Cellular motility: mechanical bases and control theoretic view

Size: px
Start display at page:

Download "Cellular motility: mechanical bases and control theoretic view"

Transcription

1 Cellular motility: mechanical bases and control theoretic view A. DeSimone SISSA International School for Advanced Studies, Trieste, Italy Joint work with F. Alouges, A. Lefebvre, L. Heltai PICOF, -4 April, Ecole Polytechniue

2 Motility Motility is the capability of exhibiting directed, purposeful movement. Motile cells provides fascinating examples of motility at microscopic scales (-5 µm) Tumor cells (crawling on a solid surface) Sperm cells (swimming in a fluid) Bacteria (swimming in a fluid)

3 Need better understanding of underlying mechanisms Understand and manipulate mechanisms and interactions with the surroundings to enhance (infertility) or reduce (metastasis) motility Engineer self-propelled artificial micro-motile systems (nano-robots inside the human body for diagnostics and therapy) We are currently unable to obtain self-propulsion at microscopic scales artificially. Maybe we can learn from Nature? (bio-mimetic or bio-inspired design) Bio-mimetic or bio-inspired design, even though using Nature as a template is sometimes naive (airplanes don t flap their wings) Focus on micrometer-scale swimmers for the rest of the talk. 3

4 Swimming: definition the ability to advance in water by performing a cyclic shape change (a stroke) in the absence of external propulsive forces 4

5 Microscopic bio-swimmers: bacteria and cells Euglenids Metaboly in Eutreptiella sp. Escherichia Coli (E. Coli) 5

6 Man made micro-swimmers: micro-robots red blood cell + flexible magnetic filament polymer film + muscle cells al. et H. Stone, Nature (5) al. et G. Whitesides, Science (7) 6

7 Reynolds Number (Re) Velocity (typical order of magnitude) V Re VLρ η Diameter (typical length scale) Mass density of the fluid Viscosity of the fluid L ρ η For water at room temperature ρ/η 6 (m s - ) -. Re is a dimensionless measure of relative importance of inertia vs. viscosity Orders of magnitude for swimmers: Men, tuna, sharks: Lm, V- ms - Re 6-7 Bacteria: Lx -6 m, V-x -6 ms - Re Neglect all inertial effects. Surrounding fluid modeled by Stokes, rather than by Navier-Stokes euations. 7

8 Life at low Reynolds numbers in a flow regime obeying Stokes euations, a scallop cannot advance through the reciprocal motion of its valves whatever forward motion will be produced by closing the valves, it will be exactly canceled by a backward motion upon reopening them G.I. Taylor, 95 (eukariotic flagella) (cilia) H. Berg, 973 (bacterial flagella) 8

9 How to beat the scallop theorem with minimal artificial swimmers The three-link swimmer of Purcell (977) PurcellSwimmer.flv The three-sphere swimmer of Najafi and Golestanian (4) 9

10 Theory: two conceptual ingredients Assume that shape changes are prescribed over time (data of the swimming problem). It s a simplifying assumption (How is the shape change driven? Molecular motors).. How does the surrounding medium react (namely, which forces F shape does it exert) to shape changes of the swimmer? (euations of motion of the surrounding medium). How does the swimmer move in repsonse to the forces that the surrounding medium applies to it? (euations of motion of the swimmer)

11 Outer Stokes problem Find u induced in the fluid surrounding swimmer Ω by its shape changes: Ω Ω u v Dir on Ω v Dir σ n DN Ω [v Dir ] viscous reactive force p.u. area on Ω Uniue solution u for any given v Dir, nice variational structure Not all of v Dir is a-priori known (only shape is given, not position)

12 Euation of motion Self-propulsion The motion of the swimmer induced by its shape changes is a-priori unknown. Euations of motion: m d dt (x c)f tot F tot neglecting swimmer s inertia F ext + F visc F visc self-propulsion Similarly, total viscous torue. Six ODEs to determine six scalar unknowns (translational and orientational velocities)

13 Mathematical swimming in a nutshell ξ ξ c 3 x (i) 3 i ξ ξ () () x x (3) () x x or c x () shape position Swimming is... ξ (t), ξ (t) periodic of period T executing cyclic shape changes producing Δc T cdt net positional change after one period under f () + f () + f (3) no external force (self-propulsion) 3

14 Positional change from shape change (axisym.) i ξ ξ v Dir Dirichlet data on Ω DN ξ [v Dir ]σ n surface force on Ω Ω i DNξ [vdir ] da ϕ ξ, c/ ) ξ + ϕ ( ξ, c/ ) ξ + ϕ (,/ c) c by transl. inv. ( 3 ξ Then c is uniuely determined and depends linearly on and ξ ξ dc dξ d V ξ ( ξ ) + V( ξ) dt dt dt nonlinear dep. on ξ! V i ( ) ϕ ( ξ)/ ϕ ( ξ) ξ i n+ 4

15 Swimming with one formula Δc T T dξ dξ cdt ( V + V ) dt dt dt (notice that Δc is entirely geometric) ω curl V dξ dξ Δc Δc ξ ξ c space of states ξ ω (ξ (t),ξ (t)) (ξ,ξ,c ) ξ space of shapes ξ ξ (ξ,ξ,c ) space of shapes Swimming rests on the differential form V dξ + V dξ not being exact V(ξ) summarizes hydrodynamic interactions and swimming capabilities of a swimmer Swimming Controllability ; Optimal Swimming Optimal Control Need to solve infinitely many outer Stokes problems to compute V(ξ)!!! 5

16 6 Controllability u ξ u ξ ) ( ) ( u V u V c ξ ξ ) ( ), ( ), ( : : : i i u i g u V u V c dt d ξ ξ The three-spere swimmer is globally controllable (Lie-bracket generating or totally nonholonomic control system) ), ( curl ),, ]](, [ det[ 3 V g g g g ξ ξ An affine control system without drift c 3 ξ ξ ε [g,g ] -ε g ε g ε g -ε g ), ( curl ) ( ) ( ], [ V g g g g g g Revisit scallop thm.

