Lecture 19: Isometries, Positive operators, Polar and singular value decompositions; Unitary matrices and classical groups; Previews (1)

Size: px
Start display at page:

Download "Lecture 19: Isometries, Positive operators, Polar and singular value decompositions; Unitary matrices and classical groups; Previews (1)"

Transcription

1 Lecture 19: Isometries, Positive operators, Polar and singular value decompositions; Unitary matrices and classical groups; Previews (1) Travis Schedler Thurs, Nov 18, 2010 (version: Wed, Nov 17, 2:15 PM)

2 Goals (2) Isometries Positive operators Polar and singular value decompositions Unitary matrices and classical matrix groups Preview of rest of course!

3 Characterization of isometries (3) Correction: An isometry V W need not be invertible even if V and W are finite-dimensional: e.g., if V = 0 the zero map is an isometry! However, it must be injective so invertible if dim V = dim W <. Proposition If T exists (e.g., if V is finite-dimensional), then T L(V, W ) is an isometry iff T T = I V. Proof. First, T is an isometry iff T Tv, v = v, v for all v. Next, T T and hence S := T T I is always self-adjoint. T is an isometry iff Sv, v = 0 for all v. Now, apply the skipped result from last time below. Proposition (Proposition 7.4) If T is self-adjoint, then Tv, v = 0 for all v iff T = 0.

4 Proof of the proposition (4) Proposition (Proposition 7.4) If T is self-adjoint, then Tv, v = 0 for all v iff T = 0. Proof. Assume Tv, v = 0 for all v. Then T (v + u), v + u T (v), v T (u), u = 0 for all v, u. Thus, T (v), u + T (u), v = 0 for all u, v. When T is self-adjoint, this says 2R T (v), u = 0 for all u, v. Plugging in iu for u, also 2I T (v), u = 0 for all u, v. Thus T (v) = 0 for all v, i.e., T = 0. Note: From another skipped result on last week s slides, when V is finite-dimensional, Tv, v = 0 for all v iff T = 0 or F = R and T is anti-self-adjoint.

5 Positive operators (5) Definition A positive operator T is a self-adjoint operator such that Tv, v 0 for all v. In view of the spectral theorem, a self-adjoint operator is positive iff its eigenvalues are nonnegative (part of Theorem 7.27). Theorem (Remainder of Theorem 7.27) (i) Every operator of the form T = S S is positive. (ii) Every positive operator admits a positive square root. Proof. (i) First, T = (S S) = S S is self-adjoint. Next, Tv, v = Sv, Sv 0 for all v. (ii) For any orthonormal eigenbasis of T, let T be the operator with the same orthonormal eigenbasis, but with the nonnegative square root of the eigenvalues.

6 Polar decomposition (6) After the spectral theorem, the second-most important theorem of Chapters 6 and 7 is: Theorem (Polar decomposition: Theorem 7.41) Every T L(V ) equals S T T for some isometry S. Main difficulty: T need not be invertible! Lemma For all v V, Tv = T T v. Proof. T T v 2 = T T v, T Tv = ( T T ) T T v, v = T Tv, v = Tv, Tv = Tv 2. Corollary: null(t ) = null( T T ). We may thus define S 1 : range( T T ) range(t ) by S 1 ( T T v) = Tv. Thus, for all v V, S 1 T T v = Tv. Also, S 1 u = u for all u(= T T v) by the lemma. So S 1 is an isometry.

7 Completion of proof (7) We only have to extend S 1 to an isometry on all of V. Note that range( T T ) range( T T ) = V = range(t ) range(t ). Thus, the extensions of S 1 : range( T T ) range(t ) to an isometry S : V V are exactly S = S 1 S 2, where S 2 : range( T T ) range(t ) is an isometry. Since these are inner product spaces of the same dimension, there always exists an isometry, by taking an orthonormal basis to an orthonormal basis. Recall here that T 1 T 2 on U 1 U 2 means (T 1 T 2 )(u 1 + u 2 ) = T 1 (u 1 ) + T 2 (u 2 ), u 1 U 1, u 2 U 2.

8 Singular value decomposition (SVD) (8) Let V be finite dimensional and T L(V ). Theorem There exist orthonormal bases (e 1,..., e n ) and (f 1,..., f n ) and nonnegative values s i 0 such that Te i = s i f i. The s i are called the singular values. Proof. Let (e 1,..., e n ) be an orthonormal eigenbasis of the positive T T. Let s 1,..., s n be the nonnegative eigenvalues. Using polar decomposition, T = S T T for S an isometry. Let f i := Se i. Then Te i = s i f i. Corollary: M (ei ),(f i )(T ) = D, where D is diagonal with entries s i 0. Improvement on normal form: (e i ), (f i ) orthonormal! Note: To compute, first find eigenvalues si 2 of T T, then orthonormal eigenbasis e i. This yields f i, S, and T T!

9 Unitary matrices and A = U 1 DU 1 2 decomposition (9) Corollary: If A = M (vi )(T ) for any orthonormal basis, then A = U 1 DU 1 2 for the change-of-basis matrices U 1, U 2. Moreover, the columns of U 1 and U 2 form orthonormal bases of Mat(n, 1, F): such matrices are called unitary. Proposition The following are equivalent for U Mat(n, n, F): The columns form an orthonormal basis; UU = I = U U; U = M (ei )(S) for some isometry S L(V ) and some orthonormal basis (e i ) of V. Proof. The first two are immediately equivalent. In general, M (ei )(S) has columns equal to Se i in the basis (e i ), so Se i, Se j = the dot product of the i-th and j-th column of M (ei )(S).

10 Example of SVD (A = U 1 DU2 1 decomposition)! (10) Let A = ( ) Compute the decomposition A = U DU2 1. First step: ( Find eigenvalues ) and eigenbasis of A A = Char. poly of A = x 2 (tr A)x + det A = x 2 250x = (x 200)(x 50). Eigenvalues: s1 2 = 200, s2 2 = ( 50. ) Nullspace of A A 200I = : ( ) spanned by e 1 := ( ) Same computation for e 2 : get e 2 := Alternative: e 2 determined up to scaling so that e 1 e 2.

