Mathematics 2Q - Groups, Symmetry and Fractals

Size: px
Start display at page:

Download "Mathematics 2Q - Groups, Symmetry and Fractals"

Transcription

1 ?,?th August, 2002? to? //euler/texmf/dvips/unigla.eps EXAMINATION FOR THE DEGREES OF M.A. AND B.Sc. Mathematics 2Q - Groups, Symmetry and Fractals Candidates must not attempt more than THREE questions. 1. (i) Determine the geometric effect of the isometry R 2 R 2 represented by the Seitz symbol (A t), where A [ ] 3/2 1/2 1/2, t 3/ For the matrix B, determine the Seitz symbol of the composition 1 0 (A t)(b 0) and state what kind of isometry it represents (i.e., a translation, a rotation, or a glide reflection). 3 (ii) For a real number α, let L α {(x, y) R 2 : x sin α y cos α 0} R 2 and let (S α 0) be the Seitz symbol of the reflection Refl α in the line L α. Write down the value of the matrix S α. 3 If α, β R, evaluate the matrix S α S β and hence prove that Refl α Refl β is a rotation about the origin (i) Working in the symmetric group S 7, (a) evaluate the following product of permutations: ( ) ( ) ; (b) determine the disjoint cycle decomposition and the sign of the permutation ( ) [OVER

2 2 (ii) Let Γ be the group of symmetries of the regular octagon centred at the origin O and with vertices A, B, C, D, E, F, G, H. D E C F O B A H G By identifying Γ with a group of permutations of the vertices, describe the elements of Γ which are rotations both geometrically and by using permutation notation. Write down the permutation corresponding to reflection in the line AE. 8 By composing permutations, determine the effect of anti-clockwise rotation about O through π/4 followed by reflection in the line AE (i) Define the Euclidean group (Euc(2), ). 2 Show that the subset O(2) Euc(2) consisting of all the isometries which fix the origin is a subgroup of the Euclidean group (Euc(2), ). 3 (ii) Suppose that F : R 2 R 2 is an isometry with Seitz symbol (A t). If x, y R 2 and s R, show that F (sx + (1 s)y) sf (x) + (1 s)f (y). 5 (iii) Define a dilation of the plane from a point and explain what it means for two isometries of the plane to be similar. 3 Show that the rotations through the angle θ in the anti-clockwise direction about two points P and Q are similar (i) For the frieze pattern F, part of which is shown in the diagram below, indicate a generator of the group of translational symmetries and a glide reflection symmetry. Describe the elements of the symmetry subgroup Euc(2) F Euc(2) in terms of these generators. 6 Are there any points in the plane fixed by all the elements of Euc(2) F? 2 If the symbols and were replaced with and respectively, what extra symmetries would be introduced? 3 [OVER

3 3 (ii) Explain why the matrix 3/2 0 1/2 R /2 0, 3/2 corresponds to a rotation of R 3 about a line through the origin and determine its axis and angle of rotation. 9 END]

4 ?,?th August, 2002? to? 2Q Resit exam 2002 Solutions 1. (i) We have cos( π/6) sin( π/6) A, det A cos 2 ( π/6) + sin 2 ( π/6) 1, sin( π/6) cos( π/6) so (A t) represents a clockwise rotation through the angle π/6. The centre of 3 rotation is the point with position vector [ ] 1 [ ] 1 1 3/2 1/2 c (I A) 1 t 1/ / [ ] (2 3) [ ] [ ] (2 3) 1 [ ] 1/2 (1 +. 3/2) So the centre of rotation is at c (1/2, (1 + 3/2)). 5 The Seitz symbol of the composition is where AB (A t)(b 0) (AB t), [ ] 3/2 1/2 1/ /2 1 0 [ ] 1/2 3/2. 3/2 1/2 Since det(ab) 1, this represents a glide reflection in some line. 3 (ii) We have cos 2α sin 2α S α. 3 sin 2α cos 2α The matrix product is cos 2α sin 2α cos 2β sin 2β S α S β sin 2α cos 2α sin 2β cos 2β cos 2α cos 2β + sin 2α sin 2β cos 2α sin 2β sin 2α cos 2β sin 2α cos 2β cos 2α sin 2β sin 2α sin 2β + cos 2α cos 2β cos 2(α β) sin 2(α β), sin 2(α β) cos 2(α β) and the Seitz symbol (S α S β 0) represents rotation about the origin through the angle 2(α β). Since this is the Seitz symbol of Refl α Refl β, this a rotation about the origin through 2(α β). 6

5 2 2. (i) (a) We have ( ) ( ) (b) We have Also, σ ( ) ( ) (1 3 2)(4)(5 7)(6) (1 3 2)(5 7) sgn σ sgn(1 3 2) sgn(5 7) ( 1) 2 ( 1) ( 1) (ii) There are eight rotations taken anti-clockwise: through 0 the identity ι, through 2π/8 π/4 (A B C D E F G H), through 4π/8 π/2 (A C E G)(B D F H), through 6π/8 3π/4 (A D G B E H C F ), through 8π/8 π (A E)(B F )(C G)(D H), through 10π/8 5π/4 (A F C H E B G D), through 12π/8 3π/2 (A G E C)(B H F D), through 14π/8 7π/4 (A H G F E D C B). Reflection in AE corresponds to the permutation (B H)(C G)(D F ). 8 The symmetries being composed are (A B C D E F G H) and (B H)(C G)(D F ) so we have (B H)(C G)(D F )(A B C D E F G H) (A H)(B G)(C F )(D E), which is corresponds to reflection in the line joining the midpoints of the edges AH and DE (i) (Euc(2), ) consists of Euc(2), the set of all isometries R 2 R 2, under composition of functions. 2 For (A 0), (B 0) O(2) we have and (A 0)(B 0) (AB 0) (AB) T (AB) (B T A T )(AB) B T (A T A)B B T I 2 B B T B I 2. So (A 0)(B 0) O(2). Also, (I 2 0) O(2) and since A 1 A T and (A 0) 1 (A 1 0) O(2) (A T ) T (A T ) AA T AA 1 I 2, hence A 1 is orthogonal. 3

