T lizes the Rayleigh wave. The Rayleigh wave is one of

Size: px
Start display at page:

Download "T lizes the Rayleigh wave. The Rayleigh wave is one of"

Transcription

1 EEE TRANSACTONS ON LrLTRASONCS, FERROELECTRCS, AND FREQUENCY CONTROL, VOL. 46, NO. 4, JULY Sirnula.tion of Surface Acoustic Wave Motor with Spherical Slider Takeshi Morita, Minoru Kuribaj ashi Kurosawa, Member, EEE, and Toshiro Higuchi, Member, EEE Abstract-The operation of a suri'ace acoustic wave (SAW) motor using spherical-shaped sliders was demonstrated by Kurosawa et al. in t was necessary to modify the previous simulation models for usual ultrasonic motors because of this slider shape and the high frequency vibration. A conventional ultrasonic motor has a flat contact surface slider and a hundredth driving frequency; so, the tangential motion caused by the eksticity of the slider and stator with regard to the spherical slider of the SAW motor requires further investigation. 11 this paper, a dynamic simulation model for the SAW motor is proposed. From the simulation result, the mechanism of the SAW motor was clarified (i.e., levitation and contact conditions were repeated during the operation). The transient response of the motor speed was simulated. The relationships between frictional factor and time constant and vibration velocity of the stator and the slider speed were understood. The detailed research regarding the elastic deformation caused by preload would be helpful to construct ;in exact simulation model for the next work., NTRODUCTON HE SAW motor if, a promising linear actuator that uti- T lizes the Rayleigh wave. The Rayleigh wave is one of the SAW that can be generated easily viith DT (interdigital transducer) on piezoelectric material such as LiNbO3 or crystallized quartz. i'ibration amplitude attenuates exponentially into the depth direction, and vibration energy is concentrated near the surface. Therefore, the reverse side that does not vibrate can be held. The purpose of this paper is to prspose a simulation model for a SAW motor [l],[a] to clarify a mechanism of an operation principle. The concentrated vibration energy is useful for conversion to slider motion compared with the general ultrasonic motor. Because of a high operating frequency, the amplitud? of the SAW devive is not larger than a low frequency bending vibration. So, the slider contact surface should be spherical to enlarge contact pressure and to achieve a smooth (contact as reported [l]. Ordinarily, ultrasonic motors have a flat contact surface slider or rotor. Hence, the simulation rnodel did not mention the tangential motion of slider or -otor [3]. The SAW motor had a spherica 1-shaped slider; therefore, a dynamic model is required because the contact condition is varied during the operation. A contact force between the slider Manuscript received July 6, 1998; accepted December 10, The authors are with Department of Precision Machinery Engineering, Graduate School of Engineerin!,, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113, Japan ( moritaqintel1ect.pe.u-toe,yo.ac.jp). Soft material \ traveling wave propagation -\ DT for reverse motion DT(400pm pitch, 20 pairs) Fig. 1. LiNb03 and DT for generating SAW. Stator transducer 128 degrees rotated y-cut x-propagation LiNb03 Traveling wave P Fig. 2. Principle of the SAW motor. Vibration velocity and the stator, a frictional force, tangential position of the slider, and normal position of the slider are calculated step by step in our simulation. Hertz contact theorem was used for calculation of the contact force. Namely, the previous model for ultrasonic motors was modified for a SAW motor in this paper. To improve SAW motor performance, the simulation model will be effective. 11. SUMMARY OF THE EXPERMENTAL RESULTS SAW MOTOR OF THE Takahashi et al. [a] used 128 degrees rotated y-cut x- propagation LiNbOy as a stator transducer of a SAW motor. An example of this stator transducer is shown in Fig. l [l],[2]. DT pitch was 400 pm so that the driving frequency was 9.6 MHz. With a RF power source to the DT, the electrical energy is converted to mechanical vibration energy. The elastic traveling wave is propagated through the surface of the LiNbOs. At the end of the stator transducer, the traveling wave is absorbed by the soft material. While the traveling wave is generated, each particle of the stator surface moves elliptically, as shown in Fig. 2. When the traveling wave is transmitted from right to left, the elliptical motion at the surface is counterclockwise. The driving frictional force for the SAW motor is caused by the elliptical motion EEE

2 930 EEE TRANSACTOSS or ULTRASOZCS, FERROELECTRCS..AM FREQCES~Y CONTROL. 1-0~. 46, NO. 4> JUL\ Steel bat1 slider Slider ) Fix Fig. 3. Experimental set-up for controlling preload L_1 z a a w & mN ---B -3.7mN OmN Time [msec] Fig. 4. Experimental results of transient response with different preload variables. The normal direction amplitude of the Rayleigh wave was only 20 nmpeak at the driving voltage of 180 Vp&j so, some contrivance for the friction drive was required. Kurosawa et al. [l] used tiny spherical balls as a slider for smooth contact with the stator transducer and higher contact pressure between the stator and the slider. The radius of the slider ball was 1 mm. Preload was controlled by magnetic force, as shown in Fig. 3. The experimental result showed that the transient response of the slider ball was very quick [3], as is shown in Fig. 4. To sum up the major characteristics of the SAW motor, quick response, high speed, and high output force are important. From Fig. 4, the output force with 7 mn preload was calculated to about l mn. Hence, the contact area diameter was about 6 pm; and the output force density was 35 N/mm2 [3]. Therefore, by using a multi-contact slider that has spherical surface balls, the SAW motor generated a larger output force as Chiba et al. [6] reported. Our simulation methods and these results would be effective to consider not only the single but also the multi-contact spherical surface slider operation DFFERENCE BETWEEN SAW MOTOR AND USUAL ULTRASONC MOTOR A high frequency SAW motor and a low frequency traveling wave type ultrasonic motor have similarities in that i/. \ Stator traveling wave Fig. 5. Simulation model for usual ultrasonic motor. they utilize the particle elliptical motion of the traveling wave. High operating frequency such as 10 MHz of SAW causes the smaller amplitude compared with the usual ultrasonic motor at less than 100 khz. The amplitude of a SAW is less than 20 nm, which is much smaller than that of an ultrasonic motor (about 1 pm). Kurosawa et al. [l], [4] and Takahashi et al. [2] proposed that high contact pressure between the slider and the stator was effective for SAW motor operation. This is the main reason why a spherical-shaped slider ball was adopted. High pressure is also effective in the prevention of squeeze film air between slider and stator. n most cases of usual ultrasonic motor simulations, the slider has a flat contact surface, and the traveling wave is generated in the stator transducer. Only the stator contact surface is regarded to be sine in shape. By preload, the pressure distribution between the stator and the slider was generated. This pressure deformation was calculated by using static contact equation. The sine-shaped deformation of the stator transducer largely influences the pressure distribution. During the motor operation, the contact area moves, although the pressure distribution, contact width. and contact force between the slider and the stator is fixed, as is shown in Fig. 5. Therefore, the static consideration is sufficient, and a discussion about a dynamic model is not necessary on condition that the slider (or rotor) speed is lower than the wave propagating velocity of the slider or the stator material [5]. The SAW motor ha5 a spherical slider, and it is expected that the contact condition is changing during the operation. as shown in Fig. 6. Dynamic simulation is required. Of course. when the spherical-shaped rotor was used for an ultrasonic motor, our simulation model would be applied. V. SMULATON MODEL The dimensions and parameters of the stator transducer and the slider are shown in Table. These values are decided by reported papers [l],[a]. The coordinates are defined as shown in Fig. 7. The traveling wave is transmit-