17 Swimming at max efficiency Rescale to unit time interval. Minimize expended power Ω σ n at given v dt Δc Ω DN ξ [ v ] v dadt G( ξ) ξ ξ dt Dir V ( ξ) ξ ω Dir curl V ( ξ) dξ stroke length enclosed area Euler-Lagrange e. d dt @ G! + curlv ( )? c (ξ,ξ,c ) ξ Optimal strokes exist (sub-riemannian geodesics). They can be computed numerically. ξ (ξ,ξ,c ) 8

18 Three sphere swimmers: a race RACE 9

19 Motility maps and optimal stroke ξ ξ ξ ξ Level curves of curl V(ξ,ξ ) Motility map Optimal stroke maximizes flux of curl V at given energy input, or minimizes power consumption at given flux of curl V

20 Summary for low Re swimming motility - Self-propulsion yields the key euation(s) giving positional change from shape change - Swimming problem as a problem of controllability, Lie-bracket generating swimmers - Optimal strokes of swimmers computable (solve many PDEs), subriemannian geodesics - The picture is ualitatively similar for general swimmers: metaboly of Eutreptiella - What is the biological function of metaboly (Swimming? Is it optimized?) - How is this motion accomplished (motor?)

21 Actin polymerization at the leading edge drives motility of crawling cells Long range order at the µm scale of the cell (the front is flat) emerging from uncoordinated growth at the nm scale of the individual filaments. How is this possible? Hypothesis: self-organized growth is orchestrated by long range mechanical interactions mediated by the membrane. (metastatic tumor cells, immune system response,.) L. Cardamone et al. PNAS, 8: 3978 () Motility at microscopic scales.. Antonio DeSimone, SISSA (Trieste, ITALY) 4

22 References on swimming motility D.A. Fletcher and J.A. Theriot, An introduction to celluler motility for the physical scientist, Phys. Biol., T-T (4). E.M. Purcell: Life at low Reynolds numbers, Am. J. Physics 45, 3- (977). S. Childress: Mechanics of swimming and flying, Cambridge University Press, 98. E. Lauga and T.R. Powers, The hydrodynamics of swimming microorganisms, Rep. Prog. Phys (9). G.I. Taylor, Analysis of the swimming of microscopic organisms, Proc. Roy. Soc. A 9 (95). A. Najafi and R. Golestanian: Simple swimmer at low Reynolds numbers: three linked spheres, PRE 69, 69 (4). A. Shapere and F. Wilczeck: Self-propulsion al low Reynolds numbers, PRL 58, 5 (987) G. Galdi, A. Bressan et al., M. Tucsnak et al., A. Munnier et al., R. Montgomery, J. Marsden et al. F. Alouges, A. DeSimone, A. Lefebvre: Optimal strokes of low Reynolds number swimmers: an example. Journal of Nonlinear Science 8, 77-3 (8). F. Alouges, A. DeSimone, A. Lefebvre: Biological fluid dynamics. Springer Encyclopedia of Complexity and Systems Science (9). F. Alouges, A. DeSimone, A. Lefebvre: Optimal strokes of axisymmetric microswimmers. European Physical Journal E 8, (9). F. Alouges, A. DeSimone, L. Heltai: Numerical strategies for stroke optimization at low Re numbers. M3AS, (). G. Dal Maso, A. DeSimone, M. Morandotti: An existence and uniueness result for the selfpropelled motion of micro-swimmers. SIAM J. Math. Analysis 43, (). 5

Mechanics of cell-motility and selfpropulsion

Mechanics of cell-motility and selfpropulsion Mechanics of cell-motility and selfpropulsion in viscous fluids A. DeSimone SISSA International School for Advanced Studies, Trieste, Italy http://people.sissa.it/~desimone/lecturenotes/ XXXVI Summer School

More information

Optimal locomotion at low Reynolds number

Optimal locomotion at low Reynolds number Optimal locomotion at low Reynolds number François Alouges 1 joint work with A. DeSimone, A. Lefebvre, L. Heltai et B. Merlet 1 CMAP Ecole Polytechnique March 2010 Motivation Aim Understanding swimming

More information

arxiv: v1 [math.oc] 28 Dec 2014

arxiv: v1 [math.oc] 28 Dec 2014 Optimal Design for Purcell Three-link Swimmer Laetitia Giraldi, Pierre Martinon, Marta Zoppello January 3, 18 arxiv:141.8133v1 [math.oc] 8 Dec 14 Abstract In this paper we address the question of the optimal

More information

arxiv: v1 [cond-mat.soft] 25 Jun 2007

arxiv: v1 [cond-mat.soft] 25 Jun 2007 Continuous breakdown of Purcell s scallop theorem with inertia Eric Lauga Department of Mathematics, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139. (Dated: June 13,

More information

MODELS OF LOW REYNOLDS NUMBER SWIMMERS INSPIRED BY CELL BLEBBING

MODELS OF LOW REYNOLDS NUMBER SWIMMERS INSPIRED BY CELL BLEBBING MODELS OF LOW REYNOLDS NUMBER SWIMMERS INSPIRED BY CELL BLEBBING QIXUAN WANG, JIFENG HU AND HANS OTHMER SCHOOL OF MATHEMATICS, UNIVERSITY OF MINNESOTA, USA Abstract. Eukaryotic cells move through the complex

More information

arxiv: v1 [cs.sy] 21 Mar 2018

arxiv: v1 [cs.sy] 21 Mar 2018 Modelling and controllability of the motion of a slender, flexible micro-swimmer Sudin Kadam and Ravi N. Banavar arxiv:83.8795v [cs.sy] 2 Mar 28 Abstract The mechanism of swimming at very low Reynolds

