(p 2 = δk p 1 ) 2 m 2 + i0, (S.1)

Size: px
Start display at page:

Download "(p 2 = δk p 1 ) 2 m 2 + i0, (S.1)"

Transcription

1 PHY 396 K. Solutions for problem set #3. The one-loop diagram ) yields amplitude F δk) iλ d 4 p π) 4 p m + i p δk p ) m + i, S.) but the momentum integral here diverges logarithmically as p, so it needs to be regularized. In the Pauli Villars regularization scheme, one subtracts from ) a similar diagram where internal lines belong to ghost fields of extremely large mass Λ m. The subtraction is done before the momentum integration, F PV δk) iλ d 4 p { π) 4 p m + i p δk p ) m + i p Λ + i p δk p ) Λ + i, S.) so for p > Λ the net integrand behaves as OΛ /p 6 ) instead of /p 4 and the integral converges. Out task is to evaluate the integral S.), so let s start with the Feynman s trick for simplifying the propagator product. As discussed in class, p m + i p δk p ) m + i dx dx where q p x δk. [ x)p m + i) + xp m + i)] [q + x x) δk m + i] S.3) Similarly, p Λ + i p δk p ) Λ + i dx [q + x x) δk Λ + i] S.4) for exactly same q p xδk. Hence, we plug both propagator products into eq. S.),

2 change the order of integration, and than change the momentum variable from p to q, F PV δk t) dx F PV t, x) S.5) where F PV t, x) iλ iλ d 4 p { π) 4 [q p xδk) + tx x) m + i] [q p xδk) + tx x) Λ + i] d 4 q { π) 4 [q + tx x) m + i] [q + tx x) Λ + i]. S.6) Next, we analytically continue the momentum integral from the Minkowski momentum q µ to the Euclidean Momentum q µ E, thus d 4 q id 4 q E, q q E, S.7) and hence F PV t, x) λ d 4 { q E π) 4 [qe + m x x)t] [qe + Λ x x)t]. S.8) At this point, we go to spherical coordinates in the 4D Euclidean space and focus on the radial coordinate q E. This gives us d 4 q E π q E 3 d q E π q E dq E S.9) and hence F PV t, x) λ 3π dq E { qe [qe + m x x)t] qe [qe + Λ x x)t]. S.)

3 The last integral here has form ) y y + A) y y + ) S.) which evaluates to log/a). Indeed, ) y y + A) y y + ) y + A y + log y + A y + + A y + A log A + + log A ) log A ) ) A y + A) + y + ) ) y + A + A ) A + ) ) ) log A. S.) Hence, F PV t, x) λ 3π log Λ x x)t m x x)t λ 3π log Λ m x x)t S.3) since we assume not only Λ m but also Λ t, u, s. Integrating this formula over x, we arrive at the Pauli Villars regularized amplitude, F PV t) λ 3π λ 3π dx log log Λ m + I Λ m x x)t )) t m S.4) where I ) t m def dx log m m x x)t. S.5) In class, we have calculated the same one-loop amplitude using the hard-edge cutoff; our 3

4 result was F hard edge λ 3π )) log Λ t m + I m S.6) where It/m ) is exactly as in eq. S.5). omparing eqs. S.6) and S.4), we immediately see that the only difference is the term inside the parentheses in eq. S.6). In other words, the two regularization schemes produce similar amplitudes except for a constant term λ /3π ) O). Moreover, this constant term may be eliminated by adjusting the cutoff scales of the two regulators. Indeed, the cutoff scale Λ HE of the hard-edge regulator the maximal value of the Euclidean momenta allowed in that scheme does not have to be exactly the same as the mass Λ PV of the ghost fields in the Pauli Villars regularization scheme. To produce a similar physical effect, the two scales should have similar orders of magnitude, but this generally means Λ HE Λ PV c ) for some O) constant c rather than naive identification Λ HE Λ PV. onsequently, in the Pauli Villars regularization scheme F t) λ 3π log Λ PV m + I )) t m S.7) while in the hard-edge regularization scheme F t) λ 3π log Λ HE m + I )) t m, S.8) and log Λ PV may be different from log Λ HE by some O) constant log c according to eq. ). Thus, the one-loop amplitudes S.7) and S.8) are in perfect agreement with each other, provided we identify log Λ PV Λ HE, S.9) i.e., Λ PV Λ HE exp). 4

5 Now consider the higher-derivative regularization scheme. In this scheme, the scalar field φ has very small higher-derivative terms in its Lagrangian, L HD µφ) m φ λ 4 φ4 Λ φ), S.) which softens the scalar s propagator for very high momenta p > Λ : i p m + i i p m + i Λ p 4 i p m + i Λ p Λ + i. S.) onsequently, in the higher-derivative regularization scheme, the one-loop amplitude ) becomes F HD δk) iλ d 4 p π) 4 p m + i Λ p Λ + i p m + i Λ p Λ + i S.) where p δk p. For all but extremely large momenta p Λ, the integrand here is indistinguishable from the un-regularized loop integral S.), but for p > Λ it becomes softer behaves like Λ 4 /p 8 for p instead of /p so the integral S.)converges. Our task is to evaluate this integral, so let s start by simplifying the propagator product by using the Feynman s trick S.3) and then interchanging the order of dx and d 4 p integrals: F HD δk) dx F HD δk, x) S.3) where F HD δk, x) iλ d 4 p π) 4 [q p xδk) + x x)δk m + i] Λ p Λ + i Λ p δk p ) Λ + i. S.4) Note that we have used the Feynman trick only for the /p m +i) and /p m +i) factors, the remaining Λ dependent factors remain as they are on the second line of eq. S.4). 5

