Flow Characteristics Time Headway - Distribution CE57: Traffic Flow Thory Spring 20 Wk 2 Modling Hadway Disribuion Microscopic Flow Characrisics Tim Hadway - Disribuion Tim Hadway Dfiniion Tim Hadway vrsus Gap Ahmd Abdl-Rahim Civil Enginring Dparmn,

More information

8. Queueing systems. Contents. Simple teletraffic model. Pure queueing system

8. Queueing systems. Contents. Simple teletraffic model. Pure queueing system 8. Quug sysms Cos 8. Quug sysms Rfrshr: Sml lraffc modl Quug dscl M/M/ srvr wag lacs Alcao o ack lvl modllg of daa raffc M/M/ srvrs wag lacs lc8. S-38.45 Iroduco o Tlraffc Thory Srg 5 8. Quug sysms 8.

More information

Outline. CS38 Introduction to Algorithms. Max-3-SAT approximation algorithm 6/3/2014. randomness in algorithms. Lecture 19 June 3, 2014

Outline. CS38 Introduction to Algorithms. Max-3-SAT approximation algorithm 6/3/2014. randomness in algorithms. Lecture 19 June 3, 2014 Outline CS38 Introduction to Algorithms Lecture 19 June 3, 2014 randomness in algorithms max-3-sat approximation algorithm universal hashing load balancing Course summary and review June 3, 2014 CS38 Lecture

More information

UNIT #5 EXPONENTIAL AND LOGARITHMIC FUNCTIONS

UNIT #5 EXPONENTIAL AND LOGARITHMIC FUNCTIONS Answr Ky Nam: Da: UNIT # EXPONENTIAL AND LOGARITHMIC FUNCTIONS Par I Qusions. Th prssion is quivaln o () () 6 6 6. Th ponnial funcion y 6 could rwrin as y () y y 6 () y y (). Th prssion a is quivaln o

More information

Propositional Logic. Combinatorial Problem Solving (CPS) Albert Oliveras Enric Rodríguez-Carbonell. May 17, 2018

Propositional Logic. Combinatorial Problem Solving (CPS) Albert Oliveras Enric Rodríguez-Carbonell. May 17, 2018 Propositional Logic Combinatorial Problm Solving (CPS) Albrt Olivras Enric Rodríguz-Carbonll May 17, 2018 Ovrviw of th sssion Dfinition of Propositional Logic Gnral Concpts in Logic Rduction to SAT CNFs

More information

FAULT TOLERANT SYSTEMS

FAULT TOLERANT SYSTEMS FAULT TOLERANT SYSTEMS hp://www.cs.umass.du/c/orn/faultolransysms ar 4 Analyss Mhods Chapr HW Faul Tolranc ar.4.1 Duplx Sysms Boh procssors xcu h sam as If oupus ar n agrmn - rsul s assumd o b corrc If

More information

Boyce/DiPrima 9 th ed, Ch 2.1: Linear Equations; Method of Integrating Factors

Boyce/DiPrima 9 th ed, Ch 2.1: Linear Equations; Method of Integrating Factors Boc/DiPrima 9 h d, Ch.: Linar Equaions; Mhod of Ingraing Facors Elmnar Diffrnial Equaions and Boundar Valu Problms, 9 h diion, b William E. Boc and Richard C. DiPrima, 009 b John Wil & Sons, Inc. A linar

More information

Homework #3. 1 x. dx. It therefore follows that a sum of the

Homework #3. 1 x. dx. It therefore follows that a sum of the Danil Cannon CS 62 / Luan March 5, 2009 Homwork # 1. Th natural logarithm is dfind by ln n = n 1 dx. It thrfor follows that a sum of th 1 x sam addnd ovr th sam intrval should b both asymptotically uppr-

More information

CHAPTER 33: PARTICLE PHYSICS

CHAPTER 33: PARTICLE PHYSICS Collg Physcs Studnt s Manual Chaptr 33 CHAPTER 33: PARTICLE PHYSICS 33. THE FOUR BASIC FORCES 4. (a) Fnd th rato of th strngths of th wak and lctromagntc forcs undr ordnary crcumstancs. (b) What dos that