More information

The efficiency of propulsion by a rotating flagellum

The efficiency of propulsion by a rotating flagellum Proc. Natl. Acad. Sci. USA Vol. 94, pp. 11307 11311, October 1997 Biophysics The efficiency of propulsion by a rotating flagellum (bacteria motility hydrodynamics low Reynolds number) EDWARD M. PURCELL*

More information

Pushmepullyou: an efficient micro-swimmer

Pushmepullyou: an efficient micro-swimmer Pushmepullyou: an efficient micro-swimmer To cite this article: J E Avron et al 2005 New J. Phys. 7 234 View the article online for updates and enhancements. Related content - A geometric theory of swimming:

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION Mechanism of phototaxis in marine zooplankton: Description of the model 1 Mathematical Model We describe here a model of a swimming Platynereis larva. The larva is selfpropelled by ciliated cells located

More information

Life at low Reynolds number revisited T.R. Powers, Brown University

Life at low Reynolds number revisited T.R. Powers, Brown University Life at low Reynolds number revisited T.R. Powers, Brown University Purcell s 1977 Am. J. Phys. paper Swimming in a viscoelastic medium (with H. Fu, C. Wolgemuth) Nutrient uptake in Volvox (with M. Short,

More information

Life in the low-reynolds number world

Life in the low-reynolds number world Lecture 11 Life in the low-reynolds number world Sources: Purcell Life at low Reynolds number (Am. J. Phys 1977) Nelson Biological Physics (CH.5) Tsvi Tlusty, tsvi@unist.ac.kr I. Friction in fluids. Outline

More information

Available online at ScienceDirect. IFAC-PapersOnLine (2016)

Available online at  ScienceDirect. IFAC-PapersOnLine (2016) Available online at www.sciencedirect.com ScienceDirect IFAC-PapersOnLine 49-18 (216) 988 993 Geometric Controllability of The Purcell s Swimmer and its Symmetrized Cousin Sudin Kadam Ravi N. Banavar Systems

More information

Supplementary Figures

Supplementary Figures Supplementary Figures Supplementary Fig. 1. Fabrication process of the micro-scallop. (a) The negative mold of the micro-scallop is made by 3-D printing. The mold for the hinge is much shallower and narrower

More information

BAE 820 Physical Principles of Environmental Systems

BAE 820 Physical Principles of Environmental Systems BAE 820 Physical Principles of Environmental Systems Stokes' law and Reynold number Dr. Zifei Liu The motion of a particle in a fluid environment, such as air or water m dv =F(t) - F dt d - 1 4 2 3 πr3

More information

Spontaneous Symmetry Breaking of Hinged Flapping Filament Generates Lift

Spontaneous Symmetry Breaking of Hinged Flapping Filament Generates Lift Spontaneous Symmetry Breaking of Hinged Flapping Filament Generates Lift Shervin Bagheri (KTH, Stockholm) Andrea Mazzino & Alessandro Bottaro (Genova University, Italy) Fluid & Elasticity 2012 La Jolla,

More information

p + µ 2 u =0= σ (1) and

p + µ 2 u =0= σ (1) and Master SdI mention M2FA, Fluid Mechanics program Hydrodynamics. P.-Y. Lagrée and S. Zaleski. Test December 4, 2009 All documentation is authorized except for reference [1]. Internet access is not allowed.

More information

Simulation of Auto-propulsion Mechanism of Microorganism inside Microchannel

Simulation of Auto-propulsion Mechanism of Microorganism inside Microchannel Simulation of Auto-propulsion Mechanism of Microorganism inside Microchannel Susobhan Patra *1$, Srishty Shah #2$, Gautam Biswas 1, Amaresh Dalal 1, Dipankar Bandyopadhyay 1 1 Indian Institute of Technology

More information

Diffusion in biological systems and Life at low Reynolds number

Diffusion in biological systems and Life at low Reynolds number Diffusion in biological systems and Life at low Reynolds number Aleksandra Radenovic EPFL Ecole Polytechnique Federale de Lausanne Bioengineering Institute Laboratory of Nanoscale Biology Lausanne September

More information

Lecture 4: Hydrodynamics of Bacterial Suspensions. Plan

Lecture 4: Hydrodynamics of Bacterial Suspensions. Plan Lecture 4: Hydrodynamics of Bacterial Suspensions M. Cristina Marchetti Syracuse University Boulder School 2009 Aphrodite Ahmadi (SU SUNY Cortland) Shiladitya Banerjee (SU) Aparna Baskaran (SU Brandeis)

More information

The pros and cons of swimming in a noisy environment

The pros and cons of swimming in a noisy environment The pros and cons of swimming in a noisy environment Piero Olla ISAC-CNR & INFN Sez. Cagliari I-09042 Monserrato (CA) ITALY December 16, 2014 Streamlined version of a microswimmer Main approximations and

More information

Micro-swimmers with hydrodynamic interactions

Micro-swimmers with hydrodynamic interactions Micro-swimmers with hydrodynamic interactions Greg Huber,a,b,c, Stephan A. Koehler d, Jing Yang a a Richard Berlin Center for Cell Analysis & Modeling, and Department of Cell Biology, University of Connecticut

More information

Bacterial Chemotaxis

Bacterial Chemotaxis Bacterial Chemotaxis Bacteria can be attracted/repelled by chemicals Mechanism? Chemoreceptors in bacteria. attractant Adler, 1969 Science READ! This is sensing, not metabolism Based on genetic approach!!!