11 Computation continued (11) ( ) 10 2 Recall: A =, 5 11 ( ) ( ) s1 2 = 200, s2 2 = 50, e 1 = 1 1 2, e 1 2 = ( ) ( ) Now, f 1 = s1 1 Ae 1 = /5 20 =. 16 4/5 ( ) ( ) Similarly, f 2 = s2 1 Ae 2 = 1 8 4/5 10 =. 6 3/5 Caution: f 2 f 1, but this only determines f 2 up to scaling by absolute value one (here ±1)! ( ) 3/5 4/5 Now, U 1 = (f 1 f 2 ) =, 4/5 3/5 ( ) ( ) s D = = 0 s 2 0 5, 2 ( ) and U 2 = (e 1 e 2 ) = Check: A = U DU2 1!

12 Classical matrix groups (12) Definition A group is a set G with an associative operation G G G with an identity and inverses (not necessarily commutative). Definition GL(n, F) Mat(n, n, F) is the group of invertible matrices general linear group, under multiplication. SL(n, F) Mat(n, n, F) is the subgroup of matrices of det= 1 special linear group. (We haven t defined determinant yet. But det(ab) = det(a) det(b) so SL(n, F) is closed under mult.) Definition O(n, R) = the group of orthogonal (=unitary) matrices: O such that O t O = I = OO t. U(n, C) = the group of unitary matrices: U such that U U = I = UU. Note: Also have O(n, F): matrices such that O t O = I = OO t for any F. Hence U(n, C) O(n, C)!

13 Finite subgroups; platonic solids (13) O(n, R) = group generated by reflections (and rotations)! Big question: What are the finite subgroups G < O(n, R)? In case{ n = 2: Just cyclic groups (cos ) } θ sin θ C m = : θ = 2πk/m; 1 k m, and sin θ cos θ dihedral groups C m TC m, where T is a reflection. In case n = 3: Groups of rotations only are: cyclic and dihedral groups on the plane, and platonic solid rotation groups: groups of rotation fixing the platonic solids! The other groups are G TG where G is as above, and T is a single reflection. This gives a classification of the platonic solids: the only three finite rotation groups in O(3, R) which don t fix a plane!

14 Classical groups of V ; bilinear and quadratic forms (14) Similarly: GL(V ), SL(V ) L(V ) are the groups of invertible, det= 1 linear transformations (V = vector space); O(V ), U(V ) are the groups of isometries in the cases F = R, C (V = inner product space); For general F, we can define groups O(V ) if we generalize inner product spaces: A bilinear form, : V V F is a map which is additive and homogeneous (in both slots!). It is symmetric if u, v = v, u. It is nondegenerate if u, v = 0 for all u V implies v = 0, and also v, u = 0 for all u V implies v = 0. Definition Let V have a (nondegenerate symmetric) bilinear form. Then O(V ) L(V ) = {T : u, v = Tu, Tv for all u, v V }. Quadratic form: q(v) := v, v, satisfying q(λv) = λ 2 q(v), parallelogram identity; uniquely determines, if 1/2 F.

15 Preview of rest of course: C case (15) Characteristic polynomial: write upper-triangular matrix A = M(T ). If the diagonal entries are λ 1,..., λ N, then char. poly := (x λ 1 ) (x λ N ). Theorem 1: This does not depend on basis. Call it χ T (x) = x N + a N 1 x N a 0. Definition: tr(t ) = a N 1 = λ i ; det(t ) = a 0 = λ i. Theorem 2 (Cayley-Hamilton): χ T (T ) = 0. Theorem 3: tr(t ) = tr(a) = sum of diagonal entries. Corollary: tr(t ) + tr(s) = tr(t + S) (sum of sums of eigenvalues = sum of eigenvalues of sum!) Theorem 4: a 0 = det(a) = an explicit formula we will study, satisfying det(ab) = det(a) det(b). Case F = R: det(a) = volume of A(unit n-cube). Corollary: det(ts) = det(t ) det(s). Corollary: χ T (T ) = det(m(t ) xi ). So the a i are polynomial functions in entries of A!

16 Arbitrary F (16) Definition: χ T (x) = det(m(t ) xi ). Theorem 1 : Does not depend on basis. Theorem 2 (C-H): χ T (T ) = 0. Corollary: The roots of χ T are exactly the eigenvalues.

17 Jordan canonical form (17) Finally, back to F = C. The following only requires Theorem 1: Theorem For F = C, in some basis, T has block diagonal form with blocks λ λ More generally (unfortunately we don t have time to prove): For ( F = ) R, we can say the same thing if we also ( allow) λ to be a b, and then 1 becomes I (alternatively, ). b a 1 For general F, we can say the same if we allow λ to be a matrix ( with ) irreducible characteristic polynomial, and replace 1 by. 1

Lecture 19: Polar and singular value decompositions; generalized eigenspaces; the decomposition theorem (1)

Lecture 19: Polar and singular value decompositions; generalized eigenspaces; the decomposition theorem (1) Lecture 19: Polar and singular value decompositions; generalized eigenspaces; the decomposition theorem (1) Travis Schedler Thurs, Nov 17, 2011 (version: Thurs, Nov 17, 1:00 PM) Goals (2) Polar decomposition

More information

Lecture 19: Polar and singular value decompositions; generalized eigenspaces; the decomposition theorem (1)

Lecture 19: Polar and singular value decompositions; generalized eigenspaces; the decomposition theorem (1) Lecture 19: Polar and singular value decompositions; generalized eigenspaces; the decomposition theorem (1) Travis Schedler Thurs, Nov 17, 2011 (version: Thurs, Nov 17, 1:00 PM) Goals (2) Polar decomposition

More information

Lecture 23: Trace and determinants! (1) (Final lecture)