6 3 (ii) We have (A t)(sx + (1 s)y) A(sx + (1 s)y) + t A(sx) + A((1 s)y) + t sax + A(1 s)y + st + (1 s)t s(a t)x + (1 s)(a t)y, giving the desired result. 5 (iii) A dilation of the plane is a function H : R 2 R 2 which has the form H(x) δ(x c) + c, where δ > 0 is the dilation factor and c is the position vector of the centre of the dilation. 1 Two isometries of the plane F, G are similar if there is a similarity transformation H (δa t) with δ > 0, A orthogonal and t R 2, for which G H F H F H 1. 2 Let t P Q q p. Then Trans t Rot P,θ Trans 1 t Trans t Rot P,θ Trans t is another rotation through θ since its Seitz symbol is (I t)(r u)(i t) (I t)(r u Rt) (R u Rt + t), where Rot P,θ (R u). Since P is the centre of rotation, Rot P,θ (p) p. Now applying this isometry to the position vector of Q we obtain Trans t Rot P,θ Trans t (q) t + Rot P,θ (q t) (q p) + Rot P,θ (q (q p)) (q p) + Rot P,θ (p) (q p) + p q, hence Trans t Rot P,θ Trans t fixes Q which must therefore be its centre of rotation. Hence we have Trans t Rot P,θ Rot Q,θ (i) There is a translation by t parallel to the dashed line and shifting the whole pattern one step the right. There is also a glide reflection whose effect of is indicated below, with square equal to Trans t. There are no rotations or reflections in lines perpendicular to the dashed line. The symmetry group of F is infinite and cyclic with generator, Euc(2) F { n : n Z}. 6 t

7 4 There are no points simultaneously fixed by all the elements of this symmetry group since a non-trivial translation has no fixed points. 2 There would be reflections in the vertical lines through the midpoints of the and and half turn rotations about the points on the dashed line midway between these vertical lines. 3 (ii) By expanding along the middle row we obtain det R 3/2 1/2 1/2 (3 + 1) 3/2 4 1, so R represents a rotation about an axis through the origin. Since Re 2 e 2, the axis of rotation is the y-axis. 4 Now let w e 2, u e 3, v w u e 2 e 3 e 1. So u, v, w is a right handed orthonormal system. We have Ru ( 3/2)u + ( 1/2)v cos(5π/6)u sin(5π/6)v, Rv (1/2)u + ( 3/2)v sin(5π/6)u + cos(5π/6)v, so the angle of rotation is 5π/6 and the sense is that of a right handed screw driver pointing along the positive y-axis. 5 END]

ISOMETRIES OF R n KEITH CONRAD

ISOMETRIES OF R n KEITH CONRAD ISOMETRIES OF R n KEITH CONRAD 1. Introduction An isometry of R n is a function h: R n R n that preserves the distance between vectors: h(v) h(w) = v w for all v and w in R n, where (x 1,..., x n ) = x

More information

7. SYMMETRY GROUPS 7.1. What is Symmetry? rotational symmetry order

7. SYMMETRY GROUPS 7.1. What is Symmetry? rotational symmetry order 7. SYMMETRY GROUPS 7.1. What is Symmetry? When we say that something is symmetric we re usually thinking of left-right symmetry. For example, a design is symmetric in this way if the right half is the

More information

Linear Algebra & Geometry why is linear algebra useful in computer vision?

Linear Algebra & Geometry why is linear algebra useful in computer vision? Linear Algebra & Geometry why is linear algebra useful in computer vision? References: -Any book on linear algebra! -[HZ] chapters 2, 4 Some of the slides in this lecture are courtesy to Prof. Octavia

More information

Math 462: Homework 2 Solutions

Math 462: Homework 2 Solutions Math 46: Homework Solutions Paul Hacking /6/. Consider the matrix A = (a) Check that A is orthogonal. (b) Determine whether A is a rotation or a reflection / rotary reflection. [Hint: What is the determinant

More information

WALLPAPER GROUPS. Julija Zavadlav

WALLPAPER GROUPS. Julija Zavadlav WALLPAPER GROUPS Julija Zavadlav Abstract In this paper we present the wallpaper groups or plane crystallographic groups. The name wallpaper groups refers to the symmetry group of periodic pattern in two

More information

Some notes on Coxeter groups

Some notes on Coxeter groups Some notes on Coxeter groups Brooks Roberts November 28, 2017 CONTENTS 1 Contents 1 Sources 2 2 Reflections 3 3 The orthogonal group 7 4 Finite subgroups in two dimensions 9 5 Finite subgroups in three

More information

Linear Algebra & Geometry why is linear algebra useful in computer vision?

Linear Algebra & Geometry why is linear algebra useful in computer vision? Linear Algebra & Geometry why is linear algebra useful in computer vision? References: -Any book on linear algebra! -[HZ] chapters 2, 4 Some of the slides in this lecture are courtesy to Prof. Octavia

More information

(A B) 2 + (A B) 2. and factor the result.

(A B) 2 + (A B) 2. and factor the result. Transformational Geometry of the Plane (Master Plan) Day 1. Some Coordinate Geometry. Cartesian (rectangular) coordinates on the plane. What is a line segment? What is a (right) triangle? State and prove

More information

MATH HL OPTION - REVISION SETS, RELATIONS AND GROUPS Compiled by: Christos Nikolaidis

MATH HL OPTION - REVISION SETS, RELATIONS AND GROUPS Compiled by: Christos Nikolaidis MATH HL OPTION - REVISION SETS, RELATIONS AND GROUPS Compiled by: Christos Nikolaidis PART B: GROUPS GROUPS 1. ab The binary operation a * b is defined by a * b = a+ b +. (a) Prove that * is associative.