6 Next, inside the dx integral, we change the momentum integration variable from p to q p xδk, thus F HD δk, x) iλ d 4 q π) 4 [q + x x)δk m + i] Λ p q + xδk) Λ + i Λ p q + x )δk) Λ + i. S.5) The UV cutoff scale Λ must me much larger than the scalar s mass m and also than any component δk µ of the net momentum transfer δk. onsequently, for any q µ we may approximate Λ q + Oδk)) Λ + i Λ q Λ + i : S.6) For q Λ this approximation works because the whole q+oδk)) term in the denominator is negligible compared to the Λ term, while for q Λ or large, Oδk) correction to q becomes negligible because δk q. factors in eq. S.5), we have Applying this approximation to both Λ dependent Λ p q + xδk) Λ + i Λ p q + x )δk) Λ + i Λ 4 [q Λ + i] S.7) and hence F HD δk, x) iλ d 4 q π) 4 [q + x x)δk m + i] Λ 4 [q Λ + i]. S.8) At this point, we analytically continue the momentum integral from the Minkowski momentum q µ to the Euclidean momentum q µ E : d4 q becomes id 4 q E, q becomes q E, and the integral S.8) becomes F HD δk t, x) λ λ 3π d 4 q E π) [qe + m x x)t] Λ 4 [qe + Λ ] dq E q E Λ4 [q E + m x x)t] [q E + Λ ]. S.9) On the second line here, we have integrated over the directions of the q µ E in the 4D Euclidean 6

7 space. As to the remaining radial integral, it has form y y + A) y + ) S.3) where A m x x)t is much less than Λ. The simplest way to evaluate this integral is to split it at some point which is much bigger than A but much smaller that. Thus y y + A) y + ) y y + A) y + ) + where in the zero to integral y allows us to approximate y y + A) y + ) S.3) y y + A) y + ) y y + A) log A + A + A log A, S.3) while in the to infinity integral y A makes for y + A) y in the denominator and hence Altogether, for A, y y + A) y + ) yy + ) log + { y y + log. + y + ) S.33) y y + A) y + ) log A + log log A. S.34) note that drops out of net result; if it did not, our approximations would be inconsistent. 7

8 Alternatively, we may evaluate the integral S.3) without using any approximations by expanding the integrand which is a rational function of y into its poles: y y + A) y + ) α y + A) + β y + ) + γ y + A + δ y + S.35) for some constants α, β, γ, δ. The values of α and β follow by matching the coefficients of the double poles at y A and y at both sides, thus α A A), β 3 A). S.36) Subtracting the double poles from both sides of eq. S.35) and matching the residues of the remaining single poles, we obtain γ δ + + A) A) 3. S.37) onsequently, y y + A) y + ) A) A) [ + A A y + A ) y + [ + A A log A ] ] A y + A) y + ) for any > A > S.38) log A for A, in perfect agreement with eq. S.34). Plugging this formula into the momentum integral S.9), we obtain F HD t, x) λ 3π Λ ) log m x x)t S.39) 8

9 and consequently F HD t) λ 3π λ 3π dx Λ ) log m x x)t log Λ m + I )) t m S.4) where It/m ) is as in eq. S.5). Similar to the Pauli Villars case, the Λ parameter of the higher-derivative regularization scheme does not have to be exactly equal to the hard-edge cutoff Λ HE to produce the same physical effect. Instead, we expect Λ hard edge Λ higherderivative c ) for some O) numerical constant c. onsequently, log Λ in the amplitude S.4) can be shifted by a constant, and in this way the one-loop diagram ) regularized using the higherderivative term become consistent with the other regulators hard-edge and Pauli Villars for the same amplitude. Indeed, eq. S.4) re-written as F t) λ 3π log Λ HD m + I )) t m S.4) becomes identical with eqs. S.8) and S.7) when we identify log Λ HD log Λ PV log Λ HE, S.4) or equivalently Λ hard edge Λ PauliVillars exp+) Λ higher derivative exp). ) 9

Solution to sunset diagram problem

Solution to sunset diagram problem Solution to sunset diagram problem The sunset diagram provides the leading contribution to the p 2 )/ and hence Z, where I am simplifying notation by using Z Z φ.. First, use Feynman parameters to write

More information

2P + E = 3V 3 + 4V 4 (S.2) D = 4 E

2P + E = 3V 3 + 4V 4 (S.2) D = 4 E PHY 396 L. Solutions for homework set #19. Problem 1a): Let us start with the superficial degree of divergence. Scalar QED is a purely bosonic theory where all propagators behave as 1/q at large momenta.

More information

Vacuum Energy and Effective Potentials

Vacuum Energy and Effective Potentials Vacuum Energy and Effective Potentials Quantum field theories have badly divergent vacuum energies. In perturbation theory, the leading term is the net zero-point energy E zeropoint = particle species

More information

Regularization Physics 230A, Spring 2007, Hitoshi Murayama

Regularization Physics 230A, Spring 2007, Hitoshi Murayama Regularization Physics 3A, Spring 7, Hitoshi Murayama Introduction In quantum field theories, we encounter many apparent divergences. Of course all physical quantities are finite, and therefore divergences

More information

using D 2 D 2 D 2 = 16p 2 D 2

using D 2 D 2 D 2 = 16p 2 D 2 PHY 396 T: SUSY Solutions for problem set #4. Problem (a): Let me start with the simplest case of n = 0, i.e., no good photons at all and one bad photon V = or V =. At the tree level, the S tree 0 is just

More information

PHY 396 L. Solutions for homework set #20.