3 MORTA et al.: SMULATOV OF SURFACE ACOUS'rC WAVE MOTOR 931 5,-x yslider oslider h Fig. 6. Modified simulation model for SAW motor using the sphericalshaped slider. TABLE PARAMET 3RS USED FOR SMUL 4TON. O X Xslider,Xeip b X Young's modulus of stirel ball 2.15 x 1011 N/m2 Young's modulus of LiNbO x loll N/m2 Poisson ratio of steel kall 0.29 Poisson ratio of LiNb Radius of steel ball 0.5 mm Weight of steel ball 4.0 mg Vibration amplitude 0. SAW (vertical) 19 nm Vibration amplitude os SAW (horizontal) 0.7 x 19 nm nput voltage 180 Vpeak Driving frequency 9.6 MHz Frictional factor 0.47 ted from the right in Fig. 7. The deformation of the stator transducer caused by the traveling wave is expressed as: uellip z= A sin(wt + Jczs1ic er) (1) where A is the vibration amplitude and k is the wave number. This value gellip is the particle position of the stator where the slider exist;;. The slider position is expressed as xslider. The particle motion is elliptical, so the traveling wave has a tangential displacement, which is expressed as: Zellip = Aa cos(wt + kxsl,der) (2) where Q is the ratio of the tangential amplitude to the normal amplitude. n this case, a is 0.7. During operation, two slider situations are considered, as shown in Fig. 6. O'ne situation is a evitation, and the other is a contact sixation. A parameter d is used for judgment whether the slider is contacting or levitating, expressed as: d = Yslider -!/ellip!/slider - A sin(wf + kxslider) where Yslider is the normal position of the slider. f d < 0, the slider contacts the slide, and if d > 0, then the slider is levitating. Between these conditions, thi: motion equations are different. When the slider is levitating, narriely yell;p < uslider, the motion equations are as follows: (3) Fig. 7. Definition of each force and position. where P is the preload to the slider and A4 is the mass of the slider. On the other hand, when the slider is contacting the stator, the slider obtains frictional force in a tangential direction. The direction of the frictional force depends on the tangential velocity of the stator particle and the slider velocity. Tangential velocity means the vibration velocity of the particle to the C direction at the contact point, Cslider. Under the condition wellip > 'Uslider, the frictional force and the slider velocity are in the same direction. Namely, tangential force from the stator to the slider is positive, and the slider is accelerated to the C direction. The motion equation is expressed as: M- d'xslider =F- uslider = pn- Vslider dt2 Vslider 1 (vslider 1 on condition that (5) -Aaw sin(& + kxslider) 1 where p is the frictional factor. To the contrary, when Wellip < uslider, the frictional force is negative for the slider because the frictional force direction is the reverse of the moving direction. So, the slider speed would be decreased. dayslider M-----=NNp-A4g dt2 d2xslider - uslider lvslider M- F- = -pn- dt2 on condition that uslider Vslider The contact force between the slider and the stator was calculated for each position (yslider and yenip) using Herzian contact theorem as:

4 932 EEE TRANSACTONS ON ULTRASONCS, FERROELECTRCS. AD FREQUENCY CONTROL. \-OL. 46, NO. 4. J. L\ 1999 " Time [msec] Fig. 8. Simulation results of transient response with different preload variables Time [ysec] (4 where El and E2 are Young's moduli, and p1 and p2 are Poisson's ratios of steel ball and LiNb03. To calculate the velocities and the position step by step, the Euler method was used as: dx x(tn) = x(tn-l) + -((t,-i)at dt -(in) dx dx d2x + d'x dt = -((tn-l) dt -(tn-l)at. dt2 The acceleration was calculated from the motion equations (6) and (7), which were described previously. Driving frequency of the SAW motor was 9.6 MHz and cycle time was about 100 ns. Calculation was done with 1 ns step time, which is enough to calculate for the simulation. Used hardware specification was Sun Super Sparc2 compatible (Japan Computer Corp.), and the operating system was Sun O.S V. RESULTS Simulation results show that the slider was driven in the reverse direction of the traveling wave propagation. The slider speed was saturated as shown in Fig. 8. As the preload became larger, the time constant and convergent speed decreased, and the output force increased. Output force was calculated from a time constant and steady-state speed in the same way as in the previous paper [l],[2], which reported experimental results. This tendency is similar to the experimental result. However, there seems to be a difference in that the experimental results have an optimum preload for maximum output force. This difference may result from the assumption that the elliptical locus is not influenced by the preload in the simulation model. For further consideration of the proposed simulation model, the conditions of the slider position, the slider speed, and the driving force are shown in Figs. 9 and L Time [pec] b) Time [pee] (c) Fig. 9. (a) Driving force, (b) slider speed, and (c) slider position versus time at the starting point of transient response (preload 7.0 mn). The preload is fixed to 7 mn, which is the optimum preload in the experimental result. The starting time of Fig. 9 is 0 ms, and that of Fig. 10 is 2 ms. Referring to Fig. 8 with 7 mn preload, the slider speed saturated at 2 ms. So, Fig. 9 shows the situation before saturation, and Fig. 10 shows the saturated point. From these graphs, the mechanism of the SAW motor operation was clarified. Before saturation time, the ratio of the driving force is larger compared with that of the reverse force. Here, an average driving force per

5 MORTA et al.: SMULATON OF SURFACE ACOU;TC WAVE MOTOR /a / Time [2msec+us] (4 - / Time [msec] Time[2msec+ps] (b) 1 Time[2msec+psl (c) Fig. 10. (a) Driving force, (b) slider speed,.md (c) slider position versus time at the convergence point of tranc.ient response (preload 7.0 mn). cycle (Fave) is defineld as: where T is a period of driving frequency. At the starting situation, F, is positive as is showii in Fig 9; so, the slider is driven in the +x direction. The convergent speed is fixed E, to be 0. As described before, simulation remlts agree qualitatively with the experimental results. And, it clarifies the principle of the SAW motor, which has a spherical-shaped steel ball, Our simulation model has a variable parameter, Frictional Factor (p) (b) Fig. 11. (a) Simulation results of transient response with frictional coefficient; (b) the relationship between frictional coefficient and time constant. namely the frictional coefficient p. This parameter p determines the time constant, as shown in Fig. ll. t should be noted that the convergent speed was not under the influence of the change of p. This parameter p is adopted as 0.47, which is experimentally measured. To fit the time constant of simulation and experimental result, a parameter p should be equal to Similarly, the vibration amplitude det,ermines the convergent speed. The quantitative difference between the simulation and the experimental results may come from the disregard for a change in p and amplitude because of the preload. Now, we are trying to estimate these factors. V. CONCLUSON Our dynamic simulation model, which utilized the Hertz contact theorem, was effective for SAW motor operation analysis. The levitation and contact condition was con-