Lecture 23: Trace and determinants! (1) (Final lecture) Lecture 23: Trace and determinants! (1) (Final lecture) Travis Schedler Thurs, Dec 9, 2010 (version: Monday, Dec 13, 3:52 PM) Goals (2) Recall χ T (x) = (x λ 1 ) (x λ n ) = x n tr(t )x n 1 + +( 1) n det(t

More information

Lecture 21: The decomposition theorem into generalized eigenspaces; multiplicity of eigenvalues and upper-triangular matrices (1)

Lecture 21: The decomposition theorem into generalized eigenspaces; multiplicity of eigenvalues and upper-triangular matrices (1) Lecture 21: The decomposition theorem into generalized eigenspaces; multiplicity of eigenvalues and upper-triangular matrices (1) Travis Schedler Tue, Nov 29, 2011 (version: Tue, Nov 29, 1:00 PM) Goals

More information

Lecture 23: Determinants (1)

Lecture 23: Determinants (1) Lecture 23: Determinants (1) Travis Schedler Thurs, Dec 8, 2011 (version: Thurs, Dec 8, 9:35 PM) Goals (2) Warm-up: minimal and characteristic polynomials of Jordan form matrices Snapshot: Generalizations

More information

FALL 2011, SOLUTION SET 10 LAST REVISION: NOV 27, 9:45 AM. (T c f)(x) = f(x c).

FALL 2011, SOLUTION SET 10 LAST REVISION: NOV 27, 9:45 AM. (T c f)(x) = f(x c). 18.700 FALL 2011, SOLUTION SET 10 LAST REVISION: NOV 27, 9:45 AM TRAVIS SCHEDLER (1) Let V be the vector space of all continuous functions R C. For all c R, let T c L(V ) be the shift operator, which sends

More information

Travis Schedler. Thurs, Oct 27, 2011 (version: Thurs, Oct 27, 1:00 PM)

Travis Schedler. Thurs, Oct 27, 2011 (version: Thurs, Oct 27, 1:00 PM) Lecture 13: Proof of existence of upper-triangular matrices for complex linear transformations; invariant subspaces and block upper-triangular matrices for real linear transformations (1) Travis Schedler

More information

Contents. Preface for the Instructor. Preface for the Student. xvii. Acknowledgments. 1 Vector Spaces 1 1.A R n and C n 2

Contents. Preface for the Instructor. Preface for the Student. xvii. Acknowledgments. 1 Vector Spaces 1 1.A R n and C n 2 Contents Preface for the Instructor xi Preface for the Student xv Acknowledgments xvii 1 Vector Spaces 1 1.A R n and C n 2 Complex Numbers 2 Lists 5 F n 6 Digression on Fields 10 Exercises 1.A 11 1.B Definition

More information

The Spectral Theorem for normal linear maps

The Spectral Theorem for normal linear maps MAT067 University of California, Davis Winter 2007 The Spectral Theorem for normal linear maps Isaiah Lankham, Bruno Nachtergaele, Anne Schilling (March 14, 2007) In this section we come back to the question

More information

(a) If A is a 3 by 4 matrix, what does this tell us about its nullspace? Solution: dim N(A) 1, since rank(a) 3. Ax =

(a) If A is a 3 by 4 matrix, what does this tell us about its nullspace? Solution: dim N(A) 1, since rank(a) 3. Ax = . (5 points) (a) If A is a 3 by 4 matrix, what does this tell us about its nullspace? dim N(A), since rank(a) 3. (b) If we also know that Ax = has no solution, what do we know about the rank of A? C(A)

More information

MATH 423 Linear Algebra II Lecture 33: Diagonalization of normal operators.

MATH 423 Linear Algebra II Lecture 33: Diagonalization of normal operators. MATH 423 Linear Algebra II Lecture 33: Diagonalization of normal operators. Adjoint operator and adjoint matrix Given a linear operator L on an inner product space V, the adjoint of L is a transformation

More information

Lecture 22: Jordan canonical form of upper-triangular matrices (1)

Lecture 22: Jordan canonical form of upper-triangular matrices (1) Lecture 22: Jordan canonical form of upper-triangular matrices (1) Travis Schedler Tue, Dec 6, 2011 (version: Tue, Dec 6, 1:00 PM) Goals (2) Definition, existence, and uniqueness of Jordan canonical form

More information

Math 4153 Exam 3 Review. The syllabus for Exam 3 is Chapter 6 (pages ), Chapter 7 through page 137, and Chapter 8 through page 182 in Axler.

Math 4153 Exam 3 Review. The syllabus for Exam 3 is Chapter 6 (pages ), Chapter 7 through page 137, and Chapter 8 through page 182 in Axler. Math 453 Exam 3 Review The syllabus for Exam 3 is Chapter 6 (pages -2), Chapter 7 through page 37, and Chapter 8 through page 82 in Axler.. You should be sure to know precise definition of the terms we

More information

MATRICES ARE SIMILAR TO TRIANGULAR MATRICES

MATRICES ARE SIMILAR TO TRIANGULAR MATRICES MATRICES ARE SIMILAR TO TRIANGULAR MATRICES 1 Complex matrices Recall that the complex numbers are given by a + ib where a and b are real and i is the imaginary unity, ie, i 2 = 1 In what we describe below,

More information

Review of linear algebra

Review of linear algebra Review of linear algebra 1 Vectors and matrices We will just touch very briefly on certain aspects of linear algebra, most of which should be familiar. Recall that we deal with vectors, i.e. elements of

More information

18.06 Problem Set 8 - Solutions Due Wednesday, 14 November 2007 at 4 pm in

18.06 Problem Set 8 - Solutions Due Wednesday, 14 November 2007 at 4 pm in 806 Problem Set 8 - Solutions Due Wednesday, 4 November 2007 at 4 pm in 2-06 08 03 Problem : 205+5+5+5 Consider the matrix A 02 07 a Check that A is a positive Markov matrix, and find its steady state

More information

Review problems for MA 54, Fall 2004.

