Theory of signals and images I. Dr. Victor Castaneda

Size: px
Start display at page:

Download "Theory of signals and images I. Dr. Victor Castaneda"

Transcription

1 Theory of signals and images I Dr. Victor Castaneda

2 Image as a function Think of an image as a function, f, f: R 2 R I=f(x, y) gives the intensity at position (x, y) The image only is defined over a rectangle, with a finite range: f: [a,b]x[c,d] [0,1] A color image is just three dimensions: I =f (x, y, c R,G,B )

3 Image Image Discrete Continuity model 1D function

4 Image as a function

5 Linear Systems Let define a new image g in terms of image f We can transform either the domain or the range of f Range transformation: Preserve the range but change the domain of f : other operations operate on both the domain and the range of f

6 Linear Systems Sum: two function can be added: Scaling: a function can be multiplied by a constant

7 a a Linear Systems Linear Shift Invariant Systems (LSIS) Linearity: f 1 1 g 2 f 2 g f f g g Shift invariance: f x a g x a

8 Example of LSIS Linear Systems Defocused image ( g ) is a processed version of the focused image ( f ) g f Ideal lens is a LSIS x f LSIS g x Linearity: Brightness variation Shift invariance: Scene movement (not valid for lenses with non-linear distortions)

9 Linear Systems Example (Rotation Matrix) Let vector x y and R θ the rotation matrix where rotated vector will be: x R x y = g x, y = R θ R y = R 11 R 12 x R 21 R 22 y Check if this function is linear R θ = cos θ sin θ sin θ cos θ

10 Linear Systems Convolution LSIS is doing convolution; convolution is linear and shift invariant f h f g d x h f x g h h x kernel h

11 Convolution Linear Systems f g f g Eric Weinstein s Math World

12 f g h h f g What h will give us g = f? Dirac Delta Function (Unit Impulse) x dx x f dx x x f f dx x f x f d x f x g x h d x h Shifting property: Linear Systems Convolution

13 Linear Systems Convolution Commutative a b b a Associative a b c a b c Cascade system f h1 2 h g f h h 1 2 g f h 2 h 1 g

14 Convolution Linear Systems A lot of filters are based on the concvolution Matrix convolution is an operation between two matrices. image, I ( kernel, K K I ) [x i, j i ] = (-1 * 222) K I James Matthews, ( 0 * 170) + ( 1 * 149) + (-2 * 173) + ( 0 * 147) + ( 2 * 205) + (-1 * 149) + ( 0 * 198) + ( 1 * 221) = 63

15 Image Filtering Signal to Noise Ratio (SNR) Modeling: Noise is usually assumed to be additive and random The observed intensity is the sum of the true intensity and a spurious and random signal. Signal-to-noise ratio, or SNR Ratio between std of signal and noise

16 Image Filtering Type of noises: Salt and pepper Spurious noise White noise Normally zero mean Gaussian distribution And others

17 Objective improve SNR Challenges Image Filtering blurs object boundaries and smears out important structures

18 Serie de Fourier A finales del siglo XVIII Jan Baptiste Joseph Fourier ( ) descubrió un método que permite aproximar funciones periódicas mediante combinación lineal de funciones trigonométricas sencillas.

19 Serie de Fourier Definición: Se llama serie de Fourier de una función f(x) en el intervalo [ L, L] a: Donde los coeficientes a 0, a n y b n deben ser determinados.

20 Los coeficientes a 0, a n y b n están dados por: Serie de Fourier

21 Serie de Fourier

22 Serie de Fourier Ejemplo: consideremos la función:

23

24 f(x) = -1 entre -π y 0 f(x) = 1 entre 0 y π

25

26

27

28

29

30

31

32 Amplitud: A k = a k 2 + b k 2 Fase: φ k = tan 1 b k a k Donde:

33 Fourier Transform Frequency domain transformations (Fourier)

34 Fourier Transform Any periodic function can be rewritten as a weighted sum of Sines and Cosines of different frequencies, called Fourier Series.

35 A sum of sinusoids Building box Fourier Transform A sin( x Assumptions Periodic signals More coefficients makes signal closer to the original.

36 Fourier Transform We want to understand the frequency of our signal. So, let s reparametrize the signal by instead of x: Spatial domain f(x) Fourier Transform F() Frequency domain For every from 0 to inf, F() holds the amplitude A and phase of the corresponding sine A sin( x How can F hold both? Complex number trick! A F ( ) R ( ) ii ( ) 2 R ( ) I ( ) 2 tan 1 I ( ) R ( ) F() Inverse Fourier Transform f(x)

37 Fourier Transform Example = + =

38 Fourier Transform Example = + =

39 Fourier Transform Example = + =

40 Fourier Transform Example = + =

41 Fourier Transform Example = + =

42 Fourier Transform Example = A k 1 1 s i n ( 2 k t ) k

43 Example Fourier Transform

44 Fourier Transform Fourier transform and convolution Spatial Domain (x) Frequency Domain (u) g f h G FH g fh G F H So, we can find g(x) by Fourier transform g f h IFT FT FT G F H

45 Fourier Transform Fourier transform is symmetrical x and y direction FFT

46 Fourier Transform F F F F F F = F F F

47 Fourier Transform

48 Wavelets Transform

49 Wavelets Transform Imagine a sinusoidal signal with a small discontinuity: Fourier does not see the discontinuity. Wavelet shows exactly the location of the discontinuity in time. Fourier coeficients Wavelet coeficients

50 Wavelets Transform Matematically, Fourier analysis representsed by the Fourier transform divide the original signal in a sum of sinusoidal signals. Wavelets transform is defined as a sum all time of the signal multiplied by a scale, changing the wavelet function. The wavelet coefficient result are then in terms of scale and position.