6 934 EEE TRANSACTONS ON ULTRASONCS, FERROELECTRCS. AND FREQUEWY CONTROL. 1-OL. 46, NO. 4, JULY 1999 firmed, and the velocity saturation mechanism was clarified. This investigation is the first trial to construct a model for the SAW motor; so, exact quantitative agreement was not realized. Detailed measurement of frictional factor and analysis of wave deformation because of preload is required for a precise model. REFERENCES M. Kurosawa, M. Takahashi, and T. Higuchi, An ultrasonic X- Y stage using 10 MHz surface acoustic wave, in Proc. EEE Ultrason. Symp., Cannes, France, 1994, pp M. Takahashi, M. Kurosawa, and T. Higuchi, Direct frictional driven surface acoustic wave motor, in Proc. nt. Conf. Solidstate Sens. Actuators, Transducers 95, Stockholm, Sweden, 1995, pp M. Kurosawa, M. Takahashi, and T. Higuchi, Elastic contact conditions to optimize friction drive of surface acoustic wave motor, EEE Pans. Ultrason., Ferroelect., Freq. Contr., vol. 45, no. 5, Sep M. Kurosawa, M. Chiba, and T. Higuchi, Evaluation of a surface acoustic wave motor with a multi-contact-point slider, Smart Materials and Structures, vol. 7, no. 2, Jun H. Hirata and S. Ueha, Revolution speed characteristics of an ultrasonic motor estimated from the pressure distribution of the rotor, Jpn. J. Appl. Phys., M. Chiba. M. Takahashi. M. vol. 31; suppl. 31-1, pp :, Kurosawa, and T. Higuchi, Evaluation of a surface acoustic wave motor, in Proc. EEE Workshop on Micro Electro Mechanical Systems, Nagoya, Japan, 1996, pp Minoru Kurosawa (formerly Kuribayashi) (M 95) was born in He received the B. Eng. degree in electrical and electronic engineering and the M. Eng. and Dr. Eng. degrees from Tokyo nstitute of Technology, Tokyo in 1982, 1984, and 1990, respectively. He was a Research Associate at the Precision and ntelligence Laboratory, Tokyo nstitute of Technology, Yokohama, Japan from Since 1992, he has been an Associate Professor at Graduate School of Engineering, University of Tokyo, Tokyo, Japan. His current research interests include ultrasonic motor, micro actuator, PZT thin film, SAW sensor and actuator, and 1-bit digital control system. Toshiro Higuchi (M 87) was born in He received the B.S., M.S., and Dr. Eng. degrees in precision engineering from University of Tokyo, Japan in 1972, 1974, and 1977, respectively. He was a lecturer at the nstitute of ndustrial Science, University of Tokyo from 1977 to 1978 and an Associate Professor from 1978 to Since 1991, he has been a Professor in the Department of Precision Engineering, University of Tokyo. His research interests include mechatronics., maa- netic bearing, electrostatic actuator, stepping motors robotics, and manufacturing. Takeshi Morita was born in He received the B. Eng. and the M. Eng. degrees in precision machinery engineering from the University of Tokyo, Japan in 1994 and He is currently a doctor course student of the Graduate School of Engineering. His research interests are micro ultrasonic motor and PZT thin film.

ieee transactions on ultrasonics, ferroelectrics, and frequency control, vol. 45, no. 5, september

ieee transactions on ultrasonics, ferroelectrics, and frequency control, vol. 45, no. 5, september ieee transactions on ultrasonics, ferroelectrics, and frequency control, vol. 45, no. 5, september 1998 1229 Elastic Contact Conditions to Optimize Friction Drive of Surface Acoustic Wave Motor Minoru

More information

Surface Acoustic Wave Linear Motor

Surface Acoustic Wave Linear Motor Proc. of 3rd Int. Heinz Nixdorf Symp., pp. 113-118, Paderborn, Germany, May, 1999 Surface Acoustic Wave Linear Motor Minoru Kuribayashi Kurosawa and Toshiro Higuchi Dept. of Precision Machinery Engineering,

More information

Evaluation of a surface acoustic wave motor with a multi-contact-point slider

Evaluation of a surface acoustic wave motor with a multi-contact-point slider Smart Mater. Struct. 7 (1998) 305 311. Printed in the UK PII: S0964-1726(98)91230-7 Evaluation of a surface acoustic wave motor with a multi-contact-point slider Minoru Kuribayashi Kurosawa, Makoto Chiba

More information

Friction Drive Simulation of a SAW Motor with Slider Surface Texture Variation

Friction Drive Simulation of a SAW Motor with Slider Surface Texture Variation Advances in Science and Technology Vol. 54 (28) pp 366-371 online at http://www.scientific.net (28) Trans Tech Publications, Switzerland Online available since 28/Sep/2 Friction Drive Simulation of a SAW

More information

RAPID positioning devices with accuracies on the order

RAPID positioning devices with accuracies on the order IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL, VOL. 43, NO. 5, SEPTEMBER 1996 901 Ultrasonic Linear Motor Using Surface Acoustic Waves Minoru Kurosawa, Member, IEEE, Masakazu

More information

Surface Acoustic Wave Atomizer with Pumping Effect

Surface Acoustic Wave Atomizer with Pumping Effect Surface Acoustic Wave Atomizer with Pumping Effect Minoru KUROSAWA, Takayuki WATANABE and Toshiro HIGUCHI Dept. of Precision Machinery Engineering, Faculty of Engineering, University of Tokyo 7-3-1 Hongo,

More information

Chapter 2 Surface Acoustic Wave Motor Modeling and Motion Control

Chapter 2 Surface Acoustic Wave Motor Modeling and Motion Control Chapter 2 Surface Acoustic Wave Motor Modeling and Motion Control 1 Abstract For miniaturization of ultrasonic transducers, a surface acoustic wave device has an advantage in rigid mounting and high-power-density

More information

An Energy Circulation Driving Surface Acoustic Wave Motor

An Energy Circulation Driving Surface Acoustic Wave Motor An Energy Circulation Driving Surface Acoustic Wave Motor Minoru K. Kurosawa Tokyo Institute of Technology Yokohama, Japan mkur@ae.titech.ac.jp Purevdagva Nayanbuu Tokyo Institute of Technology Yokohama,

More information

PERFORMANCE OF HYDROTHERMAL PZT FILM ON HIGH INTENSITY OPERATION

PERFORMANCE OF HYDROTHERMAL PZT FILM ON HIGH INTENSITY OPERATION PERFORMANCE OF HYDROTHERMAL PZT FILM ON HIGH INTENSITY OPERATION Minoru Kuribayashi Kurosawa*, Hidehiko Yasui**, Takefumi Kanda** and Toshiro Higuchi** *Tokyo Institute of Technology, Dept. of Advanced

More information

A cylindrical shaped micro ultrasonic motor utilizing PZT thin film 1.4 mm in diameter and 5.0 mm long stator transducer

A cylindrical shaped micro ultrasonic motor utilizing PZT thin film 1.4 mm in diameter and 5.0 mm long stator transducer Ž. Sensors and Actuators 83 2000 225 230 www.elsevier.nlrlocatersna A cylindrical shaped micro ultrasonic motor utilizing PZT thin film ž / 1.4 mm in diameter and 5.0 mm long stator transducer Takeshi

More information

Ultrasonic Liear Motor using Traveling Surface Acoustic Wave

Ultrasonic Liear Motor using Traveling Surface Acoustic Wave .9/ULTSYM.9.5 Ultrasonic Liear Motor using Traveling Surface Acoustic Wave Minoru Kuribayashi Kurosawa Dept. of Information Processing Tokyo Institute of Technology Yokohama, Japan mkur@ip.titech.ac.jp

More information

High speed and quick response precise linear stage system using V-shape transducer ultrasonic motors

High speed and quick response precise linear stage system using V-shape transducer ultrasonic motors High speed and quick response precise linear stage system using V-shape transducer ultrasonic motors K. Asumi, T. Fujimura and M. K. Kurosawa Taiheiyo-cement Corporation, Japan Tokyo Institute of Technology,

More information

Surface Acoustic Wave Motor using Feed Back Controller with Dead Zone Linearization

Surface Acoustic Wave Motor using Feed Back Controller with Dead Zone Linearization Surface Acoustic Wave Motor using Feed Back Controller with Dead Zone Linearization *1 *1 *2 Minoru Kuribayashi KUROSAWA (Mem.), Takaya SUZUKI and Katsuhiko ASAI Potential of surface acoustic wave (SAW)

More information

A High Power Piezoelectric Ultrasonic Linear Micromotor Using Slotted Stator

A High Power Piezoelectric Ultrasonic Linear Micromotor Using Slotted Stator Proceedings of 20 th International Congress on Acoustics, ICA 2010 23-27 August 2010, Sydney, Australia A High Power Piezoelectric Ultrasonic Linear Micromotor Using Slotted Stator Cheol-Ho Yun (1), Brett

More information

A Miniaturized Levitation System With Motion Control Using a Piezoelectric Actuator

