Investigation of 3D copper grade changeability by Neural Networks in metasomatic ore deposit

Size: px
Start display at page:

Download "Investigation of 3D copper grade changeability by Neural Networks in metasomatic ore deposit"

Transcription

1 Investigation of 3D copper grade changeability by Neural Networks in metasomatic ore deposit STANISLAV TOPALOV 1, VESSELIN HRISTOV 2, 1 Mine Surveying and Geodesy Dept., 2 Computer Science Dept. University of Mining and Geology St. Ivan Rilski, Sofia 1700, Studentski grad, BULGARIA stopalov@gmail.com, veso@mgu.bg Abstract: - The following neural networks (NN) types: Radial Basis Function (RBF), Generalized Regression Neural Networks (GRNN), and two/three layers Multilayer Perceptron (MLP 2, MLP 3) were examined and MLP2 and MLP3 ware determined as a suitable for the copper grade prognostication on one layer of ore deposit. In this paper following the same approach we attempt to determine the potentialities of the same NN types for copper grade prognostication to the deeper levels of the open pit mine. This approach of 3D training and testing of NN efficiency for prognostication is realized with raw exploration data in metasomatic ore deposit. Key words: ore deposit, exploration, 3D (spatial) exploration data, open pit mining method, neural networks, prognosis. 1 Introduction In this investigation STATISTICA Release 7 software is used. It is an advanced and comprehensive, integrated data analysis package. The system includes not only general-purpose statistical and graphics procedures, but also universal implementations of specialized modules (e.g., for social scientists, biomedical researchers, or engineers). One of its modules is STATISTICA Neural Networks (SNN) - powerful and extremely fast neural network data analysis package. It allows selection between several Neural Network models and testing their efficiency by parameters variation. SNN consists of two main tools. Intelligent Problem Solver (IPS) is a tool available to guide through the selection process. STATISTICA supports the most important classes of neural networks, including: Multilayer perceptron, Radial Basis Function Networks, Kohonen Self-Organizing Feature Maps, Probabilistic (Bayesian) Neural Networks, Generalized Regression Neural Networks, Linear Modeling. The IPS can create networks using data whose cases are independent (standard networks) as well as networks that predict future observations based on previous observations of the same variable (time series networks). A significant amount of time during the design of a neural network is spent on the selection of appropriate variables, and then optimizing the network architecture by heuristic search. IPS gives possibility to train automatically different types of NN using the same data and to make easy the best choice. StatSoft, Inc. The other tool is Custom Network Designer (CND), allowing to construct individual network architecture and to specify training algorithms. The best type of NN determined by IPS and its parameters can be used as a basis for network design in CND. The training process is able to be observed in real time and to be improved. An approach using these two SNN tools for prognostication of geological parameters value only in the limits of one production level (2D), is described in [5,6] 2. Problem Formulation The degree of the ore body exploration and its geological complexity are closely interrelated by the well-known reasons. The geological complexity and grade changeability determine the exploration methods [5]. Unfortunately, there is no normative standard for regulating of Bulgarian ore deposits geological complexity and changeability character. Similar standard would solve the problems associated to: the ratio between drilling and mining exploration activities, the geometry and the density of the exploration grid, the sampling methods and techniques, etc. [1, 3]. The difficulty in assessing quantitatively the geological complexity and changeability character of ore body (or its parts) arises out of the hypothetical character of the input geological data. The methods of interpolation and extrapolation, limited by the location of the sampling points are essential for the geological and mining solutions. ISBN: ISSN:

2 The Elatsite porphyry copper deposit is situated about km eastern from the city of Sofia and about 6 km southern from the town of Еtropole. The ore body of the deposit is an ore stock. In the ore are fixed 61 minerals generally. 48 of them are ore minerals and the others are non-metallic minerals. Basically they are essential, accessories and rare. The main ore minerals are chalcopyrite, pyrite, bornite and molybdenite. The ore body has been detailed prospected with exploratory holes. Now, during the mining process exploitational exploration is realized by systematic blast hole sampling. The samples are located in grid approximately m. Mining method is opencast mining. Most of the extracting levels are already worked-out. All the information about copper grade from these levels is available. 3. Problem Solution The information from exploration exploitational stage is organized in MS Excel format, which consist number of sample, the coordinates X, Y and H (3D), copper grade value, getting date etc. for every one extracting levels. As input variables the sample coordinates X, Y and H (three input parameters) are used. As an output variable from the neural network the copper grade (one output parameter) is required to be determined. All sampling data from four contiguous extract levels is divided of two main groups. The first contains the information (2540 sample points) from three consecutive levels and these data is served for neural network training. The data (690 sample points) from second group for the fourth extracting level (the deepest in our case) is served for testing of already trained neural networks. The IPS tool is used at the first stage of the investigation. The Radial Basis Function (RBF), Generalized Regression Neural Network (GRNN) and Multi Layer Perception (MLP with two or three hidden layers) type neural networks have been trained and tested. To avoid unnecessary elaborate approximation, the nodes number in hidden layers is specified between five and ten [2, 4]. Some different type trained neural networks with different parameters were determined as a result of IPS performance. The best network is chosen by the criteria of lowest training error and testing error. After several IPS performances it makes an impression that the best results give us Multi Layer Perception with three hidden layers (MLP3) - 10 nodes in the first, 7 in the second, trained in 100 epochs by Back propagation algorithm in a first phase, and in 20 and 26 epochs by Conjugate gradient descent algorithm in the second and the third phase respectively. The parameters of this neural network are given in Table 1. Graphically its architecture is shown in Figure 1. Table 1 IPS Network Tests No Profile Train Error Test Error Training 11 MLP 3: : BP100,CG20,CG26b Profile : MLP 3: :1 x y H Cu Fig. 1. The Multi Layer Perceptron chosen by IPS as the best The second investigation stage involves of neural network construction using the STATISTICA Custom Network Design tool. All initial characteristics correspond to IPS recommended i.e. analogous of ISBN: ISSN:

