Backward Stochastic Differential Equations with Financial Applications (Part I) Jin Ma

Size: px
Start display at page:

Download "Backward Stochastic Differential Equations with Financial Applications (Part I) Jin Ma"

Transcription

1 Backward Sochasic Differenial Equaions wih Financial Applicaions (Par I) Jin Ma 2nd SMAI European Summer School in Financial Mahemaics Paris, France, Augus 24 29, 2009 Jin Ma (Universiy of Souhern California) BSDEs in Financial Mah Paris Aug / 218

2 Ouline 1 Inroducion 2 BSDEs in Finance (A Firs Glance) 3 Wellposedness of BSDEs 4 Well-posedness of FBSDEs 5 Some Imporan facs of BSDEs/FBSDEs 6 Weak Soluion for FBSDEs 7 Backward Sochasic PDEs 8 BSPDEs and FBSDEs 9 References Jin Ma (Universiy of Souhern California) BSDEs in Financial Mah Paris Aug / 218

3 1. Inroducion Jin Ma (Universiy of Souhern California) BSDEs in Financial Mah Paris Aug / 218

4 Why BSDEs and FBSDEs? An Example: A sandard LQ sochasic conrol problem: dx u = (ax u + bu )d + dw, X0 u = x; J(u) = 1 { } 2 E { X u 2 + u 2 }d + XT u 2, 0 where W is a sandard Brownian moion and F = {F W } 0 is he naural filraion generaed by W ; u = {u } is he conrol process; and J(u) is he cos funcional. The problem: Find u U ad L 2 F (Ω [0, T ]) such ha J(u ) = inf J(u). u U ad Jin Ma (Universiy of Souhern California) BSDEs in Financial Mah Paris Aug / 218

5 A necessary condiion (Ponryagin s Maximum Principle): Assume u is opimal. Then ε > 0 and v U ad, one has J(u + εv) J(u ) = 0 d { dε J(u +εv) = E ε=0 0 {X u ξ + u v }d + XT u ξ T where ξ = d dε X u +εv ε=0 is he soluion o he variaional equaion: dξ = {aξ + bv }d, ξ 0 = 0. (1) }, Jin Ma (Universiy of Souhern California) BSDEs in Financial Mah Paris Aug / 218

6 A necessary condiion (Ponryagin s Maximum Principle): Assume u is opimal. Then ε > 0 and v U ad, one has J(u + εv) J(u ) = 0 d { dε J(u +εv) = E ε=0 0 {X u ξ + u v }d + XT u ξ T where ξ = d dε X u +εv ε=0 is he soluion o he variaional equaion: dξ = {aξ + bv }d, ξ 0 = 0. (1) }, A Lucky Guess (?): Assume ha η is he soluion o he following adjoin equaion of (1): dη = (aη + X u )d, η T = XT u. (2) Jin Ma (Universiy of Souhern California) BSDEs in Financial Mah Paris Aug / 218

7 Then, inegraion by pars yields ξ T η T = E { ξ X u {u v + bη v }d = {u + bη }v d = + bη v }d { } E {X u ξ + u v }d + XT u ξ T {X u ξ + u v }d + XT u ξ T Since v L 2 F (Ω [0, T ]) is arbirary, u = bη,, a.s. u = bη should have all he reasons o be an opimal conrol excep... Jin Ma (Universiy of Souhern California) BSDEs in Financial Mah Paris Aug / 218

8 Then, inegraion by pars yields ξ T η T = E { ξ X u {u v + bη v }d = {u + bη }v d = + bη v }d { } E {X u ξ + u v }d + XT u ξ T {X u ξ + u v }d + XT u ξ T Since v L 2 F (Ω [0, T ]) is arbirary, u = bη,, a.s. u = bη should have all he reasons o be an opimal conrol excep... A Problem: u / U ad! (since i is no adaped!!) Jin Ma (Universiy of Souhern California) BSDEs in Financial Mah Paris Aug / 218

9 BSDE o he rescue: Example { dy = 0; Y T = ξ L 2 (F T ). Same Problem: The unique soluion Y ξ is no adaped! (3) Jin Ma (Universiy of Souhern California) BSDEs in Financial Mah Paris Aug / 218

10 BSDE o he rescue: Example { dy = 0; Y T = ξ L 2 (F T ). Same Problem: The unique soluion Y ξ is no adaped! The Soluion: Define Y = E{ξ F }, [0, T ]. Then Y becomes an L 2 -maringale, and by Maringale Represenaion Theorem (Iô, 1951), here exiss Z L 2 F (Ω [0, T ]) such ha Y = E{ξ} + Z dw, [0, T ]. 0 = Y = ξ Z dw, [0, T ] A BSDE! (4) (3) Jin Ma (Universiy of Souhern California) BSDEs in Financial Mah Paris Aug / 218

11 Back o he LQ problem: Consider he modified adjoin equaion (as a BSDE): { dη = (aη + X u )d+z dw, η T = XT u. (5) The Conclusion Suppose ha one can find a pair of process (η, Z) ha is he soluion o (5). Then define u = bη,, we obain an opimal conrol! Jin Ma (Universiy of Souhern California) BSDEs in Financial Mah Paris Aug / 218

12 Back o he LQ problem: Consider he modified adjoin equaion (as a BSDE): { dη = (aη + X u )d+z dw, η T = XT u. (5) The Conclusion Suppose ha one can find a pair of process (η, Z) ha is he soluion o (5). Then define u = bη,, we obain an opimal conrol! Observaion: The close-loop sysem is hen dx u = (ax b 2 η )d + dw, dη = (aη + X u )d + Z dw, X0 u = x η T = X u T, An FBSDE! Jin Ma (Universiy of Souhern California) BSDEs in Financial Mah Paris Aug / 218

13 A Brief Hisory Bismu ( 73) Linear BSDEs (Maximum Principle) Pardoux-Peng ( 90, 92) Nonlinear BSDEs Anonelli ( 93) FBSDEs (Sochasic Recursive Uiliy Duffie-Epsain ( 92)) Ma-Yong/Ma-Proer-Yong ( 93, 94) Four Sep Scheme El Karoui-Kapoudjian-Pardoux-Peng-Quenez, Cvianic-Karazas, ( 97) BSDEs wih reflecions Ma-Yong ( 96-98) BSPDEs Ma-Yong ( 99) Book (LNM 1702) Jin Ma (Universiy of Souhern California) BSDEs in Financial Mah Paris Aug / 218

14 A Brief Hisory Bismu ( 73) Linear BSDEs (Maximum Principle) Pardoux-Peng ( 90, 92) Nonlinear BSDEs Anonelli ( 93) FBSDEs (Sochasic Recursive Uiliy Duffie-Epsain ( 92)) Ma-Yong/Ma-Proer-Yong ( 93, 94) Four Sep Scheme El Karoui-Kapoudjian-Pardoux-Peng-Quenez, Cvianic-Karazas, ( 97) BSDEs wih reflecions Ma-Yong ( 96-98) BSPDEs Ma-Yong ( 99) Book (LNM 1702) Oher Developmens Lepelier-San Marin ( 97) BSDEs wih con. coefficiens Kobylanski ( 01) BSDEs wih quadraic growh (in Z) Delarue ( 02) FBSDE wih Lipschiz coefficiens Ma-Zhang-Zheng ( 08) Weak soluion and FBMP Soner-Touzi-Zhang (09?) 2BSDEs Jin Ma (Universiy of Souhern California) BSDEs in Financial Mah Paris Aug / 218

15 2. BSDEs/FBSDEs in Finance Jin Ma (Universiy of Souhern California) BSDEs in Financial Mah Paris Aug / 218

16 Opion Pricing The (Black-Scholes) marke model: ds 0 = S 0 r d, S0 0 = s 0, (Bond/Money Marke) { d } ds i = S i bd i + σ ij dw j, S0 i = s i, 1 i d, (Socks) j=1 S 0, S i prices of bond/(i-h) socks (per share) a ime r ineres rae a ime {b} i d i=1 appreciaion raes a ime [σ ij ] volailiy marix a ime More general form of he underlying asse price: ds = S {b(, S )d + σ(, S )dw }, S 0 = s. Jin Ma (Universiy of Souhern California) BSDEs in Financial Mah Paris Aug / 218

17 The Wealh Equaion: Denoe: Y dollar amoun of he oal wealh of an invesor a ime π i dollars invesed in i-h sock a ime, i = 1,, N C cumulaed consumpion up o ime Then, he wealh process Y saisfies an SDE: for [0, T ], Y = y + where 1 = (1,, 1). The Coningen Claims: 0 {r s Y s + π s, [b s r s 1] }ds + π s, σ s dw s C, 0 Any ξ F T. In paricular, ξ = g(s T ) Opions. E.g., ξ = (S 1 T q)+ European call ξ = (S 1 τ q) + American call (τ-sopping ime) Jin Ma (Universiy of Souhern California) BSDEs in Financial Mah Paris Aug / 218

18 European Opions (Fixed exercise ime T ) Define he fair price of an opion o be p = inf{v : (π, C), such ha Y y,π,c T ξ}. Then (El Karoui-Peng-Quenez, 96), he price p and he hedging sraegy (π, C) can be deermined by: C 0, p = Y 0 = y, and π = (σ T ) 1 Z ; (Y, Z) solves he BSDE: Y = ξ Fair price for American Opion: {r s Y s + Z s, σs 1 [b s r s 1] }ds Z s, dw s. p = inf{v : (π, C), such ha Y y,π,c τ g(s τ ), τ}. Jin Ma (Universiy of Souhern California) BSDEs in Financial Mah Paris Aug / 218

19 American Opions (El Karoui-Kapoudjian-Pardoux-Peng-Quenez, 97) For ξ = g(s τ ), where τ is exercise ime (any {F }-sopping ime). Then he price, hedging sraegy, and he opimal exercise ime are solved as: p = Y 0 = y, C = 0, (Y, Z, K) solves a BSDE wih reflecion: Y = g(s T ) Y g(s ), {r s Y s + Z s, σ 1 s Z s, dw s +K T K ; [0, T ], a.s.; The opimal exercise ime is given by τ = inf{ > 0 : Y = g(s )}. 0 [b s r s 1] }ds (Y g(s ))dk = 0. Jin Ma (Universiy of Souhern California) BSDEs in Financial Mah Paris Aug / 218

20 Large Invesors Problem Conrary o he Black-Scholes heory, one may assume ha some invesors are large. The price-wealh pair saisfies an FBSDE: dx = X {b(, X, Y, Z )d + σ(, X, Y, Z )dw }, dy = {r Y + Z [b(, X, Y, Z ) r 1]}d Z σ(, )dw + C T C. X 0 = x, Y T = g(x T ). Hedging wihou consrain (Cvianic-Ma, 1996) Hedging wih consrain (Buckdahn-Hu, 1998) American game opion (FBSDER, Cvianic-Ma, 2000) Jin Ma (Universiy of Souhern California) BSDEs in Financial Mah Paris Aug / 218

21 Sochasic Recursive Uiliy Duffie-Epsain ( 92) defined he SRU by a BSDE: U = Φ(Y T ) + f (s, c s, U s, V s )ds V s dw s, Y wealh; Φ uiliy funcion f sandard driver or aggregaor V 2 = d d U he variabiliy process c consumpion (rae) process Sandard Uiliy: f (c, u, v) = ϕ(c) βu. Uzawa Uiliy: f (c, u, v) = ϕ(c) β(c)u. Generalized Uzawa Uiliy: f (c, u, v) = ϕ(c) βu γ v, (Chen-Epsein (1999)). Jin Ma (Universiy of Souhern California) BSDEs in Financial Mah Paris Aug / 218

22 Porfolio/Consumpion Opimizaion Problems General wealh equaion wih porfolio-consumpion sraegy (π, c): dy = b(, c, Y, σ T π )d π, σ dw. (6) Porfolio/consumpion opimizaion problem Find (π, c) so as o maximize cerain uiliy : { } U(y, π, c) = E Φ(Y y,π,c T ) + h(, c, Y y,π,c )d. 0 A sochasic conrol problem! Wih Sochasic Recursive Uiliy: { U y,π,c 0 = E Φ(Y y,π,c T ) + 0 f (, c, Y y,π,c = A sochasic conrol problem for FBSDEs!, U y,π,c }, V y,π,c )d. Jin Ma (Universiy of Souhern California) BSDEs in Financial Mah Paris Aug / 218

23 Term Srucure of Ineres Raes. Brennan-Schwarz s Term srucure model: (1979) { dr = µ(r, R )d + α(r, R )dw dr = ν(r, R )d + β(r, R )dw, where r shor rae, R consol rae (consol = perpeual annuiy). This model was laer dispued by M. Hogan, by counerexample, which leads o Consol Rae Conjecure by Fisher Black: Assume ha he consol price Y = R 1, where R is he consol rae. Then, under a mos echnical condiions, µ and α, A(, ) such ha { dr = µ(r, Y )d + α(r, Y )dw (7) dy = (r Y 1)d + A(r, Y )dw, Jin Ma (Universiy of Souhern California) BSDEs in Financial Mah Paris Aug / 218

24 Assume r = h(x ) for some facor process X and h( ) > 0, X saisfies an SDE depending on R (or equivalen Y ). Then he erm srucure SDEs (7) becomes an FBSDE wih infinie horizon: dx = b(x {, Y )d + σ(x, Y )dw, X 0 = x, Y = E e } s h(xu)du ds F, [0, ), (8) where Y is uniformly bounded for [0, ). Or equivalenly, dx = b(x, Y )d + σ(x, Y )dw, Y = (h(x )Y 1)d + A(X, Y )dw, X 0 = x, esssup ω sup [0, ) Y (ω) <. (9) Jin Ma (Universiy of Souhern California) BSDEs in Financial Mah Paris Aug / 218

25 Soluion of Black s Consol Rae Conjecure This resul (Duffie-Ma-Yong, 1993) was one of he early successful applicaions of FBSDE in finance, and he firs applicaion using he Four Sep Scheme. Theorem Under some echnical condiions, here exiss a unique funcion A(x, y) = σ(x, y) T θ x (x) such ha (X, Y ) in (8) saisfies (9), and θ is he unique classical soluion o he PDE: 1 2 σσt (x, θ)θ xx + b(x, θ)θ x h(x)θ + 1 = 0. Moreover, Y = θ(x ) for any [0, ). Jin Ma (Universiy of Souhern California) BSDEs in Financial Mah Paris Aug / 218