A Miniaturized Levitation System With Motion Control Using a Piezoelectric Actuator 666 IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY, VOL. 10, NO. 5, SEPTEMBER 2002 A Miniaturized Levitation System With Motion Control Using a Piezoelectric Actuator Takeshi Morita, Member, IEEE, Katsumi

More information

DEVELOPMENT OF A BAR-SHAPED ULTRASONIC MOTOR FOR MULTI-DEGREES OF FREEDOM MOTION

DEVELOPMENT OF A BAR-SHAPED ULTRASONIC MOTOR FOR MULTI-DEGREES OF FREEDOM MOTION DEVELOPMENT OF A BAR-SHAPED ULTRASONIC MOTOR FOR MULTI-DEGREES OF FREEDOM MOTION Kenjiro Takemura KEIO University, Yokohama, Kanagawa, JAPAN, m982468@msr.st.keio.ac.jp Nobuyuki Kojima Canon Inc., Ohta-ku,

More information

Fundamental Study of a Stacked Lithium Niobate Transducer

Fundamental Study of a Stacked Lithium Niobate Transducer Jpn. J. Appl. Phys. Vol. 40 (2001) pp. 3801 3806 Part 1, No. 5B, May 2001 c 2001 The Japan Society of Applied Physics Fundamental Study of a Stacked Lithium Niobate Transducer Takeshi MORITA, Toshiki NIINO

More information

PAPER Acoustic Field Analysis of Surface Acoustic Wave Dispersive Delay Lines Using Inclined Chirp IDT

PAPER Acoustic Field Analysis of Surface Acoustic Wave Dispersive Delay Lines Using Inclined Chirp IDT 1014 PAPER Acoustic Field Analysis of Surface Acoustic Wave Dispersive Delay Lines Using Inclined Chirp IDT Koichiro MISU a),kojiibata, Shusou WADAKA, Takao CHIBA, and Minoru K. KUROSAWA, Members SUMMARY

More information

Single-phase driven ultrasonic motor using two orthogonal bending modes of sandwiching. piezo-ceramic plates

Single-phase driven ultrasonic motor using two orthogonal bending modes of sandwiching. piezo-ceramic plates Single-phase driven ultrasonic motor using two orthogonal bending modes of sandwiching piezo-ceramic plates Yuting Ma 1,2, Minkyu Choi 2 and Kenji Uchino 2 1 CAS Key Lab of Bio-Medical Diagnostics, Suzhou

More information

Sensors and Actuators A: Physical

Sensors and Actuators A: Physical Sensors and Actuators A 161 (2010) 266 270 Contents lists available at ScienceDirect Sensors and Actuators A: Physical journal homepage: www.elsevier.com/locate/sna Magnetic force memory effect using a

More information

Ultrasonic linear actuator using coupled vibration

Ultrasonic linear actuator using coupled vibration J. Acoust. Soc. Jpn. (E)11, 4 (1990) Ultrasonic linear actuator using coupled vibration Kazumasa Ohnishi* and Kenjyo Yamakoshi** Niigata Division, ALPS Electric Co., Ltd., 1-3-5, Higashitakami, Nagaoka,

More information

Integration simulation method concerning speed control of ultrasonic motor

Integration simulation method concerning speed control of ultrasonic motor Integration simulation method concerning speed control of ultrasonic motor R Miyauchi 1, B Yue 2, N Matsunaga 1 and S Ishizuka 1 1 Cybernet Systems Co., Ltd. 3 Kanda-neribeicho,Chiyoda-ku, Tokyo,101-0022,Japan

More information

Lecture 19. Measurement of Solid-Mechanical Quantities (Chapter 8) Measuring Strain Measuring Displacement Measuring Linear Velocity

Lecture 19. Measurement of Solid-Mechanical Quantities (Chapter 8) Measuring Strain Measuring Displacement Measuring Linear Velocity MECH 373 Instrumentation and Measurements Lecture 19 Measurement of Solid-Mechanical Quantities (Chapter 8) Measuring Strain Measuring Displacement Measuring Linear Velocity Measuring Accepleration and

More information

PHENOMENA, THEORY AND APPLICATIONS OF NEAR-FIELD ACOUSTIC LEVITATION

PHENOMENA, THEORY AND APPLICATIONS OF NEAR-FIELD ACOUSTIC LEVITATION PHENOMENA, THEORY AND APPLICATIONS OF NEAR-FIELD ACOUSTIC LEVITATION PACS REFERENCE: 43.25.Uv Ueha Sadayuki Precision and Intelligence Laboratory, Tokyo Institute of Technology 4259, Nagatsuta, Midori-ku,

More information

Design of a Hybrid Transducer Type Ultrasonic Motor

Design of a Hybrid Transducer Type Ultrasonic Motor IEEE TRANSACTIONS ON ULTRASONICS, FERROELEiTRICS, AND FREQUENCY CONTROL, VOL. 40, NO. 4, JLLY 1993 395 Design of a Hybrid Transducer Type Ultrasonic Motor Kentaro Nakamura, Minoru Kurosawa, and Sadayuki

More information

Development of the Screw-driven Motors by Stacked Piezoelectric Actuators

Development of the Screw-driven Motors by Stacked Piezoelectric Actuators Proceedings of the 4th IIAE International Conference on Industrial Application Engineering 2016 Development of the Screw-driven Motors by Stacked Piezoelectric Actuators Shine-Tzong Ho a,*, Hao-Wei Chen

More information

Evaluation of a GA-based Feedback Control System with Arrayed Micro Sensors and Actuators in a Turbulent Channel Flow

Evaluation of a GA-based Feedback Control System with Arrayed Micro Sensors and Actuators in a Turbulent Channel Flow Proc. 4th Int. Symp. on Smart Control of Turbulence, Tokyo, March 2-4, 23 Evaluation of a GA-based Feedback Control System with Arrayed Micro Sensors and Actuators in a Turbulent Channel Flow Yuji SUZUKI,

More information

Evaluation of an Electrostatic Film Motor Driven by Two-Four-Phase AC Voltage and Electrostatic Induction

Evaluation of an Electrostatic Film Motor Driven by Two-Four-Phase AC Voltage and Electrostatic Induction 2007 IEEE International Conference on Robotics and Automation Roma, Italy, 10-14 April 2007 Evaluation of an Electrostatic Film Motor Driven by Two-Four-Phase AC Voltage and Electrostatic Induction Norio

More information

S.-W. Ricky Lee, M.-L. Zhu & H.L. Wong Department of Mechanical Engineering, Hong Kong University of Science & Technology, Hong Kong

S.-W. Ricky Lee, M.-L. Zhu & H.L. Wong Department of Mechanical Engineering, Hong Kong University of Science & Technology, Hong Kong Modeling for prototyping of rotary piezoelectric motors S.-W. Ricky Lee, M.-L. Zhu & H.L. Wong Department of Mechanical Engineering, Hong Kong University of Science & Technology, Hong Kong Abstract A new

More information

Ultrasonic Motor by Measuring Transient Responses

Ultrasonic Motor by Measuring Transient Responses IEEE TRANSACTIONS ON ULTRASONICS. FERROELECTRICS, AND FREQUENCY CONTROL. VOL. 38, NO. 5, SEPTEMBER 1991 481 An Estimation of Load Characteristics of an Ultrasonic Motor by Measuring Transient Responses

More information

A method for matching the eigenfrequencies of longitudinal and torsional vibrations in a hybrid piezoelectric motor

A method for matching the eigenfrequencies of longitudinal and torsional vibrations in a hybrid piezoelectric motor First published in: Journal of Sound and Vibration 295 (2006) 856 869 JOURNAL OF SOUND AND VIBRATION www.elsevier.com/locate/jsvi A method for matching the eigenfrequencies of longitudinal and torsional

More information

Experimental Tests and Efficiency Improvement of Surface Permanent Magnet Magnetic Gear