More information

A Note on Estimability in Linear Models

A Note on Estimability in Linear Models Intrnatonal Journal of Statstcs and Applcatons 2014, 4(4): 212-216 DOI: 10.5923/j.statstcs.20140404.06 A Not on Estmablty n Lnar Modls S. O. Adymo 1,*, F. N. Nwob 2 1 Dpartmnt of Mathmatcs and Statstcs,

More information

1 Minimum Cut Problem

1 Minimum Cut Problem CS 6 Lctur 6 Min Cut and argr s Algorithm Scribs: Png Hui How (05), Virginia Dat: May 4, 06 Minimum Cut Problm Today, w introduc th minimum cut problm. This problm has many motivations, on of which coms

More information

Introduction to Arithmetic Geometry Fall 2013 Lecture #20 11/14/2013

Introduction to Arithmetic Geometry Fall 2013 Lecture #20 11/14/2013 18.782 Introduction to Arithmtic Gomtry Fall 2013 Lctur #20 11/14/2013 20.1 Dgr thorm for morphisms of curvs Lt us rstat th thorm givn at th nd of th last lctur, which w will now prov. Thorm 20.1. Lt φ:

More information

Square of Hamilton cycle in a random graph

Square of Hamilton cycle in a random graph Squar of Hamilton cycl in a random graph Andrzj Dudk Alan Friz Jun 28, 2016 Abstract W show that p = n is a sharp thrshold for th random graph G n,p to contain th squar of a Hamilton cycl. This improvs

More information

Grand Canonical Ensemble

Grand Canonical Ensemble Th nsmbl of systms mmrsd n a partcl-hat rsrvor at constant tmpratur T, prssur P, and chmcal potntal. Consdr an nsmbl of M dntcal systms (M =,, 3,...M).. Thy ar mutually sharng th total numbr of partcls

More information

Supplementary Figure 1. Experiment and simulation with finite qudit. anharmonicity. (a), Experimental data taken after a 60 ns three-tone pulse.

Supplementary Figure 1. Experiment and simulation with finite qudit. anharmonicity. (a), Experimental data taken after a 60 ns three-tone pulse. Supplmnar Fgur. Eprmn and smulaon wh fn qud anharmonc. a, Eprmnal daa akn afr a 6 ns hr-on puls. b, Smulaon usng h amlonan. Supplmnar Fgur. Phagoran dnamcs n h m doman. a, Eprmnal daa. Th hr-on puls s

More information

The Matrix Exponential

The Matrix Exponential Th Matrix Exponntial (with xrciss) by D. Klain Vrsion 207.0.05 Corrctions and commnts ar wlcom. Th Matrix Exponntial For ach n n complx matrix A, dfin th xponntial of A to b th matrix A A k I + A + k!

More information

EXERCISE - 01 CHECK YOUR GRASP

EXERCISE - 01 CHECK YOUR GRASP DIFFERENTIAL EQUATION EXERCISE - CHECK YOUR GRASP 7. m hn D() m m, D () m m. hn givn D () m m D D D + m m m m m m + m m m m + ( m ) (m ) (m ) (m + ) m,, Hnc numbr of valus of mn will b. n ( ) + c sinc

More information

Soft k-means Clustering. Comp 135 Machine Learning Computer Science Tufts University. Mixture Models. Mixture of Normals in 1D

Soft k-means Clustering. Comp 135 Machine Learning Computer Science Tufts University. Mixture Models. Mixture of Normals in 1D Comp 35 Machn Larnng Computr Scnc Tufts Unvrsty Fall 207 Ron Khardon Th EM Algorthm Mxtur Modls Sm-Suprvsd Larnng Soft k-mans Clustrng ck k clustr cntrs : Assocat xampls wth cntrs p,j ~~ smlarty b/w cntr

More information

Chapter 7. Now, for 2) 1. 1, if z = 1, Thus, Eq. (7.20) holds

Chapter 7. Now, for 2) 1. 1, if z = 1, Thus, Eq. (7.20) holds Chapr 7, n, 7 Ipuls rspons of h ovng avrag flr s: h[, ohrws sn / / Is frquny rspons s: sn / Now, for a BR ransfr funon,, For h ovng-avrag flr, sn / W shall show by nduon ha sn / sn / sn /,, Now, for sn

More information

Theoretical Seismology

Theoretical Seismology Thorcal Ssmology Lcur 9 Sgnal Procssng Fourr analyss Fourr sudd a h Écol Normal n Pars, augh by Lagrang, who Fourr dscrbd as h frs among Europan mn of scnc, Laplac, who Fourr rad lss hghly, and by Mong.