51 Scaling of wavelet Wavelets Transform Scale a wavelet means shrink or elongate is denominated scale factor In sinusoidal the scale factor is easy to see.

52

53 Questions?

Image Filtering, Edges and Image Representation

Image Filtering, Edges and Image Representation Image Filtering, Edges and Image Representation Capturing what s important Req reading: Chapter 7, 9 F&P Adelson, Simoncelli and Freeman (handout online) Opt reading: Horn 7 & 8 FP 8 February 19, 8 A nice

More information

GBS765 Electron microscopy

GBS765 Electron microscopy GBS765 Electron microscopy Lecture 1 Waves and Fourier transforms 10/14/14 9:05 AM Some fundamental concepts: Periodicity! If there is some a, for a function f(x), such that f(x) = f(x + na) then function

More information

Today s lecture. Local neighbourhood processing. The convolution. Removing uncorrelated noise from an image The Fourier transform

Today s lecture. Local neighbourhood processing. The convolution. Removing uncorrelated noise from an image The Fourier transform Cris Luengo TD396 fall 4 cris@cbuuse Today s lecture Local neighbourhood processing smoothing an image sharpening an image The convolution What is it? What is it useful for? How can I compute it? Removing

More information

SEISMIC WAVE PROPAGATION. Lecture 2: Fourier Analysis

SEISMIC WAVE PROPAGATION. Lecture 2: Fourier Analysis SEISMIC WAVE PROPAGATION Lecture 2: Fourier Analysis Fourier Series & Fourier Transforms Fourier Series Review of trigonometric identities Analysing the square wave Fourier Transform Transforms of some

More information

Computer Vision. Filtering in the Frequency Domain

Computer Vision. Filtering in the Frequency Domain Computer Vision Filtering in the Frequency Domain Filippo Bergamasco (filippo.bergamasco@unive.it) http://www.dais.unive.it/~bergamasco DAIS, Ca Foscari University of Venice Academic year 2016/2017 Introduction

More information

Linear Operators and Fourier Transform

Linear Operators and Fourier Transform Linear Operators and Fourier Transform DD2423 Image Analysis and Computer Vision Mårten Björkman Computational Vision and Active Perception School of Computer Science and Communication November 13, 2013

More information

ECG782: Multidimensional Digital Signal Processing

ECG782: Multidimensional Digital Signal Processing Professor Brendan Morris, SEB 3216, brendan.morris@unlv.edu ECG782: Multidimensional Digital Signal Processing Filtering in the Frequency Domain http://www.ee.unlv.edu/~b1morris/ecg782/ 2 Outline Background

More information

FILTERING IN THE FREQUENCY DOMAIN

FILTERING IN THE FREQUENCY DOMAIN 1 FILTERING IN THE FREQUENCY DOMAIN Lecture 4 Spatial Vs Frequency domain 2 Spatial Domain (I) Normal image space Changes in pixel positions correspond to changes in the scene Distances in I correspond

More information

Fourier Transform in Image Processing. CS/BIOEN 6640 U of Utah Guido Gerig (slides modified from Marcel Prastawa 2012)

Fourier Transform in Image Processing. CS/BIOEN 6640 U of Utah Guido Gerig (slides modified from Marcel Prastawa 2012) Fourier Transform in Image Processing CS/BIOEN 6640 U of Utah Guido Gerig (slides modified from Marcel Prastawa 2012) Basis Decomposition Write a function as a weighted sum of basis functions f ( x) wibi(

More information

Review of Linear System Theory

Review of Linear System Theory Review of Linear System Theory The following is a (very) brief review of linear system theory and Fourier analysis. I work primarily with discrete signals. I assume the reader is familiar with linear algebra

More information

The Frequency Domain : Computational Photography Alexei Efros, CMU, Fall Many slides borrowed from Steve Seitz

The Frequency Domain : Computational Photography Alexei Efros, CMU, Fall Many slides borrowed from Steve Seitz The Frequency Domain 15-463: Computational Photography Alexei Efros, CMU, Fall 2008 Somewhere in Cinque Terre, May 2005 Many slides borrowed from Steve Seitz Salvador Dali Gala Contemplating the Mediterranean

More information

Fourier Transform. sin(n# x)), where! = 2" / L and

Fourier Transform. sin(n# x)), where! = 2 / L and Fourier Transform Henning Stahlberg Introduction The tools provided by the Fourier transform are helpful for the analysis of 1D signals (time and frequency (or Fourier) domains), as well as 2D/3D signals

More information

MIT 2.71/2.710 Optics 10/31/05 wk9-a-1. The spatial frequency domain

MIT 2.71/2.710 Optics 10/31/05 wk9-a-1. The spatial frequency domain 10/31/05 wk9-a-1 The spatial frequency domain Recall: plane wave propagation x path delay increases linearly with x λ z=0 θ E 0 x exp i2π sinθ + λ z i2π cosθ λ z plane of observation 10/31/05 wk9-a-2 Spatial