More information

Mesoscale fluid simulation of colloidal systems

Mesoscale fluid simulation of colloidal systems Mesoscale fluid simulation of colloidal systems Mingcheng Yang Institute of Physics, CAS Outline (I) Background (II) Simulation method (III) Applications and examples (IV) Summary Background Soft matter

More information

(3) BIOMECHANICS of LOCOMOTION through FLUIDS

(3) BIOMECHANICS of LOCOMOTION through FLUIDS (3) BIOMECHANICS of LOCOMOTION through FLUIDS Questions: - Explain the biomechanics of different modes of locomotion through fluids (undulation, rowing, hydrofoils, jet propulsion). - How does size influence

More information

A Numerical Strategy to Design Maneuverable Micro-Biomedical Swimming Robots Based on Biomimetic Flagellar Propulsion

A Numerical Strategy to Design Maneuverable Micro-Biomedical Swimming Robots Based on Biomimetic Flagellar Propulsion A Numerical Strategy to Design Maneuverable Micro-Biomedical Swimming Robots Based on Biomimetic Flagellar Propulsion Arash Taheri, Meysam Mohammadi-Amin, Seyed Hossein Moosavy Abstract Medical applications

More information

arxiv: v1 [physics.flu-dyn] 13 Sep 2012

arxiv: v1 [physics.flu-dyn] 13 Sep 2012 Self-propulsion of V-shape micro-robot arxiv:1209.2835v1 [physics.flu-dyn] 13 Sep 2012 By V. A. Vladimirov Dept of Mathematics, University of York, Heslington, York, YO10 5DD, UK (Received Sept 12th 2012)

More information

Optimizing Low Reynolds Number Locomotion. Anette (Peko) Hosoi Hatsopoulos Microfluids Laboratory, MIT

Optimizing Low Reynolds Number Locomotion. Anette (Peko) Hosoi Hatsopoulos Microfluids Laboratory, MIT Optimizing Low Reynolds Number Locomotion Anette (Peko) Hosoi Hatsopoulos Microfluids Laboratory, MIT What s in This Talk? 1. Optimal stroke patterns for 3-link swimmers 2. Building a better snail Swimming

More information

Dynamics of Purcell s three-link microswimmer with a passive elastic tail

Dynamics of Purcell s three-link microswimmer with a passive elastic tail EPJ manuscript No. (will be inserted by the editor) Dynamics of Purcell s three-link microswimmer with a passive elastic tail Emiliya Passov and Yizhar Or Faculty of Mechanical Engineering, Technion -

More information

Self-propelled rod-like swimmers near surfaces

Self-propelled rod-like swimmers near surfaces Self-propelled rod-like swimmers near surfaces I n a u g u r a l - D i s s e r t a t i o n zur Erlangung des Doktorgrades der Mathematisch-Naturwissenschaftlichen Fakultät der Universität zu Köln vorgelegt

More information

Christel Hohenegger A simple model for ketchup-like liquid, its numerical challenges and limitations April 7, 2011

Christel Hohenegger A simple model for ketchup-like liquid, its numerical challenges and limitations April 7, 2011 Notes by: Andy Thaler Christel Hohenegger A simple model for ketchup-like liquid, its numerical challenges and limitations April 7, 2011 Many complex fluids are shear-thinning. Such a fluid has a shear

More information

The Pennsylvania State University The Graduate School EFFECTIVE VISCOSITY AND DYNAMICS OF SUSPENSIONS OF MICRO-SWIMMERS

The Pennsylvania State University The Graduate School EFFECTIVE VISCOSITY AND DYNAMICS OF SUSPENSIONS OF MICRO-SWIMMERS The Pennsylvania State University The Graduate School EFFECTIVE VISCOSITY AND DYNAMICS OF SUSPENSIONS OF MICRO-SWIMMERS A Dissertation in Mathematics by Vitaliy Gyrya c 2010 Vitaliy Gyrya Submitted in

More information

A stochastic micro-machine inspired by bacterial chemotaxis

A stochastic micro-machine inspired by bacterial chemotaxis (6pp) A stochastic micro-machine inspired by bacterial chemotaxis Journal of Physics: Condensed Matter doi:10.1088/0953-8984/29/1/015102 ossein Mohammadi 1, Banafsheh Esckandariun 1 and Ali Najafi 1,2

More information

MICROPIPETTE DEFLECTION EXPERIMENTS ON THE NEMATODE C. elegans

MICROPIPETTE DEFLECTION EXPERIMENTS ON THE NEMATODE C. elegans MICROPIPETTE DEFLECTION EXPERIMENTS ON THE NEMATODE C. elegans MICROPIPETTE DEFLECTION EXPERIMENTS ON THE NEMATODE C. elegans By RAFAEL D. SCHULMAN, B.Sc. (University of Western Ontario) A Thesis Submitted

More information

Supplementary Figures:

Supplementary Figures: Supplementary Figures: Supplementary Figure 1: Simulations with t(r) 1. (a) Snapshots of a quasi- 2D actomyosin droplet crawling along the treadmilling direction (to the right in the picture). There is

More information

Scaling Law I. BioSensing & BioMEMS 530/ Jeff Wang Johns Hopkins University 1

Scaling Law I. BioSensing & BioMEMS 530/ Jeff Wang Johns Hopkins University 1 Scaling Law I Jeff Wang Johns Hopkins University 1 Why scaling is important at the micro and nano scale Micro and nano devices are orders of magnitude smaller than macro counterparts As the sizes shrink,

More information

Bio-Inspired Micro Robots Swimming in Channels

Bio-Inspired Micro Robots Swimming in Channels Bio-Inspired Micro Robots Swimming in Channels Fatma Zeynep Temel, Onder Erin, Ahmet Fatih Tabak and Serhat Yesilyurt 1 Faculty of Engineering and Natural Sciences Mechatronics Department Sabanci University

More information

Particle self-diffusiophoresis near solid walls and interfaces

Particle self-diffusiophoresis near solid walls and interfaces Particle self-diffusiophoresis near solid walls and interfaces Darren G. CROWDY Tel.: +44(0)2075948587; Fax: +44(0)2075948517; Email: d.crowdy@imperial.ac.uk Department of Mathematics, Imperial College

More information

Emergence of collective dynamics in active biological systems -- Swimming micro-organisms --

Emergence of collective dynamics in active biological systems -- Swimming micro-organisms -- 12/08/2015, YITP, Kyoto Emergence of collective dynamics in active biological systems -- Swimming micro-organisms -- Norihiro Oyama John J. Molina Ryoichi Yamamoto* Department of Chemical Engineering,