26 BSDEs and g-expecaions Consider a Backward SDE of he following general form: Y = ξ + g(, Y s, Z s )ds Z s db s, [0, T ], (10) where ξ L 2 (F T ) is he erminal condiion and g(, y, z) is he generaor. g-expecaion via BSDE (Peng, 93) If he BSDE (10) is well-posed, hen he soluion mapping E g : ξ Y 0 is called a g-expecaion. For any [0, T ], he condiional g-expecaion of ξ given F is defined by E g [ξ F ] = Y. Jin Ma (Universiy of Souhern California) BSDEs in Financial Mah Paris Aug / 218

27 BSDEs and g-expecaions Properies of g-expecaions: Assume ha g z=0 = 0. Consan-preserving: E g [ξ F ] = ξ, P-a.s., ξ L 2 (F ); In paricular, E g [c] = c, c R; Time-consisency: E g [ E g [ξ F ] F s ] = E g [ξ F s ], P-a.s., 0 s T ; (Sric) Monooniciy: If ξ η, hen E g [ξ F ] E g [η F ], P-a.s., [0, T ]; Moreover if = holds for some, hen ξ = η, P-a.s.; Zero-one Law: E g [1 A ξ F ] = 1 A E g [ξ F ], P-a.s., A F ; Translaion Invariance: If g is independen of y, hen E g [ξ + η F ] = E g [ξ F ] + η, P-a.s., η L 2 (F ). Convexiy: If g is convex (in z), hen so is E g [ F ]. Jin Ma (Universiy of Souhern California) BSDEs in Financial Mah Paris Aug / 218

28 g-expecaions and Risk Measures Axioms for Risk Measures (Arzner e al., Barrieu-El Karoui,...) A (saic) RM is a mapping ρ : X R (for some space of random variables X ), s.., Monooniciy: ξ η = ρ(ξ) ρ(η); Translaion Invariance: ρ(ξ + m) = ρ(ξ) m, m R; Coheren: if Subaddiiviy: ρ(ξ + η) ρ(ξ) + ρ(η) Posiive homogeneiy: ρ(αξ) = αρ(ξ), α 0; Convex: (Föllmer and Schied, 02) ρ ( αξ + (1 α)η ) αρ(ξ) + (1 α)ρ(η), α [0, 1]. Jin Ma (Universiy of Souhern California) BSDEs in Financial Mah Paris Aug / 218

29 g-expecaions and Risk Measures Axioms for Risk Measures (Arzner e al., Barrieu-El Karoui,...) A (saic) RM is a mapping ρ : X R (for some space of random variables X ), s.., Monooniciy: ξ η = ρ(ξ) ρ(η); Translaion Invariance: ρ(ξ + m) = ρ(ξ) m, m R; Coheren: if Subaddiiviy: ρ(ξ + η) ρ(ξ) + ρ(η) Posiive homogeneiy: ρ(αξ) = αρ(ξ), α 0; Convex: (Föllmer and Schied, 02) ρ ( αξ + (1 α)η ) αρ(ξ) + (1 α)ρ(η), α [0, 1]. A (dynamic) RM is a family of mappings ρ : X L 0 (F ), [0, T ], s.. ξ, η X, Monoonciy: If ξ η, hen ρ (ξ) ρ (η), P-a.s., ; Translaion Invariance: ρ (ξ + η) = ρ (ξ) η, η F. ρ 0 is a saic risk measure ρ T (ξ) = ξ for any ξ X. Jin Ma (Universiy of Souhern California) BSDEs in Financial Mah Paris Aug / 218

30 Example Wors-case Dynamic Risk Measure: ρ (ξ) = esssupe Q [ ξ F ], [0, T ], Q P P Enropic Dynamic Risk{ Measure: ρ γ (ξ) = γ ln E [ e 1 ξ ] γ F }, [0, T ]. Convex Dynamic Risk Measure: ρ (ξ) = esssup Q P P { EQ [ ξ F ] F (Q) }, [0, T ], where F is he penaly funcion of ρ for any. {ρ } [0,T ] is called convex (or coheren) if each ρ is. (e.g., Wors case coheren; Enropic convex.) {ρ } [0,T ] is said o be ime-consisen if Convex RM ρ 0 [ξ1 A ] = ρ 0 [ ρ (ξ)1 A ], [0, T ], ξ X, A F. Jin Ma (Universiy of Souhern California) BSDEs in Financial Mah Paris Aug / 218

31 g-expecaions and Risk Measures Le g be generaor wih g z=0 = 0, and is Lipschiz in (y, z). ρ(ξ) = E g [ ξ] defines a saic risk measure on X = L 2 (F T ). ρ (ξ) = E g [ ξ F ], [0, T ], defines a dynamic risk measure on X = L 2 (F T ). The risk measure (resp. dynamic risk measure) is convex if g is convex in z. The risk measure (resp. dynamic risk measure) is coheren if g is furher independen of y. Quesion: Does every risk measure have o be a g-expecaion?? Jin Ma (Universiy of Souhern California) BSDEs in Financial Mah Paris Aug / 218

32 Nonlinear Expecaions Definiion Le (Ω, F, P, {F }) be a given probabiliy space. A funcional E : L 2 (F T ) R is called a nonlinear expecaion if i saisfies he following axioms: Monooniciy: ξ η, P-a.s. = E [ξ] E [η] E [ξ] = E [η] ξ = η, P-a.s. Consan-preserving: E [c] = c, c R. A nonlinear expecaion E is called {F }-consisen if i saisfies for all [0, T ] and ξ L 2 (F T ), here exiss η F such ha E [1 A ξ] = E [1 A η], A F s Will denoe η = E {ξ F }, for obvious reasons. Jin Ma (Universiy of Souhern California) BSDEs in Financial Mah Paris Aug / 218

33 Nonlinear Expecaions Definiion An {F }-consisan nonlinear expecaion E is said o be dominaed by E µ = E gµ (µ > 0) if Convex RM E [ξ + η] E [ξ] E µ [η], ξ, η L 2 (F T ). (11) where E µ = E gµ is he g-expecaion wih g µ z. Furher, E is said o saisfy he ranslabiliy condiion if E [ξ + α F ] = E [ξ F ] + α, ξ L 2 (F T ), α L 2 (F ). Jin Ma (Universiy of Souhern California) BSDEs in Financial Mah Paris Aug / 218

34 Nonlinear Expecaions Definiion An {F }-consisan nonlinear expecaion E is said o be dominaed by E µ = E gµ (µ > 0) if Convex RM E [ξ + η] E [ξ] E µ [η], ξ, η L 2 (F T ). (11) where E µ = E gµ is he g-expecaion wih g µ z. Furher, E is said o saisfy he ranslabiliy condiion if E [ξ + α F ] = E [ξ F ] + α, ξ L 2 (F T ), α L 2 (F ). Represenaion Theorem (Coque e al. 02) If E is a ranslable {F }-expecaion dominaed by E µ, for some µ > 0, hen! (deerminisic) funcion g, independen of y, such ha g(, z) µ z, and ha E [ξ] = E g [ξ], for all ξ L 2 (F T ). Jin Ma (Universiy of Souhern California) BSDEs in Financial Mah Paris Aug / 218

35 Represening Risk Measures as g-expecaions A direc consequence of he Represenaion Theorem for nonlinear expecaion is he following represenaion heorem for dynamic coheren risk measures. Some Facs: Le {ρ } be a dynamic, coheren, ime-consisen risk measure on X = L 2 (F T ). Define E (ξ) = ρ ( ξ), [0, T ]; and E = E 0. Then E is a nonlinear expecaion E { } = E { F } is he nonlinear condiional expecaion ( ime-consisency = {F }-consisency!) Consequenly, if E is furher E µ -dominaed for some µ > 0, hen here exiss a unique Lipschiz generaor g such ha ρ 0 (ξ) = E g ( ξ), ρ (ξ) = E g { ξ F }, ξ L 2 (F T ). Jin Ma (Universiy of Souhern California) BSDEs in Financial Mah Paris Aug / 218

36 3. Wellposedness of BSDEs Jin Ma (Universiy of Souhern California) BSDEs in Financial Mah Paris Aug / 218

37 Wellposedness for BSDEs Consider he BSDE Y = ξ + f (s, Y s, Z s )ds Z s dw s, (12) where ξ L 2 F T (Ω; R n ), W is a d-dimensional Brownian moion. Jin Ma (Universiy of Souhern California) BSDEs in Financial Mah Paris Aug / 218

38 Wellposedness for BSDEs Consider he BSDE Y = ξ + f (s, Y s, Z s )ds Z s dw s, (12) where ξ L 2 F T (Ω; R n ), W is a d-dimensional Brownian moion. Some spaces: For any β 0 and Euclidean space H, define Sβ 2 (0, T ; H ) o be he space of all H -valued, coninuous, F-adaped { processes X }, such ha E sup 0 T e β X 2 < H 2 β (0, T ; E) o be he space of all H -valued, F-adaped { } processes X such ha E e β X 2 d < N β [0, T ] = S 2 β (0, T ; Rn ) H 2 β (0, T ; Rn d ) 0 Jin Ma (Universiy of Souhern California) BSDEs in Financial Mah Paris Aug / 218

39 Main resul: Assumpion f is Lipschiz in (y, z) wih a uniform Lipschiz consan L > 0. Jin Ma (Universiy of Souhern California) BSDEs in Financial Mah Paris Aug / 218

40 Main resul: Assumpion f is Lipschiz in (y, z) wih a uniform Lipschiz consan L > 0. Theorem Under he above assumpions on f, for any ξ L 2 F T (Ω; R n ), (12) admis a unique soluion (Y, Z) N 0 [0, T ]. Jin Ma (Universiy of Souhern California) BSDEs in Financial Mah Paris Aug / 218

41 Main resul: Assumpion f is Lipschiz in (y, z) wih a uniform Lipschiz consan L > 0. Theorem Under he above assumpions on f, for any ξ L 2 F T (Ω; R n ), (12) admis a unique soluion (Y, Z) N 0 [0, T ]. Observaions: Since N β [0, T ] is equivalen o N 0 [0, T ], we need only find he soluion (Y, Z) N β (0, T ) for some β > 0. (y, z) N [0, T ], le h( ) = f (, y, z ) L 2 F (Ω [0, T ]; Rn ). { T Then, M = E ξ + h(s)ds } F, [0, T ] is an L 2 (F)-maringale. 0 Jin Ma (Universiy of Souhern California) BSDEs in Financial Mah Paris Aug / 218

42 The Firs Sep: By he Mar. Rep. Thm, Z L 2 F (0, T ; Rn d ), such ha M = M Z s dw s, [0, T ]. (13) Define Y = M 0 h(s)ds. Then M 0 = Y 0, and ξ + Consequenly, Y = M = ξ+ = ξ h(s)ds = M T = Y 0 + h(s)ds = Y 0 + h(s)ds h(s)ds 0 0 Z s dw s 0 Z s dw s. Z s dw s 0 h(s)ds + 0 h(s)ds 0 Z s dw s Z s dw s. (14) Jin Ma (Universiy of Souhern California) BSDEs in Financial Mah Paris Aug / 218

43 A Priori Esimaes For any (y, z) N β [0, T ], le (Y, Z) be he soluion o (14). Applying Iô s formula o F (, Y ) = e β Y 2, hen aking expecaion and applying Faou: { E e β Y 2} + βe e βt E ξ 2 + 2E e βs Y s 2 ds + E e βs Y s, h(s) ds. Using he rick: 2ab εa 2 + b 2 /ε, ε > 0, we have E {e β Y 2} +(β 1 ε )E e βs Y s 2 ds +E e βt E ξ 2 + εe e βs h(s) 2 ds. e βs Z s 2 ds e βs Z s 2 ds Jin Ma (Universiy of Souhern California) BSDEs in Financial Mah Paris Aug / 218

44 Coninuing from before, one has Y 2 ε H 2 β (εβ 1) { e βt E ξ 2 + ε h 2 H 2 β Z 2 H e βt E ξ 2 + ε h 2 2 β Hβ. 2 } ; (15) Using Burkholder-Davis-Gundy s inequaliy, one hen derive ha Y 2 S 2 β 2(1 + C 1 (β, ε))e βt E ξ 2 + 2εC 1 (β, ε) h 2 H 2 β, (16) where C 1 (β, ε) = 1 + ε εβ 1 + 2(1 + C)2, and C is he universal consan in he Burkholder-Davis-Gundy inequaliy. = (Y, Z) N β [0, T ]. Jin Ma (Universiy of Souhern California) BSDEs in Financial Mah Paris Aug / 218

45 Furhermore, For (y, z), (ȳ, z) N β [0, T ], le (Y, Z), (Ȳ, Z) N β [0, T ] be he corresponding soluions of (14), respecively. Define ζ = ζ ζ, ζ = y, z, Y, Z, and H(s) = f (s, y s, z s ) f (s, ȳ s, z s ). Then, H(s) L( ŷ s + ẑ s ), Ŷ T = ξ = 0; Choosing β = β(ε) and ε > 0 small enough, show ha (Ŷ, Ẑ) 2 N β [0,T ] C(ε) (ŷ, ẑ) 2 N β [0,T ], where C(ε) < 1. Thus he mapping (y, z) (Y, Z) is a conracion on N β [0, T ], proving he heorem. Jin Ma (Universiy of Souhern California) BSDEs in Financial Mah Paris Aug / 218

46 Comparison Theorems Suppose ha (Y i, Z i ), i = 1, 2 are soluions o he following wo BSDEs: for [0, T ], Y i = ξ i + f i (s, Ys i, Zs i )ds Zs i dw s, i = 1, 2. (17) Quesion: Assume ha ξ 1 ξ 2, P-a.s.; f 1 (, y, z) f 2 (, y, z), (, y, z). Can we conclude ha Y 1 Y 2, [0, T ]? Jin Ma (Universiy of Souhern California) BSDEs in Financial Mah Paris Aug / 218