PHY 396 L. Solutions for homework set #20. PHY 396 L. Solutions for homework set #. Problem 1 problem 1d) from the previous set): At the end of solution for part b) we saw that un-renormalized gauge invariance of the bare Lagrangian requires Z

More information

REVIEW REVIEW. Quantum Field Theory II

REVIEW REVIEW. Quantum Field Theory II Quantum Field Theory II PHYS-P 622 Radovan Dermisek, Indiana University Notes based on: M. Srednicki, Quantum Field Theory Chapters: 13, 14, 16-21, 26-28, 51, 52, 61-68, 44, 53, 69-74, 30-32, 84-86, 75,

More information

Quantum Field Theory II

Quantum Field Theory II Quantum Field Theory II PHYS-P 622 Radovan Dermisek, Indiana University Notes based on: M. Srednicki, Quantum Field Theory Chapters: 13, 14, 16-21, 26-28, 51, 52, 61-68, 44, 53, 69-74, 30-32, 84-86, 75,

More information

Review of scalar field theory. Srednicki 5, 9, 10

Review of scalar field theory. Srednicki 5, 9, 10 Review of scalar field theory Srednicki 5, 9, 10 2 The LSZ reduction formula based on S-5 In order to describe scattering experiments we need to construct appropriate initial and final states and calculate

More information

Theory of Elementary Particles homework VIII (June 04)

Theory of Elementary Particles homework VIII (June 04) Theory of Elementary Particles homework VIII June 4) At the head of your report, please write your name, student ID number and a list of problems that you worked on in a report like II-1, II-3, IV- ).

More information

Konishi Anomaly. 32π 2 ǫκλµν F κλ F µν. (5)

Konishi Anomaly. 32π 2 ǫκλµν F κλ F µν. (5) Konishi Anomaly Consider the SQED with massless charged fields A and B. Classically, it has an axial symmetry A e +iϕ A, B e +iϕ B and hence a conserved axial current J ax = Ae +2gV A + B e 2gV B, () D

More information

QCD β Function. ǫ C. multiplet

QCD β Function. ǫ C. multiplet QCD β Function In these notes, I shall calculate to 1-loop order the δ counterterm for the gluons and hence the β functions of a non-abelian gauge theory such as QCD. For simplicity, I am going to refer

More information

DR.RUPNATHJI( DR.RUPAK NATH )

DR.RUPNATHJI( DR.RUPAK NATH ) 11 Perturbation Theory and Feynman Diagrams We now turn our attention to interacting quantum field theories. All of the results that we will derive in this section apply equally to both relativistic and

More information

Quantum Field Theory II

Quantum Field Theory II Quantum Field Theory II PHYS-P 622 Radovan Dermisek, Indiana University Notes based on: M. Srednicki, Quantum Field Theory Chapters: 13, 14, 16-21, 26-28, 51, 52, 61-68, 44, 53, 69-74, 30-32, 84-86, 75,

More information

QED Vertex Correction

QED Vertex Correction QED Vertex Correction In these notes I shall calculate the one-loop correction to the PI electron-electron-photon vertex in QED, ieγ µ p,p) = ) We are interested in this vertex in the context of elastic

More information

PHYS 611, SPR 12: HOMEWORK NO. 4 Solution Guide

PHYS 611, SPR 12: HOMEWORK NO. 4 Solution Guide PHYS 611 SPR 12: HOMEWORK NO. 4 Solution Guide 1. In φ 3 4 theory compute the renormalized mass m R as a function of the physical mass m P to order g 2 in MS scheme and for an off-shell momentum subtraction

More information

THE PROBLEM OF SCALES: RENORMALIZATION AND ALL THAT [with metric (, +, +, +)]

THE PROBLEM OF SCALES: RENORMALIZATION AND ALL THAT [with metric (, +, +, +)] THE PROBLEM OF SCALES: RENORMALIZATION AND ALL THAT [with metric (, +, +, +)] JOHN COLLINS The Pennsylvania State University, 104 Davey Laboratory University Park PA 16802, U.S.A. 12 February 2009 Abstract

More information

d 3 k In the same non-relativistic normalization x k = exp(ikk),

d 3 k In the same non-relativistic normalization x k = exp(ikk), PHY 396 K. Solutions for homework set #3. Problem 1a: The Hamiltonian 7.1 of a free relativistic particle and hence the evolution operator exp itĥ are functions of the momentum operator ˆp, so they diagonalize

More information

Textbook Problem 4.2: We begin by developing Feynman rules for the theory at hand. The Hamiltonian clearly

Textbook Problem 4.2: We begin by developing Feynman rules for the theory at hand. The Hamiltonian clearly PHY 396 K. Solutions for problem set #10. Textbook Problem 4.2: We begin by developing Feynman rules for the theory at hand. The Hamiltonian clearly decomposes into Ĥ = Ĥ0 + ˆV where and Ĥ 0 = Ĥfree Φ

More information

High-Energy Scatterings in Infinite-Derivative Field Theory and Ghost-Free Gravity

High-Energy Scatterings in Infinite-Derivative Field Theory and Ghost-Free Gravity High-Energy Scatterings in Infinite-Derivative Field Theory and Ghost-Free Gravity Spyridon Talaganis and Anupam Mazumdar Consortium for Fundamental Physics, Lancaster University, LA 4YB, UK arxiv:60.0440v

More information

Renormalization of the Yukawa Theory Physics 230A (Spring 2007), Hitoshi Murayama