More information

ELEMENTARY LINEAR ALGEBRA

ELEMENTARY LINEAR ALGEBRA ELEMENTARY LINEAR ALGEBRA K R MATTHEWS DEPARTMENT OF MATHEMATICS UNIVERSITY OF QUEENSLAND First Printing, 99 Chapter LINEAR EQUATIONS Introduction to linear equations A linear equation in n unknowns x,

More information

A matrix over a field F is a rectangular array of elements from F. The symbol

A matrix over a field F is a rectangular array of elements from F. The symbol Chapter MATRICES Matrix arithmetic A matrix over a field F is a rectangular array of elements from F The symbol M m n (F ) denotes the collection of all m n matrices over F Matrices will usually be denoted

More information

a 11 x 1 + a 12 x a 1n x n = b 1 a 21 x 1 + a 22 x a 2n x n = b 2.

a 11 x 1 + a 12 x a 1n x n = b 1 a 21 x 1 + a 22 x a 2n x n = b 2. Chapter 1 LINEAR EQUATIONS 11 Introduction to linear equations A linear equation in n unknowns x 1, x,, x n is an equation of the form a 1 x 1 + a x + + a n x n = b, where a 1, a,, a n, b are given real

More information

Part II. Geometry and Groups. Year

Part II. Geometry and Groups. Year Part II Year 2014 2013 2012 2011 2010 2009 2008 2007 2006 2005 2014 Paper 4, Section I 3F 49 Define the limit set Λ(G) of a Kleinian group G. Assuming that G has no finite orbit in H 3 S 2, and that Λ(G),

More information

AM 106/206: Applied Algebra Madhu Sudan 1. Lecture Notes 12

AM 106/206: Applied Algebra Madhu Sudan 1. Lecture Notes 12 AM 106/206: Applied Algebra Madhu Sudan 1 Lecture Notes 12 October 19 2016 Reading: Gallian Chs. 27 & 28 Most of the applications of group theory to the physical sciences are through the study of the symmetry

More information

Geometric Transformations and Wallpaper Groups

Geometric Transformations and Wallpaper Groups Geometric Transformations and Wallpaper Groups Lance Drager Texas Tech University Geometric Transformations III p.1/25 Introduction to Groups of Isometrics Geometric Transformations III p.2/25 Symmetries

More information

INTERNATIONAL SCHOOL ON FUNDAMENTAL CRYSTALLOGRAPHY

INTERNATIONAL SCHOOL ON FUNDAMENTAL CRYSTALLOGRAPHY INTERNATIONAL SCHOOL ON FUNDAMENTAL CRYSTALLOGRAPHY SPACE-GROUP SYMMETRY (short overview) Mois I. Aroyo Universidad del Pais Vasco, Bilbao, Spain SPACE GROUPS Crystal pattern: infinite, idealized crystal

More information

MATH 23a, FALL 2002 THEORETICAL LINEAR ALGEBRA AND MULTIVARIABLE CALCULUS Solutions to Final Exam (in-class portion) January 22, 2003

MATH 23a, FALL 2002 THEORETICAL LINEAR ALGEBRA AND MULTIVARIABLE CALCULUS Solutions to Final Exam (in-class portion) January 22, 2003 MATH 23a, FALL 2002 THEORETICAL LINEAR ALGEBRA AND MULTIVARIABLE CALCULUS Solutions to Final Exam (in-class portion) January 22, 2003 1. True or False (28 points, 2 each) T or F If V is a vector space

More information

Assignment 3. A tutorial on the applications of discrete groups.

Assignment 3. A tutorial on the applications of discrete groups. Assignment 3 Given January 16, Due January 3, 015. A tutorial on the applications of discrete groups. Consider the group C 3v which is the cyclic group with three elements, C 3, augmented by a reflection

More information

is Use at most six elementary row operations. (Partial

is Use at most six elementary row operations. (Partial MATH 235 SPRING 2 EXAM SOLUTIONS () (6 points) a) Show that the reduced row echelon form of the augmented matrix of the system x + + 2x 4 + x 5 = 3 x x 3 + x 4 + x 5 = 2 2x + 2x 3 2x 4 x 5 = 3 is. Use

More information

CRYSTALLOGRAPHIC SYMMETRY OPERATIONS. Mois I. Aroyo Universidad del Pais Vasco, Bilbao, Spain

CRYSTALLOGRAPHIC SYMMETRY OPERATIONS. Mois I. Aroyo Universidad del Pais Vasco, Bilbao, Spain CRYSTALLOGRAPHIC SYMMETRY OPERATIONS Mois I. Aroyo Universidad del Pais Vasco, Bilbao, Spain SYMMETRY OPERATIONS AND THEIR MATRIX-COLUMN PRESENTATION Mappings and symmetry operations Definition: A mapping

More information

MATRIX CALCULUS APPLIED TO CRYSTALLOGRAPHY. (short revision) Mois I. Aroyo Universidad del Pais Vasco, Bilbao, Spain

MATRIX CALCULUS APPLIED TO CRYSTALLOGRAPHY. (short revision) Mois I. Aroyo Universidad del Pais Vasco, Bilbao, Spain MATRIX CALCULUS APPLIED TO CRYSTALLOGRAPHY (short revision) Mois I. Aroyo Universidad del Pais Vasco, Bilbao, Spain INTRODUCTION TO MATRIX CALCULUS Some of the slides are taken from the presentation Introduction

More information

1 Euclidean geometry. 1.1 The metric on R n

1 Euclidean geometry. 1.1 The metric on R n 1 Euclidean geometry This chapter discusses the geometry of n-dimensional Euclidean space E n, together with its distance function. The distance gives rise to other notions such as angles and congruent

More information

We begin with some definitions which apply to sets in general, not just groups.