More information

The Matrix Exponential

The Matrix Exponential Th Matrix Exponntial (with xrciss) by Dan Klain Vrsion 28928 Corrctions and commnts ar wlcom Th Matrix Exponntial For ach n n complx matrix A, dfin th xponntial of A to b th matrix () A A k I + A + k!

More information

Random Access Techniques: ALOHA (cont.)

Random Access Techniques: ALOHA (cont.) Random Accss Tchniqus: ALOHA (cont.) 1 Exampl [ Aloha avoiding collision ] A pur ALOHA ntwork transmits a 200-bit fram on a shard channl Of 200 kbps at tim. What is th rquirmnt to mak this fram collision

More information

4.1 The Uniform Distribution Def n: A c.r.v. X has a continuous uniform distribution on [a, b] when its pdf is = 1 a x b

4.1 The Uniform Distribution Def n: A c.r.v. X has a continuous uniform distribution on [a, b] when its pdf is = 1 a x b 4. Th Uniform Disribuion Df n: A c.r.v. has a coninuous uniform disribuion on [a, b] whn is pdf is f x a x b b a Also, b + a b a µ E and V Ex4. Suppos, h lvl of unblivabiliy a any poin in a Transformrs

More information

Problem 1: Consider the following stationary data generation process for a random variable y t. e t ~ N(0,1) i.i.d.

Problem 1: Consider the following stationary data generation process for a random variable y t. e t ~ N(0,1) i.i.d. A/CN C m Sr Anal Profor Òcar Jordà Wnr conomc.c. Dav POBLM S SOLIONS Par I Analcal Quon Problm : Condr h followng aonar daa gnraon proc for a random varabl - N..d. wh < and N -. a Oban h populaon man varanc

More information

First derivative analysis

First derivative analysis Robrto s Nots on Dirntial Calculus Chaptr 8: Graphical analysis Sction First drivativ analysis What you nd to know alrady: How to us drivativs to idntiy th critical valus o a unction and its trm points

More information

Dynamic Power Allocation in MIMO Fading Systems Without Channel Distribution Information

Dynamic Power Allocation in MIMO Fading Systems Without Channel Distribution Information PROC. IEEE INFOCOM 06 Dynamc Powr Allocaon n MIMO Fadng Sysms Whou Channl Dsrbuon Informaon Hao Yu and Mchal J. Nly Unvrsy of Souhrn Calforna Absrac Ths papr consdrs dynamc powr allocaon n MIMO fadng sysms

More information

Elementary Differential Equations and Boundary Value Problems

Elementary Differential Equations and Boundary Value Problems Elmnar Diffrnial Equaions and Boundar Valu Problms Boc. & DiPrima 9 h Ediion Chapr : Firs Ordr Diffrnial Equaions 00600 คณ ตศาสตร ว ศวกรรม สาขาว ชาว ศวกรรมคอมพ วเตอร ป การศ กษา /55 ผศ.ดร.อร ญญา ผศ.ดร.สมศ

More information

Chapter 10. The singular integral Introducing S(n) and J(n)

Chapter 10. The singular integral Introducing S(n) and J(n) Chaptr Th singular intgral Our aim in this chaptr is to rplac th functions S (n) and J (n) by mor convnint xprssions; ths will b calld th singular sris S(n) and th singular intgral J(n). This will b don

More information

First Lecture of Machine Learning. Hung-yi Lee

First Lecture of Machine Learning. Hung-yi Lee Firs Lcur of Machin Larning Hung-yi L Larning o say ys/no Binary Classificaion Larning o say ys/no Sam filring Is an -mail sam or no? Rcommndaion sysms rcommnd h roduc o h cusomr or no? Malwar dcion Is

More information

Economics 302 (Sec. 001) Intermediate Macroeconomic Theory and Policy (Spring 2011) 3/28/2012. UW Madison

Economics 302 (Sec. 001) Intermediate Macroeconomic Theory and Policy (Spring 2011) 3/28/2012. UW Madison Economics 302 (Sc. 001) Inrmdia Macroconomic Thory and Policy (Spring 2011) 3/28/2012 Insrucor: Prof. Mnzi Chinn Insrucor: Prof. Mnzi Chinn UW Madison 16 1 Consumpion Th Vry Forsighd dconsumr A vry forsighd

