Big Bang/Inflationary Picture

Size: px
Start display at page:

Download "Big Bang/Inflationary Picture"

Transcription

1

2 Big Bng/Infltionry Picture big bng infltionry epoch rdition epoch mtter epoch drk energy epoch DISJOINT

3 Gret explntory power: horizon fltness monopoles entropy Gret predictive power: Ω totl = 1 nerly scle-invrint perturbtions slightly red tilt dibtic gussin grvittionl wves consistency reltions

4 Infltion: How does it work? V w = 1 1 & φ & φ V( φ) V( φ) 1 φ

5 ( ) inflton ρ π σ ρ ρ π G k G r m H = Anlyzing infltion in simple, model-independent wy survivl of the smllest How infltion flttens nd smoothes the universe

6 Anlyzing infltion in simple, model-independent wy 8πG ( ) ρ ρ... σ k 8πG ρinflton 0 m 0 r 4 H = 6 survivl of the smllest

7 ( ) inflton ρ π σ ρ ρ π G k G r m H = Anlyzing infltion in model-independent wy survivl of the smllest Ht e t G H ~ ) ( inflton 8 = = ρ π &

8 How infltion cretes nerly scle-invrint spectrum of density perturbtions: begin with fluctutions in the sclr field on length scles smll compred to H -1 Minkowski fluctutions scle invrint cosmic perturbtions

9 Anlyzing infltion in model-independent wy ε (1 w ) = eqution of stte (w = p/ρ) t 1 with ε < ~ / ε 1 M = mss scle for infltion (ρ ~ V(φ) ~ M 4 ) N = number of e-folds of infltion remining (Plnck units: 8πG=1)

10 Sclr field fluctutions become fluctutions in time when infltion ends which become temperture fluctutions whose mplitude is determined by M nd ε δt T δt/ t 1/ t / ~ 1/ ~ ~ δt t H ~ δφ & φ Hδt H ~ H ρ & ~ ~ φ p ρ p ρ δt T ~ M ε gussin dibtic

11 Wht do we know bout ε? Recll: ~ / ε t 1 nd H & / = 1/ εt And infltion ends fter N e-folds. Tht mens: H H end t = = = e tend end ε ( N ) ε 1 e ~ δ ε or ~ 1 N T T M ~ ~ M N ~ 8M ε

12 spectrl tilt n s? from before: δ T ~ ε ~ ρ ε T M ( n s 1)/ ~ k ε~ 1/ N ρ~ 1/ ε k ~ H I ~ e N n s 1~ d ln d ρ/ ε lnk ~ ε dln ε d N ~ N ns ~ 0.95 Also predicts the run

13 Wht does infltion predict bout Grvittionl wve (tensor) fluctutions A G ~ H ~ ρ ~ M 4 Mny uthors hve climed: becuse the mplitude depends on M 4 it cn vry by mny orders of mgnitude so no cler trget for experiment

14 Flw: The men squre sclr fluctution mplitude is ALSO proportionl to M 4 δ T ~10 5 ~ T M ε M ~10 5/ ε 1/ 4!! So we know the scle of infltion: For ε ~ 1/N, M ~ 10 - (nd mking it smller requires extrordinry fine-tuning)

15 Flw: The men squre sclr fluctution mplitude is ALSO proportionl to M 4 r tensor sclr = 4 M M /ε # 4 =# ε = 16 ε = 16 N r = 16 ε = 16 N ~7%

16 Gret explntory power: horizon fltness monopoles entropy Gret predictive power:??? - Ω totl = 1 nerly scle-invrint perturbtions slightly red tilt (n s ~ 0.95) dibtic gussin grvittionl wves (r ~ 7%) consistency reltions

17 1) Fine-tuning problem? ) So mny models, mny with differing predictions! Two views of infltion: ) theory how the universe ws mde fetureless (smooth, flt,) -- nmely, by period of smoothly vrying ccelerted expnsion (with smoothly vrying w nd H) b) Anything goes: ny kind of ccelerted expnsion produced by sclr field nd potentil

18 the clssic perspective dominntly clssicl process n ordering process in which quntum physics plys smll but importnt perturbtive role

19 the (true) quntum perspective Infltion is dominntly quntum process in which (clssicl) infltion mplifies rre quntum fluctutions resulting in peculir kind of disorder

20 Lecture

21 The clssic picture we present to the public

22 but the truth is:

23 Linde, Linde, Mezhlumin, PRD 50, 456 (1994)

24 Unpredictbility Problem

25 Mybe string theory will sve the dy? Energy Lndscpe vcu w/different properties

26 The Anthropic Principle?

27 Mybe we cn find mesure tht explins why our universe is more probble?

28 Source of the Problem: Infltion is too powerful for our own good

29 Source of the Problem: H smoothing smoothing > H norml >> H tody

30 But wht if H smoothing smoothing << H norml norml?

31 How do we go from smll H to lrge H? H& = π ρ 4 G( p) = H ε H smooth smll nd contrcting! Of course, then big bng not the beginning! but then how do we smooth?!

32 Recll how infltion worked: 8πG ( ) ρ ρ... σ k 8πG ρinflton 0 m 0 r 4 H = 6 Expnding universe: survivl of the smllest

33 Wht if the universe is contrcting? 8πG ( ) ρ ρ... σ k 8πG ρinflton 0 m 0 r 4 H = 6 survivl of the lrgest

34 ( ) inflton ρ π σ ρ ρ π G k G r m H = survivl of the lrgest ) (1 0 8 G φ ρ π w Wht if the universe is contrcting?

35 ( ) inflton ρ π σ ρ ρ π G k G r m H = survivl of the lrgest ) (1 0 8 G φ ρ π w w >> 1 Wht if the universe is contrcting?

36 ( ) inflton ρ π σ ρ ρ π G k G r m H = ) (1 0 8 G φ ρ π w w >> 1 A NEW NON-INFLATIONARY SMOOTHING MECHANISM: no ccelertion; not fter the big bng; not superluminl; not nerly de Sitter; Wht if the universe is contrcting?

