Quantum Physics I (8.04) Spring 2016 Assignment 8

Save this PDF as:

Size: px
Start display at page:

Transcription

1 Quntum Physics I (8.04) Spring 206 Assignment 8 MIT Physics Deprtment Due Fridy, April 22, 206 April 3, 206 2:00 noon Problem Set 8 Reding: Griffiths, pges 73-76, 8-82 (on scttering sttes). Ohnin, Chpter : Scttering nd Resonnces. Sttes of the hrmonic oscilltor [5 points] Consider the stte ψ α defined by ψ α N exp(αâ )ϕ 0, with α C complex number. For the first two questions below it my be helpful to simply expnd the bove exponentil. () Find the constnt N needed for the stte ψ α to be normlized. (b) Show tht the stte ψ α is n eigenstte of the nnihiltion opertor â. Wht is the eigenvlue? (c) Find the expecttion vlue of the Hmiltonin in the stte ψ α. (d) Find the uncertinty in the energy in the stte ψ α. (e) Use the eigenvlue eqution, viewed s differentil eqution to clculte the explicit form of the normlized wvefunction ψ α. 2. Two delt functions- gin [5 points] Consider gin the problem of prticle of mss m moving in one-dimensionl double well potentil V(x) = gδ(x ) gδ(x+), g > 0. You found in the previous set the vlue of the bound stte energy E for the even stte in terms of the energy E 0 = 2 /(2m 2 ). You hd ξ = κ E E 0 = ξ 2 where ξ +e 2ξ = λ, λ mg, 2 with λ unit free, encoding the intensity g of the delt functions, if is constnt, or the seprtion of the delt functions, if g is constnt. We cn thus write λ = 0 0 2, mg

2 Physics 8.04, Quntum Physics, Spring with 0 nturl length scle in the problem once g is fixed. Introduce lso the energy E ssocited with single delt function: mg 2 E. 2 2 Assume now tht this is model for ditomic molecule with intertomic distnce 2. The bound stte electron helps overcome the repulsive energy between the ions. Let the repulsive potentil energy V r (x), with x the distnce between the toms, be given by βg V r (x) =, β > 0, x where β is smll number. The totl potentil energy V tot of the configurtion is the sum of the negtive energy E of the bound stte nd the positive repulsive energy: V tot = E +V r (2). () Write E s E = E f(ξ,λ) where f is function you should determine. Plot E s function of / 0 = λ in order to understnd how the ground stte energy vries s function of the seprtion between the molecules. Wht re the vlues of E for 0 nd for? (b) Write V r in terms of E,β, nd λ. (c) Now consider the totl potentil energy V tot nd plot it s function of / 0 = λ for vrious vlues of β. You should find criticl stble point for the potentil for sufficiently smll β. For β = 0.3 wht is the pproximte vlue of / 0 t the criticl point of the potentil? 3. Finite squre well turning into the infinite squre well [5 points] Consider the stndrd squre well potentil { V 0, for x, V 0 > 0, V(x) = 0 for x >, nd the wvefunction for n even stte coskx, for x, ψ(x) = A e κ x, for x >, () (2) where we included the prefctor to hve consistent units for ψ. We wnt to hve better understnding of the limit s V 0 nd understnd why the discontinuity in ψ in the infinite well does not give trouble. Keeping m nd constnt s we let V 0 grow lrge is the sme s letting z 0 grow lrge. A previous nlysis hs demonstrted tht for the ground stte, in the sitution of lrge z 0, the nstz (2) is ccurtely normlized nd η = k π 2 ( z 0 ), ξ = κ z 0, A π 2z 0 e z 0.

3 Physics 8.04, Quntum Physics, Spring We wnt to see if the expecttion vlue of the Hmiltonin receives singulr contribution from the forbidden region. Since the potentil V(x) vnishes there, we only need to concern ourselves with the contribution from the kinetic energy opertor K = p2 2m. Clculte the contribution to the expecttion of K from the forbidden region x > K x> dxψ (x)kψ(x) The nswer should be in terms of z 0. Interpret your result. 4. Reflection of wvepcket off step potentil [20 points] Consider step potentil with step height V 0 : { V 0, for x > 0 V(x) = 0, for x < 0. () We send in from x = wvepcket ll of whose momentum components hve energies less thn the energy V 0 of the step. For this we need modes with k stisfying We will then write the incident wvepcket s 2 2mV0 k k, k =. (2) 2 Ψ inc (x) = k dkφ(k)e ikx e ie(k)t/, x < 0. (3) 0 Here is the constnt with units of length, uniquely determined by the constnts m,v 0, in this problem, nd Φ(k) is rel, unit-free function peked t k 0 < k 2, Φ(k) = e β 2 (k k 0 ) 2. (4) mv 0 The rel constnt β, to be fixed below, controls the width of the momentum distribution. The units of Ψ inc re L /2 nd tht s why we included the prefctor in (3). Recll tht dk hs units of L. () Write the reflected wvefunction (vlid for x < 0) s n integrl similr to (3). This integrl involves the phse shift δ(e) clculted in clss. Introduce unit free version K of the wvenumber k, unit-free version u of the coordinte x, nd unit-free version τ of the time t s follows K k, x u, t τ. (5) V 0 Nturlly, we will write k 0 = K 0 /. Note tht kx = Ku.