Review problems for MA 54, Fall 2004. Review problems for MA 54, Fall 2004. Below are the review problems for the final. They are mostly homework problems, or very similar. If you are comfortable doing these problems, you should be fine on

More information

Summary of Week 9 B = then A A =

Summary of Week 9 B = then A A = Summary of Week 9 Finding the square root of a positive operator Last time we saw that positive operators have a unique positive square root We now briefly look at how one would go about calculating the

More information

Math 110 Linear Algebra Midterm 2 Review October 28, 2017

Math 110 Linear Algebra Midterm 2 Review October 28, 2017 Math 11 Linear Algebra Midterm Review October 8, 17 Material Material covered on the midterm includes: All lectures from Thursday, Sept. 1st to Tuesday, Oct. 4th Homeworks 9 to 17 Quizzes 5 to 9 Sections

More information

Math 113 Final Exam: Solutions

Math 113 Final Exam: Solutions Math 113 Final Exam: Solutions Thursday, June 11, 2013, 3.30-6.30pm. 1. (25 points total) Let P 2 (R) denote the real vector space of polynomials of degree 2. Consider the following inner product on P

More information

Lecture 11: Finish Gaussian elimination and applications; intro to eigenvalues and eigenvectors (1)

Lecture 11: Finish Gaussian elimination and applications; intro to eigenvalues and eigenvectors (1) Lecture 11: Finish Gaussian elimination and applications; intro to eigenvalues and eigenvectors (1) Travis Schedler Tue, Oct 18, 2011 (version: Tue, Oct 18, 6:00 PM) Goals (2) Solving systems of equations

More information

ALGEBRA QUALIFYING EXAM PROBLEMS LINEAR ALGEBRA

ALGEBRA QUALIFYING EXAM PROBLEMS LINEAR ALGEBRA ALGEBRA QUALIFYING EXAM PROBLEMS LINEAR ALGEBRA Kent State University Department of Mathematical Sciences Compiled and Maintained by Donald L. White Version: August 29, 2017 CONTENTS LINEAR ALGEBRA AND

More information

Math 102, Winter Final Exam Review. Chapter 1. Matrices and Gaussian Elimination

Math 102, Winter Final Exam Review. Chapter 1. Matrices and Gaussian Elimination Math 0, Winter 07 Final Exam Review Chapter. Matrices and Gaussian Elimination { x + x =,. Different forms of a system of linear equations. Example: The x + 4x = 4. [ ] [ ] [ ] vector form (or the column

More information

Linear Algebra Lecture Notes-II

Linear Algebra Lecture Notes-II Linear Algebra Lecture Notes-II Vikas Bist Department of Mathematics Panjab University, Chandigarh-64 email: bistvikas@gmail.com Last revised on March 5, 8 This text is based on the lectures delivered

More information

Math 396. An application of Gram-Schmidt to prove connectedness

Math 396. An application of Gram-Schmidt to prove connectedness Math 396. An application of Gram-Schmidt to prove connectedness 1. Motivation and background Let V be an n-dimensional vector space over R, and define GL(V ) to be the set of invertible linear maps V V

More information

12x + 18y = 30? ax + by = m

12x + 18y = 30? ax + by = m Math 2201, Further Linear Algebra: a practical summary. February, 2009 There are just a few themes that were covered in the course. I. Algebra of integers and polynomials. II. Structure theory of one endomorphism.

More information

Ir O D = D = ( ) Section 2.6 Example 1. (Bottom of page 119) dim(v ) = dim(l(v, W )) = dim(v ) dim(f ) = dim(v )

Ir O D = D = ( ) Section 2.6 Example 1. (Bottom of page 119) dim(v ) = dim(l(v, W )) = dim(v ) dim(f ) = dim(v ) Section 3.2 Theorem 3.6. Let A be an m n matrix of rank r. Then r m, r n, and, by means of a finite number of elementary row and column operations, A can be transformed into the matrix ( ) Ir O D = 1 O

More information

LINEAR ALGEBRA BOOT CAMP WEEK 4: THE SPECTRAL THEOREM

LINEAR ALGEBRA BOOT CAMP WEEK 4: THE SPECTRAL THEOREM LINEAR ALGEBRA BOOT CAMP WEEK 4: THE SPECTRAL THEOREM Unless otherwise stated, all vector spaces in this worksheet are finite dimensional and the scalar field F is R or C. Definition 1. A linear operator

More information

2. Every linear system with the same number of equations as unknowns has a unique solution.

2. Every linear system with the same number of equations as unknowns has a unique solution. 1. For matrices A, B, C, A + B = A + C if and only if A = B. 2. Every linear system with the same number of equations as unknowns has a unique solution. 3. Every linear system with the same number of equations

More information

1 Last time: least-squares problems

1 Last time: least-squares problems MATH Linear algebra (Fall 07) Lecture Last time: least-squares problems Definition. If A is an m n matrix and b R m, then a least-squares solution to the linear system Ax = b is a vector x R n such that

More information

MATH 20F: LINEAR ALGEBRA LECTURE B00 (T. KEMP)

MATH 20F: LINEAR ALGEBRA LECTURE B00 (T. KEMP) MATH 20F: LINEAR ALGEBRA LECTURE B00 (T KEMP) Definition 01 If T (x) = Ax is a linear transformation from R n to R m then Nul (T ) = {x R n : T (x) = 0} = Nul (A) Ran (T ) = {Ax R m : x R n } = {b R m

More information

Linear Algebra 1. M.T.Nair Department of Mathematics, IIT Madras. and in that case x is called an eigenvector of T corresponding to the eigenvalue λ.