We begin with some definitions which apply to sets in general, not just groups. Chapter 8 Cosets In this chapter, we develop new tools which will allow us to extend to every finite group some of the results we already know for cyclic groups. More specifically, we will be able to generalize

More information

Hyperbolic Transformations

Hyperbolic Transformations C H A P T E R 17 Hyperbolic Transformations Though the text of your article on Crystal Symmetry and Its Generalizations is much too learned for a simple, selfmade pattern man like me, some of the text-illustrations

More information

ELEMENTARY LINEAR ALGEBRA

ELEMENTARY LINEAR ALGEBRA ELEMENTARY LINEAR ALGEBRA K. R. MATTHEWS DEPARTMENT OF MATHEMATICS UNIVERSITY OF QUEENSLAND Second Online Version, December 1998 Comments to the author at krm@maths.uq.edu.au Contents 1 LINEAR EQUATIONS

More information

4.2. ORTHOGONALITY 161

4.2. ORTHOGONALITY 161 4.2. ORTHOGONALITY 161 Definition 4.2.9 An affine space (E, E ) is a Euclidean affine space iff its underlying vector space E is a Euclidean vector space. Given any two points a, b E, we define the distance

More information

Spring, 2012 CIS 515. Fundamentals of Linear Algebra and Optimization Jean Gallier

Spring, 2012 CIS 515. Fundamentals of Linear Algebra and Optimization Jean Gallier Spring 0 CIS 55 Fundamentals of Linear Algebra and Optimization Jean Gallier Homework 5 & 6 + Project 3 & 4 Note: Problems B and B6 are for extra credit April 7 0; Due May 7 0 Problem B (0 pts) Let A be

More information

Math113: Linear Algebra. Beifang Chen

Math113: Linear Algebra. Beifang Chen Math3: Linear Algebra Beifang Chen Spring 26 Contents Systems of Linear Equations 3 Systems of Linear Equations 3 Linear Systems 3 2 Geometric Interpretation 3 3 Matrices of Linear Systems 4 4 Elementary

More information

GROUPS. Chapter-1 EXAMPLES 1.1. INTRODUCTION 1.2. BINARY OPERATION

GROUPS. Chapter-1 EXAMPLES 1.1. INTRODUCTION 1.2. BINARY OPERATION Chapter-1 GROUPS 1.1. INTRODUCTION The theory of groups arose from the theory of equations, during the nineteenth century. Originally, groups consisted only of transformations. The group of transformations

More information

Group theory applied to crystallography

Group theory applied to crystallography International Union of Crystallography Commission on Mathematical and Theoretical Crystallography Summer School on Mathematical and Theoretical Crystallography 7 April - May 8, Gargnano, Italy Group theory

More information

LINEAR ALGEBRA W W L CHEN

LINEAR ALGEBRA W W L CHEN LINEAR ALGEBRA W W L CHEN c W W L Chen, 1997, 2008. This chapter is available free to all individuals, on the understanding that it is not to be used for financial gain, and may be downloaded and/or photocopied,

More information

1.3 LECTURE 3. Vector Product

1.3 LECTURE 3. Vector Product 12 CHAPTER 1. VECTOR ALGEBRA Example. Let L be a line x x 1 a = y y 1 b = z z 1 c passing through a point P 1 and parallel to the vector N = a i +b j +c k. The equation of the plane passing through the

More information

ELEMENTARY LINEAR ALGEBRA

ELEMENTARY LINEAR ALGEBRA ELEMENTARY LINEAR ALGEBRA K R MATTHEWS DEPARTMENT OF MATHEMATICS UNIVERSITY OF QUEENSLAND Second Online Version, December 998 Comments to the author at krm@mathsuqeduau All contents copyright c 99 Keith

More information

EXAM MATHEMATICAL METHODS OF PHYSICS. TRACK ANALYSIS (Chapters I-V). Thursday, June 7th,

EXAM MATHEMATICAL METHODS OF PHYSICS. TRACK ANALYSIS (Chapters I-V). Thursday, June 7th, EXAM MATHEMATICAL METHODS OF PHYSICS TRACK ANALYSIS (Chapters I-V) Thursday, June 7th, 1-13 Students who are entitled to a lighter version of the exam may skip problems 1, 8-11 and 16 Consider the differential

More information

What is a semigroup? What is a group? What is the difference between a semigroup and a group?

What is a semigroup? What is a group? What is the difference between a semigroup and a group? The second exam will be on Thursday, July 5, 2012. The syllabus will be Sections IV.5 (RSA Encryption), III.1, III.2, III.3, III.4 and III.8, III.9, plus the handout on Burnside coloring arguments. Of

More information

+ 10 then give the value

+ 10 then give the value 1. Match each vocabulary word to the picture. A. Linear Pair B. Vertical Angles P1 C. Angle Bisector D. Parallel Lines E. Orthocenter F. Centroid For questions 3 4 use the diagram below. Y Z X U W V A

More information

- A general combined symmetry operation, can be symbolized by β t. (SEITZ operator)

- A general combined symmetry operation, can be symbolized by β t. (SEITZ operator) SPACE GROUP THEORY (cont) It is possible to represent combined rotational and translational symmetry operations in a single matrix, for example the C6z operation and translation by a in D 6h is represented

More information

M208 Pure Mathematics GTA1. Symmetry

M208 Pure Mathematics GTA1. Symmetry M208 Pure Mathematics GTA1 Symmetry Note to reader Mathematical/statistical content at the Open University is usually provided to students in printed books, with PDFs of the same online. This format ensures

More information

SYMMETRIES IN R 3 NAMITA GUPTA

SYMMETRIES IN R 3 NAMITA GUPTA SYMMETRIES IN R 3 NAMITA GUPTA Abstract. This paper will introduce the concept of symmetries being represented as permutations and will proceed to explain the group structure of such symmetries under composition.