4 Physics 8.04, Quntum Physics, Spring (b) Show tht the group velocity nd the uncertinty reltion for the incoming pcket tke the form du = #K0, u K τ #, d where# represent numericl constnts tht you should fix (different constnts!). Use the pproximtion tht we hve the full gussin Φ(K) 2 to determine the uncertinty K in the incoming pcket in terms of β. Assuming gin tht we hvefullgussin, whtwouldbe(intermsofβ) theminimumpossiblevlueof the uncertinty u for the ssocited coordinte spce probbility distribution? (c) Complete the following equtions by fixing the constnts represented by # E(k) = #V 0 K 2, e 2iδ(E) = #+#K 2 +ik #+#K 2 w(k). (d) Show tht the dely t = 2 δ (E) experienced by the reflected wve implies τ given by # τ = K0, #+#K 2 0 where you must fix the constnts. (e) Prove tht thecomplete wvefunction Ψ(x,t) vlid for x < 0 ndll times, which we now view s Ψ(u,τ) vlid for u < 0 nd ll τ, tkes the form 2 Ψ(u,τ) = nd determine the two missing constnts. 0 ( ) dke β2 (K K 0 ) 2 e i#k2 τ e iku e iku w(k) # (f) Set β = 4 nd K 0 =. Wht re the vlues of K nd u? Wht is the predicted time dely τ? (Not grded: Cn you mke n informed guess if the pcket will chnge shpe quickly?) Now use Mthemtic to clculte nd mke plots of the probbility density 2Ψ(u,τ) 2. Give the plot of the wvefunction for τ = 20, 5, nd 0, nd using u [ 30,0]. Exmine the plot for τ = 20 nd determine the time dely τ by looking t the position of the pek of the pcket. Your nswer should come resonbly close to the nlyticl vlue you determined previously. 5. Scttering off rectngulr brrier. Bsed on Griffiths p.83. [0 points] Do only the cses E < V 0 nd E = V 0. Cn you get T = for E < V 0? Find the nswer for E > V 0 in some book (or do it). When does one get T = for E > V 0?

5 MIT OpenCourseWre Quntum Physics I Spring 206 For informtion bout citing these mterils or our Terms of Use, visit:

Energy Bands Energy Bands and Band Gap. Phys463.nb Phenomenon

Phys463.nb 49 7 Energy Bnds Ref: textbook, Chpter 7 Q: Why re there insultors nd conductors? Q: Wht will hppen when n electron moves in crystl? In the previous chpter, we discussed free electron gses,

University of Washington Department of Chemistry Chemistry 453 Winter Quarter 2010 Homework Assignment 4; Due at 5p.m. on 2/01/10

University of Wshington Deprtment of Chemistry Chemistry 45 Winter Qurter Homework Assignment 4; Due t 5p.m. on // We lerned tht the Hmiltonin for the quntized hrmonic oscilltor is ˆ d κ H. You cn obtin

The Wave Equation I. MA 436 Kurt Bryan

1 Introduction The Wve Eqution I MA 436 Kurt Bryn Consider string stretching long the x xis, of indeterminte (or even infinite!) length. We wnt to derive n eqution which models the motion of the string

Solutions to Problems in Merzbacher, Quantum Mechanics, Third Edition. Chapter 7

Solutions to Problems in Merzbcher, Quntum Mechnics, Third Edition Homer Reid April 5, 200 Chpter 7 Before strting on these problems I found it useful to review how the WKB pproimtion works in the first

Continuous Random Variables

STAT/MATH 395 A - PROBABILITY II UW Winter Qurter 217 Néhémy Lim Continuous Rndom Vribles Nottion. The indictor function of set S is rel-vlued function defined by : { 1 if x S 1 S (x) if x S Suppose tht

The solutions of the single electron Hamiltonian were shown to be Bloch wave of the form: ( ) ( ) ikr

Lecture #1 Progrm 1. Bloch solutions. Reciprocl spce 3. Alternte derivtion of Bloch s theorem 4. Trnsforming the serch for egenfunctions nd eigenvlues from solving PDE to finding the e-vectors nd e-vlues