37 ( ) inflton ρ π σ ρ ρ π G k G r m H = ) (1 0 8 G φ ρ π w w >> 1 nd no chotic mixmster behvior Wht if the universe is contrcting?

38 ( ) inflton ρ π σ ρ ρ π G k G r m H = ) (1 0 8 G φ ρ π w w >> 1 nd H smooth << H norml Wht if the universe is contrcting?

39 ( ) inflton ρ π σ ρ ρ π G k G r m H = ) (1 0 8 G φ ρ π w w >> 1 nd mkes scle-invrint fluctutions!! Wht if the universe is contrcting?

40 Nerly scle-invrint density perturbtions? the reverse of infltion H -1 ~ t nd (t) ~ t 1/ε with ε >> 1 nd t 0 -

41 scle-invrint fluctutions? pproch: quntum fluct. exit horizon & re-enter lter ( t) ε ~ t (1 w ) 1 ε ~( H 1 ) 1 ε n s 1: expnding contrcting ε < 1 ε > 1 ε << 1 ε >> 1 (or w >> 1) n s 1 = ε dln ε dn n s 1 = ε dln ε dn

42 scle-invrint fluctutions? pproch: quntum fluct. exit horizon & re-enter lter ( t) ε ~ t (1 w ) 1 ε ~( H 1 ) 1 ε expnding ε < 1 contrcting ε > 1 n 1: ε << 1 n s s dln ε 1 = ε dn dul ε 1/ ε ε >> 1 (or w >> 1) n s dln ε 1 = ε dn

43 Ekpyrotic contrction Herclitus ek-pyr-o-sis: (Gr.) conflgrtion

44 How to get w >> 1? brnes V φ w = 1 1 & φ & φ V( φ) V( φ) >> 1 Y = distnce = e cφ

45 The Cyclic Model of the Universe bng rdition mtter drk energy ekpyrotic contrction crunch

46 Big Bng/Infltionry Picture big bng infltionry epoch rdition epoch mtter epoch drk energy epoch DISJOINT

47 Wht bout the Tolmn Entropy Problem? Or violting the lws of thermodynmics? Richrd Tolmn size of the universe t

48 How cn we distinguish which model is right?

49 Curiously, precision tests cn distinguish the two key qulittive differences between infltion nd ekpyrotic/cyclic models H smoothing is exponentilly different grvittionl wves w is orders of mgnitude different locl non-gussinity

50 non-gussinity generted when modes re outside the horizon ( locl NG) ζ ~ (δρ/ρ) = ζ L f NL ζ 5 L Mldcen Komtsu & Spergel f NL ~ ε observed NL 110 > f > 9 observed NL 147 > f > 7 (WMAP5 tem) (Ydv & Wndelt)

51 Wht is t stke

52

53

54 our vision is limited: the future is blek

55 wht we see is typicl

56 Lndscpe of Possibilities?... or the End of Science?

57

58 our vision extends beyond the big bng: the future is hopeful wht we see is typicl

59 Appendix I The discussion of the cyclic model ws only the tip of the iceberg: Some interesting topics we did not discuss: Getting through the bounce (non-singulr vs. singulr bounces) How cycling might ddress the cosmologicl constnt problem The xion problem nd how cycling might ddress it Conversion of sclr fluctutions to temperture fluctutions from 4d nd 5d point of view (entropic mechnism) Genertion of sclr-induced grvittionl wves

60 Appendix II Some References More efficient thn going to the rxiv: Check my website to find to collection of rticles rnging from populr to dvnced: I might recommend: The Cyclic Model Simplified See lso recent review rticle by Jen-Luc Lehner (bit more technicl, but more up-to-dte: lot of progress hs been mde in just the lst yer) For populr discussion of both infltion & cyclic: Endless Universe by Neil Turok nd myself (lmost ll the ides but no equtions) An interesting vrint by Khoury, Ovrut & Buchbinder is Clled the new ekpyrotic model (look on the rxiv)

Outline. I. The Why and What of Inflation II. Gauge fields and inflation, generic setup III. Models within Isotropic BG

Outline. I. The Why and What of Inflation II. Gauge fields and inflation, generic setup III. Models within Isotropic BG Outline I. The Why nd Wht of Infltion II. Guge fields nd infltion, generic setup III. Models within Isotropic BG Guge-fltion model Chromo-nturl model IV. Model within Anisotropic BG Infltion with nisotropic

More information

4- Cosmology - II. introduc)on to Astrophysics, C. Bertulani, Texas A&M-Commerce 1

4- Cosmology - II. introduc)on to Astrophysics, C. Bertulani, Texas A&M-Commerce 1 4- Cosmology - II introduc)on to Astrophysics, C. Bertulni, Texs A&M-Commerce 1 4.1 - Solutions of Friedmnn Eqution As shown in Lecture 3, Friedmnn eqution is given by! H 2 = # " & % 2 = 8πG 3 ρ k 2 +

More information

A5682: Introduction to Cosmology Course Notes. 4. Cosmic Dynamics: The Friedmann Equation. = GM s

A5682: Introduction to Cosmology Course Notes. 4. Cosmic Dynamics: The Friedmann Equation. = GM s 4. Cosmic Dynmics: The Friedmnn Eqution Reding: Chpter 4 Newtonin Derivtion of the Friedmnn Eqution Consider n isolted sphere of rdius R s nd mss M s, in uniform, isotropic expnsion (Hubble flow). The

More information

4 The dynamical FRW universe

4 The dynamical FRW universe 4 The dynmicl FRW universe 4.1 The Einstein equtions Einstein s equtions G µν = T µν (7) relte the expnsion rte (t) to energy distribution in the universe. On the left hnd side is the Einstein tensor which

More information

+ x 2 dω 2 = c 2 dt 2 +a(t) [ 2 dr 2 + S 1 κx 2 /R0

+ x 2 dω 2 = c 2 dt 2 +a(t) [ 2 dr 2 + S 1 κx 2 /R0 Notes for Cosmology course, fll 2005 Cosmic Dynmics Prelude [ ds 2 = c 2 dt 2 +(t) 2 dx 2 ] + x 2 dω 2 = c 2 dt 2 +(t) [ 2 dr 2 + S 1 κx 2 /R0 2 κ (r) 2 dω 2] nd x = S κ (r) = r, R 0 sin(r/r 0 ), R 0 sinh(r/r

More information

You may not start to read the questions printed on the subsequent pages until instructed to do so by the Invigilator.