More information

Point-to-Point Links. Problem: Consecutive 1s or 0s. Alternative Encodings. Encoding. Signals propagate over a physical medium

Point-to-Point Links. Problem: Consecutive 1s or 0s. Alternative Encodings. Encoding. Signals propagate over a physical medium Encdng Pn--Pn Lnks Oln Encdng Frang Errr Dcn Sldng Wndw Algrh Sgnals prpaga vr a physcal d dla lcragnc wavs.g., vary vlag Encd bnary daa n sgnals.g., 0 as lw sgnal and 1 as hgh sgnal knwn as Nn-Rrn zr

More information

CHAPTER 7d. DIFFERENTIATION AND INTEGRATION

CHAPTER 7d. DIFFERENTIATION AND INTEGRATION CHAPTER 7d. DIFFERENTIATION AND INTEGRATION A. J. Clark School o Engnrng Dpartmnt o Cvl and Envronmntal Engnrng by Dr. Ibrahm A. Assakka Sprng ENCE - Computaton Mthods n Cvl Engnrng II Dpartmnt o Cvl and

More information

10/7/14. Mixture Models. Comp 135 Introduction to Machine Learning and Data Mining. Maximum likelihood estimation. Mixture of Normals in 1D

10/7/14. Mixture Models. Comp 135 Introduction to Machine Learning and Data Mining. Maximum likelihood estimation. Mixture of Normals in 1D Comp 35 Introducton to Machn Larnng and Data Mnng Fall 204 rofssor: Ron Khardon Mxtur Modls Motvatd by soft k-mans w dvlopd a gnratv modl for clustrng. Assum thr ar k clustrs Clustrs ar not rqurd to hav

More information

Calculus II (MAC )

Calculus II (MAC ) Calculus II (MAC232-2) Tst 2 (25/6/25) Nam (PRINT): Plas show your work. An answr with no work rcivs no crdit. You may us th back of a pag if you nd mor spac for a problm. You may not us any calculators.

More information

The Mathematics of Harmonic Oscillators

The Mathematics of Harmonic Oscillators Th Mhcs of Hronc Oscllors Spl Hronc Moon In h cs of on-nsonl spl hronc oon (SHM nvolvng sprng wh sprng consn n wh no frcon, you rv h quon of oon usng Nwon's scon lw: con wh gvs: 0 Ths s sos wrn usng h

More information

Τίτλος Μαθήματος: Θεωρία Πολυπλοκότητας. Ενότητα: Τυχαιοποιημένοι αλγόριθμοι. Διδάσκων: Λέκτορας Xάρης Παπαδόπουλος. Τμήμα: Μαθηματικών

Τίτλος Μαθήματος: Θεωρία Πολυπλοκότητας. Ενότητα: Τυχαιοποιημένοι αλγόριθμοι. Διδάσκων: Λέκτορας Xάρης Παπαδόπουλος. Τμήμα: Μαθηματικών Τίτλος Μαθήματος: Θεωρία Πολυπλοκότητας Ενότητα: Τυχαιοποιημένοι αλγόριθμοι Διδάσκων: Λέκτορας Xάρης Παπαδόπουλος Τμήμα: Μαθηματικών Chapter 13: Randomized Algorithms Randomization Algorithmic design

More information

Midterm exam 2, April 7, 2009 (solutions)

Midterm exam 2, April 7, 2009 (solutions) Univrsiy of Pnnsylvania Dparmn of Mahmaics Mah 26 Honors Calculus II Spring Smsr 29 Prof Grassi, TA Ashr Aul Midrm xam 2, April 7, 29 (soluions) 1 Wri a basis for h spac of pairs (u, v) of smooh funcions

More information

Search sequence databases 3 10/25/2016

Search sequence databases 3 10/25/2016 Sarch squnc databass 3 10/25/2016 Etrm valu distribution Ø Suppos X is a random variabl with probability dnsity function p(, w sampl a larg numbr S of indpndnt valus of X from this distribution for an