Physics 9 Fall 2011 Homework 2 - Solutions Friday September 2, 2011

Physics 9 Fll 0 Homework - s Fridy September, 0 Mke sure your nme is on your homework, nd plese box your finl nswer. Becuse we will be giving prtil credit, be sure to ttempt ll the problems, even if you

Continuous Random Variables Class 5, Jeremy Orloff and Jonathan Bloom

Lerning Gols Continuous Rndom Vriles Clss 5, 8.05 Jeremy Orloff nd Jonthn Bloom. Know the definition of continuous rndom vrile. 2. Know the definition of the proility density function (pdf) nd cumultive

Lecture 8. Band theory con.nued

Lecture 8 Bnd theory con.nued Recp: Solved Schrodinger qu.on for free electrons, for electrons bound in poten.l box, nd bound by proton. Discrete energy levels rouse. The Schrodinger qu.on pplied to periodic

7.6 The Use of Definite Integrals in Physics and Engineering

Arknss Tech University MATH 94: Clculus II Dr. Mrcel B. Finn 7.6 The Use of Definite Integrls in Physics nd Engineering It hs been shown how clculus cn be pplied to find solutions to geometric problems

Jackson 2.26 Homework Problem Solution Dr. Christopher S. Baird University of Massachusetts Lowell

Jckson 2.26 Homework Problem Solution Dr. Christopher S. Bird University of Msschusetts Lowell PROBLEM: The two-dimensionl region, ρ, φ β, is bounded by conducting surfces t φ =, ρ =, nd φ = β held t zero

Vibrational Relaxation of HF (v=3) + CO

Journl of the Koren Chemicl Society 26, Vol. 6, No. 6 Printed in the Republic of Kore http://dx.doi.org/.52/jkcs.26.6.6.462 Notes Vibrtionl Relxtion of HF (v3) + CO Chng Soon Lee Deprtment of Chemistry,

Phys 7221, Fall 2006: Homework # 6

Phys 7221, Fll 2006: Homework # 6 Gbriel González October 29, 2006 Problem 3-7 In the lbortory system, the scttering ngle of the incident prticle is ϑ, nd tht of the initilly sttionry trget prticle, which

63. Representation of functions as power series Consider a power series. ( 1) n x 2n for all 1 < x < 1

3 9. SEQUENCES AND SERIES 63. Representtion of functions s power series Consider power series x 2 + x 4 x 6 + x 8 + = ( ) n x 2n It is geometric series with q = x 2 nd therefore it converges for ll q =

Numerical integration

2 Numericl integrtion This is pge i Printer: Opque this 2. Introduction Numericl integrtion is problem tht is prt of mny problems in the economics nd econometrics literture. The orgniztion of this chpter

Applied Physics Introduction to Vibrations and Waves (with a focus on elastic waves) Course Outline

Applied Physics Introduction to Vibrtions nd Wves (with focus on elstic wves) Course Outline Simple Hrmonic Motion && + ω 0 ω k /m k elstic property of the oscilltor Elstic properties of terils Stretching,

Test , 8.2, 8.4 (density only), 8.5 (work only), 9.1, 9.2 and 9.3 related test 1 material and material from prior classes

Test 2 8., 8.2, 8.4 (density only), 8.5 (work only), 9., 9.2 nd 9.3 relted test mteril nd mteril from prior clsses Locl to Globl Perspectives Anlyze smll pieces to understnd the big picture. Exmples: numericl

Topic 1 Notes Jeremy Orloff

Topic 1 Notes Jerem Orloff 1 Introduction to differentil equtions 1.1 Gols 1. Know the definition of differentil eqution. 2. Know our first nd second most importnt equtions nd their solutions. 3. Be ble

Math 8 Winter 2015 Applications of Integration

Mth 8 Winter 205 Applictions of Integrtion Here re few importnt pplictions of integrtion. The pplictions you my see on n exm in this course include only the Net Chnge Theorem (which is relly just the Fundmentl

MAC-solutions of the nonexistent solutions of mathematical physics

Proceedings of the 4th WSEAS Interntionl Conference on Finite Differences - Finite Elements - Finite Volumes - Boundry Elements MAC-solutions of the nonexistent solutions of mthemticl physics IGO NEYGEBAUE

arxiv:quant-ph/ v1 28 Sep 2001

EHU-FT/16 Asymptotic behviour of the probbility density in one dimension J. A. Dmborene, 1, I. L. Egusquiz, 1 nd J. G. Mug 1 Fisik Teorikoren Sil, Euskl Herriko Unibertsitte, 644 P.K., 488 Bilbo, Spin

Chpter 4 Additionl Vritionl Concepts 137 In the previous chpter we considered clculus o vrition problems which hd ixed boundry conditions. Tht is, in one dimension the end point conditions were speciied.