Experimental Tests and Efficiency Improvement of Surface Permanent Magnet Magnetic Gear IEEJ Journal of Industry Applications Vol.3 No.1 pp.62 67 DOI: 10.1541/ieejjia.3.62 Paper Experimental Tests and Efficiency Improvement of Surface Permanent Magnet Magnetic Gear Michinari Fukuoka a) Student

More information

433. New linear piezoelectric actuator based on traveling wave

433. New linear piezoelectric actuator based on traveling wave 433. New linear piezoelectric actuator based on traveling wave D. Mažeika 1, P. Vasiljev 2, G. Kulvietis 3, S. Vaičiulien 4 1,3 Vilnius Gediminas Technical University, Saul tekio al. 11, Vilnius, LT-10223,

More information

PIEZOELECTRIC actuators have certain advantages

PIEZOELECTRIC actuators have certain advantages IEEE/ASME TRANSACTIONS ON MECHATRONICS, VOL. 9, NO. 1, MARCH 2004 1 Analytical Modeling for the Design of a Piezoelectric Rotating-Mode Motor Marc Budinger, Jean-François Rouchon, and Bertrand Nogarede

More information

COURSE OUTLINE. Introduction Signals and Noise Filtering Sensors: Piezoelectric Force Sensors. Sensors, Signals and Noise 1

COURSE OUTLINE. Introduction Signals and Noise Filtering Sensors: Piezoelectric Force Sensors. Sensors, Signals and Noise 1 Sensors, Signals and Noise 1 COURSE OUTLINE Introduction Signals and Noise Filtering Sensors: Piezoelectric Force Sensors Piezoelectric Force Sensors 2 Piezoelectric Effect and Materials Piezoelectric

More information

Piezoelectric sensing and actuation CEE575

Piezoelectric sensing and actuation CEE575 Piezoelectric sensing and actuation CEE575 Sensor: Mechanical energy to electrical energy Actuator: Electrical energy converted to mechanical energy (motion) Materials For many years, natural crystals

More information

Stator/Rotor Interface Analysis for Piezoelectric Motors

Stator/Rotor Interface Analysis for Piezoelectric Motors Stator/Rotor Interface Analysis for Piezoelectric Motors K Harmouch, Yves Bernard, Laurent Daniel To cite this version: K Harmouch, Yves Bernard, Laurent Daniel. Stator/Rotor Interface Analysis for Piezoelectric

More information

Piezoelectric Actuator for Micro Robot Used in Nanosatellite

Piezoelectric Actuator for Micro Robot Used in Nanosatellite Piezoelectric Actuator for Micro Robot Used in Nanosatellite R Bansevicius, S Navickaite, V Jurenas and A Bubulis PIEZOELECTRIC ACTUATOR FOR MICRO ROBOT USED IN NANOSATELLITE. R Bansevicius 1, S Navickaite,

More information

1352 ieee transactions on ultrasonics, ferroelectrics, and frequency control, vol. 53, no. 7, july 2006

1352 ieee transactions on ultrasonics, ferroelectrics, and frequency control, vol. 53, no. 7, july 2006 1352 ieee transactions on ultrasonics, ferroelectrics, and frequency control, vol. 53, no. 7, july 2006 Sensitivity Analysis and Optimization of a Standing Wave Ultrasonic Linear Motor José M. Fernandez

More information

2044. Dynamics analysis for the clamping mechanisms of a rotary inchworm piezoelectric motor

2044. Dynamics analysis for the clamping mechanisms of a rotary inchworm piezoelectric motor 2044. Dynamics analysis for the clamping mechanisms of a rotary inchworm piezoelectric motor Yongfei Gu 1, Jichun Xing 2 1, 2 School of Mechanical Engineering, Yanshan University, Qinhuangdao, China 1

More information

Measuring vibration characteristics at large amplitude region of materials for high power ultrasonic vibration system

Measuring vibration characteristics at large amplitude region of materials for high power ultrasonic vibration system Ultrasonics 38 (2000) 122 126 www.elsevier.nl/locate/ultras Measuring vibration characteristics at large amplitude region of materials for high power ultrasonic vibration system Kentaro Nakamura *, Kiyotsugu

More information

Module 6: Smart Materials & Smart Structural Control Lecture 33: Piezoelectric & Magnetostrictive Sensors and Actuators. The Lecture Contains:

Module 6: Smart Materials & Smart Structural Control Lecture 33: Piezoelectric & Magnetostrictive Sensors and Actuators. The Lecture Contains: The Lecture Contains: Piezoelectric Sensors and Actuators Magnetostrictive Sensors and Actuators file:///d /chitra/vibration_upload/lecture33/33_1.htm[6/25/2012 12:42:09 PM] Piezoelectric Sensors and Actuators

More information

Tracking Control of an Ultrasonic Linear Motor Actuated Stage Using a Sliding-mode Controller with Friction Compensation

Tracking Control of an Ultrasonic Linear Motor Actuated Stage Using a Sliding-mode Controller with Friction Compensation Vol. 3, No., pp. 3-39() http://dx.doi.org/.693/smartsci.. Tracking Control of an Ultrasonic Linear Motor Actuated Stage Using a Sliding-mode Controller with Friction Compensation Chih-Jer Lin,*, Ming-Jia

More information

Veröffentlichungen am IKFF. Properties of a Piezoelectric Travelling Wave Motor Generating Direct Linear Motion

Veröffentlichungen am IKFF. Properties of a Piezoelectric Travelling Wave Motor Generating Direct Linear Motion Veröffentlichungen am IKFF Properties of a Piezoelectric Travelling Wave Motor Generating Direct Linear Motion Eigenschaften eines piezoelektrischen Wanderwellenmotors als Lineardirektantrieb M. Hermann,

More information

Analysis of contact deformation between a coated flat plate and a sphere and its practical application

Analysis of contact deformation between a coated flat plate and a sphere and its practical application Computer Methods and Experimental Measurements for Surface Effects and Contact Mechanics VII 307 Analysis of contact deformation between a coated flat plate and a sphere and its practical application T.

More information

Ultrasonic Measurement of Minute Displacement of Object Cyclically Actuated by Acoustic Radiation Force

Ultrasonic Measurement of Minute Displacement of Object Cyclically Actuated by Acoustic Radiation Force Jpn. J. Appl. Phys. Vol. 42 (2003) pp. 4608 4612 Part 1, No. 7A, July 2003 #2003 The Japan Society of Applied Physics Ultrasonic Measurement of Minute Displacement of Object Cyclically Actuated by Acoustic

More information

Journal of System Design and Dynamics

Journal of System Design and Dynamics Zero Power Non-Contact Suspension System with Permanent Magnet Motion Feedback* Feng SUN** and Koichi OKA** ** Kochi University of Technology 185 Miyanokuchi, Tosayamada, Kami city, Kochi 782-8502, Japan

More information

ELECTROMAGNETIC-RESONANCE-ULTRASOUND MICROSCOPY (ERUM) FOR QUANTITATIVE EVALUATION OF LOCALIZED ELASTIC CONSTANTS OF SOLIDS

ELECTROMAGNETIC-RESONANCE-ULTRASOUND MICROSCOPY (ERUM) FOR QUANTITATIVE EVALUATION OF LOCALIZED ELASTIC CONSTANTS OF SOLIDS ELECTROMAGNETIC-RESONANCE-ULTRASOUND MICROSCOPY (ERUM) FOR QUANTITATIVE EVALUATION OF LOCALIZED ELASTIC CONSTANTS OF SOLIDS J. Tian, H.Ogi, T. Tada and M. Hirao Graduate School of Engineering Science,

More information

Dynamic Strain of Ultrasonic Cu and Au Ball Bonding Measured In-Situ by Using Silicon Piezoresistive Sensor

Dynamic Strain of Ultrasonic Cu and Au Ball Bonding Measured In-Situ by Using Silicon Piezoresistive Sensor 2017 IEEE 67th Electronic Components and Technology Conference Dynamic Strain of Ultrasonic Cu and Au Ball Bonding Measured In-Situ by Using Silicon Piezoresistive Sensor Keiichiro Iwanabe, Kenichi Nakadozono,

More information

On the study of elastic wave scattering and Rayleigh wave velocity measurement of concrete with steel bar

On the study of elastic wave scattering and Rayleigh wave velocity measurement of concrete with steel bar NDT&E International 33 (2000) 401 407 www.elsevier.com/locate/ndteint On the study of elastic wave scattering and Rayleigh wave velocity measurement of concrete with steel bar T.-T. Wu*, J.-H. Sun, J.-H.