You may not start to read the questions printed on the subsequent pages until instructed to do so by the Invigilator. MATHEMATICAL TRIPOS Prt III Mondy 12 June, 2006 9 to 11 PAPER 55 ADVANCED COSMOLOGY Attempt TWO questions. There re THREE questions in totl. The questions crry equl weight. STATIONERY REQUIREMENTS Cover

More information

Nonlocal Gravity and Structure in the Universe

Nonlocal Gravity and Structure in the Universe Nonlocl rvity nd Structure in the Universe Sohyun Prk Penn Stte University Co-uthor: Scott Dodelson Bsed on PRD 87 (013) 04003, 109.0836, PRD 90 (014) 000000, 1310.439 August 5, 014 Chicgo, IL Cosmo 014

More information

Physics 9 Fall 2011 Homework 2 - Solutions Friday September 2, 2011

Physics 9 Fall 2011 Homework 2 - Solutions Friday September 2, 2011 Physics 9 Fll 0 Homework - s Fridy September, 0 Mke sure your nme is on your homework, nd plese box your finl nswer. Becuse we will be giving prtil credit, be sure to ttempt ll the problems, even if you

More information

Domain Wall Start to Inflation with Contributions to Off Diagonal GR Stress Energy Tensor Terms

Domain Wall Start to Inflation with Contributions to Off Diagonal GR Stress Energy Tensor Terms Domin Wll Strt to Infltion with Contributions to Off Digonl GR Stress Energy Tensor Terms Andrew Beckwith Chongqing University Deprtment of Physics; e mil: beckwith@uh.edu Chongqing, PRC, 000 Abstrct We

More information

WMAP satellite. 16 Feb Feb Feb 2012

WMAP satellite. 16 Feb Feb Feb 2012 16 Feb 2012 21 Feb 2012 23 Feb 2012 è Announcements è Problem 5 (Hrtle 18.3). Assume V * is nonreltivistic. The reltivistic cse requires more complicted functions. è Outline è WMAP stellite è Dipole nisotropy

More information

The Active Universe. 1 Active Motion

The Active Universe. 1 Active Motion The Active Universe Alexnder Glück, Helmuth Hüffel, Sš Ilijić, Gerld Kelnhofer Fculty of Physics, University of Vienn helmuth.hueffel@univie.c.t Deprtment of Physics, FER, University of Zgreb ss.ilijic@fer.hr

More information

- 5 - TEST 2. This test is on the final sections of this session's syllabus and. should be attempted by all students.

- 5 - TEST 2. This test is on the final sections of this session's syllabus and. should be attempted by all students. - 5 - TEST 2 This test is on the finl sections of this session's syllbus nd should be ttempted by ll students. Anything written here will not be mrked. - 6 - QUESTION 1 [Mrks 22] A thin non-conducting

More information

13.4 Work done by Constant Forces

13.4 Work done by Constant Forces 13.4 Work done by Constnt Forces We will begin our discussion of the concept of work by nlyzing the motion of n object in one dimension cted on by constnt forces. Let s consider the following exmple: push

More information

Heat flux and total heat

Heat flux and total heat Het flux nd totl het John McCun Mrch 14, 2017 1 Introduction Yesterdy (if I remember correctly) Ms. Prsd sked me question bout the condition of insulted boundry for the 1D het eqution, nd (bsed on glnce

More information

The Wave Equation I. MA 436 Kurt Bryan

The Wave Equation I. MA 436 Kurt Bryan 1 Introduction The Wve Eqution I MA 436 Kurt Bryn Consider string stretching long the x xis, of indeterminte (or even infinite!) length. We wnt to derive n eqution which models the motion of the string

More information

Physics 201 Lab 3: Measurement of Earth s local gravitational field I Data Acquisition and Preliminary Analysis Dr. Timothy C. Black Summer I, 2018

Physics 201 Lab 3: Measurement of Earth s local gravitational field I Data Acquisition and Preliminary Analysis Dr. Timothy C. Black Summer I, 2018 Physics 201 Lb 3: Mesurement of Erth s locl grvittionl field I Dt Acquisition nd Preliminry Anlysis Dr. Timothy C. Blck Summer I, 2018 Theoreticl Discussion Grvity is one of the four known fundmentl forces.

More information

#6A&B Magnetic Field Mapping

#6A&B Magnetic Field Mapping #6A& Mgnetic Field Mpping Gol y performing this lb experiment, you will: 1. use mgnetic field mesurement technique bsed on Frdy s Lw (see the previous experiment),. study the mgnetic fields generted by

More information

Exam 1 Solutions (1) C, D, A, B (2) C, A, D, B (3) C, B, D, A (4) A, C, D, B (5) D, C, A, B

Exam 1 Solutions (1) C, D, A, B (2) C, A, D, B (3) C, B, D, A (4) A, C, D, B (5) D, C, A, B PHY 249, Fll 216 Exm 1 Solutions nswer 1 is correct for ll problems. 1. Two uniformly chrged spheres, nd B, re plced t lrge distnce from ech other, with their centers on the x xis. The chrge on sphere

More information

The Cosmology of the Nonsymmetric Theory of Gravitation (NGT)

The Cosmology of the Nonsymmetric Theory of Gravitation (NGT) The Cosmology of the Nonsymmetric Theory of Grvittion () By Tomislv Proopec Bsed on stro-ph/050389 nd on unpublished wor with Wessel Vlenburg (mster s student) Bonn, 8 Aug 005 Introduction: Historicl remrs