47 Comparison Theorems Suppose ha (Y i, Z i ), i = 1, 2 are soluions o he following wo BSDEs: for [0, T ], Y i = ξ i + f i (s, Ys i, Zs i )ds Zs i dw s, i = 1, 2. (17) Quesion: Assume ha ξ 1 ξ 2, P-a.s.; f 1 (, y, z) f 2 (, y, z), (, y, z). Can we conclude ha Y 1 Y 2, [0, T ]? Answer: Yes, provided f 2 is uniformly Lipschiz in (y, z)!! Jin Ma (Universiy of Souhern California) BSDEs in Financial Mah Paris Aug / 218

48 Comparison Theorems Define Y = Y 1 Y 2 and Z = Z 1 Z 2. Then f 1 (, Y 1, Z 1 ) f 2 (, Y 2, Z 2 )=δf ()+α() Y + β(), Z, where δf () = f 1 (, Y 1, Z 1 ) f 2 (, Y 1, Z 1 ), and α() = f 2 (, Y 1, Z 1 ) f 2 (, Y 2, Z 1 ) 1 Y { Y 0}; β i () = f 2 (, Y 2, Z 1,i ) f 2 (, Y 2, Z 2,i ) 1 { Z i 0}, In oher words, we have Y = ξ + Z i {δf (s) + α(s) Y s + β(s), Z s }ds Z s, dw s. Jin Ma (Universiy of Souhern California) BSDEs in Financial Mah Paris Aug / 218

49 Comparison Theorems Noe: Since f 2 is uniformly Lipschiz, boh α and β are bounded, adaped processes!! Two Tricks: 1. (Change of Measure:) Define Θ() = exp { 0 β(s)dw s β s 2 ds } ; and dq dp = Θ(T ). Since β is bounded, by Girsanov Theorem we know ha Θ is a P-maringale, and W 1 = W + 0 β sds is a Q-Brownian moion. Jin Ma (Universiy of Souhern California) BSDEs in Financial Mah Paris Aug / 218

50 Comparison Theorems 2. (Exponeniaing:) Define Γ = exp { 0 α(s)ds}. Then applying Iô we have, for [0, T ], Γ T Y T Γ Y = Γ s δf (s)ds + Γ s Z s, dws 1. Now aking condiional expecaion on boh sides above, we have Γ Y = E Q{ Γ T ξ + Γ s δf (s)ds F }, [0, T ], P-a.s. Since ξ = ξ 1 ξ 2 0, P-a.s. (hence Q-a.s.!); and δf () = f 1 (, Y 1, Z 1 ) f 2 (, Y 1, Z 1 ) 0,, Q-a.s., we conclude ha Γ Y 0,, Q-a.s. This implies ha Y 0,, P-a.s., proving he comparison heorem. Jin Ma (Universiy of Souhern California) BSDEs in Financial Mah Paris Aug / 218

51 BSDEs wih Coninuous Coefficiens Theorem (Lepelier-San Marin, 1997) Assume f : [0, T ] Ω R R d R is a P B(R d+1 ) m able funcion, s.. for fixed, ω, he mapping (y, z) f (, ω, y, z) is coninuous, and K > 0, s.. (, ω, y, z), f (, w, y, z) K(1 + y + z ). Then for any ξ L 2 (Ω, F T, P) he BSDE Y = ξ + f (s, Y s, Z s )ds Z s dw s (18) has an adaped soluion (Y, Z) H 2 (R d+1 ), where Y is a coninuous process and Z is predicable. Also, here is a minimal soluion (Y, Z) of equaion (1), in he sense ha for any oher soluion (Y, Z) of (1) we have Y Y. Jin Ma (Universiy of Souhern California) BSDEs in Financial Mah Paris Aug / 218

52 BSDEs wih Coninuous Coefficiens Lemma 1 Le f : R p R be a coninuous funcion wih linear growh, ha is: K > 0 such ha x R p f (x) K(1 + x ). Then he sequence of funcions f n (x) = is well defined for n K and i saisfies: (i) Linear growh: x R p inf y Qp{f (y) + n x y } (19) f n (x) K(1 + x ); (ii) Monooniciy in n: x R p f n (x) ; (iii) Lipschiz condiion: x, y R p f n (x) f n (y) n x y ; (iv) srong convergence: if x n x as n, hen f n (x n ) f (x), as n. Jin Ma (Universiy of Souhern California) BSDEs in Financial Mah Paris Aug / 218

53 Proof of Lemma 1 Since f n f (= f n (x) K(1 + x )), and f n (x) inf y Q p{ K K y + K x y } = K(1 + x ), = (i) holds. (ii) is eviden from he definiion of he sequence (f n ). ε > 0, choose y ε Q p so ha f n (x) f (y ε ) + n x y ε ε f (y ε ) + n y y ε + n x y ε n y y ε ε f (y ε ) + n y y ε n x y ε f n (y) n x y ε. Exchanging he roles of x and y, and since ε is arbirary we deduce ha f n (x) f n (y) n x y, proving (iii). Jin Ma (Universiy of Souhern California) BSDEs in Financial Mah Paris Aug / 218

54 Proof of Lemma 1 To see (iv), assume x n x as n. For every n, le y n Q p be such ha f (x n ) f n (x n ) f (y n ) + n x n y n 1/n. Since {x n } is bounded and f has linear growh, we deduce ha {y n } is bounded, and so is {f (y n )}. Consequenly lim n n y n x n <, and in paricular y n x, as n. Moreover, from which he resul follows. f (x n ) f n (x n ) f (y n ) 1/n, Jin Ma (Universiy of Souhern California) BSDEs in Financial Mah Paris Aug / 218

55 Proof of he Theorem Define, for fixed (, ω), a sequence f n (, ω, y, z), associaed o f by Lemma 1; and h(, ω, y, z) = K(1 + y + z ). Then consider he following wo BSDEs: Y n = ξ + U = ξ + f n (s, Ys n, Zs n )ds Z n s dws, h(u s, V s )ds V s dw s. By Comparison Theorem we obain ha n K n m K Y m Y n U d dp a.s. = A > 0, depending only on K, T and E(ξ 2 ), s.. U A, V A, and hence n K, Y n A. Jin Ma (Universiy of Souhern California) BSDEs in Financial Mah Paris Aug / 218

56 Proof of he Theorem Claim: Z n A as well. Jin Ma (Universiy of Souhern California) BSDEs in Financial Mah Paris Aug / 218

57 Proof of he Theorem Claim: Z n A as well. Le λ 2 > K, and applying Iô o (Y n ) 2 : ξ 2 = (Y n ) (Z n s ) 2 ds. Y n s f n (s, Y n s, Z n s )ds + 2 Taking expecaion on boh sides, we deduce E((Y n ) 2 )+E (Z n s ) 2 ds =E(ξ 2 ) + 2E Y n s Z n s dw s Y n s f n (s, Y n s, Z n s )ds. Therefore we obain from he uniform linear growh condiion on f n (see (i) of Lemma 1), for = 0 Z n 2 E(ξ 2 ) + 2K Y n 2 + 2KE 0 Y n s (1 + Z n s )ds. Jin Ma (Universiy of Souhern California) BSDEs in Financial Mah Paris Aug / 218

58 Proof of he Theorem Using 2a a 2 λ λ 2 and and 2ab a 2 λ 2 + b2 λ 2, we have 2K Y n s (1 + Z n s ) K{ 1 λ 2 + 2λ2 Y n s λ 2 Z n s 2 }, Z n 2 E(ξ 2 ) + KT λ 2 + 2K(λ2 + 1) Y n 2 + K λ 2 Z n 2. Since λ 2 > K we deduce for n K proving he claim. Z n 2 E(ξ2 ) + KT /λ 2 + 2K(λ 2 + 1)B 2 1 K/λ 2 = A, Jin Ma (Universiy of Souhern California) BSDEs in Financial Mah Paris Aug / 218

59 Proof of he Theorem Now fix n 0 K. Since {Y n } is increasing and bounded in H 2 (R), i converges in H 2 (R) o a limi Y. Then, for n, m n 0 : = 2E E( Y0 n Y0 m 2 ) + E 0 0 Z n u Z m u 2 du (Y n u Y m u )(f n (u, Y n u, Z n u ) f m (u, Y m u, Z m u ))du. Applying Cauchy-Schwarz, and noing he uniform linear growh of {f n } and boundedness of { (Y n, Z n ) } we obain for all n, m n 0, Z n Z m 2 2C Y n Y m. = {Z n } is Cauchy in H 2 (R d ), and hus converge o Z H(R d ). Jin Ma (Universiy of Souhern California) BSDEs in Financial Mah Paris Aug / 218

60 Proof of he Theorem I hen can be checked ha, possibly along a subsequence: as n, P-almos surely, sup Y n Y T 0 + sup T f n (s, Y n s, Z n s ) f (s, Y s, Z s ) ds Zs n dw s Z s dw s 0, = Y is coninuous, and since {Y n } is monoone, by Dini he convergence is uniform. = One can hen pass all he necessary limis o show ha (Y, Z) is an adaped soluion of he original equaion (18). Finally, le (Ŷ, Ẑ) any H 2 soluion of (18). By Comparison Thm we ge ha n Y n Ŷ and herefore Y Ŷ proving ha Y is he minimal soluion. Jin Ma (Universiy of Souhern California) BSDEs in Financial Mah Paris Aug / 218

61 BSDEs wih Reflecions We now consider he following BSDE wih Reflecion (cf. e.g., El Karoui-Kapoudjian-Pardoux-Peng-Quenez, 1997): where Y = ξ + f (s, Y s, Z s )ds Z s dw s + K T K, Y S, [0, T ], (20) S, [0, T ] is he obsacle process, which is assumed o be coninuous, and E{sup 0 T S 2 } < ; and is given as a parameer of he equaion. K, [0, T ] is he reflecing process, which is assumed o be coninuous and increasing, and saisfies: K 0 = 0, 0 (Y S )dk = 0; and i is defined as a par of he soluion o he BSDE (20)(!) Jin Ma (Universiy of Souhern California) BSDEs in Financial Mah Paris Aug / 218

62 BSDEs wih Reflecions Recall he well-known Skorohod Problem: Le x be a coninuous funcion on [0, ) such ha x 0 0. Then here exiss a unique pair (y, k) of funcions on [0, ) such ha y = x + k; y 0, ; k is coninuous, increasing, k 0 = 0, and 0 y dk = 0. Jin Ma (Universiy of Souhern California) BSDEs in Financial Mah Paris Aug / 218

63 BSDEs wih Reflecions Recall he well-known Skorohod Problem: Le x be a coninuous funcion on [0, ) such ha x 0 0. Then here exiss a unique pair (y, k) of funcions on [0, ) such ha y = x + k; y 0, ; k is coninuous, increasing, k 0 = 0, and 0 y dk = 0. I is known ha he soluion o he Skorohod Problem for x has an explici form: k = sup s x s, 0. In he BSDE case we have Proposiion Le (Y, Z, K) be a soluion o he BSDE (20). Then for all [0, T ], i holds ha { }. K T K = ξ + f (s, Y s, Z s )ds Z s dw s S u sup u T u u Jin Ma (Universiy of Souhern California) BSDEs in Financial Mah Paris Aug / 218

64 Oher Observaions Proposiion Le (Y, Z, K) be a soluion o (20). Then for each [0, T ], { v Y = esssup E f (s, Y s, Z s )ds + S v 1 {v<t } + ξ1 {v=t }, }, v T where T is he se of all sopping imes v, s.. v T. Suppose furher ha he obsacle process S is an Iô process: S = S U s ds + 0 V s, dw s, 0, where U, V L 2 F ([0, T ] Ω). Then Z = V, dp d-a.e. on he se {Y = S }; 0 dk 1 {Y=S }[f (, S, V ) + U ] d. Jin Ma (Universiy of Souhern California) BSDEs in Financial Mah Paris Aug / 218

65 A Priori Esimaes Lemma 1 Le (Y, Z, K) be a soluion o (20). Then C > 0 such ha { } E Y 2 + Z 2 d + KT 2 sup 0 T { CE ξ Proof. Firs apply Iô s formula o ge Y 2 + Z s 2 ds = ξ f 2 (, 0, 0)d + s sup 0 T Y s f (s, Y s, Z s )ds Y s Z s, dw s. s Then use 0 (Y S )dk = 0, Hölder, and Gronwall. (S + ) 2}. (21) s Y s dk s Jin Ma (Universiy of Souhern California) BSDEs in Financial Mah Paris Aug / 218

66 A Priori Esimaes Lemma 2 Le (Y i, Z i, K i ), i = 1, 2 be soluions o BSDEs (20) wih parameers (ξ i, f i, S i ), i = 1, 2, respecively. Then C > 0 s.. { E ( Y ) 2 + Z 2 d + ( K T ) 2} sup 0 T { CE ( ξ) 2 + [ ( +C E sup 0 T 0 0 } [ f (, 0, 0)] 2 d ( S + ) 2)] 1/2 Ψ 1/2 T, where X { = X 1 X 2, for X = ξ, f, S, Y, Z, and K; and 2 Ψ T = E i=1 ( ξi 2 + } T 0 f i (, 0, 0) 2 d + sup 0 T S i 2 ). (22) Jin Ma (Universiy of Souhern California) BSDEs in Financial Mah Paris Aug / 218

67 A Priori Esimaes Lemma 2 Le (Y i, Z i, K i ), i = 1, 2 be soluions o BSDEs (20) wih parameers (ξ i, f i, S i ), i = 1, 2, respecively. Then C > 0 s.. { E ( Y ) 2 + Z 2 d + ( K T ) 2} sup 0 T { CE ( ξ) 2 + [ ( +C E sup 0 T 0 0 } [ f (, 0, 0)] 2 d ( S + ) 2)] 1/2 Ψ 1/2 T, where X { = X 1 X 2, for X = ξ, f, S, Y, Z, and K; and 2 Ψ T = E i=1 ( ξi 2 + } T 0 f i (, 0, 0) 2 d + sup 0 T S i 2 ). Noe: The uniqueness of BSDE follows direcly from Lemma 2! (22) Jin Ma (Universiy of Souhern California) BSDEs in Financial Mah Paris Aug / 218