3 these given in Figure 1. The transfer function chosen was a logistic, normal distribution of the initial values of weights, and three training phases. Back Propagation algorithm with 100 epochs was used in the first phase and the Conjugate Gradient Descent algorithm with 500 epochs in the second and the third phase. As a result of training process the value of mean square training error is equal to 0.07 and the mean square test error value is The graph on Figure 2 presents the dynamic of train error decrease during the training process. It is going down promptly in the first phase and then decreases smoothly. Table 2 gives the weights of the three layers trained perceptron. Error Training Graph Epochs Fig. 2. CND Training Process Table 2. The weights of the three layers trained perceptron Nodes Thresh Figure 3 shows the behavior of NN performance on the test data. Similarity between Cu (row data) variation and Cu (NN output) variation can be clearly noted. The correlation coefficients as a measure of relation between copper grade raw data and neural network output (predicted data) are estimated. The scaterplots with linear relationship between all raw copper grade data, train and test data and neural network predicted are given in Figure 4. The significance of the correlation coefficient in training stage (0.81) denotes that the quality of training is quite good. The value of ISBN: ISSN:

4 correlation coefficient between raw test data and neural network predicted is lower (0.67) but significant too, which guarantee reliable prognosis of copper grade Cu (Row Data) Cu (NN Output) Fig. 3. Behavior of NN performance on the test data a) R = 0.79 b) R = 0.81 c) R = 0.62 Fig. 4. Correlation scatterplots and coefficients: a) all Cu row data versus all NN output, b) train Cu row data versus train NN output, c) test Cu row data versus test NN output 4. Conclusion Three types of neural network (MLP, RBF and GRNN) were tried using the IPS software tool of STATISTICA on real data provided from the stage of porphiry copper deposit exploration. The information includes coordinates (X, Y and H) of prospect hole and the value of copper grade for four consecutive levels. As the best neural network model, IPS indicates the Multi Layer Perceptron (MLP) with two hidden layers - 10 nodes in the first and 7 in the second. Using the STATISTICA Custom Network Design tool with initial characteristics recommended from IPS a prognostication model for copper grade value in the deepest extracting level of open pit mine is constructed. The reliability of training process and testing is estimated by the correlation coefficients between raw copper grade data and neural network predicted. So far, neural network application has not been employed extensively in estimations and prognoses concerning mineral deposits. Besides, the unique character of natural conditions, varying even within the same type of deposit, requires experimenting with different types of prognostication model. Narrowing of the scope of different types of neural network (even such with different parameters) was fulfilled using the module of Intelligent Problem Solver of the STATISTICA 7.0 software. The explorer can choose the best type of model from those suggested by IPS, a model whose parameters are the basis of active prognostication model designing using the STATISTICA 7.0 module of Custom Network Design. The module can trace the quality of training in the process of prognostication problem solving. ISBN: ISSN:

5 References: [1] Denby B., C. C. H. Burnet, GEMNet - Using Neural Networks to approximate the Location - Grade Relationship in Mineral Deposits., AIMS Research Unit, Department of Mineral Resources Engineering, University of Nottingham, UK, [2] Kapageridis I. K., B. Denby, G. Hunter, GEMNet II - A Neural Ore Grade Estimation System. In: 29th Interation Symposium on the Application of Computers and Operations Research in the Minerals Industries (APCOM '99), Denver, Colorado, [3] Kapageridis I. K., B. Denby, D. Scofield. GEMNet II - An Alternative Method for Grade Estimation. uk.geocities.com/adaptive_geoservices/mpes2000 _GEMNET.pdf [4] Johansson, E. M., Dowla, F. U., & Goodman D. M. "Backpropagation learning for multilayer feed - forward neural networks using the conjugate gradient method", International Journal of Neural Systems, Vol. 2, No. 4, pp , [5] Topalov S., K. Boev, I. Koshev. Experiment of Artificial Intelligence (Neural Network) use for geological parameter prognostication. X-th National Mine Surveying Conference, St. Konstantin and Helene, June, (Топалов Ст., К. Боев, Ив. Кошев, Опит за използване на изкуствен интелект (невронни мрежи) за прогнозиране на изучаван геоложки показател., Х-та Национална Маркшайдерска конференция., Св. Конст. и Елена, юни, 2003.) [6] Topalov S., V. Hristov, Prognostication of geological parameters value using Neural Networks., 13-th International Congress of the International Society for Mine Surveying, Budapest, Hungary, September 2007, (No 48). ISBN: ISSN:

ARTIFICIAL NEURAL NETWORKS گروه مطالعاتي 17 بهار 92

ARTIFICIAL NEURAL NETWORKS گروه مطالعاتي 17 بهار 92 ARTIFICIAL NEURAL NETWORKS گروه مطالعاتي 17 بهار 92 BIOLOGICAL INSPIRATIONS Some numbers The human brain contains about 10 billion nerve cells (neurons) Each neuron is connected to the others through 10000

More information

Artificial Neural Networks" and Nonparametric Methods" CMPSCI 383 Nov 17, 2011!

Artificial Neural Networks and Nonparametric Methods CMPSCI 383 Nov 17, 2011! Artificial Neural Networks" and Nonparametric Methods" CMPSCI 383 Nov 17, 2011! 1 Todayʼs lecture" How the brain works (!)! Artificial neural networks! Perceptrons! Multilayer feed-forward networks! Error

More information

Introduction to Natural Computation. Lecture 9. Multilayer Perceptrons and Backpropagation. Peter Lewis

Introduction to Natural Computation. Lecture 9. Multilayer Perceptrons and Backpropagation. Peter Lewis Introduction to Natural Computation Lecture 9 Multilayer Perceptrons and Backpropagation Peter Lewis 1 / 25 Overview of the Lecture Why multilayer perceptrons? Some applications of multilayer perceptrons.