More information

Today in Astronomy 142: general relativity and the Universe

Today in Astronomy 142: general relativity and the Universe Tody in Astronomy 14: generl reltivity nd the Universe The Robertson- Wlker metric nd its use. The Friedmnn eqution nd its solutions. The ges nd ftes of flt universes The cosmologicl constnt. Glxy cluster

More information

Lecture 13 - Linking E, ϕ, and ρ

Lecture 13 - Linking E, ϕ, and ρ Lecture 13 - Linking E, ϕ, nd ρ A Puzzle... Inner-Surfce Chrge Density A positive point chrge q is locted off-center inside neutrl conducting sphericl shell. We know from Guss s lw tht the totl chrge on

More information

General Relativity 05/12/2008. Lecture 15 1

General Relativity 05/12/2008. Lecture 15 1 So Fr, We Hve Generl Reltivity Einstein Upsets the Applecrt Decided tht constnt velocity is the nturl stte of things Devised nturl philosophy in which ccelertion is the result of forces Unified terrestril

More information

The Properties of Stars

The Properties of Stars 10/11/010 The Properties of Strs sses Using Newton s Lw of Grvity to Determine the ss of Celestil ody ny two prticles in the universe ttrct ech other with force tht is directly proportionl to the product

More information

Inflation Cosmology. Ch 06 - Initial Conditions. Korea University Eunil Won. Korea U/Dept. Physics, Prof. Eunil Won (All rights are reserved)

Inflation Cosmology. Ch 06 - Initial Conditions. Korea University Eunil Won. Korea U/Dept. Physics, Prof. Eunil Won (All rights are reserved) Infltion Cosmology Ch 6 - Initil Conditions Kore University Eunil Won 1 The Einstein-Boltzmnn Equtions t Erly Times For nine first-order differentil equtions for the nine perturbtion vribles, we need initil

More information

Summer School on Cosmology July Inflation - Lecture 1. M. Sasaki Yukawa Institute, Kyoto

Summer School on Cosmology July Inflation - Lecture 1. M. Sasaki Yukawa Institute, Kyoto 354-1 Summer School on Cosmology 16-7 July 01 Infltion - Lecture 1 M. Ssi Yuw Institute, Kyoto Summer school on cosmology ICT, 16-18 July 01 Miso Ssi Yuw Institute for Theoreticl hysics Kyoto University

More information

Math 1B, lecture 4: Error bounds for numerical methods

Math 1B, lecture 4: Error bounds for numerical methods Mth B, lecture 4: Error bounds for numericl methods Nthn Pflueger 4 September 0 Introduction The five numericl methods descried in the previous lecture ll operte by the sme principle: they pproximte the

More information

Summary of equations chapters 7. To make current flow you have to push on the charges. For most materials:

Summary of equations chapters 7. To make current flow you have to push on the charges. For most materials: Summry of equtions chpters 7. To mke current flow you hve to push on the chrges. For most mterils: J E E [] The resistivity is prmeter tht vries more thn 4 orders of mgnitude between silver (.6E-8 Ohm.m)

More information

Ph2b Quiz - 1. Instructions

Ph2b Quiz - 1. Instructions Ph2b Winter 217-18 Quiz - 1 Due Dte: Mondy, Jn 29, 218 t 4pm Ph2b Quiz - 1 Instructions 1. Your solutions re due by Mondy, Jnury 29th, 218 t 4pm in the quiz box outside 21 E. Bridge. 2. Lte quizzes will

More information

P 3 (x) = f(0) + f (0)x + f (0) 2. x 2 + f (0) . In the problem set, you are asked to show, in general, the n th order term is a n = f (n) (0)

P 3 (x) = f(0) + f (0)x + f (0) 2. x 2 + f (0) . In the problem set, you are asked to show, in general, the n th order term is a n = f (n) (0) 1 Tylor polynomils In Section 3.5, we discussed how to pproximte function f(x) round point in terms of its first derivtive f (x) evluted t, tht is using the liner pproximtion f() + f ()(x ). We clled this

More information

How do we solve these things, especially when they get complicated? How do we know when a system has a solution, and when is it unique?

How do we solve these things, especially when they get complicated? How do we know when a system has a solution, and when is it unique? XII. LINEAR ALGEBRA: SOLVING SYSTEMS OF EQUATIONS Tody we re going to tlk bout solving systems of liner equtions. These re problems tht give couple of equtions with couple of unknowns, like: 6 2 3 7 4

More information

1 Probability Density Functions

1 Probability Density Functions Lis Yn CS 9 Continuous Distributions Lecture Notes #9 July 6, 28 Bsed on chpter by Chris Piech So fr, ll rndom vribles we hve seen hve been discrete. In ll the cses we hve seen in CS 9, this ment tht our

More information

Inflation Cosmology. Ch 02 - The smooth, expanding universe. Korea University Eunil Won

Inflation Cosmology. Ch 02 - The smooth, expanding universe. Korea University Eunil Won Infltion Cosmology Ch 02 - The smooth, expnding universe Kore University Eunil Won From now on, we use = c = k B = The metric Generl Reltivity - in 2-dimensionl plne, the invrint distnce squred is (dx)

More information

Chapter 0. What is the Lebesgue integral about?

Chapter 0. What is the Lebesgue integral about? Chpter 0. Wht is the Lebesgue integrl bout? The pln is to hve tutoril sheet ech week, most often on Fridy, (to be done during the clss) where you will try to get used to the ides introduced in the previous

More information

Math Lecture 23

Math Lecture 23 Mth 8 - Lecture 3 Dyln Zwick Fll 3 In our lst lecture we delt with solutions to the system: x = Ax where A is n n n mtrix with n distinct eigenvlues. As promised, tody we will del with the question of

More information

Diluting the inflationary axion fluctuation by stronger QCD in the early Universe

Diluting the inflationary axion fluctuation by stronger QCD in the early Universe Diluting the infltionry xion fluctution by stronger QCD in the erly Universe K. Choi, E. J. Chun, S. H. Im, KSJ rxiv: 1505.00306 Kwng Sik JEONG Pusn Ntionl University CosKASI Drk Mtter Workshop 2015 9-11

More information

Lecture 3 Gaussian Probability Distribution

Lecture 3 Gaussian Probability Distribution Introduction Lecture 3 Gussin Probbility Distribution Gussin probbility distribution is perhps the most used distribution in ll of science. lso clled bell shped curve or norml distribution Unlike the binomil

More information

PDE Notes. Paul Carnig. January ODE s vs PDE s 1

PDE Notes. Paul Carnig. January ODE s vs PDE s 1 PDE Notes Pul Crnig Jnury 2014 Contents 1 ODE s vs PDE s 1 2 Section 1.2 Het diffusion Eqution 1 2.1 Fourier s w of Het Conduction............................. 2 2.2 Energy Conservtion.....................................