68 Comparison Theorem Theorem Le (Y i, Z i, K i ), i = 1, 2 be soluions o BSDEs (20) wih parameers (ξ i, f i, S i ), i = 1, 2, respecively. Suppose ha ξ 1 ξ 2, f 1 f 2, S 1 S 2, 0 T, a.s. Then Y 1 Y 2, 0 T, a.s. Proof. Apply Iô s formula o ( Y ) + 2, and aking expecaion. Then use he fac ha Y 1 > S 2 S 1 on { Y > 0} o ge ( Y ) + (dk 1 dk 2 ) = ( Y ) + dk 2 0. Then apply Gronwall o ge ( Y ) + 0 = Y 1 Y 2. Jin Ma (Universiy of Souhern California) BSDEs in Financial Mah Paris Aug / 218

69 Well-Posdedness of he Refleced BSDEs The exisence and uniqueness of he adaped soluion o he refleced BSDE (20) can be proved using a sandard Picard ieraion (see EK-K-P-P-Q). However, he following penalizaion mehod has been used more ofen for is clariy on he srucure of he soluion. Penalizaion Scheme For each n N, le (Y n, Z n ) be he soluion o he unconsrained BSDE: Y n = ξ + f (s, Ys n, Zs n )ds + KT n K n Zs n, dw s, (23) where K n = n 0 (Y n s S s ) ds, [0, T ]. Jin Ma (Universiy of Souhern California) BSDEs in Financial Mah Paris Aug / 218

70 Well-Posdedness of he Refleced BSDEs One can show ha (as unconsrained BSDE): E{sup 0 T Y n 2 } < C > 0, such ha { E sup 0 T Y n 2 + Z n 2 d + (KT n )2} C. 0 Since f n = f + n(y S ) f n+1, by Comparison Theorem, Y n Y n+1, 0 T, a.s. = Y n Y. { } By Faou, one has E sup 0 T Y 2 C. Apply DCT o ge E 0 (Y Y n ) 2 d 0, as n. { } Since E sup (Y n S ) 2 0, as n (no rivial!!), i follows ha {(Y n, Z n )} is Cauchy in L 2 F ([0, T ] Ω; R Rd ). Jin Ma (Universiy of Souhern California) BSDEs in Financial Mah Paris Aug / 218

71 Well-Posdedness of he Refleced BSDEs Thus {(Y n, Z n )} L 2 F (Ω; C([0, T ]; R) L2 F ([0, T ] Ω; Rd ) is Cauchy, and {K n } is Cauchy in L 2 F (Ω; C([0, T ]; R) as well = The limi (Y, Z, K) (of {(Y n, Z n, K n )) mus saisfy (20) To check he fla-off condiion, noe ha { } { } E sup (Y S ) 2 = lim n E sup (Y n S ) 2 = 0 = Y s S, = 0 (Y S )dk 0. On he oher hand, since 0 (Y n S )dk n = n 0 [(Y n S ) ] 2 d 0, = 0 (Y S )dk = lim n 0 (Y n S )dk n 0 = 0 (Y S )dk = 0. Jin Ma (Universiy of Souhern California) BSDEs in Financial Mah Paris Aug / 218

72 BSDEs wih Quadraic Growh Consider he BSDE: Y = ξ + f (s, Y s, Z s )ds Z s dw s, [0, T ]. (24) We assume ha he generaor f akes he following form: f (, y, z) = a 0 (, y, z)y + F 0 (, y, z), (25) where for consans β 0 < α 0, i holds for all (y, z) R 1+d ha (H1) { β0 a 0 (, y, z) α 0 ; F 0 (, y, z) k + c( y ) z 2 ; d dp-a.s. Noe: Under (H1) f grows linearly in y, bu quadraically in z! Jin Ma (Universiy of Souhern California) BSDEs in Financial Mah Paris Aug / 218

73 BSDEs wih Quadraic Growh Theorem (Kobylanski, 2000) Suppose ha he coefficien f saisfies (H1), wih α 0, β 0, k R, and c : R + R + being coninuous and increasing. Then, for any ξ L (F T ), he BSDE (24) admis a leas one soluion (Y, Z) L F (Ω; C([0, T ]; R)) H 2 F ([0, T ]; Rd ). Jin Ma (Universiy of Souhern California) BSDEs in Financial Mah Paris Aug / 218

74 BSDEs wih Quadraic Growh Theorem (Kobylanski, 2000) Suppose ha he coefficien f saisfies (H1), wih α 0, β 0, k R, and c : R + R + being coninuous and increasing. Then, for any ξ L (F T ), he BSDE (24) admis a leas one soluion (Y, Z) L F (Ω; C([0, T ]; R)) H 2 F ([0, T ]; Rd ). The Power of Exponenial (Hopf-Cole) Transformaion Consider a simple quadraic BSDE: Y = ξ Z s 2 ds Z s dw s, [0, T ]. (26) Define y = exp[y ], z = yz. Then, he BSDE (26) becomes y = exp[ξ] z s dw s, [0, T ]. Jin Ma (Universiy of Souhern California) BSDEs in Financial Mah Paris Aug / 218

75 A Priori Esimaes Suppose ha he assumpion (H1) is replaced by { a0 (, y, z) α 0 ; (H0) F 0 (, y, z) b() + C( y ) z 2, d dp-a.s. where α 0 is consan and b L 1 ([0, T ]). Then he following a priori esimaes hold: Assume ha ξ L F T (Ω), hen [ ] +e Y sup(ξ) a sds + Ω for some consan K > 0, E Z s 2 ds K; 0 Y ξ + b α 0. s b s e aλdλ ds; (27) Jin Ma (Universiy of Souhern California) BSDEs in Financial Mah Paris Aug / 218

76 A Priori Esimaes Suppose ha he assumpion (H1) is replaced by (H0) { a0 (, y, z) α 0 ; F 0 (, y, z) b() + C( y ) z 2, d dp-a.s. where α 0 is consan and b L 1 ([0, T ]). Then he following a priori esimaes hold: Assume ha ξ L F T (Ω), hen Y [ ] e inf (ξ) T a sds Ω for some consan K > 0, E Z s 2 ds K; 0 Y ξ + b α 0. s b s e aλdλ ds; (28) Jin Ma (Universiy of Souhern California) BSDEs in Financial Mah Paris Aug / 218

77 A Priori Esimaes Idea of he Proof. Define he RHS of (27) by ϕ, hen ϕ saisfies he ODE: [ ] + T ϕ = sup(ξ) Ω (a s ϕ s + b s )ds, [0, T ]. Le Φ be a C 2 -funcion o be deermined. Applying Iô o ge Φ(Y ϕ ) = Φ(Y T ϕ T ) + Φ (Y s ϕ s )[f (s, Y s, Z s ) (a s ϕ s + β s )]ds (29) 1 T 2 Φ (Y s ϕ s ) Z s 2 ds Φ (Y s ϕ s )Z s dw s. Jin Ma (Universiy of Souhern California) BSDEs in Financial Mah Paris Aug / 218

78 A Priori Esimaes Denoe M = Y + ϕ, and choose { e Φ(u) = 2Cu 1 2Cu 2C 2 u 2, u [0, M] 0 u [ M, 0]. One can check ha Φ(u) 0 and Φ(u) = 0 u 0 Φ (u) 0 0 uφ (u) 2(M + 1)CΦ(u) CΦ (u) 1 2 Φ (u) 0. Jin Ma (Universiy of Souhern California) BSDEs in Financial Mah Paris Aug / 218

79 A Priori Esimaes Denoe M = Y + ϕ, and choose { e Φ(u) = 2Cu 1 2Cu 2C 2 u 2, u [0, M] 0 u [ M, 0]. One can check ha Φ(u) 0 and Φ(u) = 0 u 0 Φ (u) 0 0 uφ (u) 2(M + 1)CΦ(u) CΦ (u) 1 2 Φ (u) 0. Applying hese o (29) we ge, wih k = a + 2(M + 1)C, 0 Φ(Y ϕ ) k s Φ(Y s ϕ s )ds Φ (Y s ϕ s )Z s dw s, Taking expecaion and applying Gronwall one shows ha E{Φ(Y ϕ )} = 0 = Φ(Y ϕ ) = 0 = Y ϕ. Jin Ma (Universiy of Souhern California) BSDEs in Financial Mah Paris Aug / 218

80 A Priori Esimaes The L 2 -bound for Z can be proved by considering Φ(u) = 1 2C 2 [ exp(2c(u + M)) (1 + 2C(u + M)) ], where M = Y. Indeed, since Φ(u) 0, Φ (u) 0 0 uφ (u) M C (e4cm 1) = K Φ (u) CΦ (u) = 1, Seing ϕ 0 in (29) we can check 0 Φ(Y 0 ) Φ(Y T )+K 0 a s + ds = E Z s 2 ds Φ(M) + K 0 a + L 1 0 Z s 2 ds = K. Φ (Y s )Z s dw s, Jin Ma (Universiy of Souhern California) BSDEs in Financial Mah Paris Aug / 218

81 Monoone Sabiliy Proposiion Suppose ha {(f n, ξ n )} are a sequence of parameers such ha f n f locally uniformly on R + R R d ; ξ n ξ in L. k : R + R +, k L 1 ([0, T ]), such ha for some C > 0, f n (, y, z) k +C z 2, n N, (, y, z) R + R R d. (Y n, Z n ) L F (Ω; C([0, T ]; R)) H 2 F ([0, T ]; Rd ) such ha {Y n } and Y n M. Then (Y, Z) L F (Ω; C([0, T ]; R)) H 2 F ([0, T ]; Rd ) such ha lim Y n = Y, uniformly on [0, T ]; Z n Z in H 2 n F ([0, T ]; Rd ), and (Y, Z) solves BSDE (24). Jin Ma (Universiy of Souhern California) BSDEs in Financial Mah Paris Aug / 218

82 Monoone Sabiliy Main Poins: {Y n } is monoone and bounded = Y, s.., Y n Y (poinwisely). {Z n } is bounded in L 2 ([0, T ] Ω) = i has a weakly convergen subsequence, denoed by iself. Jin Ma (Universiy of Souhern California) BSDEs in Financial Mah Paris Aug / 218

83 Monoone Sabiliy Main Poins: {Y n } is monoone and bounded = Y, s.., Y n Y (poinwisely). {Z n } is bounded in L 2 ([0, T ] Ω) = i has a weakly convergen subsequence, denoed by iself. Wan o Show: {Z n } converges Srongly in L 2 ([0, T ] Ω) (Mazur s Theorem) {Y n } converges Uniformly in (Dini s Theorem) Consequenly, one can hen show ha f n (s, Ys n, Zs n )ds Z n s dw s f (s, Y s, Z s )ds; and Z s dw s, and hus (Y, Z) solves he BSDE. Jin Ma (Universiy of Souhern California) BSDEs in Financial Mah Paris Aug / 218

84 Proof of he Main Resul Assumpions: There exiss α 0, β 0 R, B, C R +, such ha for all (, y, z) R + R R d, where f (, y, z) = a 0 (, y, z)y + F 0 (, y, z), β 0 a 0 (, y, z) α 0, F 0 (, y, z) B + C z 2. Jin Ma (Universiy of Souhern California) BSDEs in Financial Mah Paris Aug / 218

85 Proof of he Main Resul Assumpions: There exiss α 0, β 0 R, B, C R +, such ha for all (, y, z) R + R R d, where f (, y, z) = a 0 (, y, z)y + F 0 (, y, z), β 0 a 0 (, y, z) α 0, F 0 (, y, z) B + C z Exponenial Change. Define y = e 2CY and z = 2Cy Z. Then, by Iô one can check ha (y, z) solves he BSDE (24) wih parameers: y T = e 2Cξ ; F (, y, z) = 2C yf ( s, ln(y) 2C, z ) 1 z 2 2C y 2 y Jin Ma (Universiy of Souhern California) BSDEs in Financial Mah Paris Aug / 218

86 Proof of he Main Resul 2. Truncaion. Define a C funcion ψ : R [0, 1] by { 1, if u [e 2CM, e 2CM ]; ψ(u) = 0, if u / [e 2C(M+1), e 2C(M+1) ]. Now, define F (, y, z) = ψ(y)f (, y, z), and le l + (y) l (y, z) Then i is easily checked ha Noe: = ψ(y)(α 0 y ln(y) + 2CBy); = ψ(y) (β 0 y ln(y) 2CBy z 2 ). y l (y, z) F (, y, z) l(y), (, y, z). (30) The funcion y l + (y) is bounded and Lipschiz! Jin Ma (Universiy of Souhern California) BSDEs in Financial Mah Paris Aug / 218

87 Proof of he Main Resul 3. Approximaion. For any n N, find F n C b such ha F n+1 F n F n. Then, le φ n C be s.. φ(u) = { 1, 0 u n; 0, u n + 1. Define F n (, y, z) = F n (, y, z)φ n ( y + z )+ (l + (y)+ 1 ) 2 n [1 φ n ( y + z )]. Noe: F n s are uniformly Lipschiz (in (y, z)); For any n N and all (, y, z), i holds ha F (, y, z) F n (, y, z) F n (, y, z) l + (y) n. (31) Jin Ma (Universiy of Souhern California) BSDEs in Financial Mah Paris Aug / 218

88 Proof of he Main Resul 4. Synhesis. Denoe (y n, z n ) o be soluion o BSDE(F n, e 2Cξ ), via sandard heory. For n large enough F n (, e 2CM, 0) 0, and e 2CM e 2Cξ ; F n (, e 2CM, 0) 0, and e 2CM e 2Cξ, Since y e 2CM, z 0 (resp. y e 2CM, z 0) are soluions o he BSDE(e 2CM, 0) (resp. BSDE(e 2CM, 0)), by he sandard Comparison Theorem we conclude: Define Y n = ln(yn ) 2C f n (, y, z) f n (, y, z) e 2CM y n+1 y n e 2CM., Z n = zn 2Cy n, and = F n (, e 2Cy, 2Ce 2Cy z) 2Ce 2Cy + C z 2 = F n (, e 2Cy, 2Ce 2Cy z) 2Ce 2Cy + C z 2 ; Jin Ma (Universiy of Souhern California) BSDEs in Financial Mah Paris Aug / 218