Linear Algebra 1. M.T.Nair Department of Mathematics, IIT Madras. and in that case x is called an eigenvector of T corresponding to the eigenvalue λ. Linear Algebra 1 M.T.Nair Department of Mathematics, IIT Madras 1 Eigenvalues and Eigenvectors 1.1 Definition and Examples Definition 1.1. Let V be a vector space (over a field F) and T : V V be a linear

More information

4.2. ORTHOGONALITY 161

4.2. ORTHOGONALITY 161 4.2. ORTHOGONALITY 161 Definition 4.2.9 An affine space (E, E ) is a Euclidean affine space iff its underlying vector space E is a Euclidean vector space. Given any two points a, b E, we define the distance

More information

Math 18, Linear Algebra, Lecture C00, Spring 2017 Review and Practice Problems for Final Exam

Math 18, Linear Algebra, Lecture C00, Spring 2017 Review and Practice Problems for Final Exam Math 8, Linear Algebra, Lecture C, Spring 7 Review and Practice Problems for Final Exam. The augmentedmatrix of a linear system has been transformed by row operations into 5 4 8. Determine if the system

More information

Linear algebra II Homework #1 due Thursday, Feb A =

Linear algebra II Homework #1 due Thursday, Feb A = Homework #1 due Thursday, Feb. 1 1. Find the eigenvalues and the eigenvectors of the matrix [ ] 3 2 A =. 1 6 2. Find the eigenvalues and the eigenvectors of the matrix 3 2 2 A = 2 3 2. 2 2 1 3. The following

More information

IMPORTANT DEFINITIONS AND THEOREMS REFERENCE SHEET

IMPORTANT DEFINITIONS AND THEOREMS REFERENCE SHEET IMPORTANT DEFINITIONS AND THEOREMS REFERENCE SHEET This is a (not quite comprehensive) list of definitions and theorems given in Math 1553. Pay particular attention to the ones in red. Study Tip For each

More information

University of Colorado at Denver Mathematics Department Applied Linear Algebra Preliminary Exam With Solutions 16 January 2009, 10:00 am 2:00 pm

University of Colorado at Denver Mathematics Department Applied Linear Algebra Preliminary Exam With Solutions 16 January 2009, 10:00 am 2:00 pm University of Colorado at Denver Mathematics Department Applied Linear Algebra Preliminary Exam With Solutions 16 January 2009, 10:00 am 2:00 pm Name: The proctor will let you read the following conditions

More information

Linear Algebra Formulas. Ben Lee

Linear Algebra Formulas. Ben Lee Linear Algebra Formulas Ben Lee January 27, 2016 Definitions and Terms Diagonal: Diagonal of matrix A is a collection of entries A ij where i = j. Diagonal Matrix: A matrix (usually square), where entries

More information

Eigenvalues and Eigenvectors

Eigenvalues and Eigenvectors /88 Chia-Ping Chen Department of Computer Science and Engineering National Sun Yat-sen University Linear Algebra Eigenvalue Problem /88 Eigenvalue Equation By definition, the eigenvalue equation for matrix

More information

University of Colorado Denver Department of Mathematical and Statistical Sciences Applied Linear Algebra Ph.D. Preliminary Exam June 8, 2012

University of Colorado Denver Department of Mathematical and Statistical Sciences Applied Linear Algebra Ph.D. Preliminary Exam June 8, 2012 University of Colorado Denver Department of Mathematical and Statistical Sciences Applied Linear Algebra Ph.D. Preliminary Exam June 8, 2012 Name: Exam Rules: This is a closed book exam. Once the exam

More information

Math 408 Advanced Linear Algebra

Math 408 Advanced Linear Algebra Math 408 Advanced Linear Algebra Chi-Kwong Li Chapter 4 Hermitian and symmetric matrices Basic properties Theorem Let A M n. The following are equivalent. Remark (a) A is Hermitian, i.e., A = A. (b) x

More information

Online Exercises for Linear Algebra XM511

Online Exercises for Linear Algebra XM511 This document lists the online exercises for XM511. The section ( ) numbers refer to the textbook. TYPE I are True/False. Lecture 02 ( 1.1) Online Exercises for Linear Algebra XM511 1) The matrix [3 2

More information

Math 108b: Notes on the Spectral Theorem

Math 108b: Notes on the Spectral Theorem Math 108b: Notes on the Spectral Theorem From section 6.3, we know that every linear operator T on a finite dimensional inner product space V has an adjoint. (T is defined as the unique linear operator

More information

REPRESENTATION THEORY WEEK 7

REPRESENTATION THEORY WEEK 7 REPRESENTATION THEORY WEEK 7 1. Characters of L k and S n A character of an irreducible representation of L k is a polynomial function constant on every conjugacy class. Since the set of diagonalizable

More information

LinGloss. A glossary of linear algebra

LinGloss. A glossary of linear algebra LinGloss A glossary of linear algebra Contents: Decompositions Types of Matrices Theorems Other objects? Quasi-triangular A matrix A is quasi-triangular iff it is a triangular matrix except its diagonal

More information

MATH 31 - ADDITIONAL PRACTICE PROBLEMS FOR FINAL

MATH 31 - ADDITIONAL PRACTICE PROBLEMS FOR FINAL MATH 3 - ADDITIONAL PRACTICE PROBLEMS FOR FINAL MAIN TOPICS FOR THE FINAL EXAM:. Vectors. Dot product. Cross product. Geometric applications. 2. Row reduction. Null space, column space, row space, left

More information

Eigenvalues and Eigenvectors A =

Eigenvalues and Eigenvectors A = Eigenvalues and Eigenvectors Definition 0 Let A R n n be an n n real matrix A number λ R is a real eigenvalue of A if there exists a nonzero vector v R n such that A v = λ v The vector v is called an eigenvector

More information

1. Let m 1 and n 1 be two natural numbers such that m > n. Which of the following is/are true?

1. Let m 1 and n 1 be two natural numbers such that m > n. Which of the following is/are true? . Let m and n be two natural numbers such that m > n. Which of the following is/are true? (i) A linear system of m equations in n variables is always consistent. (ii) A linear system of n equations in

More information

Lecture 2: Eigenvalues and their Uses

Lecture 2: Eigenvalues and their Uses Spectral Graph Theory Instructor: Padraic Bartlett Lecture 2: Eigenvalues and their Uses Week 3 Mathcamp 2011 As you probably noticed on yesterday s HW, we, um, don t really have any good tools for finding

More information

IMPORTANT DEFINITIONS AND THEOREMS REFERENCE SHEET

IMPORTANT DEFINITIONS AND THEOREMS REFERENCE SHEET IMPORTANT DEFINITIONS AND THEOREMS REFERENCE SHEET This is a (not quite comprehensive) list of definitions and theorems given in Math 1553. Pay particular attention to the ones in red. Study Tip For each

More information

Conceptual Questions for Review

Conceptual Questions for Review Conceptual Questions for Review Chapter 1 1.1 Which vectors are linear combinations of v = (3, 1) and w = (4, 3)? 1.2 Compare the dot product of v = (3, 1) and w = (4, 3) to the product of their lengths.