More information

Artificial Neural Networks (ANN) Xiaogang Su, Ph.D. Department of Mathematical Science University of Texas at El Paso

Artificial Neural Networks (ANN) Xiaogang Su, Ph.D. Department of Mathematical Science University of Texas at El Paso Artificial Neural Networks (ANN) Xiaogang Su, Ph.D. Department of Mathematical Science University of Texas at El Paso xsu@utep.edu Fall, 2018 Outline Introduction A Brief History ANN Architecture Terminology

More information

Artificial Neural Networks. Edward Gatt

Artificial Neural Networks. Edward Gatt Artificial Neural Networks Edward Gatt What are Neural Networks? Models of the brain and nervous system Highly parallel Process information much more like the brain than a serial computer Learning Very

More information

Assessment of Maximum Explosive Charge Used Per Delay in Surface Mines

Assessment of Maximum Explosive Charge Used Per Delay in Surface Mines Assessment of Maximum Explosive Charge Used Per Delay in Surface Mines MANOJ KHANDELWAL 1 & NIKOS MASTORAKIS 2 1 Department of Mining Engineering, College of Technology and Engineering, Maharana Pratap

More information

Artifical Neural Networks

Artifical Neural Networks Neural Networks Artifical Neural Networks Neural Networks Biological Neural Networks.................................. Artificial Neural Networks................................... 3 ANN Structure...........................................

More information

4. Multilayer Perceptrons

4. Multilayer Perceptrons 4. Multilayer Perceptrons This is a supervised error-correction learning algorithm. 1 4.1 Introduction A multilayer feedforward network consists of an input layer, one or more hidden layers, and an output

More information

Multilayer Perceptrons and Backpropagation

Multilayer Perceptrons and Backpropagation Multilayer Perceptrons and Backpropagation Informatics 1 CG: Lecture 7 Chris Lucas School of Informatics University of Edinburgh January 31, 2017 (Slides adapted from Mirella Lapata s.) 1 / 33 Reading:

More information

Artificial Neural Networks (ANN)

Artificial Neural Networks (ANN) Artificial Neural Networks (ANN) Edmondo Trentin April 17, 2013 ANN: Definition The definition of ANN is given in 3.1 points. Indeed, an ANN is a machine that is completely specified once we define its:

More information

Neural Networks. Intro to AI Bert Huang Virginia Tech

Neural Networks. Intro to AI Bert Huang Virginia Tech Neural Networks Intro to AI Bert Huang Virginia Tech Outline Biological inspiration for artificial neural networks Linear vs. nonlinear functions Learning with neural networks: back propagation https://en.wikipedia.org/wiki/neuron#/media/file:chemical_synapse_schema_cropped.jpg

More information

ARTIFICIAL INTELLIGENCE MODELLING OF STOCHASTIC PROCESSES IN DIGITAL COMMUNICATION NETWORKS

ARTIFICIAL INTELLIGENCE MODELLING OF STOCHASTIC PROCESSES IN DIGITAL COMMUNICATION NETWORKS Journal of ELECTRICAL ENGINEERING, VOL. 54, NO. 9-, 23, 255 259 ARTIFICIAL INTELLIGENCE MODELLING OF STOCHASTIC PROCESSES IN DIGITAL COMMUNICATION NETWORKS Dimitar Radev Svetla Radeva The paper presents

More information

Heterogeneous mixture-of-experts for fusion of locally valid knowledge-based submodels

Heterogeneous mixture-of-experts for fusion of locally valid knowledge-based submodels ESANN'29 proceedings, European Symposium on Artificial Neural Networks - Advances in Computational Intelligence and Learning. Bruges Belgium), 22-24 April 29, d-side publi., ISBN 2-9337-9-9. Heterogeneous

More information

Short Term Load Forecasting Based Artificial Neural Network

Short Term Load Forecasting Based Artificial Neural Network Short Term Load Forecasting Based Artificial Neural Network Dr. Adel M. Dakhil Department of Electrical Engineering Misan University Iraq- Misan Dr.adelmanaa@gmail.com Abstract Present study develops short

More information

Comparison of Soviet Classified Resources to JORC Code (2004) Source: Wardel Armstrong International

Comparison of Soviet Classified Resources to JORC Code (2004) Source: Wardel Armstrong International Comparison of Soviet Classified Resources to JORC Code (2004) Source: Wardel Armstrong International Table of Contents Soviet Resources and Reserves... 1 Soviet System of Resource/Reserve Classification

More information

Introduction to Neural Networks

Introduction to Neural Networks Introduction to Neural Networks What are (Artificial) Neural Networks? Models of the brain and nervous system Highly parallel Process information much more like the brain than a serial computer Learning

More information

NONLINEAR CLASSIFICATION AND REGRESSION. J. Elder CSE 4404/5327 Introduction to Machine Learning and Pattern Recognition

NONLINEAR CLASSIFICATION AND REGRESSION. J. Elder CSE 4404/5327 Introduction to Machine Learning and Pattern Recognition NONLINEAR CLASSIFICATION AND REGRESSION Nonlinear Classification and Regression: Outline 2 Multi-Layer Perceptrons The Back-Propagation Learning Algorithm Generalized Linear Models Radial Basis Function

More information

BACKPROPAGATION. Neural network training optimization problem. Deriving backpropagation

BACKPROPAGATION. Neural network training optimization problem. Deriving backpropagation BACKPROPAGATION Neural network training optimization problem min J(w) w The application of gradient descent to this problem is called backpropagation. Backpropagation is gradient descent applied to J(w)

More information

Supervised (BPL) verses Hybrid (RBF) Learning. By: Shahed Shahir

Supervised (BPL) verses Hybrid (RBF) Learning. By: Shahed Shahir Supervised (BPL) verses Hybrid (RBF) Learning By: Shahed Shahir 1 Outline I. Introduction II. Supervised Learning III. Hybrid Learning IV. BPL Verses RBF V. Supervised verses Hybrid learning VI. Conclusion

More information

Neural Networks: Backpropagation

Neural Networks: Backpropagation Neural Networks: Backpropagation Machine Learning Fall 2017 Based on slides and material from Geoffrey Hinton, Richard Socher, Dan Roth, Yoav Goldberg, Shai Shalev-Shwartz and Shai Ben-David, and others

More information

AN ARTIFICIAL NEURAL NETWORK MODEL FOR ROAD ACCIDENT PREDICTION: A CASE STUDY OF KHULNA METROPOLITAN CITY

AN ARTIFICIAL NEURAL NETWORK MODEL FOR ROAD ACCIDENT PREDICTION: A CASE STUDY OF KHULNA METROPOLITAN CITY Proceedings of the 4 th International Conference on Civil Engineering for Sustainable Development (ICCESD 2018), 9~11 February 2018, KUET, Khulna, Bangladesh (ISBN-978-984-34-3502-6) AN ARTIFICIAL NEURAL