More information

13 Spherical geometry

13 Spherical geometry 13 Spherical geometry Let ABC be a triangle in the Euclidean plane. From now on, we indicate the interior angles A = CAB, B = ABC, C = BCA at the vertices merely by A, B, C. The sides of length a = BC

More information

A VERY BRIEF LINEAR ALGEBRA REVIEW for MAP 5485 Introduction to Mathematical Biophysics Fall 2010

A VERY BRIEF LINEAR ALGEBRA REVIEW for MAP 5485 Introduction to Mathematical Biophysics Fall 2010 A VERY BRIEF LINEAR ALGEBRA REVIEW for MAP 5485 Introduction to Mathematical Biophysics Fall 00 Introduction Linear Algebra, also known as matrix theory, is an important element of all branches of mathematics

More information

1 Planar rotations. Math Abstract Linear Algebra Fall 2011, section E1 Orthogonal matrices and rotations

1 Planar rotations. Math Abstract Linear Algebra Fall 2011, section E1 Orthogonal matrices and rotations Math 46 - Abstract Linear Algebra Fall, section E Orthogonal matrices and rotations Planar rotations Definition: A planar rotation in R n is a linear map R: R n R n such that there is a plane P R n (through

More information

Exercises Chapter II.

Exercises Chapter II. Page 64 Exercises Chapter II. 5. Let A = (1, 2) and B = ( 2, 6). Sketch vectors of the form X = c 1 A + c 2 B for various values of c 1 and c 2. Which vectors in R 2 can be written in this manner? B y

More information

f(a)f(b) = ab for all a, b E. WhenE = F, an affine isometry f: E E is also called a rigid motion.

f(a)f(b) = ab for all a, b E. WhenE = F, an affine isometry f: E E is also called a rigid motion. 7.4. AFFINE ISOMETRIES (RIGID MOTIONS) 289 7.4 Affine Isometries (Rigid Motions) Definition 7.4.1 Given any two nontrivial Euclidean affine spaces E and F of the same finite dimension n, a function f:

More information

Lecture 21 Relevant sections in text: 3.1

Lecture 21 Relevant sections in text: 3.1 Lecture 21 Relevant sections in text: 3.1 Angular momentum - introductory remarks The theory of angular momentum in quantum mechanics is important in many ways. The myriad of results of this theory, which

More information

Review of linear algebra

Review of linear algebra Review of linear algebra 1 Vectors and matrices We will just touch very briefly on certain aspects of linear algebra, most of which should be familiar. Recall that we deal with vectors, i.e. elements of

More information

(x, y) = d(x, y) = x y.

(x, y) = d(x, y) = x y. 1 Euclidean geometry 1.1 Euclidean space Our story begins with a geometry which will be familiar to all readers, namely the geometry of Euclidean space. In this first chapter we study the Euclidean distance

More information

Intro Vectors 2D implicit curves 2D parametric curves. Graphics 2011/2012, 4th quarter. Lecture 2: vectors, curves, and surfaces

Intro Vectors 2D implicit curves 2D parametric curves. Graphics 2011/2012, 4th quarter. Lecture 2: vectors, curves, and surfaces Lecture 2, curves, and surfaces Organizational remarks Tutorials: Tutorial 1 will be online later today TA sessions for questions start next week Practicals: Exams: Make sure to find a team partner very

More information

Math 120A: Extra Questions for Midterm

Math 120A: Extra Questions for Midterm Math 120A: Extra Questions for Midterm Definitions Complete the following sentences. 1. The direct product of groups G and H is the set under the group operation 2. The symmetric group on n-letters S n

More information

Symmetric spherical and planar patterns

Symmetric spherical and planar patterns Symmetric spherical and planar patterns Jan van de Craats version August 3, 2011 1 Spherical patterns 1.1 Introduction Many objects in daily life exhibit various forms of symmetry. Balls, bowls, cylinders

More information

ELEMENTARY LINEAR ALGEBRA

ELEMENTARY LINEAR ALGEBRA ELEMENTARY LINEAR ALGEBRA K. R. MATTHEWS DEPARTMENT OF MATHEMATICS UNIVERSITY OF QUEENSLAND Corrected Version, 7th April 013 Comments to the author at keithmatt@gmail.com Chapter 1 LINEAR EQUATIONS 1.1

More information

Euclidean Spaces. Euclidean Spaces. Chapter 10 -S&B

Euclidean Spaces. Euclidean Spaces. Chapter 10 -S&B Chapter 10 -S&B The Real Line: every real number is represented by exactly one point on the line. The plane (i.e., consumption bundles): Pairs of numbers have a geometric representation Cartesian plane

More information

MATH 255 Applied Honors Calculus III Winter Midterm 1 Review Solutions

MATH 255 Applied Honors Calculus III Winter Midterm 1 Review Solutions MATH 55 Applied Honors Calculus III Winter 11 Midterm 1 Review Solutions 11.1: #19 Particle starts at point ( 1,, traces out a semicircle in the counterclockwise direction, ending at the point (1,. 11.1:

More information

SPACE GROUPS. International Tables for Crystallography, Volume A: Space-group Symmetry. Mois I. Aroyo Universidad del Pais Vasco, Bilbao, Spain