Renormalization of the Yukawa Theory Physics 230A (Spring 2007), Hitoshi Murayama Renormalization of the Yukawa Theory Physics 23A (Spring 27), Hitoshi Murayama We solve Problem.2 in Peskin Schroeder. The Lagrangian density is L 2 ( µφ) 2 2 m2 φ 2 + ψ(i M)ψ ig ψγ 5 ψφ. () The action

More information

Two particle elastic scattering at 1-loop

Two particle elastic scattering at 1-loop Two particle elastic scattering at 1-loop based on S-20 Let s use our rules to calculate two-particle elastic scattering amplitude in, theory in 6 dimensions including all one-loop corrections: For the

More information

QFT PS7: Interacting Quantum Field Theory: λφ 4 (30/11/17) The full propagator in λφ 4 theory. Consider a theory of a real scalar field φ

QFT PS7: Interacting Quantum Field Theory: λφ 4 (30/11/17) The full propagator in λφ 4 theory. Consider a theory of a real scalar field φ QFT PS7: Interacting Quantum Field Theory: λφ 4 (30/11/17) 1 Problem Sheet 7: Interacting Quantum Field Theory: λφ 4 Comments on these questions are always welcome. For instance if you spot any typos or

More information

QED Vertex Correction: Working through the Algebra

QED Vertex Correction: Working through the Algebra QED Vertex Correction: Working through the Algebra At the one-loop level of QED, the PI vertex correction comes from a single Feynman diagram thus ieγ µ loop p,p = where reg = e 3 d 4 k π 4 reg ig νλ k

More information

The Non-commutative S matrix

The Non-commutative S matrix The Suvrat Raju Harish-Chandra Research Institute 9 Dec 2008 (work in progress) CONTEMPORARY HISTORY In the past few years, S-matrix techniques have seen a revival. (Bern et al., Britto et al., Arkani-Hamed

More information

QFT. Chapter 14: Loop Corrections to the Propagator

QFT. Chapter 14: Loop Corrections to the Propagator QFT Chapter 14: Loop Corrections to the Propagator Overview Here we turn to our next major topic: loop order corrections. We ll consider the effect on the propagator first. This has at least two advantages:

More information

Renormalization Scheme Dependence

Renormalization Scheme Dependence Renormalization Scheme Dependence The running couplings such as λe depend not only on the energy scale E, but also on the specific rules we use to fix the finite parts of the δ λ E and other counterterms.

More information

Loop Corrections: Radiative Corrections, Renormalization and All

Loop Corrections: Radiative Corrections, Renormalization and All Loop Corrections: Radiative Corrections, Renormalization and All That Michael Dine Department of Physics University of California, Santa Cruz Nov 2012 Loop Corrections in φ 4 Theory At tree level, we had

More information

1 The Quantum Anharmonic Oscillator

1 The Quantum Anharmonic Oscillator 1 The Quantum Anharmonic Oscillator Perturbation theory based on Feynman diagrams can be used to calculate observables in Quantum Electrodynamics, like the anomalous magnetic moment of the electron, and

More information

10 Thermal field theory

10 Thermal field theory 0 Thermal field theory 0. Overview Introduction The Green functions we have considered so far were all defined as expectation value of products of fields in a pure state, the vacuum in the absence of real

More information

Observables from Correlation Functions

Observables from Correlation Functions Observables from Correlation Functions In this chapter we learn how to compute physical quantities from correlation functions beyond leading order in the perturbative expansion. We will not discuss ultraviolet

More information

PHY 396 K. Solutions for problems 1 and 2 of set #5.

PHY 396 K. Solutions for problems 1 and 2 of set #5. PHY 396 K. Solutions for problems 1 and of set #5. Problem 1a: The conjugacy relations  k,  k,, Ê k, Ê k, follow from hermiticity of the Âx and Êx quantum fields and from the third eq. 6 for the polarization

More information

Path Integrals in Quantum Field Theory C6, HT 2014

Path Integrals in Quantum Field Theory C6, HT 2014 Path Integrals in Quantum Field Theory C6, HT 01 Uli Haisch a a Rudolf Peierls Centre for Theoretical Physics University of Oxford OX1 3PN Oxford, United Kingdom Please send corrections to u.haisch1@physics.ox.ac.uk.

More information

Textbook Problem 4.2: We begin by developing Feynman rules for the theory at hand. The Hamiltonian clearly decomposes into Ĥ = Ĥ0 + ˆV where

Textbook Problem 4.2: We begin by developing Feynman rules for the theory at hand. The Hamiltonian clearly decomposes into Ĥ = Ĥ0 + ˆV where PHY 396 K. Solutions for problem set #11. Textbook Problem 4.2: We begin by developing Feynman rules for the theory at hand. The Hamiltonian clearly decomposes into Ĥ = Ĥ0 + ˆV where Ĥ 0 = Ĥfree Φ + Ĥfree

More information

Loop corrections in Yukawa theory based on S-51

Loop corrections in Yukawa theory based on S-51 Loop corrections in Yukawa theory based on S-51 Similarly, the exact Dirac propagator can be written as: Let s consider the theory of a pseudoscalar field and a Dirac field: the only couplings allowed

More information

The Minimal Lee-Wick Standard Model

The Minimal Lee-Wick Standard Model The Minimal Lee-Wick Standard Model Richard Lebed West Coast LHC Theory Meeting UCLA, November 2008 Work performed with Chris Carone, College of William & Mary Physics Letters B668, 221 (2008) Outline