Partial Differential Equations

Prtil Differentil Equtions Notes by Robert Piché, Tmpere University of Technology reen s Functions. reen s Function for One-Dimensionl Eqution The reen s function provides complete solution to boundry

Polynomial Approximations for the Natural Logarithm and Arctangent Functions. Math 230

Polynomil Approimtions for the Nturl Logrithm nd Arctngent Functions Mth 23 You recll from first semester clculus how one cn use the derivtive to find n eqution for the tngent line to function t given

Best Approximation. Chapter The General Case

Chpter 4 Best Approximtion 4.1 The Generl Cse In the previous chpter, we hve seen how n interpolting polynomil cn be used s n pproximtion to given function. We now wnt to find the best pproximtion to given

The final exam will take place on Friday May 11th from 8am 11am in Evans room 60.

Mth 104: finl informtion The finl exm will tke plce on Fridy My 11th from 8m 11m in Evns room 60. The exm will cover ll prts of the course with equl weighting. It will cover Chpters 1 5, 7 15, 17 21, 23

dx dt dy = G(t, x, y), dt where the functions are defined on I Ω, and are locally Lipschitz w.r.t. variable (x, y) Ω.

Chpter 8 Stility theory We discuss properties of solutions of first order two dimensionl system, nd stility theory for specil clss of liner systems. We denote the independent vrile y t in plce of x, nd

5.5 The Substitution Rule

5.5 The Substitution Rule Given the usefulness of the Fundmentl Theorem, we wnt some helpful methods for finding ntiderivtives. At the moment, if n nti-derivtive is not esily recognizble, then we re in

ECO 317 Economics of Uncertainty Fall Term 2007 Notes for lectures 4. Stochastic Dominance

Generl structure ECO 37 Economics of Uncertinty Fll Term 007 Notes for lectures 4. Stochstic Dominnce Here we suppose tht the consequences re welth mounts denoted by W, which cn tke on ny vlue between

Continuous probability distributions

Chpter 1 Continuous probbility distributions 1.1 Introduction We cll x continuous rndom vrible in x b if x cn tke on ny vlue in this intervl. An exmple of rndom vrible is the height of dult humn mle, selected

Numerical Integration

Numericl Integrtion Wouter J. Den Hn London School of Economics c 2011 by Wouter J. Den Hn June 3, 2011 Qudrture techniques I = f (x)dx n n w i f (x i ) = w i f i i=1 i=1 Nodes: x i Weights: w i Qudrture

HW9.nb 1. be a symmetric (parity-even) function, with a close excited state with an anti-symmetric (parity-odd) wave function.

HW9.nb HW #9. Rectngulr Double-Well Potentil Becuse the potentil is infinite for» x» > + b, the wve function should vnish t x = H + bl. For < x < + b nd - - b < x < -, the potentil vnishes nd the wve function

STEP FUNCTIONS, DELTA FUNCTIONS, AND THE VARIATION OF PARAMETERS FORMULA. 0 if t < 0, 1 if t > 0.

STEP FUNCTIONS, DELTA FUNCTIONS, AND THE VARIATION OF PARAMETERS FORMULA STEPHEN SCHECTER. The unit step function nd piecewise continuous functions The Heviside unit step function u(t) is given by if t

Mapping the delta function and other Radon measures

Mpping the delt function nd other Rdon mesures Notes for Mth583A, Fll 2008 November 25, 2008 Rdon mesures Consider continuous function f on the rel line with sclr vlues. It is sid to hve bounded support

Calculus 2: Integration. Differentiation. Integration

Clculus 2: Integrtion The reverse process to differentition is known s integrtion. Differentition f() f () Integrtion As it is the opposite of finding the derivtive, the function obtined b integrtion is

20 MATHEMATICS POLYNOMIALS

0 MATHEMATICS POLYNOMIALS.1 Introduction In Clss IX, you hve studied polynomils in one vrible nd their degrees. Recll tht if p(x) is polynomil in x, the highest power of x in p(x) is clled the degree of

3.4 Numerical integration

3.4. Numericl integrtion 63 3.4 Numericl integrtion In mny economic pplictions it is necessry to compute the definite integrl of relvlued function f with respect to "weight" function w over n intervl [,

PDE Notes. Paul Carnig. January ODE s vs PDE s 1

PDE Notes Pul Crnig Jnury 2014 Contents 1 ODE s vs PDE s 1 2 Section 1.2 Het diffusion Eqution 1 2.1 Fourier s w of Het Conduction............................. 2 2.2 Energy Conservtion.....................................