More information

Quantum Mechanics Qualifying Exam - August 2016 Notes and Instructions

Quantum Mechanics Qualifying Exam - August 2016 Notes and Instructions Quntum Mechnics Qulifying Exm - August 016 Notes nd Instructions There re 6 problems. Attempt them ll s prtil credit will be given. Write on only one side of the pper for your solutions. Write your lis

More information

Phys 7221, Fall 2006: Homework # 6

Phys 7221, Fall 2006: Homework # 6 Phys 7221, Fll 2006: Homework # 6 Gbriel González October 29, 2006 Problem 3-7 In the lbortory system, the scttering ngle of the incident prticle is ϑ, nd tht of the initilly sttionry trget prticle, which

More information

Chapter 4 Contravariance, Covariance, and Spacetime Diagrams

Chapter 4 Contravariance, Covariance, and Spacetime Diagrams Chpter 4 Contrvrince, Covrince, nd Spcetime Digrms 4. The Components of Vector in Skewed Coordintes We hve seen in Chpter 3; figure 3.9, tht in order to show inertil motion tht is consistent with the Lorentz

More information

Math 8 Winter 2015 Applications of Integration

Math 8 Winter 2015 Applications of Integration Mth 8 Winter 205 Applictions of Integrtion Here re few importnt pplictions of integrtion. The pplictions you my see on n exm in this course include only the Net Chnge Theorem (which is relly just the Fundmentl

More information

Astro 4PT Lecture Notes Set 1. Wayne Hu

Astro 4PT Lecture Notes Set 1. Wayne Hu Astro 4PT Lecture Notes Set 1 Wyne Hu References Reltivistic Cosmologicl Perturbtion Theory Infltion Drk Energy Modified Grvity Cosmic Microwve Bckground Lrge Scle Structure Brdeen (1980), PRD 22 1882

More information

MASSACHUSETTS INSTITUTE OF TECHNOLOGY Physics Department Statistical Physics I Spring Term Solutions to Problem Set #1

MASSACHUSETTS INSTITUTE OF TECHNOLOGY Physics Department Statistical Physics I Spring Term Solutions to Problem Set #1 MASSACHUSETTS INSTITUTE OF TECHNOLOGY Physics Deprtment 8.044 Sttisticl Physics I Spring Term 03 Problem : Doping Semiconductor Solutions to Problem Set # ) Mentlly integrte the function p(x) given in

More information

Improper Integrals, and Differential Equations

Improper Integrals, and Differential Equations Improper Integrls, nd Differentil Equtions October 22, 204 5.3 Improper Integrls Previously, we discussed how integrls correspond to res. More specificlly, we sid tht for function f(x), the region creted

More information

221B Lecture Notes WKB Method

221B Lecture Notes WKB Method Clssicl Limit B Lecture Notes WKB Method Hmilton Jcobi Eqution We strt from the Schrödinger eqution for single prticle in potentil i h t ψ x, t = [ ] h m + V x ψ x, t. We cn rewrite this eqution by using

More information

Massachusetts Institute of Technology Quantum Mechanics I (8.04) Spring 2005 Solutions to Problem Set 6

Massachusetts Institute of Technology Quantum Mechanics I (8.04) Spring 2005 Solutions to Problem Set 6 Msschusetts Institute of Technology Quntum Mechnics I (8.) Spring 5 Solutions to Problem Set 6 By Kit Mtn. Prctice with delt functions ( points) The Dirc delt function my be defined s such tht () (b) 3

More information

Practive Derivations for MT 1 GSI: Goni Halevi SOLUTIONS

Practive Derivations for MT 1 GSI: Goni Halevi SOLUTIONS Prctive Derivtions for MT GSI: Goni Hlevi SOLUTIONS Note: These solutions re perhps excessively detiled, but I wnted to ddress nd explin every step nd every pproximtion in cse you forgot where some of

More information

A Vectors and Tensors in General Relativity

A Vectors and Tensors in General Relativity 1 A Vectors nd Tensors in Generl Reltivity A.1 Vectors, tensors, nd the volume element The metric of spcetime cn lwys be written s ds 2 = g µν dx µ dx ν µ=0 ν=0 g µν dx µ dx ν. (1) We introduce Einstein

More information

15. Quantisation Noise and Nonuniform Quantisation

15. Quantisation Noise and Nonuniform Quantisation 5. Quntistion Noise nd Nonuniform Quntistion In PCM, n nlogue signl is smpled, quntised, nd coded into sequence of digits. Once we hve quntised the smpled signls, the exct vlues of the smpled signls cn

More information

Quantum Analogs Chapter 4 Student Manual

Quantum Analogs Chapter 4 Student Manual Quntum Anlogs Chpter 4 Student Mnul Modeling One Dimensionl Solid Professor Rene Mtzdorf Universitet Kssel Stud. Mn. Rev 2.0 12/09 4. Modeling one-dimensionl solid There re two different wys to explin

More information

Name Solutions to Test 3 November 8, 2017

Name Solutions to Test 3 November 8, 2017 Nme Solutions to Test 3 November 8, 07 This test consists of three prts. Plese note tht in prts II nd III, you cn skip one question of those offered. Some possibly useful formuls cn be found below. Brrier