More information

G. 't HOOFT and M. VELTMAN Institute for Theoretical Physics*, University of Utrecht, Netherlands

G. 't HOOFT and M. VELTMAN Institute for Theoretical Physics*, University of Utrecht, Netherlands Nuclear Physics B153 (1979) 365-401 North-Holland Publishing Company SCALAR ONE-LOOP INTEGRALS G. 't HOOFT and M. VELTMAN Institute for Theoretical Physics*, University of Utrecht, Netherlands Received

More information

Finite Temperature Field Theory

Finite Temperature Field Theory Finite Temperature Field Theory Dietrich Bödeker, Universität Bielefeld 1. Thermodynamics (better: thermo-statics) (a) Imaginary time formalism (b) free energy: scalar particles, resummation i. pedestrian

More information

Introduction to Path Integrals

Introduction to Path Integrals Introduction to Path Integrals Consider ordinary quantum mechanics of a single particle in one space dimension. Let s work in the coordinate space and study the evolution kernel Ut B, x B ; T A, x A )

More information

The 1/N expansion method in quantum field theory

The 1/N expansion method in quantum field theory III d International School Symmetry in Integrable Systems and Nuclear Physics Tsakhkadzor, Armenia, 3-13 July 2013 The 1/N expansion method in quantum field theory Hagop Sazdjian IPN, Université Paris-Sud,

More information

Donoghue, Golowich, Holstein Chapter 4, 6

Donoghue, Golowich, Holstein Chapter 4, 6 1 Week 7: Non linear sigma models and pion lagrangians Reading material from the books Burgess-Moore, Chapter 9.3 Donoghue, Golowich, Holstein Chapter 4, 6 Weinberg, Chap. 19 1 Goldstone boson lagrangians

More information

TWISTOR DIAGRAMS for Yang-Mills scattering amplitudes

TWISTOR DIAGRAMS for Yang-Mills scattering amplitudes TWISTOR DIAGRAMS for Yang-Mills scattering amplitudes Andrew Hodges Wadham College, University of Oxford London Mathematical Society Durham Symposium on Twistors, Strings and Scattering Amplitudes, 20

More information

L = 1 2 µφ µ φ m2 2 φ2 λ 0

L = 1 2 µφ µ φ m2 2 φ2 λ 0 Physics 6 Homework solutions Renormalization Consider scalar φ 4 theory, with one real scalar field and Lagrangian L = µφ µ φ m φ λ 4 φ4. () We have seen many times that the lowest-order matrix element

More information

Techniques for QCD calculations by numerical integration

Techniques for QCD calculations by numerical integration Techniques for QCD calculations by numerical integration Davison E. Soper Institute of Theoretical Science, University of Oregon, Eugene, OR 97403 (0 October 999) Abstract arxiv:hep-ph/9909v Oct 999 Calculations

More information

Final Exam Solutions

Final Exam Solutions Final Exam Solutions. Pair production of electrons from two photons. a) I refer to the initial four-momentum of the cosmic ray photon by q µ and the photon in the background q µ. The requirement for the

More information

Unitarity, Dispersion Relations, Cutkosky s Cutting Rules

Unitarity, Dispersion Relations, Cutkosky s Cutting Rules Unitarity, Dispersion Relations, Cutkosky s Cutting Rules 04.06.0 For more information about unitarity, dispersion relations, and Cutkosky s cutting rules, consult Peskin& Schröder, or rather Le Bellac.

More information

8.821 F2008 Lecture 18: Wilson Loops

8.821 F2008 Lecture 18: Wilson Loops 8.821 F2008 Lecture 18: Wilson Loops Lecturer: McGreevy Scribe: Koushik Balasubramanian Decemebr 28, 2008 1 Minimum Surfaces The expectation value of Wilson loop operators W [C] in the CFT can be computed

More information

Quantum Field Theory Example Sheet 4 Michelmas Term 2011

Quantum Field Theory Example Sheet 4 Michelmas Term 2011 Quantum Field Theory Example Sheet 4 Michelmas Term 0 Solutions by: Johannes Hofmann Laurence Perreault Levasseur Dave M. Morris Marcel Schmittfull jbh38@cam.ac.uk L.Perreault-Levasseur@damtp.cam.ac.uk

More information

PHOTON PROPAGATOR (A REVIEW) The inhomogeneous wave equation for the four-dimensional vector

PHOTON PROPAGATOR (A REVIEW) The inhomogeneous wave equation for the four-dimensional vector PHOTON PROPAGATOR A REVIEW I. THE VECTOR POTENTIAL The inhomogeneous wave equation for the four-dimensional vector potential A µ = A 0 = Φ, A, A 2, A 3 is 2 A µ x x 0 2 2 A µ x = J µ x where Φ is the scalar

More information

Physics 444: Quantum Field Theory 2. Homework 2.