Section 14.3 Arc Length and Curvature

Section 4.3 Arc Length nd Curvture Clculus on Curves in Spce In this section, we ly the foundtions for describing the movement of n object in spce.. Vector Function Bsics In Clc, formul for rc length in

u( t) + K 2 ( ) = 1 t > 0 Analyzing Damped Oscillations Problem (Meador, example 2-18, pp 44-48): Determine the equation of the following graph.

nlyzing Dmped Oscilltions Prolem (Medor, exmple 2-18, pp 44-48): Determine the eqution of the following grph. The eqution is ssumed to e of the following form f ( t) = K 1 u( t) + K 2 e!"t sin (#t + \$

1 Online Learning and Regret Minimization

2.997 Decision-Mking in Lrge-Scle Systems My 10 MIT, Spring 2004 Hndout #29 Lecture Note 24 1 Online Lerning nd Regret Minimiztion In this lecture, we consider the problem of sequentil decision mking in

x 2 1 dx x 3 dx = ln(x) + 2e u du = 2e u + C = 2e x + C 2x dx = arcsin x + 1 x 1 x du = 2 u + C (t + 2) 50 dt x 2 4 dx

. Compute the following indefinite integrls: ) sin(5 + )d b) c) d e d d) + d Solutions: ) After substituting u 5 +, we get: sin(5 + )d sin(u)du cos(u) + C cos(5 + ) + C b) We hve: d d ln() + + C c) Substitute

Strategy: Use the Gibbs phase rule (Equation 5.3). How many components are present?

University Chemistry Quiz 4 2014/12/11 1. (5%) Wht is the dimensionlity of the three-phse coexistence region in mixture of Al, Ni, nd Cu? Wht type of geometricl region dose this define? Strtegy: Use the

Homework Assignment 3 Solution Set

Homework Assignment 3 Solution Set PHYCS 44 6 Ferury, 4 Prolem 1 (Griffiths.5(c The potentil due to ny continuous chrge distriution is the sum of the contriutions from ech infinitesiml chrge in the distriution.

200 points 5 Problems on 4 Pages and 20 Multiple Choice/Short Answer Questions on 5 pages 1 hour, 48 minutes

PHYSICS 132 Smple Finl 200 points 5 Problems on 4 Pges nd 20 Multiple Choice/Short Answer Questions on 5 pges 1 hour, 48 minutes Student Nme: Recittion Instructor (circle one): nme1 nme2 nme3 nme4 Write

Lecture 14: Qudrture This lecture is concerned with the evlution of integrls fx)dx 1) over finite intervl [, b] The integrnd fx) is ssumed to be rel-vlues nd smooth The pproximtion of n integrl by numericl

Math 113 Exam 2 Practice

Mth Em Prctice Februry, 8 Em will cover sections 6.5, 7.-7.5 nd 7.8. This sheet hs three sections. The first section will remind you bout techniques nd formuls tht you should know. The second gives number

Math RE - Calculus II Area Page 1 of 12

Mth --RE - Clculus II re Pge of re nd the Riemnn Sum Let f) be continuous function nd = f) f) > on closed intervl,b] s shown on the grph. The Riemnn Sum theor shows tht the re of R the region R hs re=

Factors affecting the phonation threshold pressure and frequency

3SC Fctors ffecting the phontion threshold pressure nd frequency Zhoyn Zhng School of Medicine, University of Cliforni Los Angeles, CA, USA My, 9 57 th ASA Meeting, Portlnd, Oregon Acknowledgment: Reserch

Numerical quadrature based on interpolating functions: A MATLAB implementation

SEMINAR REPORT Numericl qudrture bsed on interpolting functions: A MATLAB implementtion by Venkt Ayylsomyjul A seminr report submitted in prtil fulfillment for the degree of Mster of Science (M.Sc) in

9. Fourier Series and Fourier Transforms

9. Fourier Series nd Fourier Trnsforms The Fourier trnsform is one of the most importnt tools for nlyzing functions. The bsic underlying ide is tht function f(x) cn be expressed s liner combintion of elementry

Magnetic forces on a moving charge. EE Lecture 26. Lorentz Force Law and forces on currents. Laws of magnetostatics

Mgnetic forces on moving chrge o fr we ve studied electric forces between chrges t rest, nd the currents tht cn result in conducting medium 1. Mgnetic forces on chrge 2. Lws of mgnetosttics 3. Mgnetic

Theoretische Physik 2: Elektrodynamik (Prof. A.-S. Smith) Home assignment 4

WiSe 1 8.1.1 Prof. Dr. A.-S. Smith Dipl.-Phys. Ellen Fischermeier Dipl.-Phys. Mtthis Sb m Lehrstuhl für Theoretische Physik I Deprtment für Physik Friedrich-Alexnder-Universität Erlngen-Nürnberg Theoretische