SPACE GROUPS. International Tables for Crystallography, Volume A: Space-group Symmetry. Mois I. Aroyo Universidad del Pais Vasco, Bilbao, Spain SPACE GROUPS International Tables for Crystallography, Volume A: Space-group Symmetry Mois I. Aroyo Universidad del Pais Vasco, Bilbao, Spain SPACE GROUPS Crystal pattern: Space group G: A model of the

More information

1.1 Line Reflections and Point Reflections

1.1 Line Reflections and Point Reflections 1.1 Line Reflections and Point Reflections Since this is a book on Transformation Geometry, we shall start by defining transformations of the Euclidean plane and giving basic examples. Definition 1. A

More information

REU 2007 Discrete Math Lecture 2

REU 2007 Discrete Math Lecture 2 REU 2007 Discrete Math Lecture 2 Instructor: László Babai Scribe: Shawn Drenning June 19, 2007. Proofread by instructor. Last updated June 20, 1 a.m. Exercise 2.0.1. Let G be an abelian group and A G be

More information

IIT Mumbai 2015 MA 419, Basic Algebra Tutorial Sheet-1

IIT Mumbai 2015 MA 419, Basic Algebra Tutorial Sheet-1 IIT Mumbai 2015 MA 419, Basic Algebra Tutorial Sheet-1 Let Σ be the set of all symmetries of the plane Π. 1. Give examples of s, t Σ such that st ts. 2. If s, t Σ agree on three non-collinear points, then

More information

MATH 106 LINEAR ALGEBRA LECTURE NOTES

MATH 106 LINEAR ALGEBRA LECTURE NOTES MATH 6 LINEAR ALGEBRA LECTURE NOTES FALL - These Lecture Notes are not in a final form being still subject of improvement Contents Systems of linear equations and matrices 5 Introduction to systems of

More information

Geometric Transformations and Wallpaper Groups

Geometric Transformations and Wallpaper Groups Geometric Transformations and Wallpaper Groups Lance Drager Texas Tech University Geometric Transformations IV p.1/35 Symmetries of Geometric Patterns (Discrete Groups of Isometries) Geometric Transformations

More information

Rigid Body Transforms-3D. J.C. Dill transforms3d 27Jan99

Rigid Body Transforms-3D. J.C. Dill transforms3d 27Jan99 ESC 489 3D ransforms 1 igid Bod ransforms-3d J.C. Dill transforms3d 27Jan99 hese notes on (2D and) 3D rigid bod transform are currentl in hand-done notes which are being converted to this file from that

More information

Linear Algebra Review. Vectors

Linear Algebra Review. Vectors Linear Algebra Review 9/4/7 Linear Algebra Review By Tim K. Marks UCSD Borrows heavily from: Jana Kosecka http://cs.gmu.edu/~kosecka/cs682.html Virginia de Sa (UCSD) Cogsci 8F Linear Algebra review Vectors

More information

Selma City Schools Curriculum Pacing Guide Grades Subject: Algebra II Effective Year:

Selma City Schools Curriculum Pacing Guide Grades Subject: Algebra II Effective Year: Selma City Schools Curriculum Pacing Guide Grades 9-12 Subject: Algebra II Effective Year: 2013-14 Nine 1 Nine 2 Nine 3 Nine 4 X X Time CC COS QC Literacy DOK Lesson References/Activities Date Taught Test

More information

From Wikipedia, the free encyclopedia

From Wikipedia, the free encyclopedia 1 of 6 8/28/2011 1:45 PM From Wikipedia, the free encyclopedia Generally speaking, an object with rotational symmetry is an object that looks the same after a certain amount of rotation. An object may

More information

BSc (Hons) in Computer Games Development. vi Calculate the components a, b and c of a non-zero vector that is orthogonal to

BSc (Hons) in Computer Games Development. vi Calculate the components a, b and c of a non-zero vector that is orthogonal to 1 APPLIED MATHEMATICS INSTRUCTIONS Full marks will be awarded for the correct solutions to ANY FIVE QUESTIONS. This paper will be marked out of a TOTAL MAXIMUM MARK OF 100. Credit will be given for clearly

More information

CUMBERLAND COUNTY SCHOOL DISTRICT BENCHMARK ASSESSMENT CURRICULUM PACING GUIDE

CUMBERLAND COUNTY SCHOOL DISTRICT BENCHMARK ASSESSMENT CURRICULUM PACING GUIDE CUMBERLAND COUNTY SCHOOL DISTRICT BENCHMARK ASSESSMENT CURRICULUM PACING GUIDE School: CCHS Subject: Algebra II Grade: 10 th Grade Benchmark Assessment 1 Instructional Timeline: 1 st Nine Weeks Topic(s):

More information

SOME SPECIAL KLEINIAN GROUPS AND THEIR ORBIFOLDS

SOME SPECIAL KLEINIAN GROUPS AND THEIR ORBIFOLDS Proyecciones Vol. 21, N o 1, pp. 21-50, May 2002. Universidad Católica del Norte Antofagasta - Chile SOME SPECIAL KLEINIAN GROUPS AND THEIR ORBIFOLDS RUBÉN HIDALGO Universidad Técnica Federico Santa María

More information

Lecture 19: Isometries, Positive operators, Polar and singular value decompositions; Unitary matrices and classical groups; Previews (1)

Lecture 19: Isometries, Positive operators, Polar and singular value decompositions; Unitary matrices and classical groups; Previews (1) Lecture 19: Isometries, Positive operators, Polar and singular value decompositions; Unitary matrices and classical groups; Previews (1) Travis Schedler Thurs, Nov 18, 2010 (version: Wed, Nov 17, 2:15

More information

Definitions, Theorems and Exercises. Abstract Algebra Math 332. Ethan D. Bloch

Definitions, Theorems and Exercises. Abstract Algebra Math 332. Ethan D. Bloch Definitions, Theorems and Exercises Abstract Algebra Math 332 Ethan D. Bloch December 26, 2013 ii Contents 1 Binary Operations 3 1.1 Binary Operations............................... 4 1.2 Isomorphic Binary