89 Proof of he Main Resul Then (Y n, Z n ) is he soluion o BSDE( f n, ξ), n N, and Y n s are monoone, since y n s are! Since f n f and f n f, uniformly on compacs, we can firs apply he Monoone Sabiliy Theorem, we know ha (Y, Z) L F (Ω; C([0, T ]; R)) H 2 F ([0, T ]; Rd ) such ha (Y, Z) solves BSDE( f, ξ). One can hen show ha Y M as was done in he a priori esimae, and noe ha f (, y, z) = f (, y, z), whenever y M (by he naure of he runcaion), we conclude ha (Y, Z) solves BSDE(f, ξ), proving he exisence. Jin Ma (Universiy of Souhern California) BSDEs in Financial Mah Paris Aug / 218

90 Uniqueness We shall assume ha he generaor f saisfies he following assumpions hroughou he uniqueness discussion. (H2) For some consans M and C > 0, and posiive funcions l( ) and k( ), i holds for all R +, y [ M, M], and z R d ha f (, y, z) l() + C z 2, a.s., f (32) z (, y, z) k() + C z 2, a.s., (H3) For some consan ε > 0 and C ε > 0, i holds for all R +, y R, and z R d ha f y (, y, z) l ε() + C z 2, a.s. (33) Jin Ma (Universiy of Souhern California) BSDEs in Financial Mah Paris Aug / 218

91 Uniqueness Comparison Theorem Le (Y i, Z i ), i = 1, 2 be wo soluions of BSDE(f i, ξ i ), i = 1, 2. Assume ha ξ 1 ξ 2, a.s., and f 1 f 2 ; For all ε > 0 and M > 0, here exis funcions l, l ε L 1, k L 2, and consan C R, such ha eiher f 1 or f 2 saisfies boh (H2) wih l, k, and C and (H3) wih l ε and ε. Then if (Y 1, Z 1 ) [resp. (Y 2, Z 2 ) L ( ) L 2 ( )] is a sub-soluion (resp. super-soluion) of he BSDEs wih parameers (f 1, ξ 1 ) (resp. (f 2, ξ 2 )), one has Y 1 Y 2, R +, a.s. Proof. Lenghy. (cf. Kobylanski (2000)) Jin Ma (Universiy of Souhern California) BSDEs in Financial Mah Paris Aug / 218

92 A Quick Summary We have sudied following ypes of BSDEs beyond he sandard ones: BSDEs wih coninuous coefficiens BSDEs wih reflecions BSDEs wih quadraic growh Jin Ma (Universiy of Souhern California) BSDEs in Financial Mah Paris Aug / 218

93 A Quick Summary We have sudied following ypes of BSDEs beyond he sandard ones: BSDEs wih coninuous coefficiens BSDEs wih reflecions BSDEs wih quadraic growh Some Variaions Refleced BSDEs wih coninuous coefficiens Maoussi (1997), Hamadene-Maoussi-Lepelier (1997) BSDEs wih superlinear-quadraic coefficiens Lepelier-San Marin (1998) Refleced BSDE wih superlinear-quadraic coefficiens Kobylanski-Lepelier-Quenez-Torres (2001) Jin Ma (Universiy of Souhern California) BSDEs in Financial Mah Paris Aug / 218

94 Converse Comparison Theorem Consider he BSDE: Y = ξ + f (s, Y s, Z s )ds Z s dw s, 0. We know ha ξ 1 ξ 2 f 1 f 2 = Y 1 Y 2, 0 Quesion: Under wha condiion Y 1 Y 2 implies f 1 f 2? Main Assumpions (A1) The random field f : [0, T ] Ω R R d R is uniformly Lipschiz in (y, z), uniformly in (, ω). (A2) f (, 0, 0), is a square-inegrable adaped process. (A3) f (, y, 0) = 0 (A4) f (, y, z) is coninuous. Jin Ma (Universiy of Souhern California) BSDEs in Financial Mah Paris Aug / 218

95 Converse Comparison Theorem Theorem (Briand-Coque-Hu-Mémin-Peng, 2000) Assume (A1) (A4), and assume furher ha for any ξ L 2 (F T ), i holds ha Y 1 (ξ) Y 2 (ξ), for all [0, T ], P-a.s. Then P-almos surely, Main Tricks: f 1 0 (, y, z) f 1 0 (, y, z), (y, z) R R 6. Choose ξ ε = y + z(w +ε W ), ε > 0; and denoe = Y (ξ ε ); Y ε T Show ha 1 ε (Y ε y) g(, y, z), as ε 0; Then Y 1,ε Y 2,ε = g 1 g 2. Jin Ma (Universiy of Souhern California) BSDEs in Financial Mah Paris Aug / 218

96 Quadraic BSDEs wih Unbounded Terminal Value This is based on he works of Briand and Hu ( ). Consider he BSDE: Y = ξ + Main Assumpions f (s, Y s, Z s )ds Z s dw s, [0, T ] (34) β 0, γ > 0, α L 0 F ([0, T ] Ω), and ϕ : R + R + wih ϕ(0) = 0, such ha P-a.s., (i) For all [0, T ], (y, z) f (, y, z) is coninuous; (ii) (Monooniciy in y) (, z), (iii) (Quadraic growh): (, y, z), y[f (, y, z) f (, 0, z)] β y 2 ; f (, y, z) α() + ϕ( y ) + γ 2 z 2. Jin Ma (Universiy of Souhern California) BSDEs in Financial Mah Paris Aug / 218

97 Quadraic BSDEs wih Unbounded Terminal Value Main Purpose: Find he adaped soluion (hopefully unique!) o he BSDE (34), wih erminal value ξ saisfying: E{e γ ξ } < (ξ is said o have exponenial momen of order γ ), for some or all γ > 0. A Trick: Consider U(, Y ) = e γψ(, Y ), where ψ is a smooh funcion o be deermined. Applying Iô Tanaka: du(, Y ) γu(, Y ) = { ψ x(, Y )sgn(y )f (, Y, Z ) + ψ (, Y ) + γ 2 ψ x(, Y ) 2 Z 2 }d ψ xx(, Y ) Z 2 d +ψ x (, Y )dl + ψ x (, Y )sgn(y )Z dw, where L is he local ime of Y a zero. Jin Ma (Universiy of Souhern California) BSDEs in Financial Mah Paris Aug / 218

98 Quadraic BSDEs wih Unbounded Terminal Value Since sgn(y )f (, Y, Z ) = sgn(y )[f (, Y, Z ) f (, 0, Z )] +sgn(y )f (, 0, Z ) β Y + α() + γ 2 Z 2, assuming ψ x (, x) 1 for x 0, one has ψ x (, Y )sgn(y )f (, Y, Z ) ψ (, Y ) γ 2 ψ x(, Y ) 2 Z 2 ψ x (, Y )[α() + β Y ] ψ (, Y ). Jin Ma (Universiy of Souhern California) BSDEs in Financial Mah Paris Aug / 218

99 Quadraic BSDEs wih Unbounded Terminal Value Since sgn(y )f (, Y, Z ) = sgn(y )[f (, Y, Z ) f (, 0, Z )] +sgn(y )f (, 0, Z ) β Y + α() + γ 2 Z 2, assuming ψ x (, x) 1 for x 0, one has ψ x (, Y )sgn(y )f (, Y, Z ) ψ (, Y ) γ 2 ψ x(, Y ) 2 Z 2 ψ x (, Y )[α() + β Y ] ψ (, Y ). Idea: Look for ψ ha solves he firs order PDE for (, x) [s, T ] R: ψ (, x) (α() + βx)ψ x (, x) = 0, ψ(s, x) = x. (35) Jin Ma (Universiy of Souhern California) BSDEs in Financial Mah Paris Aug / 218

100 Quadraic BSDEs wih Unbounded Terminal Value The soluion o he characerisic equaion of (35): v(u;, x) = x + u [α(r) + βv(r;, x)]dr, 0 u. (36) is v(s;, x) = xe β( s) + s α(r)eβ(r s) dr, 0 s T. Since d du ψ(u, v(u;, x)) = 0, we have for s T, ψ(, x) = ψ(, v(;, x)) = ψ(s, v(s;, x)) = v(s;, x). = ψ x (, x) 1 and ψ xx (, x) 0!! A Key Esimae e γ Ys = U(s, Y s ) U(, Y ) s γu(r, Y r )ψ x (r, Y r )sgn(y r )Z r dw r. Jin Ma (Universiy of Souhern California) BSDEs in Financial Mah Paris Aug / 218

101 Quadraic BSDEs wih Unbounded Terminal Value Theorem (Exisence) Assume ha he main assumpion holds. Assume also ha ξ + α 1 has an exponenial momen of order γe βt, hen he BSDE (34) has a soluion (Y, Z) such ha Y 1 { { γ log E exp γe β(t ) ξ + γ Noe: α(r)e β(r ) dr } F }. The Comparison Theorems (whence uniqueness) for quadraic BSDE were only proved for he bounded erminal value case, based essenially on he fac ha in ha case he process Z W is a BMO Maringale. Since his fac fails in he unbounded erminal case, a new idea is needed! Jin Ma (Universiy of Souhern California) BSDEs in Financial Mah Paris Aug / 218

102 Quadraic BSDEs wih Convex Coefficiens in z Assumpion (A2) There exis wo consans γ > 0 and β 0, and a non-negaive, progressively measurable process α(), 0, such ha, [0, T ], y R, he mapping z f (, y, z) is convex; (, z) [0, T ] R, f (, y, z) f (, y, z ) β y y, (y, y ) R 2 ; f saisfies he growh condiion: f (, y, z) α() + β y + γ 2 z 2 ; α 1 has exponenial momen of all order. Jin Ma (Universiy of Souhern California) BSDEs in Financial Mah Paris Aug / 218

103 Quadraic BSDEs wih Convex Coefficiens in z Comparison Theorem Le (Y, Z) and (Y, Z ) be wo soluion o (34) w.r.. erminal condiions ξ and ξ, generaors f and f, respecively. Assume ha { for any λ > 0, E e λy + e λy } <, where Y = sup [0,T ] Y ; ξ ξ, P-a.s.; f (, y, z) f (, y, z), (, y, z) [0, T ] R R d ; f saisfies (A2). Then Y Y, for all [0, T ], P-a.s. Furhermore, if Y 0 = Y 0, hen { } P ξ = ξ, (f f )(, Y, Z )d = 0 > 0. 0 Jin Ma (Universiy of Souhern California) BSDEs in Financial Mah Paris Aug / 218

104 Quadraic BSDEs wih Convex Coefficiens in z Main Trick: For any θ (0, 1), consider η θ = η θη, η = ξ, Y, Z. Le A = 0 α(s)ds, hen we have e A Y θ = e A T Y θ T + e As F s ds e As Zs θ dw s, where, denoing δf () = (f f )(, Y, Z ), F = (f (, Y, Z ) θf (, Y, Z )) α()y θ = (f (, Y, Z ) f (, Y, Z )) +(f (, Y, Z ) θf (, Y, Z )) + θδf (). Using he convexiy of f in z, one has ( f (, Y, Z ) θf (, Y, Z ) + (1 θ)f, Y Z θ ), 1 θ Jin Ma (Universiy of Souhern California) BSDEs in Financial Mah Paris Aug / 218

105 Quadraic BSDEs wih Convex Coefficiens in z Using he growh condiion o ge f (, Y, Z ) θf (, Y, Z )+(1 θ)(α()+β Y )+ γ 1 θ Z θ 2. = F (1 θ)(α() + 2β Y γ ) + 2(1 θ) Z θ 2 + θδf (). Denoe P = e cea Y θ, Q = cp Z θ e A, hen P = P T + c = Y θ 1 θ { { log E exp γe 2βT( ξ + γ Leing θ 1, one obains Y Y! ( P s e As F s ceas 2 Z θ 2) ds Q s dw s. )} } G(s, Y s F )ds. Jin Ma (Universiy of Souhern California) BSDEs in Financial Mah Paris Aug / 218

106 Quadraic BSDEs and Convex Risk Measures Recall he Enropic dynamic risk measure. Enropic RM I is shown by Barrieu-El Karoui ( 04) ha {ρ γ (ξ)} [0,T ] is he unique soluion of he following quadraic BSDE: ρ γ (ξ) = ξ + 1 Z s 2 ds Z s db s, [0, T ], 2γ Jin Ma (Universiy of Souhern California) BSDEs in Financial Mah Paris Aug / 218

107 Quadraic BSDEs and Convex Risk Measures Recall he Enropic dynamic risk measure. Enropic RM I is shown by Barrieu-El Karoui ( 04) ha {ρ γ (ξ)} [0,T ] is he unique soluion of he following quadraic BSDE: ρ γ (ξ) = ξ + 1 Z s 2 ds Z s db s, [0, T ], 2γ Bu he generaor g = 1 2γ z 2 is quadraic, and hence NOT a consequence of he represenaion heorem! Jin Ma (Universiy of Souhern California) BSDEs in Financial Mah Paris Aug / 218

108 Quadraic BSDEs and Convex Risk Measures Recall he Enropic dynamic risk measure. Enropic RM I is shown by Barrieu-El Karoui ( 04) ha {ρ γ (ξ)} [0,T ] is he unique soluion of he following quadraic BSDE: ρ γ (ξ) = ξ + 1 Z s 2 ds Z s db s, [0, T ], 2γ Bu he generaor g = 1 2γ z 2 is quadraic, and hence NOT a consequence of he represenaion heorem! In fac, in his case he dominaion (11) fails. E.g., γ = 1: ρ 0 (ξ+η) ρ 0 (ξ) = η ( Z 2 s +Z s 2 Z 2 s 2 )ds 0 Z s db s. where Z = Z 1 Z 2. Bu 1 2 ( z2 + z 2 z 2 2 ) z z2 2 canno be dominaed by any (quadraic g). Jin Ma (Universiy of Souhern California) BSDEs in Financial Mah Paris Aug / 218

Uniqueness of solutions to quadratic BSDEs. BSDEs with convex generators and unbounded terminal conditions

Uniqueness of solutions to quadratic BSDEs. BSDEs with convex generators and unbounded terminal conditions Recalls and basic resuls on BSDEs Uniqueness resul Links wih PDEs On he uniqueness of soluions o quadraic BSDEs wih convex generaors and unbounded erminal condiions IRMAR, Universié Rennes 1 Châeau de

More information

An Introduction to Backward Stochastic Differential Equations (BSDEs) PIMS Summer School 2016 in Mathematical Finance.