Tests for the Ratio of Two Poisson Rates

Chpter 437 Tests for the Rtio of Two Poisson Rtes Introduction The Poisson probbility lw gives the probbility distribution of the number of events occurring in specified intervl of time or spce. The Poisson

Section 4.8. D v(t j 1 ) t. (4.8.1) j=1

Difference Equtions to Differentil Equtions Section.8 Distnce, Position, nd the Length of Curves Although we motivted the definition of the definite integrl with the notion of re, there re mny pplictions

l 2 p2 n 4n 2, the total surface area of the

Week 6 Lectures Sections 7.5, 7.6 Section 7.5: Surfce re of Revolution Surfce re of Cone: Let C be circle of rdius r. Let P n be n n-sided regulr polygon of perimeter p n with vertices on C. Form cone

Thermal Diffusivity. Paul Hughes. Department of Physics and Astronomy The University of Manchester Manchester M13 9PL. Second Year Laboratory Report

Therml iffusivity Pul Hughes eprtment of Physics nd Astronomy The University of nchester nchester 3 9PL Second Yer Lbortory Report Nov 4 Abstrct We investigted the therml diffusivity of cylindricl block

MTH 122 Fall 2008 Essex County College Division of Mathematics Handout Version 10 1 October 14, 2008

MTH 22 Fll 28 Essex County College Division of Mthemtics Hndout Version October 4, 28 Arc Length Everyone should be fmilir with the distnce formul tht ws introduced in elementry lgebr. It is bsic formul

#6A&B Magnetic Field Mapping

#6A& Mgnetic Field Mpping Gol y performing this lb experiment, you will: 1. use mgnetic field mesurement technique bsed on Frdy s Lw (see the previous experiment),. study the mgnetic fields generted by

15. Quantisation Noise and Nonuniform Quantisation

5. Quntistion Noise nd Nonuniform Quntistion In PCM, n nlogue signl is smpled, quntised, nd coded into sequence of digits. Once we hve quntised the smpled signls, the exct vlues of the smpled signls cn

x ) dx dx x sec x over the interval (, ).

Curve on 6 For -, () Evlute the integrl, n (b) check your nswer by ifferentiting. ( ). ( ). ( ).. 6. sin cos 7. sec csccot 8. sec (sec tn ) 9. sin csc. Evlute the integrl sin by multiplying the numertor

Distance And Velocity

Unit #8 - The Integrl Some problems nd solutions selected or dpted from Hughes-Hllett Clculus. Distnce And Velocity. The grph below shows the velocity, v, of n object (in meters/sec). Estimte the totl

2. VECTORS AND MATRICES IN 3 DIMENSIONS

2 VECTORS AND MATRICES IN 3 DIMENSIONS 21 Extending the Theory of 2-dimensionl Vectors x A point in 3-dimensionl spce cn e represented y column vector of the form y z z-xis y-xis z x y x-xis Most of the

Waveguide Guide: A and V. Ross L. Spencer

Wveguide Guide: A nd V Ross L. Spencer I relly think tht wveguide fields re esier to understnd using the potentils A nd V thn they re using the electric nd mgnetic fields. Since Griffiths doesn t do it

Intro to Nuclear and Particle Physics (5110)

Intro to Nucler nd Prticle Physics (5110) Feb, 009 The Nucler Mss Spectrum The Liquid Drop Model //009 1 E(MeV) n n(n-1)/ E/[ n(n-1)/] (MeV/pir) 1 C 16 O 0 Ne 4 Mg 7.7 14.44 19.17 8.48 4 5 6 6 10 15.4.41

Instructor(s): Acosta/Woodard PHYSICS DEPARTMENT PHY 2049, Fall 2015 Midterm 1 September 29, 2015

Instructor(s): Acost/Woodrd PHYSICS DEPATMENT PHY 049, Fll 015 Midterm 1 September 9, 015 Nme (print): Signture: On m honor, I hve neither given nor received unuthorized id on this emintion. YOU TEST NUMBE

Chapter 4 Contravariance, Covariance, and Spacetime Diagrams

Chpter 4 Contrvrince, Covrince, nd Spcetime Digrms 4. The Components of Vector in Skewed Coordintes We hve seen in Chpter 3; figure 3.9, tht in order to show inertil motion tht is consistent with the Lorentz

Precalculus Spring 2017

Preclculus Spring 2017 Exm 3 Summry (Section 4.1 through 5.2, nd 9.4) Section P.5 Find domins of lgebric expressions Simplify rtionl expressions Add, subtrct, multiply, & divide rtionl expressions Simplify

Synoptic Meteorology I: Finite Differences September Partial Derivatives (or, Why Do We Care About Finite Differences?