More information

Model tests and FE-modelling of dynamic soil-structure interaction

Model tests and FE-modelling of dynamic soil-structure interaction Shock and Vibration 19 (2012) 1061 1069 1061 DOI 10.3233/SAV-2012-0712 IOS Press Model tests and FE-modelling of dynamic soil-structure interaction N. Kodama a, * and K. Komiya b a Waseda Institute for

More information

Acoustic wave reflection from the transition layer of surficial marine sediment

Acoustic wave reflection from the transition layer of surficial marine sediment Acoust. Sci. & Tech. 25, 3 (2004) PAPER Acoustic wave reflection from the transition layer of surficial marine sediment Masao Kimura and Takuya Tsurumi School of Marine Science and Technology, Tokai University

More information

Structure design of micro touch sensor array

Structure design of micro touch sensor array Sensors and Actuators A 107 (2003) 7 13 Structure design of micro touch sensor array Liqun Du a, Guiryong Kwon a,, Fumihito Arai a, Toshio Fukuda a, Kouichi Itoigawa b, Yasunori Tukahara b a Department

More information

6th NDT in Progress Lamb waves in an anisotropic plate of a single crystal silicon wafer

6th NDT in Progress Lamb waves in an anisotropic plate of a single crystal silicon wafer 6th NDT in Progress 2011 International Workshop of NDT Experts, Prague, 10-12 Oct 2011 Lamb waves in an anisotropic plate of a single crystal silicon wafer Young-Kyu PARK 1, Young H. KIM 1 1 Applied Acoustics

More information

Today s menu. Last lecture. Measurement of volume flow rate. Measurement of volume flow rate (cont d...) Differential pressure flow meters

Today s menu. Last lecture. Measurement of volume flow rate. Measurement of volume flow rate (cont d...) Differential pressure flow meters Last lecture Analog-to-digital conversion (Ch. 1.1). Introduction to flow measurement systems (Ch. 12.1). Today s menu Measurement of volume flow rate Differential pressure flowmeters Mechanical flowmeters

More information

Mechanical Systems and Signal Processing

Mechanical Systems and Signal Processing Mechanical Systems and Signal Processing 36 (3) 3 Contents lists available at SciVerse ScienceDirect Mechanical Systems and Signal Processing journal homepage: www.elsevier.com/locate/ymssp Structural

More information

Finite Element Modeling and Optimization of Tube-Shaped Ultrasonic Motors

Finite Element Modeling and Optimization of Tube-Shaped Ultrasonic Motors Finite Element Modeling and Optimization of Tube-Shaped Ultrasonic Motors P. Bouchilloux *a, Serra Cagatay b, Kenji Uchino b, Burhanettin Koc c a Adaptronics, Inc., 223 Peoples Ave., Troy, NY 28; b International

More information

Torque Performance and Permanent Magnet Arrangement for Interior Permanent Magnet Synchronous Motor

Torque Performance and Permanent Magnet Arrangement for Interior Permanent Magnet Synchronous Motor Extended Summary pp.954 960 Torque Performance and Permanent Magnet Arrangement for Interior Permanent Magnet Synchronous Motor Naohisa Matsumoto Student Member (Osaka Prefecture University, matumoto@eis.osakafu-u.ac.jp)

More information

ATTEMPT TO MEASURE VELOCITY AT LOW FREQUENCY BY MODIFIED TRI-AXIAL DESTRUCTIVE INSTRUMENT

ATTEMPT TO MEASURE VELOCITY AT LOW FREQUENCY BY MODIFIED TRI-AXIAL DESTRUCTIVE INSTRUMENT SCA2010-40 1/6 ATTEMPT TO MEASURE VELOCITY AT LOW FREQUENCY BY MODIFIED TRI-AXIAL DESTRUCTIVE INSTRUMENT Fumio Kono, Shigenobu Onozuka, Satoshi Izumotani and Naoyuki Shimoda Japan Oil, Gas and Metals National

More information

ANALYSIS AND NUMERICAL MODELLING OF CERAMIC PIEZOELECTRIC BEAM BEHAVIOR UNDER THE EFFECT OF EXTERNAL SOLICITATIONS

ANALYSIS AND NUMERICAL MODELLING OF CERAMIC PIEZOELECTRIC BEAM BEHAVIOR UNDER THE EFFECT OF EXTERNAL SOLICITATIONS Third International Conference on Energy, Materials, Applied Energetics and Pollution. ICEMAEP016, October 30-31, 016, Constantine,Algeria. ANALYSIS AND NUMERICAL MODELLING OF CERAMIC PIEZOELECTRIC BEAM

More information

SENSORS and TRANSDUCERS

SENSORS and TRANSDUCERS SENSORS and TRANSDUCERS Tadeusz Stepinski, Signaler och system The Mechanical Energy Domain Physics Surface acoustic waves Silicon microresonators Variable resistance sensors Piezoelectric sensors Capacitive

More information

The sound generated by a transverse impact of a ball on a circular

The sound generated by a transverse impact of a ball on a circular J. Acoust. Soc. Jpn. (E) 1, 2 (1980) The sound generated by a transverse impact of a ball on a circular plate Toshio Takahagi*, Masayuki Yokoi*, and Mikio Nakai** *Junior College of Osaka Industrial University,

More information

Development of water immerse type ultrasound probe with PZT film deposited by hydrothermal method

Development of water immerse type ultrasound probe with PZT film deposited by hydrothermal method Development of water immerse type ultrasound probe with PZT film deposited by hydrothermal method Naoki KATSURA 1,3, Mutsuo ISHIKAWA 3,4, Toshio,SATO 1,2,3, Masaaki TAKEUCHI 1, Norimichi KAWASHIMA 1,2,3,

More information

Physical and Biological Properties of Agricultural Products Acoustic, Electrical and Optical Properties and Biochemical Property

Physical and Biological Properties of Agricultural Products Acoustic, Electrical and Optical Properties and Biochemical Property Physical and Biological Properties of Agricultural Products Acoustic, Electrical and Optical Properties and Biochemical Property 1. Acoustic and Vibrational Properties 1.1 Acoustics and Vibration Engineering

More information

QUICK AND PRECISE POSITION CONTROL OF ULTRASONIC MOTORS USING ADAPTIVE CONTROLLER WITH DEAD ZONE COMPENSATION

QUICK AND PRECISE POSITION CONTROL OF ULTRASONIC MOTORS USING ADAPTIVE CONTROLLER WITH DEAD ZONE COMPENSATION Journal of ELECTRICAL ENGINEERING, VOL. 53, NO. 7-8, 22, 197 21 QUICK AND PRECISE POSITION CONTROL OF ULTRASONIC MOTORS USING ADAPTIVE CONTROLLER WITH DEAD ZONE COMPENSATION Li Huafeng Gu Chenglin A position

More information

Pulse voltage operation of two-to-four-phase voltage-induction-type electrostatic motor

Pulse voltage operation of two-to-four-phase voltage-induction-type electrostatic motor International Journal of Applied Electromagnetics and Mechanics 42 (2013) 391 408 391 DOI 10.3233/JAE-131672 IOS Press Pulse voltage operation of two-to-four-phase voltage-induction-type electrostatic

More information

EE 5344 Introduction to MEMS CHAPTER 6 Mechanical Sensors. 1. Position Displacement x, θ 2. Velocity, speed Kinematic

EE 5344 Introduction to MEMS CHAPTER 6 Mechanical Sensors. 1. Position Displacement x, θ 2. Velocity, speed Kinematic I. Mechanical Measurands: 1. Classification of main types: EE 5344 Introduction MEMS CHAPTER 6 Mechanical Sensors 1. Position Displacement x, θ. Velocity, speed Kinematic dx dθ v =, = ω 3. Acceleration

More information

Prof. S.K. Saha. Sensors 1. Lecture 5 June 11, Prof. S.K. Saha. Purpose Classification Internal Sensors. External Sensors.