More information

CS 4495 Computer Vision. Frequency and Fourier Transforms. Aaron Bobick School of Interactive Computing. Frequency and Fourier Transform

CS 4495 Computer Vision. Frequency and Fourier Transforms. Aaron Bobick School of Interactive Computing. Frequency and Fourier Transform CS 4495 Computer Vision Frequency and Fourier Transforms Aaron Bobick School of Interactive Computing Administrivia Project 1 is (still) on line get started now! Readings for this week: FP Chapter 4 (which

More information

1-D MATH REVIEW CONTINUOUS 1-D FUNCTIONS. Kronecker delta function and its relatives. x 0 = 0

1-D MATH REVIEW CONTINUOUS 1-D FUNCTIONS. Kronecker delta function and its relatives. x 0 = 0 -D MATH REVIEW CONTINUOUS -D FUNCTIONS Kronecker delta function and its relatives delta function δ ( 0 ) 0 = 0 NOTE: The delta function s amplitude is infinite and its area is. The amplitude is shown as

More information

Finite Apertures, Interfaces

Finite Apertures, Interfaces 1 Finite Apertures, Interfaces & Point Spread Functions (PSF) & Convolution Tutorial by Jorge Márquez Flores 2 Figure 1. Visual acuity (focus) depends on aperture (iris), lenses, focal point location,

More information

The Frequency Domain, without tears. Many slides borrowed from Steve Seitz

The Frequency Domain, without tears. Many slides borrowed from Steve Seitz The Frequency Domain, without tears Many slides borrowed from Steve Seitz Somewhere in Cinque Terre, May 2005 CS194: Image Manipulation & Computational Photography Alexei Efros, UC Berkeley, Fall 2016

More information

The Frequency Domain. Many slides borrowed from Steve Seitz

The Frequency Domain. Many slides borrowed from Steve Seitz The Frequency Domain Many slides borrowed from Steve Seitz Somewhere in Cinque Terre, May 2005 15-463: Computational Photography Alexei Efros, CMU, Spring 2010 Salvador Dali Gala Contemplating the Mediterranean

More information

26. The Fourier Transform in optics

26. The Fourier Transform in optics 26. The Fourier Transform in optics What is the Fourier Transform? Anharmonic waves The spectrum of a light wave Fourier transform of an exponential The Dirac delta function The Fourier transform of e

More information

Slow mo guys Saccades. https://youtu.be/fmg9zohesgq?t=4s

Slow mo guys Saccades. https://youtu.be/fmg9zohesgq?t=4s Slow mo guys Saccades https://youtu.be/fmg9zohesgq?t=4s Thinking in Frequency Computer Vision James Hays Slides: Hoiem, Efros, and others Recap of Wednesday Linear filtering is dot product at each position

More information

FOURIER TRANSFORMS. At, is sometimes taken as 0.5 or it may not have any specific value. Shifting at

FOURIER TRANSFORMS. At, is sometimes taken as 0.5 or it may not have any specific value. Shifting at Chapter 2 FOURIER TRANSFORMS 2.1 Introduction The Fourier series expresses any periodic function into a sum of sinusoids. The Fourier transform is the extension of this idea to non-periodic functions by

More information

Reading. 3. Image processing. Pixel movement. Image processing Y R I G Q

Reading. 3. Image processing. Pixel movement. Image processing Y R I G Q Reading Jain, Kasturi, Schunck, Machine Vision. McGraw-Hill, 1995. Sections 4.-4.4, 4.5(intro), 4.5.5, 4.5.6, 5.1-5.4. 3. Image processing 1 Image processing An image processing operation typically defines

More information

Filtering and Edge Detection

Filtering and Edge Detection Filtering and Edge Detection Local Neighborhoods Hard to tell anything from a single pixel Example: you see a reddish pixel. Is this the object s color? Illumination? Noise? The next step in order of complexity

More information

ECG782: Multidimensional Digital Signal Processing

ECG782: Multidimensional Digital Signal Processing Professor Brendan Morris, SEB 3216, brendan.morris@unlv.edu ECG782: Multidimensional Digital Signal Processing Spring 2014 TTh 14:30-15:45 CBC C313 Lecture 05 Image Processing Basics 13/02/04 http://www.ee.unlv.edu/~b1morris/ecg782/

More information

Today s lecture. The Fourier transform. Sampling, aliasing, interpolation The Fast Fourier Transform (FFT) algorithm

Today s lecture. The Fourier transform. Sampling, aliasing, interpolation The Fast Fourier Transform (FFT) algorithm Today s lecture The Fourier transform What is it? What is it useful for? What are its properties? Sampling, aliasing, interpolation The Fast Fourier Transform (FFT) algorithm Jean Baptiste Joseph Fourier

More information

Convolution and Linear Systems

Convolution and Linear Systems CS 450: Introduction to Digital Signal and Image Processing Bryan Morse BYU Computer Science Introduction Analyzing Systems Goal: analyze a device that turns one signal into another. Notation: f (t) g(t)

More information

Computer Vision & Digital Image Processing

Computer Vision & Digital Image Processing Computer Vision & Digital Image Processing Image Restoration and Reconstruction I Dr. D. J. Jackson Lecture 11-1 Image restoration Restoration is an objective process that attempts to recover an image