More information

8 Laplace s Method and Local Limit Theorems

8 Laplace s Method and Local Limit Theorems 8 Lplce s Method nd Locl Limit Theorems 8. Fourier Anlysis in Higher DImensions Most of the theorems of Fourier nlysis tht we hve proved hve nturl generliztions to higher dimensions, nd these cn be proved

More information

Measuring Electron Work Function in Metal

Measuring Electron Work Function in Metal n experiment of the Electron topic Mesuring Electron Work Function in Metl Instructor: 梁生 Office: 7-318 Emil: shling@bjtu.edu.cn Purposes 1. To understnd the concept of electron work function in metl nd

More information

Jackson 2.26 Homework Problem Solution Dr. Christopher S. Baird University of Massachusetts Lowell

Jackson 2.26 Homework Problem Solution Dr. Christopher S. Baird University of Massachusetts Lowell Jckson 2.26 Homework Problem Solution Dr. Christopher S. Bird University of Msschusetts Lowell PROBLEM: The two-dimensionl region, ρ, φ β, is bounded by conducting surfces t φ =, ρ =, nd φ = β held t zero

More information

Chapter 3 The Schrödinger Equation and a Particle in a Box

Chapter 3 The Schrödinger Equation and a Particle in a Box Chpter 3 The Schrödinger Eqution nd Prticle in Bo Bckground: We re finlly ble to introduce the Schrödinger eqution nd the first quntum mechnicl model prticle in bo. This eqution is the bsis of quntum mechnics

More information

( dg. ) 2 dt. + dt. dt j + dh. + dt. r(t) dt. Comparing this equation with the one listed above for the length of see that

( dg. ) 2 dt. + dt. dt j + dh. + dt. r(t) dt. Comparing this equation with the one listed above for the length of see that Arc Length of Curves in Three Dimensionl Spce If the vector function r(t) f(t) i + g(t) j + h(t) k trces out the curve C s t vries, we cn mesure distnces long C using formul nerly identicl to one tht we

More information

5.7 Improper Integrals

5.7 Improper Integrals 458 pplictions of definite integrls 5.7 Improper Integrls In Section 5.4, we computed the work required to lift pylod of mss m from the surfce of moon of mss nd rdius R to height H bove the surfce of the

More information

Classical Mechanics. From Molecular to Con/nuum Physics I WS 11/12 Emiliano Ippoli/ October, 2011

Classical Mechanics. From Molecular to Con/nuum Physics I WS 11/12 Emiliano Ippoli/ October, 2011 Clssicl Mechnics From Moleculr to Con/nuum Physics I WS 11/12 Emilino Ippoli/ October, 2011 Wednesdy, October 12, 2011 Review Mthemtics... Physics Bsic thermodynmics Temperture, idel gs, kinetic gs theory,

More information

Physics 202H - Introductory Quantum Physics I Homework #08 - Solutions Fall 2004 Due 5:01 PM, Monday 2004/11/15

Physics 202H - Introductory Quantum Physics I Homework #08 - Solutions Fall 2004 Due 5:01 PM, Monday 2004/11/15 Physics H - Introductory Quntum Physics I Homework #8 - Solutions Fll 4 Due 5:1 PM, Mondy 4/11/15 [55 points totl] Journl questions. Briefly shre your thoughts on the following questions: Of the mteril

More information

ON INFLATION AND TORSION IN COSMOLOGY

ON INFLATION AND TORSION IN COSMOLOGY Vol. 36 (005) ACTA PHYSICA POLONICA B No 10 ON INFLATION AND TORSION IN COSMOLOGY Christin G. Böhmer The Erwin Schrödinger Interntionl Institute for Mthemticl Physics Boltzmnngsse 9, A-1090 Wien, Austri

More information

Quantum Nonlocality Pt. 2: No-Signaling and Local Hidden Variables May 1, / 16

Quantum Nonlocality Pt. 2: No-Signaling and Local Hidden Variables May 1, / 16 Quntum Nonloclity Pt. 2: No-Signling nd Locl Hidden Vriles My 1, 2018 Quntum Nonloclity Pt. 2: No-Signling nd Locl Hidden Vriles My 1, 2018 1 / 16 Non-Signling Boxes The primry lesson from lst lecture

More information

Partial Derivatives. Limits. For a single variable function f (x), the limit lim

Partial Derivatives. Limits. For a single variable function f (x), the limit lim Limits Prtil Derivtives For single vrible function f (x), the limit lim x f (x) exists only if the right-hnd side limit equls to the left-hnd side limit, i.e., lim f (x) = lim f (x). x x + For two vribles

More information

Sufficient condition on noise correlations for scalable quantum computing

Sufficient condition on noise correlations for scalable quantum computing Sufficient condition on noise correltions for sclble quntum computing John Presill, 2 Februry 202 Is quntum computing sclble? The ccurcy threshold theorem for quntum computtion estblishes tht sclbility

More information

The area under the graph of f and above the x-axis between a and b is denoted by. f(x) dx. π O

The area under the graph of f and above the x-axis between a and b is denoted by. f(x) dx. π O 1 Section 5. The Definite Integrl Suppose tht function f is continuous nd positive over n intervl [, ]. y = f(x) x The re under the grph of f nd ove the x-xis etween nd is denoted y f(x) dx nd clled the

More information

Predict Global Earth Temperature using Linier Regression

Predict Global Earth Temperature using Linier Regression Predict Globl Erth Temperture using Linier Regression Edwin Swndi Sijbt (23516012) Progrm Studi Mgister Informtik Sekolh Teknik Elektro dn Informtik ITB Jl. Gnesh 10 Bndung 40132, Indonesi 23516012@std.stei.itb.c.id

More information

Dynamics: Newton s Laws of Motion

Dynamics: Newton s Laws of Motion Lecture 7 Chpter 4 Physics I 09.25.2013 Dynmics: Newton s Lws of Motion Solving Problems using Newton s lws Course website: http://fculty.uml.edu/andriy_dnylov/teching/physicsi Lecture Cpture: http://echo360.uml.edu/dnylov2013/physics1fll.html