Prof. S.K. Saha. Sensors 1. Lecture 5 June 11, Prof. S.K. Saha. Purpose Classification Internal Sensors. External Sensors. Lecture 5 June 11, 2009 Sensors Prof. S.K. Saha Dept. of Mech. Eng. IIT Delhi Announcement Outlines of slides in Lectures 1-4 on May 15, 18, 21, June 01, 2009, respectively, are available from: http://web.iitd.ac.in/~saha/

More information

A New Moving-magnet Type Linear Actuator utilizing Flux Concentration Permanent Magnet Arrangement

A New Moving-magnet Type Linear Actuator utilizing Flux Concentration Permanent Magnet Arrangement 342 Journal of Electrical Engineering & Technology Vol. 7, No. 3, pp. 342~348, 2012 http://dx.doi.org/10.5370/jeet.2012.7.3.342 A New Moving-magnet Type Linear Actuator utilizing Flux Concentration Permanent

More information

7.Piezoelectric, Accelerometer and Laser Sensors

7.Piezoelectric, Accelerometer and Laser Sensors 7.Piezoelectric, Accelerometer and Laser Sensors 7.1 Piezoelectric sensors: (Silva p.253) Piezoelectric materials such as lead-zirconate-titanate (PZT) can generate electrical charge and potential difference

More information

Polymer-Based Ultrasonic Motors Utilizing High-Order Vibration Modes. Jiang Wu, Yosuke Mizuno, Senior Member, IEEE, and Kentaro Nakamura, Member, IEEE

Polymer-Based Ultrasonic Motors Utilizing High-Order Vibration Modes. Jiang Wu, Yosuke Mizuno, Senior Member, IEEE, and Kentaro Nakamura, Member, IEEE 788 IEEE/ASME TRANSACTIONS ON MECHATRONICS, VOL. 23, NO. 2, APRIL 2018 Polymer-Based Ultrasonic Motors Utilizing High-Order Vibration Modes Jiang Wu, Yosuke Mizuno, Senior Member, IEEE, and Kentaro Nakamura,

More information

SHAKING TABLE TEST FOR FRICTIONAL ISOLATED BRIDGES AND TRIBOLOGICAL NUMERICAL MODEL OF FRICTIONAL ISOLATOR

SHAKING TABLE TEST FOR FRICTIONAL ISOLATED BRIDGES AND TRIBOLOGICAL NUMERICAL MODEL OF FRICTIONAL ISOLATOR 13 th World Conference on Earthquake Engineering Vancouver, B.C., Canada August 1-6, 2004 Paper No. 1531 SHAKING TABLE TEST FOR FRICTIONAL ISOLATED BRIDGES AND TRIBOLOGICAL NUMERICAL MODEL OF FRICTIONAL

More information

Finite Element Analysis of Piezoelectric Cantilever

Finite Element Analysis of Piezoelectric Cantilever Finite Element Analysis of Piezoelectric Cantilever Nitin N More Department of Mechanical Engineering K.L.E S College of Engineering and Technology, Belgaum, Karnataka, India. Abstract- Energy (or power)

More information

ACOUSTIC EMISSION MEASUREMENTS ON PIEZOELECTRIC/ FERROELECTRIC MATERIALS

ACOUSTIC EMISSION MEASUREMENTS ON PIEZOELECTRIC/ FERROELECTRIC MATERIALS ACOUSTIC EMISSION MEASUREMENTS ON PIEZOELECTRIC/ FERROELECTRIC MATERIALS HIDEAKI ABURATANI Kitakyushu National College of Technology, Kokura-minami, Kitakyushu, Fukuoka, Japan Abstract Ferroelectric materials

More information

Thickness Optimization of a Piezoelectric Converter for Energy Harvesting

Thickness Optimization of a Piezoelectric Converter for Energy Harvesting Excerpt from the Proceedings of the COMSOL Conference 29 Milan Thickness Optimization of a Piezoelectric Converter for Energy Harvesting M. Guizzetti* 1, V. Ferrari 1, D. Marioli 1 and T. Zawada 2 1 Dept.

More information

CHAPTER 4 DESIGN AND ANALYSIS OF CANTILEVER BEAM ELECTROSTATIC ACTUATORS

CHAPTER 4 DESIGN AND ANALYSIS OF CANTILEVER BEAM ELECTROSTATIC ACTUATORS 61 CHAPTER 4 DESIGN AND ANALYSIS OF CANTILEVER BEAM ELECTROSTATIC ACTUATORS 4.1 INTRODUCTION The analysis of cantilever beams of small dimensions taking into the effect of fringing fields is studied and

More information

A model for the ultrasonic field radiated by an Electro-Magnetic Acoustic Transducer in a ferromagnetic solid

A model for the ultrasonic field radiated by an Electro-Magnetic Acoustic Transducer in a ferromagnetic solid 13th International Symposium on Nondestructive Characterization of Materials (NDCM-XIII), 2-24 May 213, Le Mans, France www.ndt.net/?id=1557 More Info at Open Access Database www.ndt.net/?id=1557 A model

More information

SPECTRAL FINITE ELEMENT METHOD

SPECTRAL FINITE ELEMENT METHOD SPECTRAL FINITE ELEMENT METHOD Originally proposed by Patera in 1984 for problems in fluid dynamics Adopted for problems of propagation of acoustic and seismic waves Snapshot of the propagation of seismic

More information

Order of Authors: DUMITRU N OLARU, Professor; CIPRIAN STAMATE, Dr.; ALINA DUMITRASCU, Doctoral student; GHEORGHE PRISACARU, Ass.

Order of Authors: DUMITRU N OLARU, Professor; CIPRIAN STAMATE, Dr.; ALINA DUMITRASCU, Doctoral student; GHEORGHE PRISACARU, Ass. Editorial Manager(tm) for Tribology Letters Manuscript Draft Manuscript Number: TRIL Title: NEW MICRO TRIBOMETER FOR ROLLING FRICTION Article Type: Tribology Methods Keywords: Rolling friction, Friction

More information

Dynamic behavior of a piezowalker, inertial and frictional configurations

Dynamic behavior of a piezowalker, inertial and frictional configurations REVIEW OF SCIENTIFIC INSTRUMENTS VOLUME 70, NUMBER 9 SEPTEMBER 1999 Dynamic behavior of a piezowalker, inertial and frictional configurations G. Mariotto, a) M. D Angelo, and I. V. Shvets Physics Department,

More information

Development of Spherical Sliding Bearing

Development of Spherical Sliding Bearing Technical Report NIPPON STEEL & SUMITOMO METAL TECHNICAL REPORT No. 115 JULY 2017 Development of Spherical Sliding Bearing UDC 624. 042. 7 : 62-531 Koji NISHIMOTO* Naoya WAKITA Hideji NAKAMURA Abstract

More information

Vibration modelling of machine tool structures

Vibration modelling of machine tool structures Vibration modelling of machine tool structures F. Haase, S. Lockwood & D.G. Ford The Precision Engineering Centre, University of Huddersfield (UK) Abstract Productivity in modem machine tools is acheved