More information

Lecture 4 Filtering in the Frequency Domain. Lin ZHANG, PhD School of Software Engineering Tongji University Spring 2016

Lecture 4 Filtering in the Frequency Domain. Lin ZHANG, PhD School of Software Engineering Tongji University Spring 2016 Lecture 4 Filtering in the Frequency Domain Lin ZHANG, PhD School of Software Engineering Tongji University Spring 2016 Outline Background From Fourier series to Fourier transform Properties of the Fourier

More information

Filtering, Frequency, and Edges

Filtering, Frequency, and Edges CS450: Introduction to Computer Vision Filtering, Frequency, and Edges Various slides from previous courses by: D.A. Forsyth (Berkeley / UIUC), I. Kokkinos (Ecole Centrale / UCL). S. Lazebnik (UNC / UIUC),

More information

Spatial-Domain Convolution Filters

Spatial-Domain Convolution Filters Spatial-Domain Filtering 9 Spatial-Domain Convolution Filters Consider a linear space-invariant (LSI) system as shown: The two separate inputs to the LSI system, x 1 (m) and x 2 (m), and their corresponding

More information

Review of Analog Signal Analysis

Review of Analog Signal Analysis Review of Analog Signal Analysis Chapter Intended Learning Outcomes: (i) Review of Fourier series which is used to analyze continuous-time periodic signals (ii) Review of Fourier transform which is used

More information

Recap of Monday. Linear filtering. Be aware of details for filter size, extrapolation, cropping

Recap of Monday. Linear filtering. Be aware of details for filter size, extrapolation, cropping Recap of Monday Linear filtering h[ m, n] k, l f [ k, l] I[ m Not a matrix multiplication Sum over Hadamard product k, n l] Can smooth, sharpen, translate (among many other uses) 1 1 1 1 1 1 1 1 1 Be aware

More information

Frequency2: Sampling and Aliasing

Frequency2: Sampling and Aliasing CS 4495 Computer Vision Frequency2: Sampling and Aliasing Aaron Bobick School of Interactive Computing Administrivia Project 1 is due tonight. Submit what you have at the deadline. Next problem set stereo

More information

The spatial frequency domain

The spatial frequency domain The spatial frequenc /3/5 wk9-a- Recall: plane wave propagation λ z= θ path dela increases linearl with E ep i2π sinθ + λ z i2π cosθ λ z plane of observation /3/5 wk9-a-2 Spatial frequenc angle of propagation?

More information

19. The Fourier Transform in optics

19. The Fourier Transform in optics 19. The Fourier Transform in optics What is the Fourier Transform? Anharmonic waves The spectrum of a light wave Fourier transform of an exponential The Dirac delta function The Fourier transform of e

More information

26. The Fourier Transform in optics

26. The Fourier Transform in optics 26. The Fourier Transform in optics What is the Fourier Transform? Anharmonic waves The spectrum of a light wave Fourier transform of an exponential The Dirac delta function The Fourier transform of e

More information

CS168: The Modern Algorithmic Toolbox Lecture #11: The Fourier Transform and Convolution

CS168: The Modern Algorithmic Toolbox Lecture #11: The Fourier Transform and Convolution CS168: The Modern Algorithmic Toolbox Lecture #11: The Fourier Transform and Convolution Tim Roughgarden & Gregory Valiant May 8, 2015 1 Intro Thus far, we have seen a number of different approaches to

More information

COMP344 Digital Image Processing Fall 2007 Final Examination

COMP344 Digital Image Processing Fall 2007 Final Examination COMP344 Digital Image Processing Fall 2007 Final Examination Time allowed: 2 hours Name Student ID Email Question 1 Question 2 Question 3 Question 4 Question 5 Question 6 Total With model answer HK University

More information

TRACKING and DETECTION in COMPUTER VISION Filtering and edge detection

TRACKING and DETECTION in COMPUTER VISION Filtering and edge detection Technischen Universität München Winter Semester 0/0 TRACKING and DETECTION in COMPUTER VISION Filtering and edge detection Slobodan Ilić Overview Image formation Convolution Non-liner filtering: Median

More information

Reference Text: The evolution of Applied harmonics analysis by Elena Prestini

Reference Text: The evolution of Applied harmonics analysis by Elena Prestini Notes for July 14. Filtering in Frequency domain. Reference Text: The evolution of Applied harmonics analysis by Elena Prestini It all started with: Jean Baptist Joseph Fourier (1768-1830) Mathematician,

More information

Introduction to Computer Vision. 2D Linear Systems

Introduction to Computer Vision. 2D Linear Systems Introduction to Computer Vision D Linear Systems Review: Linear Systems We define a system as a unit that converts an input function into an output function Independent variable System operator or Transfer

More information

Review of Linear Systems Theory

Review of Linear Systems Theory Review of Linear Systems Theory The following is a (very) brief review of linear systems theory, convolution, and Fourier analysis. I work primarily with discrete signals, but each result developed in

More information

3 rd class Mech. Eng. Dept. hamdiahmed.weebly.com Fourier Series

3 rd class Mech. Eng. Dept. hamdiahmed.weebly.com Fourier Series Definition 1 Fourier Series A function f is said to be piecewise continuous on [a, b] if there exists finitely many points a = x 1 < x 2

More information

The Fourier Transform

The Fourier Transform The Fourier Transorm Fourier Series Fourier Transorm The Basic Theorems and Applications Sampling Bracewell, R. The Fourier Transorm and Its Applications, 3rd ed. New York: McGraw-Hill, 2. Eric W. Weisstein.