More information

Neural Networks biological neuron artificial neuron 1

Neural Networks biological neuron artificial neuron 1 Neural Networks biological neuron artificial neuron 1 A two-layer neural network Output layer (activation represents classification) Weighted connections Hidden layer ( internal representation ) Input

More information

Artificial Neural Networks. Introduction to Computational Neuroscience Tambet Matiisen

Artificial Neural Networks. Introduction to Computational Neuroscience Tambet Matiisen Artificial Neural Networks Introduction to Computational Neuroscience Tambet Matiisen 2.04.2018 Artificial neural network NB! Inspired by biology, not based on biology! Applications Automatic speech recognition

More information

For personal use only

For personal use only 20 16 FEBRUARY JANUARY 2017 ASX ANNOUNCEMENT OMMANEY FOLLOW-UP RC DRILLING Ommaney follow up drilling to commence in early to mid-march 2017. A 7 hole RC drilling program will follow up the intense alteration

More information

y(x n, w) t n 2. (1)

y(x n, w) t n 2. (1) Network training: Training a neural network involves determining the weight parameter vector w that minimizes a cost function. Given a training set comprising a set of input vector {x n }, n = 1,...N,

More information

Neural Networks Task Sheet 2. Due date: May

Neural Networks Task Sheet 2. Due date: May Neural Networks 2007 Task Sheet 2 1/6 University of Zurich Prof. Dr. Rolf Pfeifer, pfeifer@ifi.unizh.ch Department of Informatics, AI Lab Matej Hoffmann, hoffmann@ifi.unizh.ch Andreasstrasse 15 Marc Ziegler,

More information

Unit III. A Survey of Neural Network Model

Unit III. A Survey of Neural Network Model Unit III A Survey of Neural Network Model 1 Single Layer Perceptron Perceptron the first adaptive network architecture was invented by Frank Rosenblatt in 1957. It can be used for the classification of

More information

Gradient Descent Training Rule: The Details

Gradient Descent Training Rule: The Details Gradient Descent Training Rule: The Details 1 For Perceptrons The whole idea behind gradient descent is to gradually, but consistently, decrease the output error by adjusting the weights. The trick is

More information

Artificial Neural Networks

Artificial Neural Networks Introduction ANN in Action Final Observations Application: Poverty Detection Artificial Neural Networks Alvaro J. Riascos Villegas University of los Andes and Quantil July 6 2018 Artificial Neural Networks

More information

Contents 1 Introduction 2 Statistical Tools and Concepts

Contents 1 Introduction 2 Statistical Tools and Concepts 1 Introduction... 1 1.1 Objectives and Approach... 1 1.2 Scope of Resource Modeling... 2 1.3 Critical Aspects... 2 1.3.1 Data Assembly and Data Quality... 2 1.3.2 Geologic Model and Definition of Estimation

More information

Prediction of gas emission quantity using artificial neural networks

Prediction of gas emission quantity using artificial neural networks Available online www.jocpr.com Journal of Chemical and Pharmaceutical Research, 2014, 6(6):1653-165 Research Article ISSN : 095-384 CODEN(USA) : JCPRC5 Prediction of gas emission quantity using artificial

More information

Artificial Neural Networks Francesco DI MAIO, Ph.D., Politecnico di Milano Department of Energy - Nuclear Division IEEE - Italian Reliability Chapter

Artificial Neural Networks Francesco DI MAIO, Ph.D., Politecnico di Milano Department of Energy - Nuclear Division IEEE - Italian Reliability Chapter Artificial Neural Networks Francesco DI MAIO, Ph.D., Politecnico di Milano Department of Energy - Nuclear Division IEEE - Italian Reliability Chapter (Chair) STF - China Fellow francesco.dimaio@polimi.it

More information

Module 12. Machine Learning. Version 2 CSE IIT, Kharagpur

Module 12. Machine Learning. Version 2 CSE IIT, Kharagpur Module 12 Machine Learning Lesson 39 Neural Networks - III 12.4.4 Multi-Layer Perceptrons In contrast to perceptrons, multilayer networks can learn not only multiple decision boundaries, but the boundaries

More information

Nonlinear Classification

Nonlinear Classification Nonlinear Classification INFO-4604, Applied Machine Learning University of Colorado Boulder October 5-10, 2017 Prof. Michael Paul Linear Classification Most classifiers we ve seen use linear functions

More information

Optimal Artificial Neural Network Modeling of Sedimentation yield and Runoff in high flow season of Indus River at Besham Qila for Terbela Dam

Optimal Artificial Neural Network Modeling of Sedimentation yield and Runoff in high flow season of Indus River at Besham Qila for Terbela Dam Optimal Artificial Neural Network Modeling of Sedimentation yield and Runoff in high flow season of Indus River at Besham Qila for Terbela Dam Akif Rahim 1, Amina Akif 2 1 Ph.D Scholar in Center of integrated

More information

Computational statistics

Computational statistics Computational statistics Lecture 3: Neural networks Thierry Denœux 5 March, 2016 Neural networks A class of learning methods that was developed separately in different fields statistics and artificial

More information

Introduction Neural Networks - Architecture Network Training Small Example - ZIP Codes Summary. Neural Networks - I. Henrik I Christensen

Introduction Neural Networks - Architecture Network Training Small Example - ZIP Codes Summary. Neural Networks - I. Henrik I Christensen Neural Networks - I Henrik I Christensen Robotics & Intelligent Machines @ GT Georgia Institute of Technology, Atlanta, GA 30332-0280 hic@cc.gatech.edu Henrik I Christensen (RIM@GT) Neural Networks 1 /

More information

22c145-Fall 01: Neural Networks. Neural Networks. Readings: Chapter 19 of Russell & Norvig. Cesare Tinelli 1

22c145-Fall 01: Neural Networks. Neural Networks. Readings: Chapter 19 of Russell & Norvig. Cesare Tinelli 1 Neural Networks Readings: Chapter 19 of Russell & Norvig. Cesare Tinelli 1 Brains as Computational Devices Brains advantages with respect to digital computers: Massively parallel Fault-tolerant Reliable

More information

Application of Artificial Neural Networks in Evaluation and Identification of Electrical Loss in Transformers According to the Energy Consumption

Application of Artificial Neural Networks in Evaluation and Identification of Electrical Loss in Transformers According to the Energy Consumption Application of Artificial Neural Networks in Evaluation and Identification of Electrical Loss in Transformers According to the Energy Consumption ANDRÉ NUNES DE SOUZA, JOSÉ ALFREDO C. ULSON, IVAN NUNES

More information

CHAPTER IX Radial Basis Function Networks

CHAPTER IX Radial Basis Function Networks Ugur HAICI - METU EEE - ANKARA 2/2/2005 CHAPTER IX Radial Basis Function Networks Introduction Radial basis function (RBF) networks are feed-forward networks trained using a supervised training algorithm.