More information

Lecture 4: viscoelasticity and cell mechanics

Lecture 4: viscoelasticity and cell mechanics Teaser movie: flexible robots! R. Shepherd, Whitesides group, Harvard 1 Lecture 4: viscoelasticity and cell mechanics S-RSI Physics Lectures: Soft Condensed Matter Physics Jacinta C. Conrad University

More information

A gentle introduction to Microswimming: geometry, physics, analysis. Jair Koiller. EMAP, Fundação Getulio Vargas, Associations

A gentle introduction to Microswimming: geometry, physics, analysis. Jair Koiller. EMAP, Fundação Getulio Vargas, Associations A gentle introduction to Microswimming: geometry, physics, analysis Jair Koiller EMAP, Fundação Getulio Vargas, Associations Millenum Math Initiative, IMPA Laboratorio Pinças Óticas, UFRJ Marsden legacy

More information

An accurate method to include lubrication forces in numerical simulations of dense stokesian suspensions

An accurate method to include lubrication forces in numerical simulations of dense stokesian suspensions Under consideration for publication in J. Fluid Mech. 1 An accurate method to include lubrication forces in numerical simulations of dense stoesian suspensions A. Lefebvre-Lepot 1, B. Merlet 2 and T.N.

More information

arxiv:cond-mat/ v1 [cond-mat.soft] 22 Jan 2007

arxiv:cond-mat/ v1 [cond-mat.soft] 22 Jan 2007 Modeling microscopic swimmers at low Reynolds number David J. Earl Dept. of Chemistry, University of Pittsburgh, 219 Parkman Avenue, Pittsburgh, PA 1526. arxiv:cond-mat/71511v1 [cond-mat.soft] 22 Jan 27

More information

繊毛 鞭毛運動の生体力学シミュレーション 石川拓司 東北大学大学院工学研究科

繊毛 鞭毛運動の生体力学シミュレーション 石川拓司 東北大学大学院工学研究科 繊毛 鞭毛運動の生体力学シミュレーション 濱田 T 石川 G 石川拓司 東北大学大学院工学研究科 Today s Topics Ciliate Bacteria Red Blood Cells Slender body Fluid mechanics Fluid-solid interaction Mechanics of ciliary flow and motion Mechanics of Biological

More information

From a Mesoscopic to a Macroscopic Description of Fluid-Particle Interaction

From a Mesoscopic to a Macroscopic Description of Fluid-Particle Interaction From a Mesoscopic to a Macroscopic Description of Fluid-Particle Interaction Carnegie Mellon University Center for Nonlinear Analysis Working Group, October 2016 Outline 1 Physical Framework 2 3 Free Energy

More information

Nature-inspired microfluidic propulsion using magnetic artificial cilia Khaderi, Syed Nizamuddin

Nature-inspired microfluidic propulsion using magnetic artificial cilia Khaderi, Syed Nizamuddin University of Groningen Nature-inspired microfluidic propulsion using magnetic artificial cilia Khaderi, Syed Nizamuddin IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's

More information

Polymerization/depolymerization motors

Polymerization/depolymerization motors Polymerization/depolymerization motors Movement formation Kuo Lab, J.H.U. http://www.nature.com/nature/journal/v407/n6807/extref/40 71026a0_S3.mov http://www.bme.jhu.edu/~skuo/movies/macrophchase.mov http://www.bme.jhu.edu/~skuo/movies/gc_filo.mov

More information

3 Generation and diffusion of vorticity

3 Generation and diffusion of vorticity Version date: March 22, 21 1 3 Generation and diffusion of vorticity 3.1 The vorticity equation We start from Navier Stokes: u t + u u = 1 ρ p + ν 2 u 1) where we have not included a term describing a

More information

Squirming Sphere in an Ideal Fluid

Squirming Sphere in an Ideal Fluid Squirming Sphere in an Ideal Fluid D Rufat June 8, 9 Introduction The purpose of this wor is to derive abalytically and with an explicit formula the motion due to the variation of the surface of a squirming

More information

Discrete Projection Methods for Incompressible Fluid Flow Problems and Application to a Fluid-Structure Interaction

Discrete Projection Methods for Incompressible Fluid Flow Problems and Application to a Fluid-Structure Interaction Discrete Projection Methods for Incompressible Fluid Flow Problems and Application to a Fluid-Structure Interaction Problem Jörg-M. Sautter Mathematisches Institut, Universität Düsseldorf, Germany, sautter@am.uni-duesseldorf.de

More information

Parallel Simulations of Self-propelled Microorganisms

Parallel Simulations of Self-propelled Microorganisms Parallel Simulations of Self-propelled Microorganisms K. Pickl a,b M. Hofmann c T. Preclik a H. Köstler a A.-S. Smith b,d U. Rüde a,b ParCo 2013, Munich a Lehrstuhl für Informatik 10 (Systemsimulation),

More information

MAE 545: Lecture 2 (9/22) E. coli chemotaxis

MAE 545: Lecture 2 (9/22) E. coli chemotaxis MAE 545: Lecture 2 (9/22) E. coli chemotaxis Recap from Lecture 1 Fokker-Planck equation 5` 4` 3` 2` ` 0 ` 2` 3` 4` 5` x In general the probability distribution of jump lengths s can depend on the particle

More information

Level Set Tumor Growth Model

Level Set Tumor Growth Model Level Set Tumor Growth Model Andrew Nordquist and Rakesh Ranjan, PhD University of Texas, San Antonio July 29, 2013 Andrew Nordquist and Rakesh Ranjan, PhD (University Level Set of Texas, TumorSan Growth

More information

An Introduction to Theories of Turbulence. James Glimm Stony Brook University

An Introduction to Theories of Turbulence. James Glimm Stony Brook University An Introduction to Theories of Turbulence James Glimm Stony Brook University Topics not included (recent papers/theses, open for discussion during this visit) 1. Turbulent combustion 2. Turbulent mixing