More information

Mathematical Methods wk 2: Linear Operators

Mathematical Methods wk 2: Linear Operators John Magorrian, magog@thphysoxacuk These are work-in-progress notes for the second-year course on mathematical methods The most up-to-date version is available from http://www-thphysphysicsoxacuk/people/johnmagorrian/mm

More information

MATH 240 Spring, Chapter 1: Linear Equations and Matrices

MATH 240 Spring, Chapter 1: Linear Equations and Matrices MATH 240 Spring, 2006 Chapter Summaries for Kolman / Hill, Elementary Linear Algebra, 8th Ed. Sections 1.1 1.6, 2.1 2.2, 3.2 3.8, 4.3 4.5, 5.1 5.3, 5.5, 6.1 6.5, 7.1 7.2, 7.4 DEFINITIONS Chapter 1: Linear

More information

Some notes on Coxeter groups

Some notes on Coxeter groups Some notes on Coxeter groups Brooks Roberts November 28, 2017 CONTENTS 1 Contents 1 Sources 2 2 Reflections 3 3 The orthogonal group 7 4 Finite subgroups in two dimensions 9 5 Finite subgroups in three

More information

Numerical Linear Algebra

Numerical Linear Algebra University of Alabama at Birmingham Department of Mathematics Numerical Linear Algebra Lecture Notes for MA 660 (1997 2014) Dr Nikolai Chernov April 2014 Chapter 0 Review of Linear Algebra 0.1 Matrices

More information

Linear Algebra Short Course Lecture 4

Linear Algebra Short Course Lecture 4 Linear Algebra Short Course Lecture 4 Matthew J. Holland matthew-h@is.naist.jp Mathematical Informatics Lab Graduate School of Information Science, NAIST 1 Some useful references Finite dimensional inner-product

More information

Rotations & reflections

Rotations & reflections Rotations & reflections Aim lecture: We use the spectral thm for normal operators to show how any orthogonal matrix can be built up from rotations & reflections. In this lecture we work over the fields

More information

MATHEMATICS 217 NOTES

MATHEMATICS 217 NOTES MATHEMATICS 27 NOTES PART I THE JORDAN CANONICAL FORM The characteristic polynomial of an n n matrix A is the polynomial χ A (λ) = det(λi A), a monic polynomial of degree n; a monic polynomial in the variable

More information

ANSWERS. E k E 2 E 1 A = B

ANSWERS. E k E 2 E 1 A = B MATH 7- Final Exam Spring ANSWERS Essay Questions points Define an Elementary Matrix Display the fundamental matrix multiply equation which summarizes a sequence of swap, combination and multiply operations,

More information

A Brief Outline of Math 355

A Brief Outline of Math 355 A Brief Outline of Math 355 Lecture 1 The geometry of linear equations; elimination with matrices A system of m linear equations with n unknowns can be thought of geometrically as m hyperplanes intersecting

More information

ANSWERS (5 points) Let A be a 2 2 matrix such that A =. Compute A. 2

ANSWERS (5 points) Let A be a 2 2 matrix such that A =. Compute A. 2 MATH 7- Final Exam Sample Problems Spring 7 ANSWERS ) ) ). 5 points) Let A be a matrix such that A =. Compute A. ) A = A ) = ) = ). 5 points) State ) the definition of norm, ) the Cauchy-Schwartz inequality

More information

Linear Algebra 2 Spectral Notes

Linear Algebra 2 Spectral Notes Linear Algebra 2 Spectral Notes In what follows, V is an inner product vector space over F, where F = R or C. We will use results seen so far; in particular that every linear operator T L(V ) has a complex

More information

6 Inner Product Spaces

6 Inner Product Spaces Lectures 16,17,18 6 Inner Product Spaces 6.1 Basic Definition Parallelogram law, the ability to measure angle between two vectors and in particular, the concept of perpendicularity make the euclidean space

More information

Problems in Linear Algebra and Representation Theory

Problems in Linear Algebra and Representation Theory Problems in Linear Algebra and Representation Theory (Most of these were provided by Victor Ginzburg) The problems appearing below have varying level of difficulty. They are not listed in any specific

More information

BASIC ALGORITHMS IN LINEAR ALGEBRA. Matrices and Applications of Gaussian Elimination. A 2 x. A T m x. A 1 x A T 1. A m x

BASIC ALGORITHMS IN LINEAR ALGEBRA. Matrices and Applications of Gaussian Elimination. A 2 x. A T m x. A 1 x A T 1. A m x BASIC ALGORITHMS IN LINEAR ALGEBRA STEVEN DALE CUTKOSKY Matrices and Applications of Gaussian Elimination Systems of Equations Suppose that A is an n n matrix with coefficents in a field F, and x = (x,,

More information

Linear Algebra Review. Vectors

Linear Algebra Review. Vectors Linear Algebra Review 9/4/7 Linear Algebra Review By Tim K. Marks UCSD Borrows heavily from: Jana Kosecka http://cs.gmu.edu/~kosecka/cs682.html Virginia de Sa (UCSD) Cogsci 8F Linear Algebra review Vectors

More information

Rotations & reflections

Rotations & reflections Rotations & reflections Aim lecture: We use the spectral thm for normal operators to show how any orthogonal matrix can be built up from rotations. In this lecture we work over the fields F = R & C. We

More information

Lecture 2j Inner Product Spaces (pages )