More information

Artificial Intelligence

Artificial Intelligence Artificial Intelligence Jeff Clune Assistant Professor Evolving Artificial Intelligence Laboratory Announcements Be making progress on your projects! Three Types of Learning Unsupervised Supervised Reinforcement

More information

MODELLING ENERGY DEMAND FORECASTING USING NEURAL NETWORKS WITH UNIVARIATE TIME SERIES

MODELLING ENERGY DEMAND FORECASTING USING NEURAL NETWORKS WITH UNIVARIATE TIME SERIES MODELLING ENERGY DEMAND FORECASTING USING NEURAL NETWORKS WITH UNIVARIATE TIME SERIES S. Cankurt 1, M. Yasin 2 1&2 Ishik University Erbil, Iraq 1 s.cankurt@ishik.edu.iq, 2 m.yasin@ishik.edu.iq doi:10.23918/iec2018.26

More information

Artificial Neural Network

Artificial Neural Network Artificial Neural Network Contents 2 What is ANN? Biological Neuron Structure of Neuron Types of Neuron Models of Neuron Analogy with human NN Perceptron OCR Multilayer Neural Network Back propagation

More information

Logistic Regression & Neural Networks

Logistic Regression & Neural Networks Logistic Regression & Neural Networks CMSC 723 / LING 723 / INST 725 Marine Carpuat Slides credit: Graham Neubig, Jacob Eisenstein Logistic Regression Perceptron & Probabilities What if we want a probability

More information

Neural Networks, Computation Graphs. CMSC 470 Marine Carpuat

Neural Networks, Computation Graphs. CMSC 470 Marine Carpuat Neural Networks, Computation Graphs CMSC 470 Marine Carpuat Binary Classification with a Multi-layer Perceptron φ A = 1 φ site = 1 φ located = 1 φ Maizuru = 1 φ, = 2 φ in = 1 φ Kyoto = 1 φ priest = 0 φ

More information

POWER SYSTEM DYNAMIC SECURITY ASSESSMENT CLASSICAL TO MODERN APPROACH

POWER SYSTEM DYNAMIC SECURITY ASSESSMENT CLASSICAL TO MODERN APPROACH Abstract POWER SYSTEM DYNAMIC SECURITY ASSESSMENT CLASSICAL TO MODERN APPROACH A.H.M.A.Rahim S.K.Chakravarthy Department of Electrical Engineering K.F. University of Petroleum and Minerals Dhahran. Dynamic

More information

Neural networks (NN) 1

Neural networks (NN) 1 Neural networks (NN) 1 Hedibert F. Lopes Insper Institute of Education and Research São Paulo, Brazil 1 Slides based on Chapter 11 of Hastie, Tibshirani and Friedman s book The Elements of Statistical

More information

Radial basis functions and kriging a gold case study

Radial basis functions and kriging a gold case study Page Radial basis functions and kriging a gold case study D Kentwell, Principal Consultant, SRK Consulting This article was first published in The AusIMM Bulletin, December. Introduction Recent advances

More information

IVANHOE MINES EXTENDS HUGO NORTH GEOPHYSICAL ANOMALY FOUR KILOMETRES NORTH ADDITIONAL GEOPHYSICAL TARGETS IDENTIFIED

IVANHOE MINES EXTENDS HUGO NORTH GEOPHYSICAL ANOMALY FOUR KILOMETRES NORTH ADDITIONAL GEOPHYSICAL TARGETS IDENTIFIED December 6, 2004 IVANHOE MINES EXTENDS HUGO NORTH GEOPHYSICAL ANOMALY FOUR KILOMETRES NORTH ADDITIONAL GEOPHYSICAL TARGETS IDENTIFIED ULAANBAATAR, MONGOLIA Ivanhoe Mines Chairman Robert Friedland, Deputy

More information

ECE521 Lectures 9 Fully Connected Neural Networks

ECE521 Lectures 9 Fully Connected Neural Networks ECE521 Lectures 9 Fully Connected Neural Networks Outline Multi-class classification Learning multi-layer neural networks 2 Measuring distance in probability space We learnt that the squared L2 distance

More information

Chapter ML:VI (continued)

Chapter ML:VI (continued) Chapter ML:VI (continued) VI. Neural Networks Perceptron Learning Gradient Descent Multilayer Perceptron Radial asis Functions ML:VI-56 Neural Networks STEIN 2005-2013 Definition 1 (Linear Separability)

More information

Neural Networks and the Back-propagation Algorithm

Neural Networks and the Back-propagation Algorithm Neural Networks and the Back-propagation Algorithm Francisco S. Melo In these notes, we provide a brief overview of the main concepts concerning neural networks and the back-propagation algorithm. We closely

More information

Carrapateena Mineral Resources Explanatory Notes April OZ Minerals Limited. Carrapateena Mineral Resources Statement April

Carrapateena Mineral Resources Explanatory Notes April OZ Minerals Limited. Carrapateena Mineral Resources Statement April OZ Minerals Limited Carrapateena Mineral Resources Statement April 14 2011 CARRAPATEENA MINERAL RESOURCE STATEMENT April 14, 2011 The Carrapateena Resource Statement relates to an upgrading to an Inferred

More information

A Logarithmic Neural Network Architecture for Unbounded Non-Linear Function Approximation