An Introduction to Backward Stochastic Differential Equations (BSDEs) PIMS Summer School 2016 in Mathematical Finance. 1 An Inroducion o Backward Sochasic Differenial Equaions (BSDEs) PIMS Summer School 2016 in Mahemaical Finance June 25, 2016 Chrisoph Frei cfrei@ualbera.ca This inroducion is based on Touzi [14], Bouchard

More information

Utility maximization in incomplete markets

Utility maximization in incomplete markets Uiliy maximizaion in incomplee markes Marcel Ladkau 27.1.29 Conens 1 Inroducion and general seings 2 1.1 Marke model....................................... 2 1.2 Trading sraegy.....................................

More information

Dual Representation as Stochastic Differential Games of Backward Stochastic Differential Equations and Dynamic Evaluations

Dual Representation as Stochastic Differential Games of Backward Stochastic Differential Equations and Dynamic Evaluations arxiv:mah/0602323v1 [mah.pr] 15 Feb 2006 Dual Represenaion as Sochasic Differenial Games of Backward Sochasic Differenial Equaions and Dynamic Evaluaions Shanjian Tang Absrac In his Noe, assuming ha he

More information

Generalized Snell envelope and BSDE With Two general Reflecting Barriers

Generalized Snell envelope and BSDE With Two general Reflecting Barriers 1/22 Generalized Snell envelope and BSDE Wih Two general Reflecing Barriers EL HASSAN ESSAKY Cadi ayyad Universiy Poly-disciplinary Faculy Safi Work in progress wih : M. Hassani and Y. Ouknine Iasi, July

More information

Quadratic and Superquadratic BSDEs and Related PDEs

Quadratic and Superquadratic BSDEs and Related PDEs Quadraic and Superquadraic BSDEs and Relaed PDEs Ying Hu IRMAR, Universié Rennes 1, FRANCE hp://perso.univ-rennes1.fr/ying.hu/ ITN Marie Curie Workshop "Sochasic Conrol and Finance" Roscoff, March 21 Ying

More information

6. Stochastic calculus with jump processes

6. Stochastic calculus with jump processes A) Trading sraegies (1/3) Marke wih d asses S = (S 1,, S d ) A rading sraegy can be modelled wih a vecor φ describing he quaniies invesed in each asse a each insan : φ = (φ 1,, φ d ) The value a of a porfolio

More information

Backward doubly stochastic di erential equations with quadratic growth and applications to quasilinear SPDEs

Backward doubly stochastic di erential equations with quadratic growth and applications to quasilinear SPDEs Backward doubly sochasic di erenial equaions wih quadraic growh and applicaions o quasilinear SPDEs Badreddine MANSOURI (wih K. Bahlali & B. Mezerdi) Universiy of Biskra Algeria La Londe 14 sepember 2007

More information

An Introduction to Malliavin calculus and its applications

An Introduction to Malliavin calculus and its applications An Inroducion o Malliavin calculus and is applicaions Lecure 5: Smoohness of he densiy and Hörmander s heorem David Nualar Deparmen of Mahemaics Kansas Universiy Universiy of Wyoming Summer School 214

More information

and Applications Alexander Steinicke University of Graz Vienna Seminar in Mathematical Finance and Probability,

and Applications Alexander Steinicke University of Graz Vienna Seminar in Mathematical Finance and Probability, Backward Sochasic Differenial Equaions and Applicaions Alexander Seinicke Universiy of Graz Vienna Seminar in Mahemaical Finance and Probabiliy, 6-20-2017 1 / 31 1 Wha is a BSDE? SDEs - he differenial

More information

Hamilton- J acobi Equation: Weak S olution We continue the study of the Hamilton-Jacobi equation:

Hamilton- J acobi Equation: Weak S olution We continue the study of the Hamilton-Jacobi equation: M ah 5 7 Fall 9 L ecure O c. 4, 9 ) Hamilon- J acobi Equaion: Weak S oluion We coninue he sudy of he Hamilon-Jacobi equaion: We have shown ha u + H D u) = R n, ) ; u = g R n { = }. ). In general we canno

More information

Backward stochastic dynamics on a filtered probability space

Backward stochastic dynamics on a filtered probability space Backward sochasic dynamics on a filered probabiliy space Gechun Liang Oxford-Man Insiue, Universiy of Oxford based on join work wih Terry Lyons and Zhongmin Qian Page 1 of 15 gliang@oxford-man.ox.ac.uk

More information

Stochastic Modelling in Finance - Solutions to sheet 8

Stochastic Modelling in Finance - Solutions to sheet 8 Sochasic Modelling in Finance - Soluions o shee 8 8.1 The price of a defaulable asse can be modeled as ds S = µ d + σ dw dn where µ, σ are consans, (W ) is a sandard Brownian moion and (N ) is a one jump

More information

Existence and uniqueness of solution for multidimensional BSDE with local conditions on the coefficient

Existence and uniqueness of solution for multidimensional BSDE with local conditions on the coefficient 1/34 Exisence and uniqueness of soluion for mulidimensional BSDE wih local condiions on he coefficien EL HASSAN ESSAKY Cadi Ayyad Universiy Mulidisciplinary Faculy Safi, Morocco ITN Roscof, March 18-23,

More information

Local Strict Comparison Theorem and Converse Comparison Theorems for Reflected Backward Stochastic Differential Equations

Local Strict Comparison Theorem and Converse Comparison Theorems for Reflected Backward Stochastic Differential Equations arxiv:mah/07002v [mah.pr] 3 Dec 2006 Local Sric Comparison Theorem and Converse Comparison Theorems for Refleced Backward Sochasic Differenial Equaions Juan Li and Shanjian Tang Absrac A local sric comparison

More information

Nonlinear expectations and nonlinear pricing

Nonlinear expectations and nonlinear pricing Nonlinear expecaions and nonlinear pricing Zengjing Chen Kun He Deparmen of Mahemaics Shandong Universiy, Jinan 250100 China Reg Kulperger Deparmen of saisical and acuarial Science The Universiy of Wesern

More information

On a Fractional Stochastic Landau-Ginzburg Equation

On a Fractional Stochastic Landau-Ginzburg Equation Applied Mahemaical Sciences, Vol. 4, 1, no. 7, 317-35 On a Fracional Sochasic Landau-Ginzburg Equaion Nguyen Tien Dung Deparmen of Mahemaics, FPT Universiy 15B Pham Hung Sree, Hanoi, Vienam dungn@fp.edu.vn

More information

BACKWARD STOCHASTIC DIFFERENTIAL EQUATIONS WITH REFLECTION AND DYNKIN GAMES 1. By Jakša Cvitanić and Ioannis Karatzas Columbia University

BACKWARD STOCHASTIC DIFFERENTIAL EQUATIONS WITH REFLECTION AND DYNKIN GAMES 1. By Jakša Cvitanić and Ioannis Karatzas Columbia University The Annals of Probabiliy 1996, Vol. 24, No. 4, 224 256 BACKWARD STOCHASTIC DIFFERENTIAL EQUATIONS WITH REFLECTION AND DYNKIN GAMES 1 By Jakša Cvianić and Ioannis Karazas Columbia Universiy We esablish

More information

Simulation of BSDEs and. Wiener Chaos Expansions

Simulation of BSDEs and. Wiener Chaos Expansions Simulaion of BSDEs and Wiener Chaos Expansions Philippe Briand Céline Labar LAMA UMR 5127, Universié de Savoie, France hp://www.lama.univ-savoie.fr/ Workshop on BSDEs Rennes, May 22-24, 213 Inroducion

More information

REFLECTED SOLUTIONS OF BACKWARD SDE S, AND RELATED OBSTACLE PROBLEMS FOR PDE S

REFLECTED SOLUTIONS OF BACKWARD SDE S, AND RELATED OBSTACLE PROBLEMS FOR PDE S The Annals of Probabiliy 1997, Vol. 25, No. 2, 72 737 REFLECTED SOLUTIONS OF BACKWARD SDE S, AND RELATED OBSTACLE PROBLEMS FOR PDE S By N. El Karoui, C. Kapoudjian, E. Pardoux, S. Peng and M. C. Quenez

More information

EXISTENCE AND UNIQUENESS OF SOLUTIONS TO THE BACKWARD STOCHASTIC LORENZ SYSTEM

EXISTENCE AND UNIQUENESS OF SOLUTIONS TO THE BACKWARD STOCHASTIC LORENZ SYSTEM Communicaions on Sochasic Analysis Vol. 1, No. 3 (27) 473-483 EXISTENCE AND UNIQUENESS OF SOLUTIONS TO THE BACKWARD STOCHASTIC LORENZ SYSTEM P. SUNDAR AND HONG YIN Absrac. The backward sochasic Lorenz

More information

f(s)dw Solution 1. Approximate f by piece-wise constant left-continuous non-random functions f n such that (f(s) f n (s)) 2 ds 0.

f(s)dw Solution 1. Approximate f by piece-wise constant left-continuous non-random functions f n such that (f(s) f n (s)) 2 ds 0. Advanced Financial Models Example shee 3 - Michaelmas 217 Michael Tehranchi Problem 1. Le f : [, R be a coninuous (non-random funcion and W a Brownian moion, and le σ 2 = f(s 2 ds and assume σ 2

More information

Singular control of SPDEs and backward stochastic partial diffe. reflection

Singular control of SPDEs and backward stochastic partial diffe. reflection Singular conrol of SPDEs and backward sochasic parial differenial equaions wih reflecion Universiy of Mancheser Join work wih Bern Øksendal and Agnès Sulem Singular conrol of SPDEs and backward sochasic

More information

Time discretization of quadratic and superquadratic Markovian BSDEs with unbounded terminal conditions

Time discretization of quadratic and superquadratic Markovian BSDEs with unbounded terminal conditions Time discreizaion of quadraic and superquadraic Markovian BSDEs wih unbounded erminal condiions Adrien Richou Universié Bordeaux 1, INRIA équipe ALEA Oxford framework Le (Ω, F, P) be a probabiliy space,

More information

Optimal Investment, Consumption and Retirement Decision with Disutility and Borrowing Constraints

Optimal Investment, Consumption and Retirement Decision with Disutility and Borrowing Constraints Opimal Invesmen, Consumpion and Reiremen Decision wih Disuiliy and Borrowing Consrains Yong Hyun Shin Join Work wih Byung Hwa Lim(KAIST) June 29 July 3, 29 Yong Hyun Shin (KIAS) Workshop on Sochasic Analysis

More information

BSDES UNDER FILTRATION-CONSISTENT NONLINEAR EXPECTATIONS AND THE CORRESPONDING DECOMPOSITION THEOREM FOR E-SUPERMARTINGALES IN L p

BSDES UNDER FILTRATION-CONSISTENT NONLINEAR EXPECTATIONS AND THE CORRESPONDING DECOMPOSITION THEOREM FOR E-SUPERMARTINGALES IN L p ROCKY MOUNTAIN JOURNAL OF MATHEMATICS Volume 43, Number 2, 213 BSDES UNDER FILTRATION-CONSISTENT NONLINEAR EXPECTATIONS AND THE CORRESPONDING DECOMPOSITION THEOREM FOR E-SUPERMARTINGALES IN L p ZHAOJUN

More information

A class of multidimensional quadratic BSDEs

A class of multidimensional quadratic BSDEs A class of mulidimensional quadraic SDEs Zhongmin Qian, Yimin Yang Shujin Wu March 4, 07 arxiv:703.0453v mah.p] Mar 07 Absrac In his paper we sudy a mulidimensional quadraic SDE wih a paricular class of

More information

3.1.3 INTRODUCTION TO DYNAMIC OPTIMIZATION: DISCRETE TIME PROBLEMS. A. The Hamiltonian and First-Order Conditions in a Finite Time Horizon

3.1.3 INTRODUCTION TO DYNAMIC OPTIMIZATION: DISCRETE TIME PROBLEMS. A. The Hamiltonian and First-Order Conditions in a Finite Time Horizon 3..3 INRODUCION O DYNAMIC OPIMIZAION: DISCREE IME PROBLEMS A. he Hamilonian and Firs-Order Condiions in a Finie ime Horizon Define a new funcion, he Hamilonian funcion, H. H he change in he oal value of

More information

Course Notes for EE227C (Spring 2018): Convex Optimization and Approximation

Course Notes for EE227C (Spring 2018): Convex Optimization and Approximation Course Noes for EE7C Spring 018: Convex Opimizaion and Approximaion Insrucor: Moriz Hard Email: hard+ee7c@berkeley.edu Graduae Insrucor: Max Simchowiz Email: msimchow+ee7c@berkeley.edu Ocober 15, 018 3

More information

LECTURE 1: GENERALIZED RAY KNIGHT THEOREM FOR FINITE MARKOV CHAINS

LECTURE 1: GENERALIZED RAY KNIGHT THEOREM FOR FINITE MARKOV CHAINS LECTURE : GENERALIZED RAY KNIGHT THEOREM FOR FINITE MARKOV CHAINS We will work wih a coninuous ime reversible Markov chain X on a finie conneced sae space, wih generaor Lf(x = y q x,yf(y. (Recall ha q

More information

AMartingaleApproachforFractionalBrownian Motions and Related Path Dependent PDEs

AMartingaleApproachforFractionalBrownian Motions and Related Path Dependent PDEs AMaringaleApproachforFracionalBrownian Moions and Relaed Pah Dependen PDEs Jianfeng ZHANG Universiy of Souhern California Join work wih Frederi VIENS Mahemaical Finance, Probabiliy, and PDE Conference

More information

Simulation of BSDEs and. Wiener Chaos Expansions

Simulation of BSDEs and. Wiener Chaos Expansions Simulaion of BSDEs and Wiener Chaos Expansions Philippe Briand Céline Labar LAMA UMR 5127, Universié de Savoie, France hp://www.lama.univ-savoie.fr/ Sochasic Analysis Seminar Oxford, June 1, 213 Inroducion