More information

Goals: Determine how to calculate the area described by a function. Define the definite integral. Explore the relationship between the definite

Goals: Determine how to calculate the area described by a function. Define the definite integral. Explore the relationship between the definite Unit #8 : The Integrl Gols: Determine how to clculte the re described by function. Define the definite integrl. Eplore the reltionship between the definite integrl nd re. Eplore wys to estimte the definite

More information

The Form of Hanging Slinky

The Form of Hanging Slinky Bulletin of Aichi Univ. of Eduction, 66Nturl Sciences, pp. - 6, Mrch, 07 The Form of Hnging Slinky Kenzi ODANI Deprtment of Mthemtics Eduction, Aichi University of Eduction, Kriy 448-854, Jpn Introduction

More information

Thermodynamics of the early universe, v.4

Thermodynamics of the early universe, v.4 Thermodynmics of the erly universe, v.4 A physicl description of the universe is possible when it is ssumed to be filled with mtter nd rdition which follows the known lws of physics. So fr there is no

More information

First Law of Thermodynamics. Control Mass (Closed System) Conservation of Mass. Conservation of Energy

First Law of Thermodynamics. Control Mass (Closed System) Conservation of Mass. Conservation of Energy First w of hermodynmics Reding Problems 3-3-7 3-0, 3-5, 3-05 5-5- 5-8, 5-5, 5-9, 5-37, 5-0, 5-, 5-63, 5-7, 5-8, 5-09 6-6-5 6-, 6-5, 6-60, 6-80, 6-9, 6-, 6-68, 6-73 Control Mss (Closed System) In this section

More information

Riemann is the Mann! (But Lebesgue may besgue to differ.)

Riemann is the Mann! (But Lebesgue may besgue to differ.) Riemnn is the Mnn! (But Lebesgue my besgue to differ.) Leo Livshits My 2, 2008 1 For finite intervls in R We hve seen in clss tht every continuous function f : [, b] R hs the property tht for every ɛ >

More information

Lecture 14: Quadrature

Lecture 14: Quadrature Lecture 14: Qudrture This lecture is concerned with the evlution of integrls fx)dx 1) over finite intervl [, b] The integrnd fx) is ssumed to be rel-vlues nd smooth The pproximtion of n integrl by numericl

More information

Physics 121 Sample Common Exam 1 NOTE: ANSWERS ARE ON PAGE 8. Instructions:

Physics 121 Sample Common Exam 1 NOTE: ANSWERS ARE ON PAGE 8. Instructions: Physics 121 Smple Common Exm 1 NOTE: ANSWERS ARE ON PAGE 8 Nme (Print): 4 Digit ID: Section: Instructions: Answer ll questions. uestions 1 through 16 re multiple choice questions worth 5 points ech. You

More information

CHM Physical Chemistry I Chapter 1 - Supplementary Material

CHM Physical Chemistry I Chapter 1 - Supplementary Material CHM 3410 - Physicl Chemistry I Chpter 1 - Supplementry Mteril For review of some bsic concepts in mth, see Atkins "Mthemticl Bckground 1 (pp 59-6), nd "Mthemticl Bckground " (pp 109-111). 1. Derivtion

More information

SUMMER KNOWHOW STUDY AND LEARNING CENTRE

SUMMER KNOWHOW STUDY AND LEARNING CENTRE SUMMER KNOWHOW STUDY AND LEARNING CENTRE Indices & Logrithms 2 Contents Indices.2 Frctionl Indices.4 Logrithms 6 Exponentil equtions. Simplifying Surds 13 Opertions on Surds..16 Scientific Nottion..18

More information

R. I. Badran Solid State Physics

R. I. Badran Solid State Physics I Bdrn Solid Stte Physics Crystl vibrtions nd the clssicl theory: The ssmption will be mde to consider tht the men eqilibrim position of ech ion is t Brvis lttice site The ions oscillte bot this men position

More information

p(t) dt + i 1 re it ireit dt =

p(t) dt + i 1 re it ireit dt = Note: This mteril is contined in Kreyszig, Chpter 13. Complex integrtion We will define integrls of complex functions long curves in C. (This is bit similr to [relvlued] line integrls P dx + Q dy in R2.)

More information

1 Online Learning and Regret Minimization

1 Online Learning and Regret Minimization 2.997 Decision-Mking in Lrge-Scle Systems My 10 MIT, Spring 2004 Hndout #29 Lecture Note 24 1 Online Lerning nd Regret Minimiztion In this lecture, we consider the problem of sequentil decision mking in

More information

Review of Gaussian Quadrature method

Review of Gaussian Quadrature method Review of Gussin Qudrture method Nsser M. Asi Spring 006 compiled on Sundy Decemer 1, 017 t 09:1 PM 1 The prolem To find numericl vlue for the integrl of rel vlued function of rel vrile over specific rnge

More information

5.04 Principles of Inorganic Chemistry II

5.04 Principles of Inorganic Chemistry II MIT OpenCourseWre http://ocw.mit.edu 5.04 Principles of Inorgnic Chemistry II Fll 2008 For informtion bout citing these mterils or our Terms of Use, visit: http://ocw.mit.edu/terms. 5.04, Principles of

More information

Lecture 5. Today: Motion in many dimensions: Circular motion. Uniform Circular Motion

Lecture 5. Today: Motion in many dimensions: Circular motion. Uniform Circular Motion Lecture 5 Physics 2A Olg Dudko UCSD Physics Tody: Motion in mny dimensions: Circulr motion. Newton s Lws of Motion. Lws tht nswer why questions bout motion. Forces. Inerti. Momentum. Uniform Circulr Motion

More information

Quantum Physics I (8.04) Spring 2016 Assignment 8

Quantum Physics I (8.04) Spring 2016 Assignment 8 Quntum Physics I (8.04) Spring 206 Assignment 8 MIT Physics Deprtment Due Fridy, April 22, 206 April 3, 206 2:00 noon Problem Set 8 Reding: Griffiths, pges 73-76, 8-82 (on scttering sttes). Ohnin, Chpter

More information

Quantum Physics II (8.05) Fall 2013 Assignment 2

Quantum Physics II (8.05) Fall 2013 Assignment 2 Quntum Physics II (8.05) Fll 2013 Assignment 2 Msschusetts Institute of Technology Physics Deprtment Due Fridy September 20, 2013 September 13, 2013 3:00 pm Suggested Reding Continued from lst week: 1.