A Logarithmic Neural Network Architecture for Unbounded Non-Linear Function Approximation 1 Introduction A Logarithmic Neural Network Architecture for Unbounded Non-Linear Function Approximation J Wesley Hines Nuclear Engineering Department The University of Tennessee Knoxville, Tennessee,

More information

Learning and Neural Networks

Learning and Neural Networks Artificial Intelligence Learning and Neural Networks Readings: Chapter 19 & 20.5 of Russell & Norvig Example: A Feed-forward Network w 13 I 1 H 3 w 35 w 14 O 5 I 2 w 23 w 24 H 4 w 45 a 5 = g 5 (W 3,5 a

More information

Engineering Part IIB: Module 4F10 Statistical Pattern Processing Lecture 6: Multi-Layer Perceptrons I

Engineering Part IIB: Module 4F10 Statistical Pattern Processing Lecture 6: Multi-Layer Perceptrons I Engineering Part IIB: Module 4F10 Statistical Pattern Processing Lecture 6: Multi-Layer Perceptrons I Phil Woodland: pcw@eng.cam.ac.uk Michaelmas 2012 Engineering Part IIB: Module 4F10 Introduction In

More information

Data Mining (Mineria de Dades)

Data Mining (Mineria de Dades) Data Mining (Mineria de Dades) Lluís A. Belanche belanche@lsi.upc.edu Soft Computing Research Group Dept. de Llenguatges i Sistemes Informàtics (Software department) Universitat Politècnica de Catalunya

More information

Feed-forward Network Functions

Feed-forward Network Functions Feed-forward Network Functions Sargur Srihari Topics 1. Extension of linear models 2. Feed-forward Network Functions 3. Weight-space symmetries 2 Recap of Linear Models Linear Models for Regression, Classification

More information

Reading Group on Deep Learning Session 1

Reading Group on Deep Learning Session 1 Reading Group on Deep Learning Session 1 Stephane Lathuiliere & Pablo Mesejo 2 June 2016 1/31 Contents Introduction to Artificial Neural Networks to understand, and to be able to efficiently use, the popular

More information

Speaker Representation and Verification Part II. by Vasileios Vasilakakis

Speaker Representation and Verification Part II. by Vasileios Vasilakakis Speaker Representation and Verification Part II by Vasileios Vasilakakis Outline -Approaches of Neural Networks in Speaker/Speech Recognition -Feed-Forward Neural Networks -Training with Back-propagation

More information

DATA MINING WITH DIFFERENT TYPES OF X-RAY DATA

DATA MINING WITH DIFFERENT TYPES OF X-RAY DATA DATA MINING WITH DIFFERENT TYPES OF X-RAY DATA 315 C. K. Lowe-Ma, A. E. Chen, D. Scholl Physical & Environmental Sciences, Research and Advanced Engineering Ford Motor Company, Dearborn, Michigan, USA

More information

FEEDBACK GMDH-TYPE NEURAL NETWORK AND ITS APPLICATION TO MEDICAL IMAGE ANALYSIS OF LIVER CANCER. Tadashi Kondo and Junji Ueno

FEEDBACK GMDH-TYPE NEURAL NETWORK AND ITS APPLICATION TO MEDICAL IMAGE ANALYSIS OF LIVER CANCER. Tadashi Kondo and Junji Ueno International Journal of Innovative Computing, Information and Control ICIC International c 2012 ISSN 1349-4198 Volume 8, Number 3(B), March 2012 pp. 2285 2300 FEEDBACK GMDH-TYPE NEURAL NETWORK AND ITS

More information

Data and prognosis for renewable energy

Data and prognosis for renewable energy The Hong Kong Polytechnic University Department of Electrical Engineering Project code: FYP_27 Data and prognosis for renewable energy by Choi Man Hin 14072258D Final Report Bachelor of Engineering (Honours)

More information

Pattern Recognition Prof. P. S. Sastry Department of Electronics and Communication Engineering Indian Institute of Science, Bangalore

Pattern Recognition Prof. P. S. Sastry Department of Electronics and Communication Engineering Indian Institute of Science, Bangalore Pattern Recognition Prof. P. S. Sastry Department of Electronics and Communication Engineering Indian Institute of Science, Bangalore Lecture - 27 Multilayer Feedforward Neural networks with Sigmoidal

More information

CSE 417T: Introduction to Machine Learning. Final Review. Henry Chai 12/4/18

CSE 417T: Introduction to Machine Learning. Final Review. Henry Chai 12/4/18 CSE 417T: Introduction to Machine Learning Final Review Henry Chai 12/4/18 Overfitting Overfitting is fitting the training data more than is warranted Fitting noise rather than signal 2 Estimating! "#$

More information

Data Mining Part 5. Prediction

Data Mining Part 5. Prediction Data Mining Part 5. Prediction 5.5. Spring 2010 Instructor: Dr. Masoud Yaghini Outline How the Brain Works Artificial Neural Networks Simple Computing Elements Feed-Forward Networks Perceptrons (Single-layer,

More information

COMPARING PERFORMANCE OF NEURAL NETWORKS RECOGNIZING MACHINE GENERATED CHARACTERS

COMPARING PERFORMANCE OF NEURAL NETWORKS RECOGNIZING MACHINE GENERATED CHARACTERS Proceedings of the First Southern Symposium on Computing The University of Southern Mississippi, December 4-5, 1998 COMPARING PERFORMANCE OF NEURAL NETWORKS RECOGNIZING MACHINE GENERATED CHARACTERS SEAN

More information

Machine Learning. Neural Networks. (slides from Domingos, Pardo, others)

Machine Learning. Neural Networks. (slides from Domingos, Pardo, others) Machine Learning Neural Networks (slides from Domingos, Pardo, others) For this week, Reading Chapter 4: Neural Networks (Mitchell, 1997) See Canvas For subsequent weeks: Scaling Learning Algorithms toward

More information

AN INTRODUCTION TO NEURAL NETWORKS. Scott Kuindersma November 12, 2009

AN INTRODUCTION TO NEURAL NETWORKS. Scott Kuindersma November 12, 2009 AN INTRODUCTION TO NEURAL NETWORKS Scott Kuindersma November 12, 2009 SUPERVISED LEARNING We are given some training data: We must learn a function If y is discrete, we call it classification If it is