Synoptic Meteorology I: Finite Differences 16-18 September 2014 Prtil Derivtives (or, Why Do We Cre About Finite Differences?) With the exception of the idel gs lw, the equtions tht govern the evolution

interatomic distance

Dissocition energy of Iodine molecule using constnt devition spectrometer Tbish Qureshi September 2003 Aim: To verify the Hrtmnn Dispersion Formul nd to determine the dissocition energy of I 2 molecule

Massachusetts Institute of Technology Department of Electrical Engineering and Computer Science Quantum Optical Communication

Msschusetts Institute of Technology Deprtment of Electricl Engineering nd Computer Science 6.453 Quntum Opticl Communiction Problem Set 6 Fll 2004 Issued: Wednesdy, October 13, 2004 Due: Wednesdy, October

Lecture 3. Limits of Functions and Continuity

Lecture 3 Limits of Functions nd Continuity Audrey Terrs April 26, 21 1 Limits of Functions Notes I m skipping the lst section of Chpter 6 of Lng; the section bout open nd closed sets We cn probbly live

The Dirac distribution

A DIRAC DISTRIBUTION A The Dirc distribution A Definition of the Dirc distribution The Dirc distribution δx cn be introduced by three equivlent wys Dirc [] defined it by reltions δx dx, δx if x The distribution

MA Handout 2: Notation and Background Concepts from Analysis

MA350059 Hndout 2: Nottion nd Bckground Concepts from Anlysis This hndout summrises some nottion we will use nd lso gives recp of some concepts from other units (MA20023: PDEs nd CM, MA20218: Anlysis 2A,

Lecture 17. Integration: Gauss Quadrature. David Semeraro. University of Illinois at Urbana-Champaign. March 20, 2014

Lecture 17 Integrtion: Guss Qudrture Dvid Semerro University of Illinois t Urbn-Chmpign Mrch 0, 014 Dvid Semerro (NCSA) CS 57 Mrch 0, 014 1 / 9 Tody: Objectives identify the most widely used qudrture method

The International Association for the Properties of Water and Steam. Release on the Ionization Constant of H 2 O

IAPWS R-7 The Interntionl Assocition for the Properties of Wter nd Stem Lucerne, Sitzerlnd August 7 Relese on the Ioniztion Constnt of H O 7 The Interntionl Assocition for the Properties of Wter nd Stem

The Thermodynamics of Aqueous Electrolyte Solutions

18 The Thermodynmics of Aqueous Electrolyte Solutions As discussed in Chpter 10, when slt is dissolved in wter or in other pproprite solvent, the molecules dissocite into ions. In queous solutions, strong

PART 1 MULTIPLE CHOICE Circle the appropriate response to each of the questions below. Each question has a value of 1 point.

PART MULTIPLE CHOICE Circle the pproprite response to ech of the questions below. Ech question hs vlue of point.. If in sequence the second level difference is constnt, thn the sequence is:. rithmetic

The Basic Functional 2 1

2 The Bsic Functionl 2 1 Chpter 2: THE BASIC FUNCTIONAL TABLE OF CONTENTS Pge 2.1 Introduction..................... 2 3 2.2 The First Vrition.................. 2 3 2.3 The Euler Eqution..................

Chapter 3 MATRIX. In this chapter: 3.1 MATRIX NOTATION AND TERMINOLOGY

Chpter 3 MTRIX In this chpter: Definition nd terms Specil Mtrices Mtrix Opertion: Trnspose, Equlity, Sum, Difference, Sclr Multipliction, Mtrix Multipliction, Determinnt, Inverse ppliction of Mtrix in

Electric Potential. Concepts and Principles. An Alternative Approach. A Gravitational Analogy

. Electric Potentil Concepts nd Principles An Alterntive Approch The electric field surrounding electric chrges nd the mgnetic field surrounding moving electric chrges cn both be conceptulized s informtion

Lecture 14 Numerical integration: advanced topics

Lecture 14 Numericl integrtion: dvnced topics Weinn E 1,2 nd Tiejun Li 2 1 Deprtment of Mthemtics, Princeton University, weinn@princeton.edu 2 School of Mthemticl Sciences, Peking University, tieli@pku.edu.cn

Lecture Notes: Orthogonal Polynomials, Gaussian Quadrature, and Integral Equations

18330 Lecture Notes: Orthogonl Polynomils, Gussin Qudrture, nd Integrl Equtions Homer Reid My 1, 2014 In the previous set of notes we rrived t the definition of Chebyshev polynomils T n (x) vi the following

Numerical Integration

Chpter 1 Numericl Integrtion Numericl differentition methods compute pproximtions to the derivtive of function from known vlues of the function. Numericl integrtion uses the sme informtion to compute numericl