More information

Chapter 13 Laplace Transform Analysis

Chapter 13 Laplace Transform Analysis Chapr aplac Tranorm naly Chapr : Ouln aplac ranorm aplac Tranorm -doman phaor analy: x X σ m co ω φ x X X m φ x aplac ranorm: [ o ] d o d < aplac Tranorm Thr condon Unlaral on-dd aplac ranorm: aplac ranorm

More information

DISTRIBUTION OF DIFFERENCE BETWEEN INVERSES OF CONSECUTIVE INTEGERS MODULO P

DISTRIBUTION OF DIFFERENCE BETWEEN INVERSES OF CONSECUTIVE INTEGERS MODULO P DISTRIBUTION OF DIFFERENCE BETWEEN INVERSES OF CONSECUTIVE INTEGERS MODULO P Tsz Ho Chan Dartmnt of Mathmatics, Cas Wstrn Rsrv Univrsity, Clvland, OH 4406, USA txc50@cwru.du Rcivd: /9/03, Rvisd: /9/04,

More information

Institute of Actuaries of India

Institute of Actuaries of India Insiu of Acuaris of India ubjc CT3 Probabiliy and Mahmaical aisics Novmbr Examinaions INDICATIVE OLUTION Pag of IAI CT3 Novmbr ol. a sampl man = 35 sampl sandard dviaion = 36.6 b for = uppr bound = 35+*36.6

More information

Continous system: differential equations

Continous system: differential equations /6/008 Coious sysm: diffrial quaios Drmiisic modls drivaivs isad of (+)-( r( compar ( + ) R( + r ( (0) ( R ( 0 ) ( Dcid wha hav a ffc o h sysm Drmi whhr h paramrs ar posiiv or gaiv, i.. giv growh or rducio

More information

Control Systems (Lecture note #6)

Control Systems (Lecture note #6) 6.5 Corol Sysms (Lcur o #6 Las Tm: Lar algbra rw Lar algbrac quaos soluos Paramrzao of all soluos Smlary rasformao: compao form Egalus ad gcors dagoal form bg pcur: o brach of h cours Vcor spacs marcs

More information

Network Congestion Games

Network Congestion Games Ntwork Congstion Gams Assistant Profssor Tas A&M Univrsity Collg Station, TX TX Dallas Collg Station Austin Houston Bst rout dpnds on othrs Ntwork Congstion Gams Travl tim incrass with congstion Highway

More information

Review - Probabilistic Classification

Review - Probabilistic Classification Mmoral Unvrsty of wfoundland Pattrn Rcognton Lctur 8 May 5, 6 http://www.ngr.mun.ca/~charlsr Offc Hours: Tusdays Thursdays 8:3-9:3 PM E- (untl furthr notc) Gvn lablld sampls { ɛc,,,..., } {. Estmat Rvw

More information

Chapter 5 The Laplace Transform. x(t) input y(t) output Dynamic System

Chapter 5 The Laplace Transform. x(t) input y(t) output Dynamic System EE 422G No: Chapr 5 Inrucor: Chung Chapr 5 Th Laplac Tranform 5- Inroducion () Sym analyi inpu oupu Dynamic Sym Linar Dynamic ym: A procor which proc h inpu ignal o produc h oupu dy ( n) ( n dy ( n) +

More information

Searching Linked Lists. Perfect Skip List. Building a Skip List. Skip List Analysis (1) Assume the list is sorted, but is stored in a linked list.

Searching Linked Lists. Perfect Skip List. Building a Skip List. Skip List Analysis (1) Assume the list is sorted, but is stored in a linked list. 3 3 4 8 6 3 3 4 8 6 3 3 4 8 6 () (d) 3 Sarching Linkd Lists Sarching Linkd Lists Sarching Linkd Lists ssum th list is sortd, but is stord in a linkd list. an w us binary sarch? omparisons? Work? What if

More information

Thus, because if either [G : H] or [H : K] is infinite, then [G : K] is infinite, then [G : K] = [G : H][H : K] for all infinite cases.