More information

(Received on Mar. 30, 2013 and accepted on Jul. 11, 2013)

(Received on Mar. 30, 2013 and accepted on Jul. 11, 2013) Proc. Schl. Eng. Tokai Tokai Univ., Univ., Ser. ESer. E 38 (23) (23) - 59-66 Optimal Placement of Permanent Magnets in a Hybrid Magnetic evitation System for Thin Steel Plate by Takayoshi NARITA *, Shinya

More information

The Influence of location of balls and ball diameter difference in rolling bearings on the nonrepetitive runout (NRRO) of retainer revolution

The Influence of location of balls and ball diameter difference in rolling bearings on the nonrepetitive runout (NRRO) of retainer revolution Precision Engineering 9 (005) 8 The Influence of location of balls and ball diameter difference in rolling bearings on the nonrepetitive runout (NRRO) of retainer revolution Shoji Noguchi a,, Kentaro Hiruma

More information

Piezoelectric Multilayer Beam Bending Actuators

Piezoelectric Multilayer Beam Bending Actuators R.G. Bailas Piezoelectric Multilayer Beam Bending Actuators Static and Dynamic Behavior and Aspects of Sensor Integration With 143 Figures and 17 Tables Sprin ger List of Symbols XV Part I Focus of the

More information

Motor Info on the WWW Motorola Motors DC motor» /MOTORDCTUT.

Motor Info on the WWW Motorola Motors DC motor»   /MOTORDCTUT. Motor Info on the WWW Motorola Motors DC motor» http://www.freescale.com/files/microcontrollers/doc/train_ref_material /MOTORDCTUT.html Brushless DC motor» http://www.freescale.com/files/microcontrollers/doc/train_ref_material

More information

LECTURE NO. 4-5 INTRODUCTION ULTRASONIC * PULSE VELOCITY METHODS

LECTURE NO. 4-5 INTRODUCTION ULTRASONIC * PULSE VELOCITY METHODS LECTURE NO. 4-5 ULTRASONIC * PULSE VELOCITY METHODS Objectives: To introduce the UPV methods To briefly explain the theory of pulse propagation through concrete To explain equipments, procedures, calibrations,

More information

Model for friction and wear reduction through piezoelectrically-assisted ultrasonic lubrication

Model for friction and wear reduction through piezoelectrically-assisted ultrasonic lubrication Model for friction and wear reduction through piezoelectrically-assisted ultrasonic lubrication Sheng Dong, Marcelo J. Dapino Smart Vehicle Concepts Center, Department of Mechanical and Aerospace Engineering,

More information

Orientation of Piezoelectric Crystals and Acoustic Wave Propagation

Orientation of Piezoelectric Crystals and Acoustic Wave Propagation Orientation of Piezoelectric Crystals and Acoustic Wave Propagation Guigen Zhang Department of Bioengineering Department of Electrical and Computer Engineering Institute for Biological Interfaces of Engineering

More information

Pseudo-dynamic tests in centrifugal field for structure-foundation-soil systems

Pseudo-dynamic tests in centrifugal field for structure-foundation-soil systems Pseudo-dynamic tests in centrifugal field for structure-foundation-soil systems Yoshikazu Takahashi Kyoto University, Kyoto, Japan Masako Kodera Tokyo Electric Power Company, Kawasaki, Japan SUMMARY: The

More information

US06CPHY06 Instrumentation and Sensors UNIT 2 Part 2 Pressure Measurements

US06CPHY06 Instrumentation and Sensors UNIT 2 Part 2 Pressure Measurements US06CPHY06 Instrumentation and Sensors UNIT 2 Part 2 Pressure Measurements Pressure Measurements What is Pressure? Pressure: Force exerted by a fluid on unit surface area of a container i.e. P = F/A. Units

More information

Three phase induction motor using direct torque control by Matlab Simulink

Three phase induction motor using direct torque control by Matlab Simulink Three phase induction motor using direct torque control by Matlab Simulink Arun Kumar Yadav 1, Dr. Vinod Kumar Singh 2 1 Reaserch Scholor SVU Gajraula Amroha, U.P. 2 Assistant professor ABSTRACT Induction

More information

An Approach to Designing a Dual Frequency Piezoelectric Ultrasonic Transducer

An Approach to Designing a Dual Frequency Piezoelectric Ultrasonic Transducer Journal of Stress Analysis Vol. 1, No. 2, Autumn Winter 2016-17 An Approach to Designing a Dual Frequency Piezoelectric Ultrasonic Transducer A. Pak a,, A. Abdullah b a Mechanical Engineering Department,

More information

1990. Temperature dependence of soft-doped / hard-doped PZT material properties under large signal excitation and impact on the design choice

1990. Temperature dependence of soft-doped / hard-doped PZT material properties under large signal excitation and impact on the design choice 1990. Temperature dependence of soft-doped / hard-doped PZT material properties under large signal excitation and impact on the design choice Charles Mangeot Noliac A/S, Kvistgaard, Denmark E-mail: cm@noliac.com

More information

Research Article Doppler Velocity Estimation of Overlapping Linear-Period-Modulated Ultrasonic Waves Based on an Expectation-Maximization Algorithm

Research Article Doppler Velocity Estimation of Overlapping Linear-Period-Modulated Ultrasonic Waves Based on an Expectation-Maximization Algorithm Advances in Acoustics and Vibration, Article ID 9876, 7 pages http://dx.doi.org/.55//9876 Research Article Doppler Velocity Estimation of Overlapping Linear-Period-Modulated Ultrasonic Waves Based on an

More information

Optical Method for Micro Force Measurement. Yusaku FUJII Gunma University

Optical Method for Micro Force Measurement. Yusaku FUJII Gunma University Optical Method for Micro Force Measurement Yusaku FUJII Gunma University Small Force (1mN to 1N ) It is difficult to generate and evaluate small force, properly. The causes of the Difficulties in measuring

More information

NDT&E Methods: UT. VJ Technologies CAVITY INSPECTION. Nondestructive Testing & Evaluation TPU Lecture Course 2015/16.

NDT&E Methods: UT. VJ Technologies CAVITY INSPECTION. Nondestructive Testing & Evaluation TPU Lecture Course 2015/16. CAVITY INSPECTION NDT&E Methods: UT VJ Technologies NDT&E Methods: UT 6. NDT&E: Introduction to Methods 6.1. Ultrasonic Testing: Basics of Elasto-Dynamics 6.2. Principles of Measurement 6.3. The Pulse-Echo

More information

Today s menu. Last lecture. Ultrasonic measurement systems. What is Ultrasound (cont d...)? What is ultrasound?

Today s menu. Last lecture. Ultrasonic measurement systems. What is Ultrasound (cont d...)? What is ultrasound? Last lecture Measurement of volume flow rate Differential pressure flowmeters Mechanical flowmeters Vortex flowmeters Measurement of mass flow Measurement of tricky flows" Today s menu Ultrasonic measurement

More information

Ultrasonics and piezoelectric motors can be an attractive

Ultrasonics and piezoelectric motors can be an attractive 1868 IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, vol. 57, no. 8, August 2010 A Piezoelectric Ultrasonic Linear Micromotor Using a Slotted Stator Cheol-Ho Yun, Brett Watson,

More information

Lecture 20. Measuring Pressure and Temperature (Chapter 9) Measuring Pressure Measuring Temperature MECH 373. Instrumentation and Measurements

Lecture 20. Measuring Pressure and Temperature (Chapter 9) Measuring Pressure Measuring Temperature MECH 373. Instrumentation and Measurements MECH 373 Instrumentation and Measurements Lecture 20 Measuring Pressure and Temperature (Chapter 9) Measuring Pressure Measuring Temperature 1 Measuring Acceleration and Vibration Accelerometers using

More information