More information

Spatial Enhancement Region operations: k'(x,y) = F( k(x-m, y-n), k(x,y), k(x+m,y+n) ]

Spatial Enhancement Region operations: k'(x,y) = F( k(x-m, y-n), k(x,y), k(x+m,y+n) ] CEE 615: Digital Image Processing Spatial Enhancements 1 Spatial Enhancement Region operations: k'(x,y) = F( k(x-m, y-n), k(x,y), k(x+m,y+n) ] Template (Windowing) Operations Template (window, box, kernel)

More information

Additional Pointers. Introduction to Computer Vision. Convolution. Area operations: Linear filtering

Additional Pointers. Introduction to Computer Vision. Convolution. Area operations: Linear filtering Additional Pointers Introduction to Computer Vision CS / ECE 181B andout #4 : Available this afternoon Midterm: May 6, 2004 W #2 due tomorrow Ack: Prof. Matthew Turk for the lecture slides. See my ECE

More information

Computer Vision Lecture 3

Computer Vision Lecture 3 Computer Vision Lecture 3 Linear Filters 03.11.2015 Bastian Leibe RWTH Aachen http://www.vision.rwth-aachen.de leibe@vision.rwth-aachen.de Demo Haribo Classification Code available on the class website...

More information

Introduction to Linear Systems

Introduction to Linear Systems cfl David J Fleet, 998 Introduction to Linear Systems David Fleet For operator T, input I, and response R = T [I], T satisfies: ffl homogeniety: iff T [ai] = at[i] 8a 2 C ffl additivity: iff T [I + I 2

More information

Lecture # 06. Image Processing in Frequency Domain

Lecture # 06. Image Processing in Frequency Domain Digital Image Processing CP-7008 Lecture # 06 Image Processing in Frequency Domain Fall 2011 Outline Fourier Transform Relationship with Image Processing CP-7008: Digital Image Processing Lecture # 6 2

More information

Announcements. Filtering. Image Filtering. Linear Filters. Example: Smoothing by Averaging. Homework 2 is due Apr 26, 11:59 PM Reading:

Announcements. Filtering. Image Filtering. Linear Filters. Example: Smoothing by Averaging. Homework 2 is due Apr 26, 11:59 PM Reading: Announcements Filtering Homework 2 is due Apr 26, :59 PM eading: Chapter 4: Linear Filters CSE 52 Lecture 6 mage Filtering nput Output Filter (From Bill Freeman) Example: Smoothing by Averaging Linear

More information

Introduction to Linear Image Processing

Introduction to Linear Image Processing Introduction to Linear Image Processing 1 IPAM - UCLA July 22, 2013 Iasonas Kokkinos Center for Visual Computing Ecole Centrale Paris / INRIA Saclay Image Sciences in a nutshell 2 Image Processing Image

More information

Signal Processing COS 323

Signal Processing COS 323 Signal Processing COS 323 Digital Signals D: functions of space or time e.g., sound 2D: often functions of 2 spatial dimensions e.g. images 3D: functions of 3 spatial dimensions CAT, MRI scans or 2 space,

More information

ESS Finite Impulse Response Filters and the Z-transform

ESS Finite Impulse Response Filters and the Z-transform 9. Finite Impulse Response Filters and the Z-transform We are going to have two lectures on filters you can find much more material in Bob Crosson s notes. In the first lecture we will focus on some of

More information

Math 12 Final Exam Review 1

Math 12 Final Exam Review 1 Math 12 Final Exam Review 1 Part One Calculators are NOT PERMITTED for this part of the exam. 1. a) The sine of angle θ is 1 What are the 2 possible values of θ in the domain 0 θ 2π? 2 b) Draw these angles

More information

I Chen Lin, Assistant Professor Dept. of CS, National Chiao Tung University. Computer Vision: 4. Filtering

I Chen Lin, Assistant Professor Dept. of CS, National Chiao Tung University. Computer Vision: 4. Filtering I Chen Lin, Assistant Professor Dept. of CS, National Chiao Tung University Computer Vision: 4. Filtering Outline Impulse response and convolution. Linear filter and image pyramid. Textbook: David A. Forsyth

More information

Fast Fourier Transform

Fast Fourier Transform Fast Fourier Transform December 8, 2016 FFT JPEG RGB Y C B C R (luma (brightness), chroma 2 (color)) chroma resolution is reduced image is split in blocks 8 8 pixels JPEG RGB Y C B C R (luma (brightness),

More information

Fourier transforms and convolution

Fourier transforms and convolution Fourier transforms and convolution (without the agonizing pain) CS/CME/BioE/Biophys/BMI 279 Oct. 26, 2017 Ron Dror 1 Outline Why do we care? Fourier transforms Writing functions as sums of sinusoids The

More information

Continuous-time Fourier Methods

Continuous-time Fourier Methods ELEC 321-001 SIGNALS and SYSTEMS Continuous-time Fourier Methods Chapter 6 1 Representing a Signal The convolution method for finding the response of a system to an excitation takes advantage of the linearity