More information

221A Lecture Notes WKB Method

221A Lecture Notes WKB Method A Lecture Notes WKB Method Hmilton Jcobi Eqution We strt from the Schrödinger eqution for single prticle in potentil i h t ψ x, t = [ ] h m + V x ψ x, t. We cn rewrite this eqution by using ψ x, t = e

More information

How do we solve these things, especially when they get complicated? How do we know when a system has a solution, and when is it unique?

How do we solve these things, especially when they get complicated? How do we know when a system has a solution, and when is it unique? XII. LINEAR ALGEBRA: SOLVING SYSTEMS OF EQUATIONS Tody we re going to tlk out solving systems of liner equtions. These re prolems tht give couple of equtions with couple of unknowns, like: 6= x + x 7=

More information

than 1. It means in particular that the function is decreasing and approaching the x-

than 1. It means in particular that the function is decreasing and approaching the x- 6 Preclculus Review Grph the functions ) (/) ) log y = b y = Solution () The function y = is n eponentil function with bse smller thn It mens in prticulr tht the function is decresing nd pproching the

More information

Introduction to Astrophysics

Introduction to Astrophysics PHY472 Dt Provided: Formul sheet nd physicl constnts Dt Provided: A formul sheet nd tble of physicl constnts is ttched to this pper. DEPARTMENT OF PHYSICS & Autumn Semester 2009-2010 ASTRONOMY DEPARTMENT

More information

Week 10: Line Integrals

Week 10: Line Integrals Week 10: Line Integrls Introduction In this finl week we return to prmetrised curves nd consider integrtion long such curves. We lredy sw this in Week 2 when we integrted long curve to find its length.

More information

arxiv:submit/ [gr-qc] 21 May 2012

arxiv:submit/ [gr-qc] 21 May 2012 rxiv:submit/0477709 [gr-qc] 21 My 2012 Tricriticl quntum point nd infltionry cosmology Lwrence B. Crowell My 21, 2012 Alph Institute of Advnced Study 10600 Cibol Lp 311 NW Albuquerque, NM 87114 lso 11

More information

Physics Graduate Prelim exam

Physics Graduate Prelim exam Physics Grdute Prelim exm Fll 2008 Instructions: This exm hs 3 sections: Mechnics, EM nd Quntum. There re 3 problems in ech section You re required to solve 2 from ech section. Show ll work. This exm is

More information

W. We shall do so one by one, starting with I 1, and we shall do it greedily, trying

W. We shall do so one by one, starting with I 1, and we shall do it greedily, trying Vitli covers 1 Definition. A Vitli cover of set E R is set V of closed intervls with positive length so tht, for every δ > 0 nd every x E, there is some I V with λ(i ) < δ nd x I. 2 Lemm (Vitli covering)

More information

Math 124A October 04, 2011

Math 124A October 04, 2011 Mth 4A October 04, 0 Viktor Grigoryn 4 Vibrtions nd het flow In this lecture we will derive the wve nd het equtions from physicl principles. These re second order constnt coefficient liner PEs, which model

More information

Infinite Geometric Series

Infinite Geometric Series Infinite Geometric Series Finite Geometric Series ( finite SUM) Let 0 < r < 1, nd let n be positive integer. Consider the finite sum It turns out there is simple lgebric expression tht is equivlent to

More information

Applications of Bernoulli s theorem. Lecture - 7

Applications of Bernoulli s theorem. Lecture - 7 Applictions of Bernoulli s theorem Lecture - 7 Prcticl Applictions of Bernoulli s Theorem The Bernoulli eqution cn be pplied to gret mny situtions not just the pipe flow we hve been considering up to now.

More information

DISCRETE MATHEMATICS HOMEWORK 3 SOLUTIONS

DISCRETE MATHEMATICS HOMEWORK 3 SOLUTIONS DISCRETE MATHEMATICS 21228 HOMEWORK 3 SOLUTIONS JC Due in clss Wednesdy September 17. You my collborte but must write up your solutions by yourself. Lte homework will not be ccepted. Homework must either

More information

Monte Carlo method in solving numerical integration and differential equation

Monte Carlo method in solving numerical integration and differential equation Monte Crlo method in solving numericl integrtion nd differentil eqution Ye Jin Chemistry Deprtment Duke University yj66@duke.edu Abstrct: Monte Crlo method is commonly used in rel physics problem. The

More information

The Regulated and Riemann Integrals

The Regulated and Riemann Integrals Chpter 1 The Regulted nd Riemnn Integrls 1.1 Introduction We will consider severl different pproches to defining the definite integrl f(x) dx of function f(x). These definitions will ll ssign the sme vlue

More information

KINEMATICS OF RIGID BODIES

KINEMATICS OF RIGID BODIES KINEMTICS OF RIGID ODIES Introduction In rigid body kinemtics, e use the reltionships governing the displcement, velocity nd ccelertion, but must lso ccount for the rottionl motion of the body. Description

More information

Introduction to Determinants. Remarks. Remarks. The determinant applies in the case of square matrices

Introduction to Determinants. Remarks. Remarks. The determinant applies in the case of square matrices Introduction to Determinnts Remrks The determinnt pplies in the cse of squre mtrices squre mtrix is nonsingulr if nd only if its determinnt not zero, hence the term determinnt Nonsingulr mtrices re sometimes

More information

Rel Gses 1. Gses (N, CO ) which don t obey gs lws or gs eqution P=RT t ll pressure nd tempertures re clled rel gses.. Rel gses obey gs lws t extremely low pressure nd high temperture. Rel gses devited

More information