Physics 444: Quantum Field Theory 2. Homework 2. Physics 444: Quantum Field Theory Homework. 1. Compute the differential cross section, dσ/d cos θ, for unpolarized Bhabha scattering e + e e + e. Express your results in s, t and u variables. Compute the

More information

arxiv:hep-th/ v1 2 Jul 1998

arxiv:hep-th/ v1 2 Jul 1998 α-representation for QCD Richard Hong Tuan arxiv:hep-th/9807021v1 2 Jul 1998 Laboratoire de Physique Théorique et Hautes Energies 1 Université de Paris XI, Bâtiment 210, F-91405 Orsay Cedex, France Abstract

More information

Summary of free theory: one particle state: vacuum state is annihilated by all a s: then, one particle state has normalization:

Summary of free theory: one particle state: vacuum state is annihilated by all a s: then, one particle state has normalization: The LSZ reduction formula based on S-5 In order to describe scattering experiments we need to construct appropriate initial and final states and calculate scattering amplitude. Summary of free theory:

More information

NTNU Trondheim, Institutt for fysikk

NTNU Trondheim, Institutt for fysikk NTNU Trondheim, Institutt for fysikk Examination for FY3464 Quantum Field Theory I Contact: Michael Kachelrieß, tel. 998971 Allowed tools: mathematical tables 1. Spin zero. Consider a real, scalar field

More information

Introduction to Quantum Field Theory

Introduction to Quantum Field Theory Introduction to Quantum Field Theory John Cardy Hilary Term 2012 Version 19/1/12 Abstract These notes are intended to supplement the lecture course Field Theory in Condensed Matter and are not intended

More information

1 Equal-time and Time-ordered Green Functions

1 Equal-time and Time-ordered Green Functions 1 Equal-time and Time-ordered Green Functions Predictions for observables in quantum field theories are made by computing expectation values of products of field operators, which are called Green functions

More information

Maxwell s equations. based on S-54. electric field charge density. current density

Maxwell s equations. based on S-54. electric field charge density. current density Maxwell s equations based on S-54 Our next task is to find a quantum field theory description of spin-1 particles, e.g. photons. Classical electrodynamics is governed by Maxwell s equations: electric field

More information

2 Feynman rules, decay widths and cross sections

2 Feynman rules, decay widths and cross sections 2 Feynman rules, decay widths and cross sections 2.1 Feynman rules Normalization In non-relativistic quantum mechanics, wave functions of free particles are normalized so that there is one particle in

More information

4 4 and perturbation theory

4 4 and perturbation theory and perturbation theory We now consider interacting theories. A simple case is the interacting scalar field, with a interaction. This corresponds to a -body contact repulsive interaction between scalar

More information

Final reading report: BPHZ Theorem

Final reading report: BPHZ Theorem Final reading report: BPHZ Theorem Wang Yang 1 1 Department of Physics, University of California at San Diego, La Jolla, CA 92093 This reports summarizes author s reading on BPHZ theorem, which states

More information

Review and Preview. We are testing QED beyond the leading order of perturbation theory. We encounter... IR divergences from soft photons;

Review and Preview. We are testing QED beyond the leading order of perturbation theory. We encounter... IR divergences from soft photons; Chapter 9 : Radiative Corrections 9.1 Second order corrections of QED 9. Photon self energy 9.3 Electron self energy 9.4 External line renormalization 9.5 Vertex modification 9.6 Applications 9.7 Infrared

More information

2 Quantization of the scalar field

2 Quantization of the scalar field 22 Quantum field theory 2 Quantization of the scalar field Commutator relations. The strategy to quantize a classical field theory is to interpret the fields Φ(x) and Π(x) = Φ(x) as operators which satisfy

More information

Renormalization of the fermion self energy

Renormalization of the fermion self energy Part I Renormalization of the fermion self energy Electron self energy in general gauge The self energy in n = 4 Z i 0 = ( ie 0 ) d n k () n (! dimensions is i k )[g ( a 0 ) k k k ] i /p + /k m 0 use Z

More information

iδ jk q 2 m 2 +i0. φ j φ j) 2 φ φ = j

iδ jk q 2 m 2 +i0. φ j φ j) 2 φ φ = j PHY 396 K. Solutions for problem set #8. Problem : The Feynman propagators of a theory follow from the free part of its Lagrangian. For the problem at hand, we have N scalar fields φ i (x of similar mass

More information

The ultraviolet behavior of quantum gravity with fakeons

The ultraviolet behavior of quantum gravity with fakeons The ultraviolet behavior of quantum gravity with fakeons Dipartimento di Fisica Enrico Fermi SW12: Hot Topics in Modern Cosmology Cargèse May 18 th, 2018 Outline 1 Introduction 2 Lee-Wick quantum eld theory

More information

Analytic continuation of functional renormalization group equations

Analytic continuation of functional renormalization group equations Analytic continuation of functional renormalization group equations Stefan Flörchinger (CERN) Aachen, 07.03.2012 Short outline Quantum effective action and its analytic continuation Functional renormalization

More information

0 Ψ d γ α. Ψ u π + 0 Ψ d γ 5 γ α. Ψ u π + ). 2

0 Ψ d γ α. Ψ u π + 0 Ψ d γ 5 γ α. Ψ u π + ). 2 PHY 396 K/L. Solutions for homework set #25. Problem 1a: For the sake of definiteness, let s focus on the decay of the positive pion, π + µ + ν µ. In the Fermi s current-current theory 1 of this weak decay,

More information

6.1 Quadratic Casimir Invariants

6.1 Quadratic Casimir Invariants 7 Version of May 6, 5 CHAPTER 6. QUANTUM CHROMODYNAMICS Mesons, then are described by a wavefunction and baryons by Φ = q a q a, (6.3) Ψ = ǫ abc q a q b q c. (6.4) This resolves the old paradox that ground

More information

Path integral in quantum mechanics based on S-6 Consider nonrelativistic quantum mechanics of one particle in one dimension with the hamiltonian:

Path integral in quantum mechanics based on S-6 Consider nonrelativistic quantum mechanics of one particle in one dimension with the hamiltonian: Path integral in quantum mechanics based on S-6 Consider nonrelativistic quantum mechanics of one particle in one dimension with the hamiltonian: let s look at one piece first: P and Q obey: Probability