More information

Analysis II: Fourier Series

Analysis II: Fourier Series .... Analysis II: Fourier Series Kenichi Maruno Department of Mathematics, The University of Texas - Pan American May 3, 011 K.Maruno (UT-Pan American) Analysis II May 3, 011 1 / 16 Fourier series were

More information

Math 112 Rahman. Week Taylor Series Suppose the function f has the following power series:

Math 112 Rahman. Week Taylor Series Suppose the function f has the following power series: Math Rahman Week 0.8-0.0 Taylor Series Suppose the function f has the following power series: fx) c 0 + c x a) + c x a) + c 3 x a) 3 + c n x a) n. ) Can we figure out what the coefficients are? Yes, yes

More information

ECE Digital Image Processing and Introduction to Computer Vision. Outline

ECE Digital Image Processing and Introduction to Computer Vision. Outline ECE592-064 Digital mage Processing and ntroduction to Computer Vision Depart. of ECE, NC State University nstructor: Tianfu (Matt) Wu Spring 2017 1. Recap Outline 2. Thinking in the frequency domain Convolution

More information

f (t) K(t, u) d t. f (t) K 1 (t, u) d u. Integral Transform Inverse Fourier Transform

f (t) K(t, u) d t. f (t) K 1 (t, u) d u. Integral Transform Inverse Fourier Transform Integral Transforms Massoud Malek An integral transform maps an equation from its original domain into another domain, where it might be manipulated and solved much more easily than in the original domain.

More information

LINEAR SYSTEMS. J. Elder PSYC 6256 Principles of Neural Coding

LINEAR SYSTEMS. J. Elder PSYC 6256 Principles of Neural Coding LINEAR SYSTEMS Linear Systems 2 Neural coding and cognitive neuroscience in general concerns input-output relationships. Inputs Light intensity Pre-synaptic action potentials Number of items in display

More information

Image Processing /6.865 Frédo Durand A bunch of slides by Bill Freeman (MIT) & Alyosha Efros (CMU)

Image Processing /6.865 Frédo Durand A bunch of slides by Bill Freeman (MIT) & Alyosha Efros (CMU) Image Processing 6.815/6.865 Frédo Durand A bunch of slides by Bill Freeman (MIT) & Alyosha Efros (CMU) define cumulative histogram work on hist eq proof rearrange Fourier order discuss complex exponentials

More information

Math 251 December 14, 2005 Final Exam. 1 18pt 2 16pt 3 12pt 4 14pt 5 12pt 6 14pt 7 14pt 8 16pt 9 20pt 10 14pt Total 150pt

Math 251 December 14, 2005 Final Exam. 1 18pt 2 16pt 3 12pt 4 14pt 5 12pt 6 14pt 7 14pt 8 16pt 9 20pt 10 14pt Total 150pt Math 251 December 14, 2005 Final Exam Name Section There are 10 questions on this exam. Many of them have multiple parts. The point value of each question is indicated either at the beginning of each question

More information

Review of Concepts from Fourier & Filtering Theory. Fourier theory for finite sequences. convolution/filtering of infinite sequences filter cascades

Review of Concepts from Fourier & Filtering Theory. Fourier theory for finite sequences. convolution/filtering of infinite sequences filter cascades Review of Concepts from Fourier & Filtering Theory precise definition of DWT requires a few basic concepts from Fourier analysis and theory of linear filters will start with discussion/review of: basic

More information

ECE 425. Image Science and Engineering

ECE 425. Image Science and Engineering ECE 425 Image Science and Engineering Spring Semester 2000 Course Notes Robert A. Schowengerdt schowengerdt@ece.arizona.edu (520) 62-2706 (voice), (520) 62-8076 (fa) ECE402 DEFINITIONS 2 Image science

More information

Examples of the Fourier Theorem (Sect. 10.3). The Fourier Theorem: Continuous case.

Examples of the Fourier Theorem (Sect. 10.3). The Fourier Theorem: Continuous case. s of the Fourier Theorem (Sect. 1.3. The Fourier Theorem: Continuous case. : Using the Fourier Theorem. The Fourier Theorem: Piecewise continuous case. : Using the Fourier Theorem. The Fourier Theorem:

More information

CS711008Z Algorithm Design and Analysis

CS711008Z Algorithm Design and Analysis CS711008Z Algorithm Design and Analysis Lecture 5 FFT and Divide and Conquer Dongbo Bu Institute of Computing Technology Chinese Academy of Sciences, Beijing, China 1 / 56 Outline DFT: evaluate a polynomial

More information

Convolution Spatial Aliasing Frequency domain filtering fundamentals Applications Image smoothing Image sharpening

Convolution Spatial Aliasing Frequency domain filtering fundamentals Applications Image smoothing Image sharpening Frequency Domain Filtering Correspondence between Spatial and Frequency Filtering Fourier Transform Brief Introduction Sampling Theory 2 D Discrete Fourier Transform Convolution Spatial Aliasing Frequency

More information

Fundamentos de Vibraciones Mecánicas

Fundamentos de Vibraciones Mecánicas Fundamentos de Vibraciones Mecánicas Vibracion forzada general. Dr. Diego Ledezma Universidad Autónoma de Nuevo León Facultad de Ingeniería Mecánica y Eléctrica Introducción Diferentes tipos de excitación