More information

Passive locomotion via normal mode. coupling in a submerged spring-mass system

Passive locomotion via normal mode. coupling in a submerged spring-mass system Under consideration for publication in J. Fluid Mech. Passive locomotion via normal mode coupling in a submerged spring-mass system By E V A K A N S O A N D P A U L K N E W T O N,2 Department of Aerospace

More information

SEMINAR Life at low Reynolds number

SEMINAR Life at low Reynolds number University of Ljubljana Faculty of Mathematics and Physics SEMINAR Life at low Reynolds number Denis Brojan Mentor: dr. Rudolf Podgornik May 20, 2009 Abstract The aim of this seminar is to present the

More information

Soft lubrication, lift and optimality

Soft lubrication, lift and optimality QuickTime and a TIFF (Uncompressed) decompressor are needed to see this picture. QuickTime and a TIFF (Uncompressed) decompressor are needed to see this picture. Soft lubrication, lift and optimality QuickTime

More information

Transport by convection. Coupling convection-diffusion

Transport by convection. Coupling convection-diffusion Transport by convection. Coupling convection-diffusion 24 mars 2017 1 When can we neglect diffusion? When the Peclet number is not very small we cannot ignore the convection term in the transport equation.

More information

Mechanics of Motor Proteins and the Cytoskeleton Jonathon Howard Chapter 10 Force generation 2 nd part. Andrea and Yinyun April 4 th,2012

Mechanics of Motor Proteins and the Cytoskeleton Jonathon Howard Chapter 10 Force generation 2 nd part. Andrea and Yinyun April 4 th,2012 Mechanics of Motor Proteins and the Cytoskeleton Jonathon Howard Chapter 10 Force generation 2 nd part Andrea and Yinyun April 4 th,2012 I. Equilibrium Force Reminder: http://www.youtube.com/watch?v=yt59kx_z6xm

More information

Math 575-Lecture Viscous Newtonian fluid and the Navier-Stokes equations

Math 575-Lecture Viscous Newtonian fluid and the Navier-Stokes equations Math 575-Lecture 13 In 1845, tokes extended Newton s original idea to find a constitutive law which relates the Cauchy stress tensor to the velocity gradient, and then derived a system of equations. The

More information

Multiscale modeling of active fluids: selfpropellers and molecular motors. I. Pagonabarraga University of Barcelona

Multiscale modeling of active fluids: selfpropellers and molecular motors. I. Pagonabarraga University of Barcelona Multiscale modeling of active fluids: selfpropellers and molecular motors I. Pagonabarraga University of Barcelona Introduction Soft materials weak interactions Self-assembly Emergence large scale structures

More information

INTRODUCTION TO FLUID MECHANICS June 27, 2013

INTRODUCTION TO FLUID MECHANICS June 27, 2013 INTRODUCTION TO FLUID MECHANICS June 27, 2013 PROBLEM 3 (1 hour) A perfect liquid of constant density ρ and constant viscosity µ fills the space between two infinite parallel walls separated by a distance

More information

Applications in Biofluidics

Applications in Biofluidics Applications in Biofluidics Last Class: 1. Introduction of μpiv 2. Considerations of Microscopy in μpiv 3. Depth of Correlation 4. Physics of Particles in Micro PIV 5. Measurement Errors 6. Special Processing

More information

Control of Interface Evolution in Multi-Phase Fluid Flows

Control of Interface Evolution in Multi-Phase Fluid Flows Control of Interface Evolution in Multi-Phase Fluid Flows Markus Klein Department of Mathematics University of Tübingen Workshop on Numerical Methods for Optimal Control and Inverse Problems Garching,

More information

Basic concepts in viscous flow

Basic concepts in viscous flow Élisabeth Guazzelli and Jeffrey F. Morris with illustrations by Sylvie Pic Adapted from Chapter 1 of Cambridge Texts in Applied Mathematics 1 The fluid dynamic equations Navier-Stokes equations Dimensionless

More information

New Insights into the Dynamics of Swarming Bacteria: A Theoretical Study

New Insights into the Dynamics of Swarming Bacteria: A Theoretical Study New Insights into the Dynamics of Swarming Bacteria: A Theoretical Study David Hansmann 1,2*, Guido Fier 2, Rubén C. Buceta 1,2 1 Departamento de Física, Universidad Nacional de Mar del Plata, Funes 3350,

More information

Hydrodynamic surrogate models for bio-inspired micro-swimming robots

Hydrodynamic surrogate models for bio-inspired micro-swimming robots Hydrodynamic surrogate models for bio-inspired micro-swimming robots Summary Ahmet Fatih Tabak, Serhat Yesilyurt * Mechatronics Program, Faculty of Engineering and Natural Sciences, Sabanci University,

More information

arxiv: v1 [physics.flu-dyn] 14 Mar 2014

arxiv: v1 [physics.flu-dyn] 14 Mar 2014 Phoretic self-propulsion at finite Péclet numbers arxiv:143.361v1 [physics.flu-dyn] 14 Mar 214 Sébastien Michelin 1, and Eric Lauga 2, 1 LadHyX Département de Mécanique, Ecole Polytechnique CNRS, 91128

More information

ATP Synthase. Proteins as nanomachines. ATP Synthase. Protein physics, Lecture 11. Create proton gradient across. Thermal motion and small objects

ATP Synthase. Proteins as nanomachines. ATP Synthase. Protein physics, Lecture 11. Create proton gradient across. Thermal motion and small objects Proteins as nanomachines Protein physics, Lecture 11 ATP Synthase ATP synthase, a molecular motor Thermal motion and small objects Brownian motors and ratchets Actin and Myosin using random motion to go