Lecture 2j Inner Product Spaces (pages ) Lecture 2j Inner Product Spaces (pages 348-350) So far, we have taken the essential properties of R n and used them to form general vector spaces, and now we have taken the essential properties of the

More information

Linear Algebra: Matrix Eigenvalue Problems

Linear Algebra: Matrix Eigenvalue Problems CHAPTER8 Linear Algebra: Matrix Eigenvalue Problems Chapter 8 p1 A matrix eigenvalue problem considers the vector equation (1) Ax = λx. 8.0 Linear Algebra: Matrix Eigenvalue Problems Here A is a given

More information

1. General Vector Spaces

1. General Vector Spaces 1.1. Vector space axioms. 1. General Vector Spaces Definition 1.1. Let V be a nonempty set of objects on which the operations of addition and scalar multiplication are defined. By addition we mean a rule

More information

Math 4242 Fall 2016 (Darij Grinberg): homework set 8 due: Wed, 14 Dec b a. Here is the algorithm for diagonalizing a matrix we did in class:

Math 4242 Fall 2016 (Darij Grinberg): homework set 8 due: Wed, 14 Dec b a. Here is the algorithm for diagonalizing a matrix we did in class: Math 4242 Fall 206 homework page Math 4242 Fall 206 Darij Grinberg: homework set 8 due: Wed, 4 Dec 206 Exercise Recall that we defined the multiplication of complex numbers by the rule a, b a 2, b 2 =

More information

Homework 11 Solutions. Math 110, Fall 2013.

Homework 11 Solutions. Math 110, Fall 2013. Homework 11 Solutions Math 110, Fall 2013 1 a) Suppose that T were self-adjoint Then, the Spectral Theorem tells us that there would exist an orthonormal basis of P 2 (R), (p 1, p 2, p 3 ), consisting

More information

SYLLABUS. 1 Linear maps and matrices

SYLLABUS. 1 Linear maps and matrices Dr. K. Bellová Mathematics 2 (10-PHY-BIPMA2) SYLLABUS 1 Linear maps and matrices Operations with linear maps. Prop 1.1.1: 1) sum, scalar multiple, composition of linear maps are linear maps; 2) L(U, V

More information

Linear algebra and applications to graphs Part 1

Linear algebra and applications to graphs Part 1 Linear algebra and applications to graphs Part 1 Written up by Mikhail Belkin and Moon Duchin Instructor: Laszlo Babai June 17, 2001 1 Basic Linear Algebra Exercise 1.1 Let V and W be linear subspaces

More information

Econ 204 Supplement to Section 3.6 Diagonalization and Quadratic Forms. 1 Diagonalization and Change of Basis

Econ 204 Supplement to Section 3.6 Diagonalization and Quadratic Forms. 1 Diagonalization and Change of Basis Econ 204 Supplement to Section 3.6 Diagonalization and Quadratic Forms De La Fuente notes that, if an n n matrix has n distinct eigenvalues, it can be diagonalized. In this supplement, we will provide

More information

linearly indepedent eigenvectors as the multiplicity of the root, but in general there may be no more than one. For further discussion, assume matrice

linearly indepedent eigenvectors as the multiplicity of the root, but in general there may be no more than one. For further discussion, assume matrice 3. Eigenvalues and Eigenvectors, Spectral Representation 3.. Eigenvalues and Eigenvectors A vector ' is eigenvector of a matrix K, if K' is parallel to ' and ' 6, i.e., K' k' k is the eigenvalue. If is

More information

TOEPLITZ OPERATORS. Toeplitz studied infinite matrices with NW-SE diagonals constant. f e C :

TOEPLITZ OPERATORS. Toeplitz studied infinite matrices with NW-SE diagonals constant. f e C : TOEPLITZ OPERATORS EFTON PARK 1. Introduction to Toeplitz Operators Otto Toeplitz lived from 1881-1940 in Goettingen, and it was pretty rough there, so he eventually went to Palestine and eventually contracted

More information

2. Linear algebra. matrices and vectors. linear equations. range and nullspace of matrices. function of vectors, gradient and Hessian

2. Linear algebra. matrices and vectors. linear equations. range and nullspace of matrices. function of vectors, gradient and Hessian FE661 - Statistical Methods for Financial Engineering 2. Linear algebra Jitkomut Songsiri matrices and vectors linear equations range and nullspace of matrices function of vectors, gradient and Hessian

More information

Equality: Two matrices A and B are equal, i.e., A = B if A and B have the same order and the entries of A and B are the same.

Equality: Two matrices A and B are equal, i.e., A = B if A and B have the same order and the entries of A and B are the same. Introduction Matrix Operations Matrix: An m n matrix A is an m-by-n array of scalars from a field (for example real numbers) of the form a a a n a a a n A a m a m a mn The order (or size) of A is m n (read

More information

= W z1 + W z2 and W z1 z 2

= W z1 + W z2 and W z1 z 2 Math 44 Fall 06 homework page Math 44 Fall 06 Darij Grinberg: homework set 8 due: Wed, 4 Dec 06 [Thanks to Hannah Brand for parts of the solutions] Exercise Recall that we defined the multiplication of

More information

Singular Value Decomposition (SVD) and Polar Form

Singular Value Decomposition (SVD) and Polar Form Chapter 2 Singular Value Decomposition (SVD) and Polar Form 2.1 Polar Form In this chapter, we assume that we are dealing with a real Euclidean space E. Let f: E E be any linear map. In general, it may

More information

Numerical Linear Algebra Homework Assignment - Week 2

Numerical Linear Algebra Homework Assignment - Week 2 Numerical Linear Algebra Homework Assignment - Week 2 Đoàn Trần Nguyên Tùng Student ID: 1411352 8th October 2016 Exercise 2.1: Show that if a matrix A is both triangular and unitary, then it is diagonal.

More information

Dot Products. K. Behrend. April 3, Abstract A short review of some basic facts on the dot product. Projections. The spectral theorem.

Dot Products. K. Behrend. April 3, Abstract A short review of some basic facts on the dot product. Projections. The spectral theorem. Dot Products K. Behrend April 3, 008 Abstract A short review of some basic facts on the dot product. Projections. The spectral theorem. Contents The dot product 3. Length of a vector........................