More information

GATE EE Topic wise Questions SIGNALS & SYSTEMS

GATE EE Topic wise Questions SIGNALS & SYSTEMS www.gatehelp.com GATE EE Topic wise Questions YEAR 010 ONE MARK Question. 1 For the system /( s + 1), the approximate time taken for a step response to reach 98% of the final value is (A) 1 s (B) s (C)

More information

Advanced Training Course on FPGA Design and VHDL for Hardware Simulation and Synthesis. 26 October - 20 November, 2009

Advanced Training Course on FPGA Design and VHDL for Hardware Simulation and Synthesis. 26 October - 20 November, 2009 2065-33 Advanced Training Course on FPGA Design and VHDL for Hardware Simulation and Synthesis 26 October - 20 November, 2009 Introduction to two-dimensional digital signal processing Fabio Mammano University

More information

THE WAVE EQUATION (5.1)

THE WAVE EQUATION (5.1) THE WAVE EQUATION 5.1. Solution to the wave equation in Cartesian coordinates Recall the Helmholtz equation for a scalar field U in rectangular coordinates U U r, ( r, ) r, 0, (5.1) Where is the wavenumber,

More information

Fourier Series. Fourier Transform

Fourier Series. Fourier Transform Math Methods I Lia Vas Fourier Series. Fourier ransform Fourier Series. Recall that a function differentiable any number of times at x = a can be represented as a power series n= a n (x a) n where the

More information

Topic 7. Convolution, Filters, Correlation, Representation. Bryan Pardo, 2008, Northwestern University EECS 352: Machine Perception of Music and Audio

Topic 7. Convolution, Filters, Correlation, Representation. Bryan Pardo, 2008, Northwestern University EECS 352: Machine Perception of Music and Audio Topic 7 Convolution, Filters, Correlation, Representation Short time Fourier Transform Break signal into windows Calculate DFT of each window The Spectrogram spectrogram(y,1024,512,1024,fs,'yaxis'); A

More information

G52IVG, School of Computer Science, University of Nottingham

G52IVG, School of Computer Science, University of Nottingham Image Transforms Fourier Transform Basic idea 1 Image Transforms Fourier transform theory Let f(x) be a continuous function of a real variable x. The Fourier transform of f(x) is F ( u) f ( x)exp[ j2πux]

More information

Edge Detection. CS 650: Computer Vision

Edge Detection. CS 650: Computer Vision CS 650: Computer Vision Edges and Gradients Edge: local indication of an object transition Edge detection: local operators that find edges (usually involves convolution) Local intensity transitions are

More information

Syllabus for IMGS-616 Fourier Methods in Imaging (RIT #11857) Week 1: 8/26, 8/28 Week 2: 9/2, 9/4

Syllabus for IMGS-616 Fourier Methods in Imaging (RIT #11857)  Week 1: 8/26, 8/28 Week 2: 9/2, 9/4 IMGS 616-20141 p.1 Syllabus for IMGS-616 Fourier Methods in Imaging (RIT #11857) 3 July 2014 (TENTATIVE and subject to change) Note that I expect to be in Europe twice during the term: in Paris the week

More information

There and back again A short trip to Fourier Space. Janet Vonck 23 April 2014

There and back again A short trip to Fourier Space. Janet Vonck 23 April 2014 There and back again A short trip to Fourier Space Janet Vonck 23 April 2014 Where can I find a Fourier Transform? Fourier Transforms are ubiquitous in structural biology: X-ray diffraction Spectroscopy

More information

Images have structure at various scales

Images have structure at various scales Images have structure at various scales Frequency Frequency of a signal is how fast it changes Reflects scale of structure A combination of frequencies 0.1 X + 0.3 X + 0.5 X = Fourier transform Can we

More information

9.4 Enhancing the SNR of Digitized Signals

9.4 Enhancing the SNR of Digitized Signals 9.4 Enhancing the SNR of Digitized Signals stepping and averaging compared to ensemble averaging creating and using Fourier transform digital filters removal of Johnson noise and signal distortion using

More information

Why does a lower resolution image still make sense to us? What do we lose? Image:

Why does a lower resolution image still make sense to us? What do we lose? Image: 2D FREQUENCY DOMAIN The slides are from several sources through James Hays (Brown); Srinivasa Narasimhan (CMU); Silvio Savarese (U. of Michigan); Bill Freeman and Antonio Torralba (MIT), including their

More information

ITK Filters. Thresholding Edge Detection Gradients Second Order Derivatives Neighborhood Filters Smoothing Filters Distance Map Image Transforms

ITK Filters. Thresholding Edge Detection Gradients Second Order Derivatives Neighborhood Filters Smoothing Filters Distance Map Image Transforms ITK Filters Thresholding Edge Detection Gradients Second Order Derivatives Neighborhood Filters Smoothing Filters Distance Map Image Transforms ITCS 6010:Biomedical Imaging and Visualization 1 ITK Filters:

More information

MATE EXAMEN FINAL

MATE EXAMEN FINAL MATE7 - EXAMEN FINAL Apellidos Nombre: Instrucciones. Seleccione la alternativa que corresponde a la respuesta del problema. Encunetre el valor de la función. ) Let f() = 5. Find f(). A) 5 B) 5 C)5 D)