More information

Cash Flow Valuation Mode Lin Discrete Time

Cash Flow Valuation Mode Lin Discrete Time IOSR Journal of Mahemaics (IOSR-JM) e-issn: 2278-5728,p-ISSN: 2319-765X, 6, Issue 6 (May. - Jun. 2013), PP 35-41 Cash Flow Valuaion Mode Lin Discree Time Olayiwola. M. A. and Oni, N. O. Deparmen of Mahemaics

More information

A general continuous auction system in presence of insiders

A general continuous auction system in presence of insiders A general coninuous aucion sysem in presence of insiders José M. Corcuera (based on join work wih G. DiNunno, G. Farkas and B. Oksendal) Faculy of Mahemaics Universiy of Barcelona BCAM, Basque Cener for

More information

Algorithmic Trading: Optimal Control PIMS Summer School

Algorithmic Trading: Optimal Control PIMS Summer School Algorihmic Trading: Opimal Conrol PIMS Summer School Sebasian Jaimungal, U. Torono Álvaro Carea,U. Oxford many hanks o José Penalva,(U. Carlos III) Luhui Gan (U. Torono) Ryan Donnelly (Swiss Finance Insiue,

More information

Risk Aversion Asymptotics for Power Utility Maximization

Risk Aversion Asymptotics for Power Utility Maximization Risk Aversion Asympoics for Power Uiliy Maximizaion Marcel Nuz ETH Zurich AnSAp10 Conference Vienna, 12.07.2010 Marcel Nuz (ETH) Risk Aversion Asympoics 1 / 15 Basic Problem Power uiliy funcion U(x) =

More information

Essential Microeconomics : OPTIMAL CONTROL 1. Consider the following class of optimization problems

Essential Microeconomics : OPTIMAL CONTROL 1. Consider the following class of optimization problems Essenial Microeconomics -- 6.5: OPIMAL CONROL Consider he following class of opimizaion problems Max{ U( k, x) + U+ ( k+ ) k+ k F( k, x)}. { x, k+ } = In he language of conrol heory, he vecor k is he vecor

More information

Oscillation of an Euler Cauchy Dynamic Equation S. Huff, G. Olumolode, N. Pennington, and A. Peterson

Oscillation of an Euler Cauchy Dynamic Equation S. Huff, G. Olumolode, N. Pennington, and A. Peterson PROCEEDINGS OF THE FOURTH INTERNATIONAL CONFERENCE ON DYNAMICAL SYSTEMS AND DIFFERENTIAL EQUATIONS May 4 7, 00, Wilmingon, NC, USA pp 0 Oscillaion of an Euler Cauchy Dynamic Equaion S Huff, G Olumolode,

More information

arxiv: v2 [math.pr] 7 Mar 2018

arxiv: v2 [math.pr] 7 Mar 2018 Backward sochasic differenial equaions wih unbounded generaors arxiv:141.531v [mah.pr 7 Mar 18 Bujar Gashi and Jiajie Li 1 Insiue of Financial and Acuarial Mahemaics (IFAM), Deparmen of Mahemaical Sciences,

More information

The Optimal Stopping Time for Selling an Asset When It Is Uncertain Whether the Price Process Is Increasing or Decreasing When the Horizon Is Infinite

The Optimal Stopping Time for Selling an Asset When It Is Uncertain Whether the Price Process Is Increasing or Decreasing When the Horizon Is Infinite American Journal of Operaions Research, 08, 8, 8-9 hp://wwwscirporg/journal/ajor ISSN Online: 60-8849 ISSN Prin: 60-8830 The Opimal Sopping Time for Selling an Asse When I Is Uncerain Wheher he Price Process

More information

Ann. Funct. Anal. 2 (2011), no. 2, A nnals of F unctional A nalysis ISSN: (electronic) URL:

Ann. Funct. Anal. 2 (2011), no. 2, A nnals of F unctional A nalysis ISSN: (electronic) URL: Ann. Func. Anal. 2 2011, no. 2, 34 41 A nnals of F uncional A nalysis ISSN: 2008-8752 elecronic URL: www.emis.de/journals/afa/ CLASSIFICAION OF POSIIVE SOLUIONS OF NONLINEAR SYSEMS OF VOLERRA INEGRAL EQUAIONS

More information

Hamilton- J acobi Equation: Explicit Formulas In this lecture we try to apply the method of characteristics to the Hamilton-Jacobi equation: u t

Hamilton- J acobi Equation: Explicit Formulas In this lecture we try to apply the method of characteristics to the Hamilton-Jacobi equation: u t M ah 5 2 7 Fall 2 0 0 9 L ecure 1 0 O c. 7, 2 0 0 9 Hamilon- J acobi Equaion: Explici Formulas In his lecure we ry o apply he mehod of characerisics o he Hamilon-Jacobi equaion: u + H D u, x = 0 in R n

More information

A Necessary and Sufficient Condition for the Solutions of a Functional Differential Equation to Be Oscillatory or Tend to Zero

A Necessary and Sufficient Condition for the Solutions of a Functional Differential Equation to Be Oscillatory or Tend to Zero JOURNAL OF MAEMAICAL ANALYSIS AND APPLICAIONS 24, 7887 1997 ARICLE NO. AY965143 A Necessary and Sufficien Condiion for he Soluions of a Funcional Differenial Equaion o Be Oscillaory or end o Zero Piambar

More information

Optimality Conditions for Unconstrained Problems

Optimality Conditions for Unconstrained Problems 62 CHAPTER 6 Opimaliy Condiions for Unconsrained Problems 1 Unconsrained Opimizaion 11 Exisence Consider he problem of minimizing he funcion f : R n R where f is coninuous on all of R n : P min f(x) x

More information

Solutions to Assignment 1

Solutions to Assignment 1 MA 2326 Differenial Equaions Insrucor: Peronela Radu Friday, February 8, 203 Soluions o Assignmen. Find he general soluions of he following ODEs: (a) 2 x = an x Soluion: I is a separable equaion as we

More information

Optimal Consumption and Investment Portfolio in Jump markets. Optimal Consumption and Portfolio of Investment in a Financial Market with Jumps

Optimal Consumption and Investment Portfolio in Jump markets. Optimal Consumption and Portfolio of Investment in a Financial Market with Jumps Opimal Consumpion and Invesmen Porfolio in Jump markes Opimal Consumpion and Porfolio of Invesmen in a Financial Marke wih Jumps Gan Jin Lingnan (Universiy) College, China Insiue of Economic ransformaion

More information

Differential Equations

Differential Equations Mah 21 (Fall 29) Differenial Equaions Soluion #3 1. Find he paricular soluion of he following differenial equaion by variaion of parameer (a) y + y = csc (b) 2 y + y y = ln, > Soluion: (a) The corresponding

More information

arxiv: v1 [math.pr] 21 May 2010

arxiv: v1 [math.pr] 21 May 2010 ON SCHRÖDINGER S EQUATION, 3-DIMENSIONAL BESSEL BRIDGES, AND PASSAGE TIME PROBLEMS arxiv:15.498v1 [mah.pr 21 May 21 GERARDO HERNÁNDEZ-DEL-VALLE Absrac. In his work we relae he densiy of he firs-passage

More information

Convergence of the Neumann series in higher norms

Convergence of the Neumann series in higher norms Convergence of he Neumann series in higher norms Charles L. Epsein Deparmen of Mahemaics, Universiy of Pennsylvania Version 1.0 Augus 1, 003 Absrac Naural condiions on an operaor A are given so ha he Neumann

More information

arxiv: v1 [math.pr] 23 Mar 2019

arxiv: v1 [math.pr] 23 Mar 2019 arxiv:193.991v1 [mah.pr] 23 Mar 219 Uniqueness, Comparison and Sabiliy for Scalar BSDEs wih Lexp(µ 2log(1 + L)) -inegrable erminal values and monoonic generaors Hun O, Mun-Chol Kim and Chol-Kyu Pak * Faculy

More information

Locally Lipschitz BSDE driven by a continuous martingale path-derivative approach Monash CQFIS working paper

Locally Lipschitz BSDE driven by a continuous martingale path-derivative approach Monash CQFIS working paper Locally Lipschiz BSDE driven by a coninuous maringale pah-derivaive approach Monash CQFIS working paper 17 1 Absrac Using a new noion of pah-derivaive, we sudy exisence and uniqueness of soluion for backward

More information

Optimal Investment under Dynamic Risk Constraints and Partial Information

Optimal Investment under Dynamic Risk Constraints and Partial Information Opimal Invesmen under Dynamic Risk Consrains and Parial Informaion Wolfgang Puschögl Johann Radon Insiue for Compuaional and Applied Mahemaics (RICAM) Ausrian Academy of Sciences www.ricam.oeaw.ac.a 2

More information

Mean-Variance Hedging for General Claims

Mean-Variance Hedging for General Claims Projekbereich B Discussion Paper No. B 167 Mean-Variance Hedging for General Claims by Marin Schweizer ) Ocober 199 ) Financial suppor by Deusche Forschungsgemeinschaf, Sonderforschungsbereich 33 a he

More information

Approximation of backward stochastic variational inequalities

Approximation of backward stochastic variational inequalities Al. I. Cuza Universiy of Iaşi, România 10ème Colloque Franco-Roumain de Mahémaiques Appliquées Augus 27, 2010, Poiiers, France Shor hisory & moivaion Re eced Sochasic Di erenial Equaions were rs sudied

More information

This article appeared in a journal published by Elsevier. The attached copy is furnished to the author for internal non-commercial research and

This article appeared in a journal published by Elsevier. The attached copy is furnished to the author for internal non-commercial research and This aricle appeared in a journal published by Elsevier. The aached copy is furnished o he auhor for inernal non-commercial research and educaion use, including for insrucion a he auhors insiuion and sharing

More information

EMS SCM joint meeting. On stochastic partial differential equations of parabolic type

EMS SCM joint meeting. On stochastic partial differential equations of parabolic type EMS SCM join meeing Barcelona, May 28-30, 2015 On sochasic parial differenial equaions of parabolic ype Isván Gyöngy School of Mahemaics and Maxwell Insiue Edinburgh Universiy 1 I. Filering problem II.

More information

MATH 5720: Gradient Methods Hung Phan, UMass Lowell October 4, 2018

MATH 5720: Gradient Methods Hung Phan, UMass Lowell October 4, 2018 MATH 5720: Gradien Mehods Hung Phan, UMass Lowell Ocober 4, 208 Descen Direcion Mehods Consider he problem min { f(x) x R n}. The general descen direcions mehod is x k+ = x k + k d k where x k is he curren

More information

Vanishing Viscosity Method. There are another instructive and perhaps more natural discontinuous solutions of the conservation law

Vanishing Viscosity Method. There are another instructive and perhaps more natural discontinuous solutions of the conservation law Vanishing Viscosiy Mehod. There are anoher insrucive and perhaps more naural disconinuous soluions of he conservaion law (1 u +(q(u x 0, he so called vanishing viscosiy mehod. This mehod consiss in viewing

More information

Singular perturbation control problems: a BSDE approach

Singular perturbation control problems: a BSDE approach Singular perurbaion conrol problems: a BSDE approach Join work wih Francois Delarue Universié de Nice and Giuseppina Guaeri Poliecnico di Milano Le Mans 8h of Ocober 215 Conference in honour of Vlad Bally

More information

Kalman Bucy filtering equations of forward and backward stochastic systems and applications to recursive optimal control problems

Kalman Bucy filtering equations of forward and backward stochastic systems and applications to recursive optimal control problems J. Mah. Anal. Appl. 34 8) 18 196 www.elsevier.com/locae/jmaa Kalman Bucy filering equaions of forward and backward sochasic sysems and applicaions o recursive opimal conrol problems Guangchen Wang a,b,,zhenwu

More information

On the Timing Option in a Futures Contract

On the Timing Option in a Futures Contract On he Timing Opion in a Fuures Conrac Francesca Biagini, Mahemaics Insiue Universiy of Munich Theresiensr. 39 D-80333 Munich, Germany phone: +39-051-2094459 Francesca.Biagini@mahemaik.uni-muenchen.de Tomas

More information

EXERCISES FOR SECTION 1.5

EXERCISES FOR SECTION 1.5 1.5 Exisence and Uniqueness of Soluions 43 20. 1 v c 21. 1 v c 1 2 4 6 8 10 1 2 2 4 6 8 10 Graph of approximae soluion obained using Euler s mehod wih = 0.1. Graph of approximae soluion obained using Euler

More information

MODULE 3 FUNCTION OF A RANDOM VARIABLE AND ITS DISTRIBUTION LECTURES PROBABILITY DISTRIBUTION OF A FUNCTION OF A RANDOM VARIABLE

MODULE 3 FUNCTION OF A RANDOM VARIABLE AND ITS DISTRIBUTION LECTURES PROBABILITY DISTRIBUTION OF A FUNCTION OF A RANDOM VARIABLE Topics MODULE 3 FUNCTION OF A RANDOM VARIABLE AND ITS DISTRIBUTION LECTURES 2-6 3. FUNCTION OF A RANDOM VARIABLE 3.2 PROBABILITY DISTRIBUTION OF A FUNCTION OF A RANDOM VARIABLE 3.3 EXPECTATION AND MOMENTS

More information

Lecture notes on BSDEs Main existence and stability results

Lecture notes on BSDEs Main existence and stability results Lecure noes on BSDEs Main exisence and sabiliy resuls Bruno Bouchard Universié Paris-Dauphine, CEREMADE, and CREST, Paris, France bouchard@ceremade.dauphine.fr February 214 (revised May 215) Lecures given

More information

Hamilton Jacobi equations

Hamilton Jacobi equations Hamilon Jacobi equaions Inoducion o PDE The rigorous suff from Evans, mosly. We discuss firs u + H( u = 0, (1 where H(p is convex, and superlinear a infiniy, H(p lim p p = + This by comes by inegraion

More information

4 Sequences of measurable functions

4 Sequences of measurable functions 4 Sequences of measurable funcions 1. Le (Ω, A, µ) be a measure space (complee, afer a possible applicaion of he compleion heorem). In his chaper we invesigae relaions beween various (nonequivalen) convergences

More information

The Asymptotic Behavior of Nonoscillatory Solutions of Some Nonlinear Dynamic Equations on Time Scales