More information

MHV Diagrams and Tree Amplitudes of Gluons

MHV Diagrams and Tree Amplitudes of Gluons Institute for Advanced Study, Princeton, NJ 08540 U.S.A. E-mail: cachazo@ias.edu Institute for Advanced Study, Princeton, NJ 08540 U.S.A. E-mail: cachazo@ias.edu Recently, a new perturbation expansion

More information

On-shell Recursion Relations of Scattering Amplitudes at Tree-level

On-shell Recursion Relations of Scattering Amplitudes at Tree-level On-shell Recursion Relations of Scattering Amplitudes at Tree-level Notes for Journal Club by Yikun Wang June 9, 206 We will introduce the on-shell recursion relations of scattering amplitudes at tree-level

More information

LSZ reduction for spin-1/2 particles

LSZ reduction for spin-1/2 particles LSZ reduction for spin-1/2 particles based on S-41 In order to describe scattering experiments we need to construct appropriate initial and final states and calculate scattering amplitude. Summary of free

More information

REVIEW REVIEW. A guess for a suitable initial state: Similarly, let s consider a final state: Summary of free theory:

REVIEW REVIEW. A guess for a suitable initial state: Similarly, let s consider a final state: Summary of free theory: LSZ reduction for spin-1/2 particles based on S-41 In order to describe scattering experiments we need to construct appropriate initial and final states and calculate scattering amplitude. Summary of free

More information

What are the Low-Q and Large-x Boundaries of Collinear QCD Factorization Theorems?

What are the Low-Q and Large-x Boundaries of Collinear QCD Factorization Theorems? What are the Low-Q and Large-x Boundaries of Collinear QCD Factorization Theorems? Presented by Eric Moffat Old Dominion University Paper written in collaboration with Wally Melnitchouk, Ted Rogers, and

More information

Modern Approaches to Scattering Amplitudes

Modern Approaches to Scattering Amplitudes Ph.D. Workshop, 10 October 2017 Outline Scattering Amplitudes 1 Scattering Amplitudes Introduction The Standard Method 2 On-Shell vs Off-Shell On-Shell building blocks BCFW Recursion Relations 3 Amplitudes

More information

Week 11 Reading material from the books

Week 11 Reading material from the books Week 11 Reading material from the books Polchinski, Chapter 6, chapter 10 Becker, Becker, Schwartz, Chapter 3, 4 Green, Schwartz, Witten, chapter 7 Normalization conventions. In general, the most convenient

More information

Maxwell s equations. electric field charge density. current density

Maxwell s equations. electric field charge density. current density Maxwell s equations based on S-54 Our next task is to find a quantum field theory description of spin-1 particles, e.g. photons. Classical electrodynamics is governed by Maxwell s equations: electric field

More information

TASI Lectures on Effective Field Theory and Precision Electroweak Measurements

TASI Lectures on Effective Field Theory and Precision Electroweak Measurements TASI Lectures on Effective Field Theory and Precision Electroweak Measurements arxiv:1006.14v1 [hep-ph] 10 Jun 010 Witold Skiba Department of Physics, Yale University, New Haven, CT 0650 Abstract The first

More information

Mass dependence of instanton determinant in QCD: part I

Mass dependence of instanton determinant in QCD: part I Mass dependence of instanton determinant in QCD: part I Gerald Dunne (UConn) Hyunsoo Min (Univ. Seoul and UConn) determinants in quantum field theory semiclassical instanton background 1 dimensional (ODE)

More information

Introduction to perturbative QCD and factorization

Introduction to perturbative QCD and factorization Introduction to perturbative QCD and factorization Part 1 M. Diehl Deutsches Elektronen-Synchroton DESY Ecole Joliot Curie 2018 DESY Plan of lectures 0. Brief introduction 1. Renormalisation, running coupling,

More information

Classical field theory 2012 (NS-364B) Feynman propagator

Classical field theory 2012 (NS-364B) Feynman propagator Classical field theory 212 (NS-364B Feynman propagator 1. Introduction States in quantum mechanics in Schrödinger picture evolve as ( Ψt = Û(t,t Ψt, Û(t,t = T exp ı t dt Ĥ(t, (1 t where Û(t,t denotes the

More information

One-Loop Integrals at vanishing external momenta and appli. Higgs potentials reconstructions CALC Mikhail Dolgopolov. Samara State University

One-Loop Integrals at vanishing external momenta and appli. Higgs potentials reconstructions CALC Mikhail Dolgopolov. Samara State University One-Loop Integrals at vanishing external momenta and applications for extended Higgs potentials reconstructions CALC 2012 Samara State University 1. Basic examples and an idea for extended Higgs potentials

More information

Quantum Gravity and Black Holes

Quantum Gravity and Black Holes Quantum Gravity and Black Holes Viqar Husain March 30, 2007 Outline Classical setting Quantum theory Gravitational collapse in quantum gravity Summary/Outlook Role of metrics In conventional theories the

More information

The Feynman Propagator and Cauchy s Theorem

The Feynman Propagator and Cauchy s Theorem The Feynman Propagator and Cauchy s Theorem Tim Evans 1 (1st November 2018) The aim of these notes is to show how to derive the momentum space form of the Feynman propagator which is (p) = i/(p 2 m 2 +

More information

On Perturbation Theory, Dyson Series, and Feynman Diagrams

On Perturbation Theory, Dyson Series, and Feynman Diagrams On Perturbation Theory, Dyson Series, and Feynman Diagrams The Interaction Picture of QM and the Dyson Series Many quantum systems have Hamiltonians of the form Ĥ Ĥ0 + ˆV where Ĥ0 is a free Hamiltonian

More information

Quantum Field Theory. and the Standard Model. !H Cambridge UNIVERSITY PRESS MATTHEW D. SCHWARTZ. Harvard University

Quantum Field Theory. and the Standard Model. !H Cambridge UNIVERSITY PRESS MATTHEW D. SCHWARTZ. Harvard University Quantum Field Theory and the Standard Model MATTHEW D. Harvard University SCHWARTZ!H Cambridge UNIVERSITY PRESS t Contents v Preface page xv Part I Field theory 1 1 Microscopic theory of radiation 3 1.1

More information

Ward Takahashi Identities

Ward Takahashi Identities Ward Takahashi Identities There is a large family of Ward Takahashi identities. Let s start with two series of basic identities for off-shell amplitudes involving 0 or 2 electrons and any number of photons.