More information

Fourier Transform and Frequency Domain

Fourier Transform and Frequency Domain Fourier Transform and Frequency Domain http://graphics.cs.cmu.edu/courses/15-463 15-463, 15-663, 15-862 Computational Photography Fall 2017, Lecture 6 Course announcements Last call for responses to Doodle

More information

Fourier Transform and Frequency Domain

Fourier Transform and Frequency Domain Fourier Transform and Frequency Domain http://www.cs.cmu.edu/~16385/ 16-385 Computer Vision Spring 2018, Lecture 3 (part 2) Overview of today s lecture Some history. Fourier series. Frequency domain. Fourier

More information

FOURIER ANALYSIS. (a) Fourier Series

FOURIER ANALYSIS. (a) Fourier Series (a) Fourier Series FOURIER ANAYSIS (b) Fourier Transforms Useful books: 1. Advanced Mathematics for Engineers and Scientists, Schaum s Outline Series, M. R. Spiegel - The course text. We follow their notation

More information

PART 1. Review of DSP. f (t)e iωt dt. F(ω) = f (t) = 1 2π. F(ω)e iωt dω. f (t) F (ω) The Fourier Transform. Fourier Transform.

PART 1. Review of DSP. f (t)e iωt dt. F(ω) = f (t) = 1 2π. F(ω)e iωt dω. f (t) F (ω) The Fourier Transform. Fourier Transform. PART 1 Review of DSP Mauricio Sacchi University of Alberta, Edmonton, AB, Canada The Fourier Transform F() = f (t) = 1 2π f (t)e it dt F()e it d Fourier Transform Inverse Transform f (t) F () Part 1 Review

More information

Lecture 3: Linear Filters

Lecture 3: Linear Filters Lecture 3: Linear Filters Professor Fei Fei Li Stanford Vision Lab 1 What we will learn today? Images as functions Linear systems (filters) Convolution and correlation Discrete Fourier Transform (DFT)

More information

Fourier Series and the Discrete Fourier Expansion

Fourier Series and the Discrete Fourier Expansion 2 2.5.5 Fourier Series and the Discrete Fourier Expansion Matthew Lincoln Adrienne Carter sillyajc@yahoo.com December 5, 2 Abstract This article is intended to introduce the Fourier series and the Discrete

More information

1.5 Inverse Trigonometric Functions

1.5 Inverse Trigonometric Functions 1.5 Inverse Trigonometric Functions Remember that only one-to-one functions have inverses. So, in order to find the inverse functions for sine, cosine, and tangent, we must restrict their domains to intervals

More information

FOURIER SERIES. Chapter Introduction

FOURIER SERIES. Chapter Introduction Chapter 1 FOURIER SERIES 1.1 Introduction Fourier series introduced by a French physicist Joseph Fourier (1768-1830), is a mathematical tool that converts some specific periodic signals into everlasting

More information

Light Propagation in Free Space

Light Propagation in Free Space Intro Light Propagation in Free Space Helmholtz Equation 1-D Propagation Plane waves Plane wave propagation Light Propagation in Free Space 3-D Propagation Spherical Waves Huygen s Principle Each point

More information

Index. p, lip, 78 8 function, 107 v, 7-8 w, 7-8 i,7-8 sine, 43 Bo,94-96

Index. p, lip, 78 8 function, 107 v, 7-8 w, 7-8 i,7-8 sine, 43 Bo,94-96 p, lip, 78 8 function, 107 v, 7-8 w, 7-8 i,7-8 sine, 43 Bo,94-96 B 1,94-96 M,94-96 B oro!' 94-96 BIro!' 94-96 I/r, 79 2D linear system, 56 2D FFT, 119 2D Fourier transform, 1, 12, 18,91 2D sinc, 107, 112

More information

Fourier Integral. Dr Mansoor Alshehri. King Saud University. MATH204-Differential Equations Center of Excellence in Learning and Teaching 1 / 22

Fourier Integral. Dr Mansoor Alshehri. King Saud University. MATH204-Differential Equations Center of Excellence in Learning and Teaching 1 / 22 Dr Mansoor Alshehri King Saud University MATH4-Differential Equations Center of Excellence in Learning and Teaching / Fourier Cosine and Sine Series Integrals The Complex Form of Fourier Integral MATH4-Differential

More information

como trabajan las calculadoras?

como trabajan las calculadoras? Revista de Matemática: Teoría y Aplicaciones 2005 12(1 & 2) : 45 50 cimpa ucr ccss issn: 1409-2433 como trabajan las calculadoras? Bruce H. Edwards Received/Recibido: 24 Feb 2004 Abstract What happens

More information

On the FPA infrared camera transfer function calculation

On the FPA infrared camera transfer function calculation On the FPA infrared camera transfer function calculation (1) CERTES, Université Paris XII Val de Marne, Créteil, France (2) LTM, Université de Bourgogne, Le Creusot, France by S. Datcu 1, L. Ibos 1,Y.

More information

Chapter 16. Local Operations

Chapter 16. Local Operations Chapter 16 Local Operations g[x, y] =O{f[x ± x, y ± y]} In many common image processing operations, the output pixel is a weighted combination of the gray values of pixels in the neighborhood of the input

More information

EA2.3 - Electronics 2 1

EA2.3 - Electronics 2 1 In the previous lecture, I talked about the idea of complex frequency s, where s = σ + jω. Using such concept of complex frequency allows us to analyse signals and systems with better generality. In this

More information