More information

Passive locomotion via normal-mode coupling in a submerged spring mass system

Passive locomotion via normal-mode coupling in a submerged spring mass system J. Fluid Mech. (9), vol. 64, pp. 5 5. c Cambridge University Press 9 doi:.7/s999357 5 Passive locomotion via normal-mode coupling in a submerged spring mass system EVA KANSO AND PAUL K NEWTON, Department

More information

The Squirmer model and the Boundary Element Method

The Squirmer model and the Boundary Element Method Hauptseminar : Active Matter The Squirmer model and the Boundary Element Method Miru Lee April 6, 017 Physics epartment, University of Stuttgart 1 Introduction A micro scale swimmer exhibits directional

More information

Table of Contents. Foreword... xiii. Preface... xv

Table of Contents. Foreword... xiii. Preface... xv Table of Contents Foreword.... xiii Preface... xv Chapter 1. Fundamental Equations, Dimensionless Numbers... 1 1.1. Fundamental equations... 1 1.1.1. Local equations... 1 1.1.2. Integral conservation equations...

More information

Convective Mass Transfer

Convective Mass Transfer Convective Mass Transfer Definition of convective mass transfer: The transport of material between a boundary surface and a moving fluid or between two immiscible moving fluids separated by a mobile interface

More information

Lecture notes: 3rd year fluids. Julia Yeomans. Michaelmas 2016

Lecture notes: 3rd year fluids. Julia Yeomans. Michaelmas 2016 Lecture notes: 3rd year fluids Julia Yeomans Michaelmas 2016 Comments and corrections to Julia.Yeomans@physics.ox.ac.uk C. Lubrication approximation (also known as the thin film approximation) z x h z=h(x)

More information

Hamiltonian aspects of fluid dynamics

Hamiltonian aspects of fluid dynamics Hamiltonian aspects of fluid dynamics CDS 140b Joris Vankerschaver jv@caltech.edu CDS 01/29/08, 01/31/08 Joris Vankerschaver (CDS) Hamiltonian aspects of fluid dynamics 01/29/08, 01/31/08 1 / 34 Outline

More information

Computational Astrophysics

Computational Astrophysics Computational Astrophysics Lecture 1: Introduction to numerical methods Lecture 2:The SPH formulation Lecture 3: Construction of SPH smoothing functions Lecture 4: SPH for general dynamic flow Lecture

More information

Bob Austin. with: Peter Galajda (Hungarian physicist) Juan Keymer (Chilean mathematical ecologist)

Bob Austin. with: Peter Galajda (Hungarian physicist) Juan Keymer (Chilean mathematical ecologist) Bob Austin with: Peter Galajda (Hungarian physicist) Juan Keymer (Chilean mathematical ecologist) 1) Words of Wisdom for You to Ignore 2) Demon Bacteria 3) Bacteria as Organisms and not as Slot Machines

More information

arxiv: v1 [physics.bio-ph] 11 Mar 2013

arxiv: v1 [physics.bio-ph] 11 Mar 2013 Crawling scallop: Friction-based locomotion with one degree of freedom Gregory L. Wagner, Eric Lauga Department of Mechanical and Aerospace Engineering, University of California San Diego, 9500 Gilman

More information

SWIMMING WITH THREE-DIMENSIONAL FLAGELLAR BENDING WAVES

SWIMMING WITH THREE-DIMENSIONAL FLAGELLAR BENDING WAVES SWIMMING WITH THREE-DIMENSIONAL FLAGELLAR BENDING WAVES Charles J. Brokaw Division of Biology, California Institute of Technology, Pasadena CA 91125 USA E-mail: brokawc@its.caltech.edu Abstract Computer

More information

Collective dynamics of self-propelled particles: from crystallization to turbulence

Collective dynamics of self-propelled particles: from crystallization to turbulence Collective dynamics of self-propelled particles: from crystallization to turbulence Nano-Seminar, Materialwissenschaften TU Dresden, Germany von Hartmut Löwen, Heinrich-Heine-Universität Düsseldorf I)

More information

Topics in Fluid Dynamics: Classical physics and recent mathematics

Topics in Fluid Dynamics: Classical physics and recent mathematics Topics in Fluid Dynamics: Classical physics and recent mathematics Toan T. Nguyen 1,2 Penn State University Graduate Student Seminar @ PSU Jan 18th, 2018 1 Homepage: http://math.psu.edu/nguyen 2 Math blog:

More information

WAVE PROPAGATION ALONG FLAGELLA

WAVE PROPAGATION ALONG FLAGELLA [796] WAVE PROPAGATION ALONG FLAGELLA BY K. E. MACHIN Department of Zoology, University of Cambridge {Received 13 May 1958) The nature of the mechanism which initiates and propagates transverse bending

More information

Stringy and Membranic Theory of Swimming of Micro-organisms arxiv:hep-th/ v1 21 Mar 1996

Stringy and Membranic Theory of Swimming of Micro-organisms arxiv:hep-th/ v1 21 Mar 1996 OCHA-PP-76 NDA-FP-24 March 996 Stringy and Membranic Theory of Swimming of Micro-organisms arxiv:hep-th/96034v 2 Mar 996 M. Kawamura, S. Nojiri and A. Sugamoto Ochanomizu University, Tokyo, Japan, National

More information

arxiv: v1 [cond-mat.soft] 15 Dec 2008

arxiv: v1 [cond-mat.soft] 15 Dec 2008 The hydrodynamics of swimming microorganisms arxiv:0812.2887v1 [cond-mat.soft] 15 Dec 2008 Submitted to: Rep. Prog. Phys. Eric Lauga 1 and Thomas R. Powers 2 1 Department of Mechanical and Aerospace Engineering,

More information

Elastic Tail Propulsion at Low Reynolds Number. Tony S. Yu

Elastic Tail Propulsion at Low Reynolds Number. Tony S. Yu Elastic Tail Propulsion at Low Reynolds Number by Tony S. Yu B.S. Mechanical Engineering Columbia University, 2004 Submitted to the Department of Mechanical Engineering in partial fulfillment of the requirements