More information

Modelling and Prediction of 150KW PV Array System in Northern India using Artificial Neural Network

Modelling and Prediction of 150KW PV Array System in Northern India using Artificial Neural Network International Journal of Engineering Science Invention ISSN (Online): 2319 6734, ISSN (Print): 2319 6726 Volume 5 Issue 5 May 2016 PP.18-25 Modelling and Prediction of 150KW PV Array System in Northern

More information

Machine Learning. Neural Networks. (slides from Domingos, Pardo, others)

Machine Learning. Neural Networks. (slides from Domingos, Pardo, others) Machine Learning Neural Networks (slides from Domingos, Pardo, others) Human Brain Neurons Input-Output Transformation Input Spikes Output Spike Spike (= a brief pulse) (Excitatory Post-Synaptic Potential)

More information

Pattern Recognition and Machine Learning

Pattern Recognition and Machine Learning Christopher M. Bishop Pattern Recognition and Machine Learning ÖSpri inger Contents Preface Mathematical notation Contents vii xi xiii 1 Introduction 1 1.1 Example: Polynomial Curve Fitting 4 1.2 Probability

More information

Introduction to Neural Networks

Introduction to Neural Networks CUONG TUAN NGUYEN SEIJI HOTTA MASAKI NAKAGAWA Tokyo University of Agriculture and Technology Copyright by Nguyen, Hotta and Nakagawa 1 Pattern classification Which category of an input? Example: Character

More information

Accuracy improvement program for VMap1 to Multinational Geospatial Co-production Program (MGCP) using artificial neural networks

Accuracy improvement program for VMap1 to Multinational Geospatial Co-production Program (MGCP) using artificial neural networks 7th International Symposium on Spatial Accuracy Assessment in Natural Resources and Environmental Sciences. Edited by M. Caetano and M. Painho. Accuracy improvement program for VMap1 to Multinational Geospatial

More information

ECLT 5810 Classification Neural Networks. Reference: Data Mining: Concepts and Techniques By J. Hand, M. Kamber, and J. Pei, Morgan Kaufmann

ECLT 5810 Classification Neural Networks. Reference: Data Mining: Concepts and Techniques By J. Hand, M. Kamber, and J. Pei, Morgan Kaufmann ECLT 5810 Classification Neural Networks Reference: Data Mining: Concepts and Techniques By J. Hand, M. Kamber, and J. Pei, Morgan Kaufmann Neural Networks A neural network is a set of connected input/output

More information

MODELLING OF TOOL LIFE, TORQUE AND THRUST FORCE IN DRILLING: A NEURO-FUZZY APPROACH

MODELLING OF TOOL LIFE, TORQUE AND THRUST FORCE IN DRILLING: A NEURO-FUZZY APPROACH ISSN 1726-4529 Int j simul model 9 (2010) 2, 74-85 Original scientific paper MODELLING OF TOOL LIFE, TORQUE AND THRUST FORCE IN DRILLING: A NEURO-FUZZY APPROACH Roy, S. S. Department of Mechanical Engineering,

More information

Machine Learning of Environmental Spatial Data Mikhail Kanevski 1, Alexei Pozdnoukhov 2, Vasily Demyanov 3

Machine Learning of Environmental Spatial Data Mikhail Kanevski 1, Alexei Pozdnoukhov 2, Vasily Demyanov 3 1 3 4 5 6 7 8 9 10 11 1 13 14 15 16 17 18 19 0 1 3 4 5 6 7 8 9 30 31 3 33 International Environmental Modelling and Software Society (iemss) 01 International Congress on Environmental Modelling and Software

More information

Keywords- Source coding, Huffman encoding, Artificial neural network, Multilayer perceptron, Backpropagation algorithm

Keywords- Source coding, Huffman encoding, Artificial neural network, Multilayer perceptron, Backpropagation algorithm Volume 4, Issue 5, May 2014 ISSN: 2277 128X International Journal of Advanced Research in Computer Science and Software Engineering Research Paper Available online at: www.ijarcsse.com Huffman Encoding

More information

Research Article NEURAL NETWORK TECHNIQUE IN DATA MINING FOR PREDICTION OF EARTH QUAKE K.Karthikeyan, Sayantani Basu

Research Article   NEURAL NETWORK TECHNIQUE IN DATA MINING FOR PREDICTION OF EARTH QUAKE K.Karthikeyan, Sayantani Basu ISSN: 0975-766X CODEN: IJPTFI Available Online through Research Article www.ijptonline.com NEURAL NETWORK TECHNIQUE IN DATA MINING FOR PREDICTION OF EARTH QUAKE K.Karthikeyan, Sayantani Basu 1 Associate

More information

COMP 551 Applied Machine Learning Lecture 14: Neural Networks

COMP 551 Applied Machine Learning Lecture 14: Neural Networks COMP 551 Applied Machine Learning Lecture 14: Neural Networks Instructor: Ryan Lowe (ryan.lowe@mail.mcgill.ca) Slides mostly by: Class web page: www.cs.mcgill.ca/~hvanho2/comp551 Unless otherwise noted,

More information

Machine Learning and Data Mining. Multi-layer Perceptrons & Neural Networks: Basics. Prof. Alexander Ihler

Machine Learning and Data Mining. Multi-layer Perceptrons & Neural Networks: Basics. Prof. Alexander Ihler + Machine Learning and Data Mining Multi-layer Perceptrons & Neural Networks: Basics Prof. Alexander Ihler Linear Classifiers (Perceptrons) Linear Classifiers a linear classifier is a mapping which partitions

More information

Pattern Classification

Pattern Classification Pattern Classification All materials in these slides were taen from Pattern Classification (2nd ed) by R. O. Duda,, P. E. Hart and D. G. Stor, John Wiley & Sons, 2000 with the permission of the authors

More information

Multitask Learning of Environmental Spatial Data

Multitask Learning of Environmental Spatial Data 9th International Congress on Environmental Modelling and Software Brigham Young University BYU ScholarsArchive 6th International Congress on Environmental Modelling and Software - Leipzig, Germany - July