More information

Legendre s Equation. PHYS Southern Illinois University. October 13, 2016

Legendre s Equation. PHYS Southern Illinois University. October 13, 2016 PHYS 500 - Southern Illinois University October 13, 2016 PHYS 500 - Southern Illinois University Legendre s Equation October 13, 2016 1 / 10 The Laplacian in Spherical Coordinates The Laplacian is given

More information

The Path Integral: Basics and Tricks (largely from Zee)

The Path Integral: Basics and Tricks (largely from Zee) The Path Integral: Basics and Tricks (largely from Zee) Yichen Shi Michaelmas 03 Path-Integral Derivation x f, t f x i, t i x f e H(t f t i) x i. If we chop the path into N intervals of length ɛ, then

More information

Fourier transforms, Generalised functions and Greens functions

Fourier transforms, Generalised functions and Greens functions Fourier transforms, Generalised functions and Greens functions T. Johnson 2015-01-23 Electromagnetic Processes In Dispersive Media, Lecture 2 - T. Johnson 1 Motivation A big part of this course concerns

More information

ON SYMMETRY NON-RESTORATION AT HIGH TEMPERATURE. G. Bimonte. and. G. Lozano 1. International Centre for Theoretical Physics, P.O.

ON SYMMETRY NON-RESTORATION AT HIGH TEMPERATURE. G. Bimonte. and. G. Lozano 1. International Centre for Theoretical Physics, P.O. IC/95/59 July 995 ON SYMMETRY NON-RESTORATION AT HIGH TEMPERATURE G. Bimonte and G. Lozano International Centre for Theoretical Physics, P.O.BOX 586 I-400 Trieste, ITALY Abstract We study the eect of next-to-leading

More information

What are the Low-Q and Large-x Boundaries of Collinear QCD Factorization Theorems?

What are the Low-Q and Large-x Boundaries of Collinear QCD Factorization Theorems? What are the Low-Q and Large-x Boundaries of Collinear QCD Factorization Theorems? Presented by Eric Moffat Paper written in collaboration with Wally Melnitchouk, Ted Rogers, and Nobuo Sato arxiv:1702.03955

More information

The path integral for photons

The path integral for photons The path integral for photons based on S-57 We will discuss the path integral for photons and the photon propagator more carefully using the Lorentz gauge: as in the case of scalar field we Fourier-transform

More information

Sector Decomposition

Sector Decomposition Sector Decomposition J. Carter Institute for Particle Physics Phenomenology University of Durham Student Seminar, 06/05/2009 Outline 1 What is Sector Decomposition? Why is Sector Decomposition Important?

More information

Lecture: Scattering theory

Lecture: Scattering theory Lecture: Scattering theory 30.05.2012 SS2012: Introduction to Nuclear and Particle Physics, Part 2 2 1 Part I: Scattering theory: Classical trajectoriest and cross-sections Quantum Scattering 2 I. Scattering

More information

8.324 Relativistic Quantum Field Theory II

8.324 Relativistic Quantum Field Theory II 8.3 Relativistic Quantum Field Theory II MIT OpenCourseWare Lecture Notes Hong Liu, Fall 010 Lecture Firstly, we will summarize our previous results. We start with a bare Lagrangian, L [ 0, ϕ] = g (0)

More information

Homework 4: Fermi s Golden Rule and Feynman Diagrams

Homework 4: Fermi s Golden Rule and Feynman Diagrams Homework 4: Fermi s Golden Rule and Feynman Diagrams 1 Proton-Proton Total Cross Section In this problem, we are asked to find the approximate radius of the proton from the TOTEM data for the total proton

More information

A Method of Successive Approximations in the Framework of the Geometrized Lagrange Formalism

A Method of Successive Approximations in the Framework of the Geometrized Lagrange Formalism October, 008 PROGRESS IN PHYSICS Volume 4 A Method of Successive Approximations in the Framework of the Geometrized Lagrange Formalism Grigory I. Garas ko Department of Physics, Scientific Research Institute

More information

Invariants and Symmetry

Invariants and Symmetry November 007 Terminology Page 1 of 8 Invariants and Symmetry An invariant is some property of an object that does not change even when the object is changed or its description is changed. A semi-invariant

More information

Quantum Field Theory II

Quantum Field Theory II Quantum Field Theory II T. Nguyen PHY 391 Independent Study Term Paper Prof. S.G. Rajeev University of Rochester April 2, 218 1 Introduction The purpose of this independent study is to familiarize ourselves

More information

Wilsonian renormalization

Wilsonian renormalization Wilsonian renormalization Sourendu Gupta Mini School 2016, IACS Kolkata, India Effective Field Theories 29 February 4 March, 2016 Outline Outline Spurious divergences in Quantum Field Theory Wilsonian

More information