More information

Fluid dynamics is the study of flows of fluid. However, before we begin discussing the dynamics of

Fluid dynamics is the study of flows of fluid. However, before we begin discussing the dynamics of Hydrodynamics of Newtonian Fluids Cameron Stewart Universität Stuttgart cameron.n.stewart@gmail.com April 5, 2017 Abstract In this review we provide an overview of the hydrodynamics of viscous, Newtonian

More information

Mechanical Simulations of cell motility

Mechanical Simulations of cell motility Mechanical Simulations of cell motility What are the overarching questions? How is the shape and motility of the cell regulated? How do cells polarize, change shape, and initiate motility? How do they

More information

Locomotion in Complex Fluids: Experiments

Locomotion in Complex Fluids: Experiments Locomotion in Complex Fluids: Experiments Josué Sznitman and Paulo E. Arratia Recently, there has been renewed interest in the swimming of microorganisms for applications that include artificial swimmers,

More information

Les Houches School of Foam: Rheology of Complex Fluids

Les Houches School of Foam: Rheology of Complex Fluids Les Houches School of Foam: Rheology of Complex Fluids Andrew Belmonte The W. G. Pritchard Laboratories Department of Mathematics, Penn State University 1 Fluid Dynamics (tossing a coin) Les Houches Winter

More information

ICNMM SIMULATION-BASED ANALYSIS OF A BIOLOGICALLY-INSPIRED MICROPUMP WITH A ROTATING SPIRAL INSIDE A MICROCHANNEL

ICNMM SIMULATION-BASED ANALYSIS OF A BIOLOGICALLY-INSPIRED MICROPUMP WITH A ROTATING SPIRAL INSIDE A MICROCHANNEL Proceedings of the Sixth International ASME Conference on Nanochannels, Microchannels and Minichannels ICNMM2008 June 23-25, 2008, Darmstadt, Germany ICNMM2008-62323 SIMULATION-BASED ANALYSIS OF A BIOLOGICALLY-INSPIRED

More information

arxiv: v1 [physics.flu-dyn] 13 Jul 2010

arxiv: v1 [physics.flu-dyn] 13 Jul 2010 Draft (22 October 218) arxiv:17.2153v1 [physics.flu-dyn] 13 Jul 21 SURFACE ACCUMULATION OF SPERMATOZOA: A FLUID DY- NAMIC PHENOMENON D. J. SMITH, University of Birmingham J. R. BLAKE, University of Birmingham

More information

Mechanical analysis of phase transition experiments of the bacterial flagellar filament

Mechanical analysis of phase transition experiments of the bacterial flagellar filament Acta Mech Sin (2010) 26:777 785 DOI 10.1007/s10409-010-0364-1 RESEARCH PAPER Mechanical analysis of phase transition experiments of the bacterial flagellar filament Xiao-Ling Wang Qing-Ping Sun Received:

More information

Fluid mechanics and living organisms

Fluid mechanics and living organisms Physics of the Human Body 37 Chapter 4: In this chapter we discuss the basic laws of fluid flow as they apply to life processes at various size scales For example, fluid dynamics at low Reynolds number

More information

Problem Set Number 01, MIT (Winter-Spring 2018)

Problem Set Number 01, MIT (Winter-Spring 2018) Problem Set Number 01, 18.306 MIT (Winter-Spring 2018) Rodolfo R. Rosales (MIT, Math. Dept., room 2-337, Cambridge, MA 02139) February 28, 2018 Due Monday March 12, 2018. Turn it in (by 3PM) at the Math.

More information

A scaling limit from Euler to Navier-Stokes equations with random perturbation

A scaling limit from Euler to Navier-Stokes equations with random perturbation A scaling limit from Euler to Navier-Stokes equations with random perturbation Franco Flandoli, Scuola Normale Superiore of Pisa Newton Institute, October 208 Newton Institute, October 208 / Subject of

More information

arxiv: v1 [physics.flu-dyn] 11 Dec 2009

arxiv: v1 [physics.flu-dyn] 11 Dec 2009 Two-dimensional flagellar synchronization in viscoelastic fluids Gwynn J Elfring, On Shun Pak, and Eric Lauga Department of Mechanical and Aerospace Engineering, University of California San Diego, 95

More information

FINITE ELEMENT METHOD IN

FINITE ELEMENT METHOD IN FINITE ELEMENT METHOD IN FLUID DYNAMICS Part 6: Particles transport model Marcela B. Goldschmit 2 3 Lagrangean Model The particles movement equations are solved. The trajectory of each particles can be

More information

Rehinging biflagellar locomotion in a viscous fluid

Rehinging biflagellar locomotion in a viscous fluid Rehinging biflagellar locomotion in a viscous fluid Saverio E. Spagnolie* Courant Institute of athematical Sciences, New York University, New York, New York 112, USA and Department of echanical and Aerospace

More information

A coin vibrational motor swimming at low Reynolds number

A coin vibrational motor swimming at low Reynolds number A coin vibrational motor swimming at low Reynolds number Alice C. Quillen 1, Hesam Askari 2, Douglas H. Kelley 2, Tamar Friedmann 1,3,4, and Patrick W. Oakes 1 1 Dept. of Physics and Astronomy, University

More information

Comparison of Heat and Mass Transport at the Micro-Scale

Comparison of Heat and Mass Transport at the Micro-Scale Comparison of Heat and Mass Transport at the Micro-Scale E. Holzbecher, S. Oehlmann Georg-August Univ. Göttingen *Goldschmidtstr. 3, 37077 Göttingen, GERMANY, eholzbe@gwdg.de Abstract: Phenomena of heat

More information

Regularization by noise in infinite dimensions

Regularization by noise in infinite dimensions Regularization by noise in infinite dimensions Franco Flandoli, University of Pisa King s College 2017 Franco Flandoli, University of Pisa () Regularization by noise King s College 2017 1 / 33 Plan of

More information