More information

Topic 2 [312 marks] The rectangle ABCD is inscribed in a circle. Sides [AD] and [AB] have lengths

Topic 2 [312 marks] The rectangle ABCD is inscribed in a circle. Sides [AD] and [AB] have lengths Topic 2 [312 marks] 1 The rectangle ABCD is inscribed in a circle Sides [AD] and [AB] have lengths [12 marks] 3 cm and (\9\) cm respectively E is a point on side [AB] such that AE is 3 cm Side [DE] is

More information

Space groups. Bernd Souvignier

Space groups. Bernd Souvignier MaThCryst summer school 5- July 7, Havana, Cuba Space groups Bernd Souvignier Definition A crystal pattern is a set of points in R n such that the translations leaving it invariant form a (vector lattice

More information

Nilpotents and Idempotents in 2D and 3D Euclidean Geometric Algebra

Nilpotents and Idempotents in 2D and 3D Euclidean Geometric Algebra Nilpotents and Idempotents in D and D Euclidean Geometric Algebra Kurt Nalty July 11, 015 Abstract I present general homework level formulas for nilpotents (non-zero expressions which square to zero) and

More information

Symmetries, Fields and Particles 2013 Solutions

Symmetries, Fields and Particles 2013 Solutions Symmetries, Fields and Particles 03 Solutions Yichen Shi July 9, 04. a Define the groups SU and SO3, and find their Lie algebras. Show that these Lie algebras, including their bracket structure, are isomorphic.

More information

j=1 u 1jv 1j. 1/ 2 Lemma 1. An orthogonal set of vectors must be linearly independent.

j=1 u 1jv 1j. 1/ 2 Lemma 1. An orthogonal set of vectors must be linearly independent. Lecture Notes: Orthogonal and Symmetric Matrices Yufei Tao Department of Computer Science and Engineering Chinese University of Hong Kong taoyf@cse.cuhk.edu.hk Orthogonal Matrix Definition. Let u = [u

More information

Senior Secondary Australian Curriculum

Senior Secondary Australian Curriculum Senior Secondary Australian Curriculum Specialist Mathematics Glossary Unit 1 Combinatorics Arranging n objects in an ordered list The number of ways to arrange n different objects in an ordered list is

More information

1. What is the determinant of the following matrix? a 1 a 2 4a 3 2a 2 b 1 b 2 4b 3 2b c 1. = 4, then det

1. What is the determinant of the following matrix? a 1 a 2 4a 3 2a 2 b 1 b 2 4b 3 2b c 1. = 4, then det What is the determinant of the following matrix? 3 4 3 4 3 4 4 3 A 0 B 8 C 55 D 0 E 60 If det a a a 3 b b b 3 c c c 3 = 4, then det a a 4a 3 a b b 4b 3 b c c c 3 c = A 8 B 6 C 4 D E 3 Let A be an n n matrix

More information

A = 3 B = A 1 1 matrix is the same as a number or scalar, 3 = [3].

A = 3 B = A 1 1 matrix is the same as a number or scalar, 3 = [3]. Appendix : A Very Brief Linear ALgebra Review Introduction Linear Algebra, also known as matrix theory, is an important element of all branches of mathematics Very often in this course we study the shapes

More information

MATRIX TRANSFORMATIONS

MATRIX TRANSFORMATIONS CHAPTER 5. MATRIX TRANSFORMATIONS INSTITIÚID TEICNEOLAÍOCHTA CHEATHARLACH INSTITUTE OF TECHNOLOGY CARLOW MATRIX TRANSFORMATIONS Matri Transformations Definition Let A and B be sets. A function f : A B

More information

CS 143 Linear Algebra Review

CS 143 Linear Algebra Review CS 143 Linear Algebra Review Stefan Roth September 29, 2003 Introductory Remarks This review does not aim at mathematical rigor very much, but instead at ease of understanding and conciseness. Please see

More information

Algebra-I, Fall Solutions to Midterm #1

Algebra-I, Fall Solutions to Midterm #1 Algebra-I, Fall 2018. Solutions to Midterm #1 1. Let G be a group, H, K subgroups of G and a, b G. (a) (6 pts) Suppose that ah = bk. Prove that H = K. Solution: (a) Multiplying both sides by b 1 on the

More information

Lecture 1.4: Inner products and orthogonality

Lecture 1.4: Inner products and orthogonality Lecture 1.4: Inner products and orthogonality Matthew Macauley Department of Mathematical Sciences Clemson University http://www.math.clemson.edu/~macaule/ Math 4340, Advanced Engineering Mathematics M.

More information

Math 2940: Prelim 1 Practice Solutions

Math 2940: Prelim 1 Practice Solutions Math 294: Prelim Practice Solutions x. Find all solutions x = x 2 x 3 to the following system of equations: x 4 2x + 4x 2 + 2x 3 + 2x 4 = 6 x + 2x 2 + x 3 + x 4 = 3 3x 6x 2 + x 3 + 5x 4 = 5 Write your

More information

September 18, Notation: for linear transformations it is customary to denote simply T x rather than T (x). k=1. k=1

September 18, Notation: for linear transformations it is customary to denote simply T x rather than T (x). k=1. k=1 September 18, 2017 Contents 3. Linear Transformations 1 3.1. Definition and examples 1 3.2. The matrix of a linear transformation 2 3.3. Operations with linear transformations and with their associated

More information

GEOMETRY Notes Easter 2002

GEOMETRY Notes Easter 2002 Department of Pure Mathematics and Mathematical Statistics University of Cambridge GEOMETRY Notes Easter 2002 T. K. Carne. t.k.carne@dpmms.cam.ac.uk c Copyright. Not for distribution outside Cambridge