Thus, because if either [G : H] or [H : K] is infinite, then [G : K] is infinite, then [G : K] = [G : H][H : K] for all infinite cases. Homwork 5 M 373K Solutions Mark Lindbrg and Travis Schdlr 1. Prov that th ring Z/mZ (for m 0) is a fild if and only if m is prim. ( ) Proof by Contrapositiv: Hr, thr ar thr cass for m not prim. m 0: Whn

More information

Engineering Circuit Analysis 8th Edition Chapter Nine Exercise Solutions

Engineering Circuit Analysis 8th Edition Chapter Nine Exercise Solutions Engnrng rcu naly 8h Eon hapr Nn Exrc Soluon. = KΩ, = µf, an uch ha h crcu rpon oramp. a For Sourc-fr paralll crcu: For oramp or b H 9V, V / hoo = H.7.8 ra / 5..7..9 9V 9..9..9 5.75,.5 5.75.5..9 . = nh,

More information

Poisson process Markov process

Poisson process Markov process E2200 Quuing hory and lraffic 2nd lcur oion proc Markov proc Vikoria Fodor KTH Laboraory for Communicaion nwork, School of Elcrical Enginring 1 Cour oulin Sochaic proc bhind quuing hory L2-L3 oion proc

More information

Southern Taiwan University

Southern Taiwan University Chaptr Ordinar Diffrntial Equations of th First Ordr and First Dgr Gnral form:., d +, d 0.a. f,.b I. Sparabl Diffrntial quations Form: d + d 0 C d d E 9 + 4 0 Solution: 9d + 4d 0 9 + 4 C E + d Solution:

More information

September 23, Honors Chem Atomic structure.notebook. Atomic Structure

September 23, Honors Chem Atomic structure.notebook. Atomic Structure Atomic Structur Topics covrd Atomic structur Subatomic particls Atomic numbr Mass numbr Charg Cations Anions Isotops Avrag atomic mass Practic qustions atomic structur Sp 27 8:16 PM 1 Powr Standards/ Larning

More information

Analysis of decentralized potential field based multi-agent navigation via primal-dual Lyapunov theory

Analysis of decentralized potential field based multi-agent navigation via primal-dual Lyapunov theory Analyss of dcnralzd ponal fld basd mul-agn navgaon va prmal-dual Lyapunov hory Th MIT Faculy has mad hs arcl opnly avalabl. Plas shar how hs accss bnfs you. Your sory mars. Caon As Publshd Publshr Dmarogonas,

More information

In the complete model, these slopes are ANALYSIS OF VARIANCE FOR THE COMPLETE TWO-WAY MODEL. (! i+1 -! i ) + [(!") i+1,q - [(!

In the complete model, these slopes are ANALYSIS OF VARIANCE FOR THE COMPLETE TWO-WAY MODEL. (! i+1 -! i ) + [(!) i+1,q - [(! ANALYSIS OF VARIANCE FOR THE COMPLETE TWO-WAY MODEL The frs hng o es n wo-way ANOVA: Is here neracon? "No neracon" means: The man effecs model would f. Ths n urn means: In he neracon plo (wh A on he horzonal

More information

INF5820 MT 26 OCT 2012

INF5820 MT 26 OCT 2012 INF582 MT 26 OCT 22 H22 Jn Tor Lønnng l@.uo.no Tody Ssl hn rnslon: Th nosy hnnl odl Word-bsd IBM odl Trnng SMT xpl En o lgd n r d bygg..9 h.6 d.3.9 rgh.9 wh.4 buldng.45 oo.3 rd.25 srgh.7 by.3 onsruon.33

More information

Bethe-Salpeter Equation Green s Function and the Bethe-Salpeter Equation for Effective Interaction in the Ladder Approximation

Bethe-Salpeter Equation Green s Function and the Bethe-Salpeter Equation for Effective Interaction in the Ladder Approximation Bh-Salp Equaon n s Funcon and h Bh-Salp Equaon fo Effcv Inacon n h Ladd Appoxmaon Csa A. Z. Vasconcllos Insuo d Físca-UFRS - upo: Físca d Hadons Sngl-Pacl Popagao. Dagam xpanson of popagao. W consd as

More information

CPSC 665 : An Algorithmist s Toolkit Lecture 4 : 21 Jan Linear Programming

CPSC 665 : An Algorithmist s Toolkit Lecture 4 : 21 Jan Linear Programming CPSC 665 : An Algorithmist s Toolkit Lctur 4 : 21 Jan 2015 Lcturr: Sushant Sachdva Linar Programming Scrib: Rasmus Kyng 1. Introduction An optimization problm rquirs us to find th minimum or maximum) of

More information

Charging of capacitor through inductor and resistor

Charging of capacitor through inductor and resistor cur 4&: R circui harging of capacior hrough inducor and rsisor us considr a capacior of capacianc is conncd o a D sourc of.m.f. E hrough a rsisr of rsisanc R, an inducor of inducanc and a y K in sris.