Some Methods in the Calculus of Variations

CHAPTER 6 Some Methods in the Clculus of Vritions 6-. If we use the vried function ( α, ) α sin( ) + () Then d α cos ( ) () d Thus, the totl length of the pth is d S + d d α cos ( ) + α cos ( ) d Setting

Shape and measurement

C H A P T E R 5 Shpe nd mesurement Wht is Pythgors theorem? How do we use Pythgors theorem? How do we find the perimeter of shpe? How do we find the re of shpe? How do we find the volume of shpe? How do

Chapter 9: Inferences based on Two samples: Confidence intervals and tests of hypotheses

Chpter 9: Inferences bsed on Two smples: Confidence intervls nd tests of hypotheses 9.1 The trget prmeter : difference between two popultion mens : difference between two popultion proportions : rtio of

CS667 Lecture 6: Monte Carlo Integration 02/10/05

CS667 Lecture 6: Monte Crlo Integrtion 02/10/05 Venkt Krishnrj Lecturer: Steve Mrschner 1 Ide The min ide of Monte Crlo Integrtion is tht we cn estimte the vlue of n integrl by looking t lrge number of

FOURIER ANALYSIS: LECTURE 6

FOURIER ANALYSIS: LECTURE 6 2.. Convergence of Fourier series Fourier series (rel or complex) re very good wys of pproximting functions in finite rnge, by which we men tht we cn get good pproximtion to

MATH 174A: PROBLEM SET 5. Suggested Solution

MATH 174A: PROBLEM SET 5 Suggested Solution Problem 1. Suppose tht I [, b] is n intervl. Let f 1 b f() d for f C(I; R) (i.e. f is continuous rel-vlued function on I), nd let L 1 (I) denote the completion

(0.0)(0.1)+(0.3)(0.1)+(0.6)(0.1)+ +(2.7)(0.1) = 1.35

7 Integrtion º½ ÌÛÓ Ü ÑÔÐ Up to now we hve been concerned with extrcting informtion bout how function chnges from the function itself. Given knowledge bout n object s position, for exmple, we wnt to know

EXAMINING THE CHARGE CARRIERS; THE HALL EFFECT

MISN-0-149 EXAMINING THE CHARGE CARRIERS; THE HALL EFFECT l d y b B z I x EXAMINING THE CHARGE CARRIERS; THE HALL EFFECT by Peter Signell 1. Introduction. Why We Study the Hll Effect..........................

Non-Linear & Logistic Regression

Non-Liner & Logistic Regression If the sttistics re boring, then you've got the wrong numbers. Edwrd R. Tufte (Sttistics Professor, Yle University) Regression Anlyses When do we use these? PART 1: find

On the Uncertainty of Sensors Based on Magnetic Effects. E. Hristoforou, E. Kayafas, A. Ktena, DM Kepaptsoglou

On the Uncertinty of Sensors Bsed on Mgnetic Effects E. ristoforou, E. Kyfs, A. Kten, DM Kepptsoglou Ntionl Technicl University of Athens, Zogrfou Cmpus, Athens 1578, Greece Tel: +3177178, Fx: +3177119,

Lecture 1. Functional series. Pointwise and uniform convergence.

1 Introduction. Lecture 1. Functionl series. Pointwise nd uniform convergence. In this course we study mongst other things Fourier series. The Fourier series for periodic function f(x) with period 2π is

A. Limits - L Hopital s Rule ( ) How to find it: Try and find limits by traditional methods (plugging in). If you get 0 0 or!!, apply C.! 1 6 C.

A. Limits - L Hopitl s Rule Wht you re finding: L Hopitl s Rule is used to find limits of the form f ( x) lim where lim f x x! c g x ( ) = or lim f ( x) = limg( x) = ". ( ) x! c limg( x) = 0 x! c x! c

LECTURE NOTE #12 PROF. ALAN YUILLE

LECTURE NOTE #12 PROF. ALAN YUILLE 1. Clustering, K-mens, nd EM Tsk: set of unlbeled dt D = {x 1,..., x n } Decompose into clsses w 1,..., w M where M is unknown. Lern clss models p(x w)) Discovery of

, the action per unit length. We use g = 1 and will use the function. gψd 2 x = A 36. Ψ 2 d 2 x = A2 45

Gbriel Brello - Clssicl Electrodynmics.. For this problem, we compute A L z, the ction per unit length. We use g = nd will use the function Ψx, y = Ax x y y s the form of our pproximte solution. First

Lecture 7 notes Nodal Analysis

Lecture 7 notes Nodl Anlysis Generl Network Anlysis In mny cses you hve multiple unknowns in circuit, sy the voltges cross multiple resistors. Network nlysis is systemtic wy to generte multiple equtions