More information

Multilayer Neural Networks

Multilayer Neural Networks Multilayer Neural Networks Multilayer Neural Networks Discriminant function flexibility NON-Linear But with sets of linear parameters at each layer Provably general function approximators for sufficient

More information

CSE446: Neural Networks Spring Many slides are adapted from Carlos Guestrin and Luke Zettlemoyer

CSE446: Neural Networks Spring Many slides are adapted from Carlos Guestrin and Luke Zettlemoyer CSE446: Neural Networks Spring 2017 Many slides are adapted from Carlos Guestrin and Luke Zettlemoyer Human Neurons Switching time ~ 0.001 second Number of neurons 10 10 Connections per neuron 10 4-5 Scene

More information

Machine Learning: Multi Layer Perceptrons

Machine Learning: Multi Layer Perceptrons Machine Learning: Multi Layer Perceptrons Prof. Dr. Martin Riedmiller Albert-Ludwigs-University Freiburg AG Maschinelles Lernen Machine Learning: Multi Layer Perceptrons p.1/61 Outline multi layer perceptrons

More information

PREDICTION THE JOMINY CURVES BY MEANS OF NEURAL NETWORKS

PREDICTION THE JOMINY CURVES BY MEANS OF NEURAL NETWORKS Tomislav Filetin, Dubravko Majetić, Irena Žmak Faculty of Mechanical Engineering and Naval Architecture, University of Zagreb, Croatia PREDICTION THE JOMINY CURVES BY MEANS OF NEURAL NETWORKS ABSTRACT:

More information

Comparison learning algorithms for artificial neural network model for flood forecasting, Chiang Mai, Thailand

Comparison learning algorithms for artificial neural network model for flood forecasting, Chiang Mai, Thailand 22nd International Congress on Modelling and Simulation, Hobart, Tasmania, Australia, 3 to 8 December 2017 mssanz.org.au/modsim2017 Comparison learning algorithms for artificial neural network model for

More information

Tameapa Regional Geology

Tameapa Regional Geology Tameapa Project 1 Tameapa Regional Geology History San Francisco Mines of Mexico Ltd. (San Francisco), which completed an exploration program, including six drill holes (1,157 m) between 1956 and 1959.

More information

Neural networks. Chapter 19, Sections 1 5 1

Neural networks. Chapter 19, Sections 1 5 1 Neural networks Chapter 19, Sections 1 5 Chapter 19, Sections 1 5 1 Outline Brains Neural networks Perceptrons Multilayer perceptrons Applications of neural networks Chapter 19, Sections 1 5 2 Brains 10

More information

ARTIFICIAL INTELLIGENCE. Artificial Neural Networks

ARTIFICIAL INTELLIGENCE. Artificial Neural Networks INFOB2KI 2017-2018 Utrecht University The Netherlands ARTIFICIAL INTELLIGENCE Artificial Neural Networks Lecturer: Silja Renooij These slides are part of the INFOB2KI Course Notes available from www.cs.uu.nl/docs/vakken/b2ki/schema.html

More information

Lab 5: 16 th April Exercises on Neural Networks

Lab 5: 16 th April Exercises on Neural Networks Lab 5: 16 th April 01 Exercises on Neural Networks 1. What are the values of weights w 0, w 1, and w for the perceptron whose decision surface is illustrated in the figure? Assume the surface crosses the

More information

Serious limitations of (single-layer) perceptrons: Cannot learn non-linearly separable tasks. Cannot approximate (learn) non-linear functions

Serious limitations of (single-layer) perceptrons: Cannot learn non-linearly separable tasks. Cannot approximate (learn) non-linear functions BACK-PROPAGATION NETWORKS Serious limitations of (single-layer) perceptrons: Cannot learn non-linearly separable tasks Cannot approximate (learn) non-linear functions Difficult (if not impossible) to design

More information

Lecture 5: Logistic Regression. Neural Networks

Lecture 5: Logistic Regression. Neural Networks Lecture 5: Logistic Regression. Neural Networks Logistic regression Comparison with generative models Feed-forward neural networks Backpropagation Tricks for training neural networks COMP-652, Lecture

More information

Weather based forecasting model for crops yield using neural network approach

Weather based forecasting model for crops yield using neural network approach Statistics and Applications Volume 9, Nos. &2, 20 (New Series), pp. 55-69 Weather based forecasting model for crops yield using neural network approach Ratna Ra Laxmi and Amrender Kumar 2 Reader, Department

More information

Journal of of Computer Applications Research Research and Development and Development (JCARD), ISSN (Print), ISSN

Journal of of Computer Applications Research Research and Development and Development (JCARD), ISSN (Print), ISSN JCARD Journal of of Computer Applications Research Research and Development and Development (JCARD), ISSN 2248-9304(Print), ISSN 2248-9312 (JCARD),(Online) ISSN 2248-9304(Print), Volume 1, Number ISSN

More information

Multilayer Perceptrons (MLPs)

Multilayer Perceptrons (MLPs) CSE 5526: Introduction to Neural Networks Multilayer Perceptrons (MLPs) 1 Motivation Multilayer networks are more powerful than singlelayer nets Example: XOR problem x 2 1 AND x o x 1 x 2 +1-1 o x x 1-1

More information

epochs epochs

epochs epochs Neural Network Experiments To illustrate practical techniques, I chose to use the glass dataset. This dataset has 214 examples and 6 classes. Here are 4 examples from the original dataset. The last values

More information

Neural Networks. Chapter 18, Section 7. TB Artificial Intelligence. Slides from AIMA 1/ 21

Neural Networks. Chapter 18, Section 7. TB Artificial Intelligence. Slides from AIMA   1/ 21 Neural Networks Chapter 8, Section 7 TB Artificial Intelligence Slides from AIMA http://aima.cs.berkeley.edu / 2 Outline Brains Neural networks Perceptrons Multilayer perceptrons Applications of neural

More information

Increased geometallurgical performance in industrial mineral operations through multivariate analysis of MWD-data

Increased geometallurgical performance in industrial mineral operations through multivariate analysis of MWD-data ISSN 1893-1170 (online utgave) ISSN 1893-1057 (trykt utgave) www.mineralproduksjon.no Note Increased geometallurgical performance in industrial mineral operations through multivariate analysis of MWD-data

More information