The Asymptotic Behavior of Nonoscillatory Solutions of Some Nonlinear Dynamic Equations on Time Scales Advances in Dynamical Sysems and Applicaions. ISSN 0973-5321 Volume 1 Number 1 (2006, pp. 103 112 c Research India Publicaions hp://www.ripublicaion.com/adsa.hm The Asympoic Behavior of Nonoscillaory Soluions

More information

Quasi-sure Stochastic Analysis through Aggregation

Quasi-sure Stochastic Analysis through Aggregation E l e c r o n i c J o u r n a l o f P r o b a b i l i y Vol. 16 (211), Paper no. 67, pages 1844 1879. Journal URL hp://www.mah.washingon.edu/~ejpecp/ Quasi-sure Sochasic Analysis hrough Aggregaion H. Mee

More information

Chapter 6. Systems of First Order Linear Differential Equations

Chapter 6. Systems of First Order Linear Differential Equations Chaper 6 Sysems of Firs Order Linear Differenial Equaions We will only discuss firs order sysems However higher order sysems may be made ino firs order sysems by a rick shown below We will have a sligh

More information

Section 3.5 Nonhomogeneous Equations; Method of Undetermined Coefficients

Section 3.5 Nonhomogeneous Equations; Method of Undetermined Coefficients Secion 3.5 Nonhomogeneous Equaions; Mehod of Undeermined Coefficiens Key Terms/Ideas: Linear Differenial operaor Nonlinear operaor Second order homogeneous DE Second order nonhomogeneous DE Soluion o homogeneous

More information

KYLE BACK EQUILIBRIUM MODELS AND LINEAR CONDITIONAL MEAN-FIELD SDEs

KYLE BACK EQUILIBRIUM MODELS AND LINEAR CONDITIONAL MEAN-FIELD SDEs SIAM J. CONTROL OPTIM. Vol. 56, No. 2, pp. 1154 118 c 218 Sociey for Indusrial and Applied Mahemaics KYLE BACK EQUILIBRIUM MODELS AND LINEAR CONDITIONAL MEAN-FIELD SDEs JIN MA, RENTAO SUN, AND YONGHUI

More information

arxiv: v1 [math.pr] 19 Feb 2011

arxiv: v1 [math.pr] 19 Feb 2011 A NOTE ON FELLER SEMIGROUPS AND RESOLVENTS VADIM KOSTRYKIN, JÜRGEN POTTHOFF, AND ROBERT SCHRADER ABSTRACT. Various equivalen condiions for a semigroup or a resolven generaed by a Markov process o be of

More information

arxiv: v1 [math.pr] 18 Feb 2015

arxiv: v1 [math.pr] 18 Feb 2015 Non-Markovian opimal sopping problems and consrained BSDEs wih jump arxiv:152.5422v1 [mah.pr 18 Feb 215 Marco Fuhrman Poliecnico di Milano, Diparimeno di Maemaica via Bonardi 9, 2133 Milano, Ialy marco.fuhrman@polimi.i

More information

Loss of martingality in asset price models with lognormal stochastic volatility

Loss of martingality in asset price models with lognormal stochastic volatility Loss of maringaliy in asse price models wih lognormal sochasic volailiy BJourdain July 7, 4 Absrac In his noe, we prove ha in asse price models wih lognormal sochasic volailiy, when he correlaion coefficien

More information

Heat kernel and Harnack inequality on Riemannian manifolds

Heat kernel and Harnack inequality on Riemannian manifolds Hea kernel and Harnack inequaliy on Riemannian manifolds Alexander Grigor yan UHK 11/02/2014 onens 1 Laplace operaor and hea kernel 1 2 Uniform Faber-Krahn inequaliy 3 3 Gaussian upper bounds 4 4 ean-value

More information

Online Appendix to Solution Methods for Models with Rare Disasters

Online Appendix to Solution Methods for Models with Rare Disasters Online Appendix o Soluion Mehods for Models wih Rare Disasers Jesús Fernández-Villaverde and Oren Levinal In his Online Appendix, we presen he Euler condiions of he model, we develop he pricing Calvo block,

More information

On R d -valued peacocks

On R d -valued peacocks On R d -valued peacocks Francis HIRSCH 1), Bernard ROYNETTE 2) July 26, 211 1) Laboraoire d Analyse e Probabiliés, Universié d Évry - Val d Essonne, Boulevard F. Mierrand, F-9125 Évry Cedex e-mail: francis.hirsch@univ-evry.fr

More information

Positive continuous solution of a quadratic integral equation of fractional orders

Positive continuous solution of a quadratic integral equation of fractional orders Mah. Sci. Le., No., 9-7 (3) 9 Mahemaical Sciences Leers An Inernaional Journal @ 3 NSP Naural Sciences Publishing Cor. Posiive coninuous soluion of a quadraic inegral equaion of fracional orders A. M.

More information

On Gronwall s Type Integral Inequalities with Singular Kernels

On Gronwall s Type Integral Inequalities with Singular Kernels Filoma 31:4 (217), 141 149 DOI 1.2298/FIL17441A Published by Faculy of Sciences and Mahemaics, Universiy of Niš, Serbia Available a: hp://www.pmf.ni.ac.rs/filoma On Gronwall s Type Inegral Inequaliies

More information

BOUNDED VARIATION SOLUTIONS TO STURM-LIOUVILLE PROBLEMS

BOUNDED VARIATION SOLUTIONS TO STURM-LIOUVILLE PROBLEMS Elecronic Journal of Differenial Equaions, Vol. 18 (18, No. 8, pp. 1 13. ISSN: 17-6691. URL: hp://ejde.mah.xsae.edu or hp://ejde.mah.un.edu BOUNDED VARIATION SOLUTIONS TO STURM-LIOUVILLE PROBLEMS JACEK

More information

arxiv: v1 [math.pr] 6 Oct 2008

arxiv: v1 [math.pr] 6 Oct 2008 MEASURIN THE NON-STOPPIN TIMENESS OF ENDS OF PREVISIBLE SETS arxiv:8.59v [mah.pr] 6 Oc 8 JU-YI YEN ),) AND MARC YOR 3),4) Absrac. In his paper, we propose several measuremens of he nonsopping imeness of

More information

Lecture 4: Processes with independent increments

Lecture 4: Processes with independent increments Lecure 4: Processes wih independen incremens 1. A Wienner process 1.1 Definiion of a Wienner process 1.2 Reflecion principle 1.3 Exponenial Brownian moion 1.4 Exchange of measure (Girsanov heorem) 1.5

More information

Fractional Method of Characteristics for Fractional Partial Differential Equations

Fractional Method of Characteristics for Fractional Partial Differential Equations Fracional Mehod of Characerisics for Fracional Parial Differenial Equaions Guo-cheng Wu* Modern Teile Insiue, Donghua Universiy, 188 Yan-an ilu Road, Shanghai 51, PR China Absrac The mehod of characerisics

More information

IMPLICIT AND INVERSE FUNCTION THEOREMS PAUL SCHRIMPF 1 OCTOBER 25, 2013

IMPLICIT AND INVERSE FUNCTION THEOREMS PAUL SCHRIMPF 1 OCTOBER 25, 2013 IMPLICI AND INVERSE FUNCION HEOREMS PAUL SCHRIMPF 1 OCOBER 25, 213 UNIVERSIY OF BRIISH COLUMBIA ECONOMICS 526 We have exensively sudied how o solve sysems of linear equaions. We know how o check wheher

More information

Lecture 20: Riccati Equations and Least Squares Feedback Control

Lecture 20: Riccati Equations and Least Squares Feedback Control 34-5 LINEAR SYSTEMS Lecure : Riccai Equaions and Leas Squares Feedback Conrol 5.6.4 Sae Feedback via Riccai Equaions A recursive approach in generaing he marix-valued funcion W ( ) equaion for i for he

More information

The Existence, Uniqueness and Stability of Almost Periodic Solutions for Riccati Differential Equation

The Existence, Uniqueness and Stability of Almost Periodic Solutions for Riccati Differential Equation ISSN 1749-3889 (prin), 1749-3897 (online) Inernaional Journal of Nonlinear Science Vol.5(2008) No.1,pp.58-64 The Exisence, Uniqueness and Sailiy of Almos Periodic Soluions for Riccai Differenial Equaion

More information

ON JENSEN S INEQUALITY FOR g-expectation

ON JENSEN S INEQUALITY FOR g-expectation Chin. Ann. Mah. 25B:3(2004),401 412. ON JENSEN S INEQUALITY FOR g-expectation JIANG Long CHEN Zengjing Absrac Briand e al. gave a conerexample showing ha given g, Jensen s ineqaliy for g-expecaion sally

More information

arxiv: v1 [math.ca] 15 Nov 2016

arxiv: v1 [math.ca] 15 Nov 2016 arxiv:6.599v [mah.ca] 5 Nov 26 Counerexamples on Jumarie s hree basic fracional calculus formulae for non-differeniable coninuous funcions Cheng-shi Liu Deparmen of Mahemaics Norheas Peroleum Universiy

More information

arxiv: v1 [math.pr] 28 Nov 2016

arxiv: v1 [math.pr] 28 Nov 2016 Backward Sochasic Differenial Equaions wih Nonmarkovian Singular Terminal Values Ali Devin Sezer, Thomas Kruse, Alexandre Popier Ocober 15, 2018 arxiv:1611.09022v1 mah.pr 28 Nov 2016 Absrac We solve a

More information

E β t log (C t ) + M t M t 1. = Y t + B t 1 P t. B t 0 (3) v t = P tc t M t Question 1. Find the FOC s for an optimum in the agent s problem.

E β t log (C t ) + M t M t 1. = Y t + B t 1 P t. B t 0 (3) v t = P tc t M t Question 1. Find the FOC s for an optimum in the agent s problem. Noes, M. Krause.. Problem Se 9: Exercise on FTPL Same model as in paper and lecure, only ha one-period govenmen bonds are replaced by consols, which are bonds ha pay one dollar forever. I has curren marke

More information

POSITIVE PERIODIC SOLUTIONS OF NONAUTONOMOUS FUNCTIONAL DIFFERENTIAL EQUATIONS DEPENDING ON A PARAMETER

POSITIVE PERIODIC SOLUTIONS OF NONAUTONOMOUS FUNCTIONAL DIFFERENTIAL EQUATIONS DEPENDING ON A PARAMETER POSITIVE PERIODIC SOLUTIONS OF NONAUTONOMOUS FUNCTIONAL DIFFERENTIAL EQUATIONS DEPENDING ON A PARAMETER GUANG ZHANG AND SUI SUN CHENG Received 5 November 21 This aricle invesigaes he exisence of posiive

More information

Consumption investment optimization with Epstein-Zin utility

Consumption investment optimization with Epstein-Zin utility Consumpion invesmen opimizaion wih Epsein-Zin uiliy Hao Xing London School of Economics Dublin Ciy Universiy, March 6, 2015 1/25 Wha are recursive uiliies? Given a consumpion sream c, V = W(c,m(V +1 )).

More information

Lecture #31, 32: The Ornstein-Uhlenbeck Process as a Model of Volatility

Lecture #31, 32: The Ornstein-Uhlenbeck Process as a Model of Volatility Saisics 441 (Fall 214) November 19, 21, 214 Prof Michael Kozdron Lecure #31, 32: The Ornsein-Uhlenbeck Process as a Model of Volailiy The Ornsein-Uhlenbeck process is a di usion process ha was inroduced

More information

arxiv: v1 [math.pr] 6 Mar 2014

arxiv: v1 [math.pr] 6 Mar 2014 Quadraic BSDs wih jumps: relaed non-linear expecaions Nabil Kazi-ani Dylan Possamaï Chao Zhou July 27, 218 arxiv:143.273v1 [mah.pr] 6 Mar 214 Absrac In his aricle, we follow he sudy of quadraic backward

More information

Risk assessment for uncertain cash flows: Model ambiguity, discounting ambiguity, and the role of bubbles

Risk assessment for uncertain cash flows: Model ambiguity, discounting ambiguity, and the role of bubbles Finance and Sochasics manuscrip No. (will be insered by he edior) Risk assessmen for uncerain cash flows: Model ambiguiy, discouning ambiguiy, and he role of bubbles Bearice Acciaio Hans Föllmer Irina

More information

BSDEs on finite and infinite horizon with timedelayed

BSDEs on finite and infinite horizon with timedelayed BSDEs on finie and infinie horizon wih imedelayed generaors Peng Luo a,b,1,, Ludovic Tangpi c,, June 1, 18 arxiv:159.1991v1 [mah.pr] 7 Sep 15 ABSTRACT We consider a backward sochasic differenial equaion

More information

KEY. Math 334 Midterm III Winter 2008 section 002 Instructor: Scott Glasgow

KEY. Math 334 Midterm III Winter 2008 section 002 Instructor: Scott Glasgow KEY Mah 334 Miderm III Winer 008 secion 00 Insrucor: Sco Glasgow Please do NOT wrie on his exam. No credi will be given for such work. Raher wrie in a blue book, or on your own paper, preferably engineering

More information

Chapter 2. First Order Scalar Equations

Chapter 2. First Order Scalar Equations Chaper. Firs Order Scalar Equaions We sar our sudy of differenial equaions in he same way he pioneers in his field did. We show paricular echniques o solve paricular ypes of firs order differenial equaions.

More information

Notes for Lecture 17-18

Notes for Lecture 17-18 U.C. Berkeley CS278: Compuaional Complexiy Handou N7-8 Professor Luca Trevisan April 3-8, 2008 Noes for Lecure 7-8 In hese wo lecures we prove he firs half of he PCP Theorem, he Amplificaion Lemma, up

More information

dt = C exp (3 ln t 4 ). t 4 W = C exp ( ln(4 t) 3) = C(4 t) 3.

dt = C exp (3 ln t 4 ). t 4 W = C exp ( ln(4 t) 3) = C(4 t) 3. Mah Rahman Exam Review Soluions () Consider he IVP: ( 4)y 3y + 4y = ; y(3) = 0, y (3) =. (a) Please deermine he longes inerval for which he IVP is guaraneed o have a unique soluion. Soluion: The disconinuiies

More information