More information

LINEAR ALGEBRA MICHAEL PENKAVA

LINEAR ALGEBRA MICHAEL PENKAVA LINEAR ALGEBRA MICHAEL PENKAVA 1. Linear Maps Definition 1.1. If V and W are vector spaces over the same field K, then a map λ : V W is called a linear map if it satisfies the two conditions below: (1)

More information

1. Select the unique answer (choice) for each problem. Write only the answer.

1. Select the unique answer (choice) for each problem. Write only the answer. MATH 5 Practice Problem Set Spring 7. Select the unique answer (choice) for each problem. Write only the answer. () Determine all the values of a for which the system has infinitely many solutions: x +

More information

GRE Subject test preparation Spring 2016 Topic: Abstract Algebra, Linear Algebra, Number Theory.

GRE Subject test preparation Spring 2016 Topic: Abstract Algebra, Linear Algebra, Number Theory. GRE Subject test preparation Spring 2016 Topic: Abstract Algebra, Linear Algebra, Number Theory. Linear Algebra Standard matrix manipulation to compute the kernel, intersection of subspaces, column spaces,

More information

Diagonalizing Matrices

Diagonalizing Matrices Diagonalizing Matrices Massoud Malek A A Let A = A k be an n n non-singular matrix and let B = A = [B, B,, B k,, B n ] Then A n A B = A A 0 0 A k [B, B,, B k,, B n ] = 0 0 = I n 0 A n Notice that A i B

More information

Linear Algebra - Part II

Linear Algebra - Part II Linear Algebra - Part II Projection, Eigendecomposition, SVD (Adapted from Sargur Srihari s slides) Brief Review from Part 1 Symmetric Matrix: A = A T Orthogonal Matrix: A T A = AA T = I and A 1 = A T

More information

Spectral Theorem for Self-adjoint Linear Operators

Spectral Theorem for Self-adjoint Linear Operators Notes for the undergraduate lecture by David Adams. (These are the notes I would write if I was teaching a course on this topic. I have included more material than I will cover in the 45 minute lecture;

More information

Solutions to Final Practice Problems Written by Victoria Kala Last updated 12/5/2015

Solutions to Final Practice Problems Written by Victoria Kala Last updated 12/5/2015 Solutions to Final Practice Problems Written by Victoria Kala vtkala@math.ucsb.edu Last updated /5/05 Answers This page contains answers only. See the following pages for detailed solutions. (. (a x. See

More information

Linear algebra II Homework #1 due Thursday, Feb. 2 A =. 2 5 A = When writing up solutions, write legibly and coherently.

Linear algebra II Homework #1 due Thursday, Feb. 2 A =. 2 5 A = When writing up solutions, write legibly and coherently. Homework #1 due Thursday, Feb. 2 1. Find the eigenvalues and the eigenvectors of the matrix [ ] 4 6 A =. 2 5 2. Find the eigenvalues and the eigenvectors of the matrix 3 3 1 A = 1 1 1. 3 9 5 3. The following

More information

Throughout these notes we assume V, W are finite dimensional inner product spaces over C.

Throughout these notes we assume V, W are finite dimensional inner product spaces over C. Math 342 - Linear Algebra II Notes Throughout these notes we assume V, W are finite dimensional inner product spaces over C 1 Upper Triangular Representation Proposition: Let T L(V ) There exists an orthonormal

More information

CHAPTER 2 -idempotent matrices

CHAPTER 2 -idempotent matrices CHAPTER 2 -idempotent matrices A -idempotent matrix is defined and some of its basic characterizations are derived (see [33]) in this chapter. It is shown that if is a -idempotent matrix then it is quadripotent

More information

33AH, WINTER 2018: STUDY GUIDE FOR FINAL EXAM

33AH, WINTER 2018: STUDY GUIDE FOR FINAL EXAM 33AH, WINTER 2018: STUDY GUIDE FOR FINAL EXAM (UPDATED MARCH 17, 2018) The final exam will be cumulative, with a bit more weight on more recent material. This outline covers the what we ve done since the

More information

Math Linear Algebra II. 1. Inner Products and Norms

Math Linear Algebra II. 1. Inner Products and Norms Math 342 - Linear Algebra II Notes 1. Inner Products and Norms One knows from a basic introduction to vectors in R n Math 254 at OSU) that the length of a vector x = x 1 x 2... x n ) T R n, denoted x,

More information

CS 143 Linear Algebra Review

CS 143 Linear Algebra Review CS 143 Linear Algebra Review Stefan Roth September 29, 2003 Introductory Remarks This review does not aim at mathematical rigor very much, but instead at ease of understanding and conciseness. Please see

More information

Math 4153 Exam 1 Review

Math 4153 Exam 1 Review The syllabus for Exam 1 is Chapters 1 3 in Axler. 1. You should be sure to know precise definition of the terms we have used, and you should know precise statements (including all relevant hypotheses)

More information

Linear Algebra and Dirac Notation, Pt. 2

Linear Algebra and Dirac Notation, Pt. 2 Linear Algebra and Dirac Notation, Pt. 2 PHYS 500 - Southern Illinois University February 1, 2017 PHYS 500 - Southern Illinois University Linear Algebra and Dirac Notation, Pt. 2 February 1, 2017 1 / 14

More information

Lecture 2: Linear Algebra Review

Lecture 2: Linear Algebra Review EE 227A: Convex Optimization and Applications January 19 Lecture 2: Linear Algebra Review Lecturer: Mert Pilanci Reading assignment: Appendix C of BV. Sections 2-6 of the web textbook 1 2.1 Vectors 2.1.1

More information

MIT Final Exam Solutions, Spring 2017

MIT Final Exam Solutions, Spring 2017 MIT 8.6 Final Exam Solutions, Spring 7 Problem : For some real matrix A, the following vectors form a basis for its column space and null space: C(A) = span,, N(A) = span,,. (a) What is the size m n of

More information