More information

Part IA. Vectors and Matrices. Year

Part IA. Vectors and Matrices. Year Part IA Vectors and Matrices Year 2018 2017 2016 2015 2014 2013 2012 2011 2010 2009 2008 2018 Paper 1, Section I 1C Vectors and Matrices For z, w C define the principal value of z w. State de Moivre s

More information

INTRODUCTION TO REPRESENTATION THEORY AND CHARACTERS

INTRODUCTION TO REPRESENTATION THEORY AND CHARACTERS INTRODUCTION TO REPRESENTATION THEORY AND CHARACTERS HANMING ZHANG Abstract. In this paper, we will first build up a background for representation theory. We will then discuss some interesting topics in

More information

1 Lecture 1 (1/5/2009)

1 Lecture 1 (1/5/2009) 1 Lecture 1 (1/5/2009) Notation 1.1 Introduce N := {0, 1, 2,... }, Z, Q, R, and C. Also let Z + := N \ {0}. Set notations. Recalled basic notions of a function being one to one, onto, and invertible. Think

More information

1 Lecture 1 (1/5/2009)

1 Lecture 1 (1/5/2009) 1 Lecture 1 (1/5/2009) Notation 1.1 Introduce N := {0, 1, 2,... }, Z, Q, R, and C. Also let Z + := N \ {0}. Set notations. Recalled basic notions of a function being one to one, onto, and invertible. Think

More information

Transformations. Lars Vidar Magnusson. August 24,

Transformations. Lars Vidar Magnusson. August 24, Transformations Lars Vidar Magnusson August 24, 2012 http://www.it.hiof.no/~larsvmag/iti43309/index.html 2D Translation To translate an object is to move it in two-dimensinal space. If we have a point

More information

Computing Orthonormal Sets in 2D, 3D, and 4D

Computing Orthonormal Sets in 2D, 3D, and 4D Computing Orthonormal Sets in 2D, 3D, and 4D David Eberly, Geometric Tools, Redmond WA 98052 https://www.geometrictools.com/ This work is licensed under the Creative Commons Attribution 4.0 International

More information

Lecture 4 Orthonormal vectors and QR factorization

Lecture 4 Orthonormal vectors and QR factorization Orthonormal vectors and QR factorization 4 1 Lecture 4 Orthonormal vectors and QR factorization EE263 Autumn 2004 orthonormal vectors Gram-Schmidt procedure, QR factorization orthogonal decomposition induced

More information

Math Advanced Calculus II

Math Advanced Calculus II Math 452 - Advanced Calculus II Manifolds and Lagrange Multipliers In this section, we will investigate the structure of critical points of differentiable functions. In practice, one often is trying to

More information

TEST CODE: MMA (Objective type) 2015 SYLLABUS

TEST CODE: MMA (Objective type) 2015 SYLLABUS TEST CODE: MMA (Objective type) 2015 SYLLABUS Analytical Reasoning Algebra Arithmetic, geometric and harmonic progression. Continued fractions. Elementary combinatorics: Permutations and combinations,

More information

Exercises for Unit I I (Vector algebra and Euclidean geometry)

Exercises for Unit I I (Vector algebra and Euclidean geometry) Exercises for Unit I I (Vector algebra and Euclidean geometry) I I.1 : Approaches to Euclidean geometry Ryan : pp. 5 15 1. What is the minimum number of planes containing three concurrent noncoplanar lines

More information

Introduction to Group Theory

Introduction to Group Theory Chapter 10 Introduction to Group Theory Since symmetries described by groups play such an important role in modern physics, we will take a little time to introduce the basic structure (as seen by a physicist)

More information

GEOMETRY AND VECTORS

GEOMETRY AND VECTORS GEOMETRY AND VECTORS Distinguishing Between Points in Space One Approach Names: ( Fred, Steve, Alice...) Problem: distance & direction must be defined point-by-point More elegant take advantage of geometry

More information

Lecture 2: Isometries of R 2

Lecture 2: Isometries of R 2 Chapter 1 Lecture 2: Isometries of R 2 1.1 The synthetic vs. analytic approach; axiomatics We discussed briefly what an axiomatic system is: a collection of undefined terms related by axioms. Further terms

More information

Identifying second degree equations

Identifying second degree equations Chapter 7 Identifing second degree equations 71 The eigenvalue method In this section we appl eigenvalue methods to determine the geometrical nature of the second degree equation a 2 + 2h + b 2 + 2g +

More information

IMPORTANT DEFINITIONS AND THEOREMS REFERENCE SHEET

IMPORTANT DEFINITIONS AND THEOREMS REFERENCE SHEET IMPORTANT DEFINITIONS AND THEOREMS REFERENCE SHEET This is a (not quite comprehensive) list of definitions and theorems given in Math 1553. Pay particular attention to the ones in red. Study Tip For each

More information

Rotational motion of a rigid body spinning around a rotational axis ˆn;

Rotational motion of a rigid body spinning around a rotational axis ˆn; Physics 106a, Caltech 15 November, 2018 Lecture 14: Rotations The motion of solid bodies So far, we have been studying the motion of point particles, which are essentially just translational. Bodies with

More information

CP3 REVISION LECTURES VECTORS AND MATRICES Lecture 1. Prof. N. Harnew University of Oxford TT 2013

CP3 REVISION LECTURES VECTORS AND MATRICES Lecture 1. Prof. N. Harnew University of Oxford TT 2013 CP3 REVISION LECTURES VECTORS AND MATRICES Lecture 1 Prof. N. Harnew University of Oxford TT 2013 1 OUTLINE 1. Vector Algebra 2. Vector Geometry 3. Types of Matrices and Matrix Operations 4. Determinants

More information