More information

Chapter 9 Transient Response

Chapter 9 Transient Response har 9 Transn sons har 9: Ouln N F n F Frs-Ordr Transns Frs-Ordr rcus Frs ordr crcus: rcus conan onl on nducor or on caacor gornd b frs-ordr dffrnal quaons. Zro-nu rsons: h crcu has no ald sourc afr a cran

More information

COHORT MBA. Exponential function. MATH review (part2) by Lucian Mitroiu. The LOG and EXP functions. Properties: e e. lim.

COHORT MBA. Exponential function. MATH review (part2) by Lucian Mitroiu. The LOG and EXP functions. Properties: e e. lim. MTH rviw part b Lucian Mitroiu Th LOG and EXP functions Th ponntial function p : R, dfind as Proprtis: lim > lim p Eponntial function Y 8 6 - -8-6 - - X Th natural logarithm function ln in US- log: function

More information

cycle that does not cross any edges (including its own), then it has at least

cycle that does not cross any edges (including its own), then it has at least W prov th following thorm: Thorm If a K n is drawn in th plan in such a way that it has a hamiltonian cycl that dos not cross any dgs (including its own, thn it has at last n ( 4 48 π + O(n crossings Th

More information

AR(1) Process. The first-order autoregressive process, AR(1) is. where e t is WN(0, σ 2 )

AR(1) Process. The first-order autoregressive process, AR(1) is. where e t is WN(0, σ 2 ) AR() Procss Th firs-ordr auorgrssiv procss, AR() is whr is WN(0, σ ) Condiional Man and Varianc of AR() Condiional man: Condiional varianc: ) ( ) ( Ω Ω E E ) var( ) ) ( var( ) var( σ Ω Ω Ω Ω E Auocovarianc

More information

Implementation of the Extended Conjugate Gradient Method for the Two- Dimensional Energized Wave Equation

Implementation of the Extended Conjugate Gradient Method for the Two- Dimensional Energized Wave Equation Lonardo Elcronc Jornal of raccs and Tchnolos ISSN 58-078 Iss 9 Jl-Dcmbr 006 p. -4 Implmnaon of h Endd Cona Gradn Mhod for h Two- Dmnsonal Enrd Wav Eqaon Vcor Onoma WAZIRI * Snda Ass REJU Mahmacs/Compr

More information

On the Derivatives of Bessel and Modified Bessel Functions with Respect to the Order and the Argument

On the Derivatives of Bessel and Modified Bessel Functions with Respect to the Order and the Argument Inrnaional Rsarch Journal of Applid Basic Scincs 03 Aailabl onlin a wwwirjabscom ISSN 5-838X / Vol 4 (): 47-433 Scinc Eplorr Publicaions On h Driais of Bssl Modifid Bssl Funcions wih Rspc o h Ordr h Argumn

More information

arxiv: v1 [math.ap] 16 Apr 2016

arxiv: v1 [math.ap] 16 Apr 2016 Th Cauchy problm for a combuson modl n porous mda J. C. da Moa M. M. Sanos. A. Sanos arxv:64.4798v [mah.ap] 6 Apr 6 Absrac W prov h xsnc of a global soluon o h Cauchy problm for a nonlnar racon-dffuson

More information

The Hyperelastic material is examined in this section.

The Hyperelastic material is examined in this section. 4. Hyprlastcty h Hyprlastc matral s xad n ths scton. 4..1 Consttutv Equatons h rat of chang of ntrnal nrgy W pr unt rfrnc volum s gvn by th strss powr, whch can b xprssd n a numbr of dffrnt ways (s 3.7.6):

More information

Let s look again at the first order linear differential equation we are attempting to solve, in its standard form:

Let s look again at the first order linear differential equation we are attempting to solve, in its standard form: Th Ingraing Facor Mhod In h prvious xampls of simpl firs ordr ODEs, w found h soluions by algbraically spara h dpndn variabl- and h indpndn variabl- rms, and wri h wo sids of a givn quaion as drivaivs,

More information